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CONVERGENCE TO STEADY STATES FOR A
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EQUATION WITH DIRICHLET BOUNDARY CONDITIONS

PHILIPPE LAURENÇOT

We investigate the convergence to steady states of the solutions to the one-
dimensional viscous Hamilton–Jacobi equation ∂t u − ∂2

x u = |∂x u| p, where
(t, x) ∈ (0, ∞)×(−1, 1) and p ∈ (0, 1), with homogeneous Dirichlet bound-
ary conditions. For that purpose, a Liapunov functional is constructed
by the approach of Zelenyak (1968). Instantaneous extinction of ∂x u on
a subinterval of (−1, 1) is shown for suitable initial data.

1. Introduction

Nonnegative solutions to the one-dimensional viscous Hamilton–Jacobi equation

∂t u − ∂2
x u = a |∂x u|

p, (t, x) ∈ (0,∞)× (−1, 1),(1)

u(t,±1)= 0, t ∈ (0,∞),(2)

u(0)= u0 ≥ 0, x ∈ (−1, 1),(3)

exhibit a rich variety of qualitative behaviours, according to the sign of a ∈ {−1, 1}

and the values of p ∈ (0,∞). On the one hand, extinction in finite time (that is,
there is T?> 0 such that u(t)≡ 0 for t ≥ T?) occurs for a =−1 and p ∈ (0, 1), while
u(t) converges exponentially fast to zero as t →∞ if a =−1 and p ≥1 [Benachour
et al. 2007]. On the other hand, if a = 1 and p > 2, finite time gradient blow-up
takes place for suitably large initial data [Souplet 2002] while convergence to zero
of u(t) as t → ∞ still holds true for global solutions [Arrieta et al. 2004; Souplet
and Zhang 2006]. In addition, all solutions are global for a = 1 and p ∈ [1, 2] and
converge to zero as t → ∞ [Benachour et al. 2007; Souplet and Zhang 2006].

The case a = 1 and p ∈ (0, 1) offers an interesting novelty and is the subject
of the present paper. Indeed, in contrast to the previous cases, the initial-boundary
value problem (1)–(3) has a one parameter family (Uϑ)ϑ∈[0,1] of steady states when
a = 1 and p ∈ (0, 1) with U1 ≡ 0 and Uϑ is not constant if ϑ ∈ [0, 1). These steady
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states play an important role in the dynamics of solutions to (1)–(3): indeed, we
will prove that any solution u to (1)–(3) converges as t → ∞ towards a steady
state, which is nontrivial if, for instance, the initial datum u0 is nonnegative with
a positive maximum. An interesting feature of Uϑ for ϑ ∈ (0, 1) is that they are
constant on a subinterval of (−1, 1). This property is of course related to the fact
that p ranges in (0, 1) and is reminiscent of the finite time extinction phenomenon
already alluded to for nonnegative solutions when a = −1 and p ∈ (0, 1). It is
then natural to wonder whether the nonlinear term |∂x u|

p may induce a similar
singular behaviour on the dynamics of u. More precisely, for a particular class of
nonnegative initial data, we will show that the gradient ∂x u vanishes identically on
[T?,∞)× I for some T? > 0 and some subinterval I of (−1, 1). Let us point out
here that, for nonnegative initial data, extinction in finite time cannot occur when
a = 1 and p ∈ (0, 1), for the comparison principle warrants that u is bounded from
below by the solution to the linear heat equation with the same initial and boundary
data.

From now on, we thus assume that

(4) a = 1 and p ∈ (0, 1),

and

(5) u0 ∈ Y :=
{
w ∈ C1([−1, 1]), w(±1)= 0

}
.

It then follows from [Benachour and Dabuleanu 2003, Theorem 3.1 and Propo-
sition 4.1] that the initial-boundary value problem (1)–(3) has a unique classical
solution

u ∈ C([0,∞)× [−1, 1])∩ C2,1((0,∞)× (−1, 1))

satisfying

(6) min
[−1,1]

u0 ≤ u(t, x)≤ max
[−1,1]

u0, (t, x) ∈ [0,∞)× [−1, 1].

In addition, setting

(7) M(t) := max
x∈[−1,1]

u(t, x),

the comparison principle ensures that t 7→ M(t) is a nonincreasing function of time
and we put

(8) M∞ := lim
t→∞

M(t) ∈
[

min
[−1,1]

u0, max
[−1,1]

u0
]
.

We recall that classical solutions to (1)–(3) enjoy the comparison principle; this
may be proved by standard arguments, as in [Gilding et al. 2003, Theorem 4].
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Remark 1. The initial-boundary value problem (1)–(3) is actually well-posed in
a larger space than Y , which depends on p, and we refer to [Benachour and Dab-
uleanu 2003] for a more detailed account. Still, the solutions constructed in that
reference belong to Y for any positive time. Since we are interested here in the
large time behaviour, the assumption (5) that u0 ∈ Y is thus not restrictive.

For further use, we also introduce the following notations:

(9) α :=
2 − p
1 − p

and M0 :=
(1 − p)α

2 − p
.

We may now state our main result.

Theorem 2. Consider u0 ∈ Y and denote by u the corresponding classical solution
to (1)–(3). Then M∞ ∈ [0,M0] and there is a nonnegative stationary solution us to
(1)–(2) such that

(10) lim
t→∞

‖u(t)− us‖∞ = 0.

Furthermore, us 6≡ 0 and M∞ > 0 if

(11)
∫ 1

−1
u0(x) cos

(πx
2

)
dx > 0.

It readily follows from the second assertion of Theorem 2 that the set of nontriv-
ial and nonnegative steady states to (1)–(2) attracts all solutions to (1)–(3) starting
from a nonnegative initial datum u0 6≡ 0. Observe however that the set of nontrivial
and nonnegative steady states to (1)–(2) also attracts sign-changing solutions u to
(1)–(3) since there are sign-changing initial data fulfilling (11).

The proof of Theorem 2 requires several steps and is performed as follows: we
first identify the stationary solutions to (1)–(2) in Section 2 and use them together
with comparison arguments to establish that, if u0 ∈ Y is nonnegative with u0 6≡ 0,
then M∞> 0 and {u(t); t ≥ 0} is bounded in C1([−1, 1]) (Section 3). In Section 4,
we employ the technique of [Zelenyak 1968] to construct a Liapunov functional
for nonnegative solutions to (1)–(3). Let us mention here that this technique has
also been used recently for related problems in [Arrieta et al. 2004; Simondon
and Touré 1996]. For nonnegative initial data convergence towards a steady state
then follows from the results of Section 3 and Section 4 by a LaSalle invariance
principle argument. The large time behaviour of sign-changing initial data is next
deduced from that of nonnegative solutions after observing that the negative part
of any solution to (1)–(3) vanishes in a finite time (Section 6).

Remark 3. A further outcome of Theorem 2 is that the large behaviour of solutions
to (1) on a bounded interval is more complex for homogeneous Dirichlet boundary
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conditions than for periodic and homogeneous Neumann boundary conditions. In-
deed, for the latter boundary conditions, it follows from [Benachour and Dabuleanu
2005; Benachour et al. 2002] that there are T? > 0 and m? ∈ R such that u(t)≡ m?

for t ≥ T? whatever the signs of a and u0 are.

In Section 7, we prove the extinction in finite time of ∂x u on a subinterval of
(−1, 1) for a specific class of initial data. More precisely, we have the following
result:

Theorem 4. Assume further that there are m0 ∈ (0,M0) and ε > 0 such that

(12) m0 − M0 |x |
α
+ ε |x |

1+α
≤ u0(x)≤ m0, x ∈ [−1, 1].

Then, for each t ∈ (0,∞), there is X (t) ∈ (0, 1) such that

u(t, x)= m0 for x ∈ (−X (t), X (t)).

Furthermore, if

(13) δ0 := 1 −

(
m0

M0

)1/α

∈ (0, 1),

and δ ∈ (0, δ0), there exists T (δ) > 0 such that

u(t, x)= m0 for (t, x) ∈ [T (δ),∞)× [−δ, δ].

An example of initial datum in Y fulfilling (12) is the following: u0(x)= M0 −

ε− M0 |x |
α
+ ε |x |

β for x ∈ [−1, 1], where β ∈ (α, α+ 1] and ε ∈ (0, αM0/β).

The second assertion of Theorem 4 shows that ∂x u vanishes identically after
some time on a subinterval of [−1, 1], a phenomenon which one could call finite
time incomplete extinction in comparison to what occurs for periodic or homoge-
neous Neumann boundary conditions. But the first assertion of Theorem 4 reveals
that the extinction mechanism is somewhat stronger since, even if ∂x u0(x) van-
ishes only for x = 0, ∂x u vanishes instantaneously on a subinterval of [−1, 1] with
positive measure.

Another consequence of Theorem 4 and (6) is that ‖u(t)‖∞ =m0 for every t ≥0.
Therefore, for an initial datum u0 in Y satisfying (12), the corresponding solution
u to (1)–(3) does not obey the strong maximum principle.

The proof of Theorem 4 relies on comparison arguments with travelling wave
solutions to (1) and is similar to that of [Gilding 2005, Theorem 9], some care
being needed to cope with the boundary conditions.
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Notations. Throughout the paper, we denote by r+ := max {r, 0} the positive part
of the real number r . For r ∈ R and s ∈ R, we put r ∨ s := max {r, s} and r ∧ s :=

min {r, s}. Also, for q ∈ [1,∞], ‖.‖q denotes the Lq(−1, 1)-norm.

2. Nonnegative steady states

In this section, we look for nonnegative stationary solutions to (1), (2), that is,
nonnegative functions U ∈ C2([−1, 1]) such that

d2U
dx2 +

∣∣∣∣dU
dx

∣∣∣∣p

= 0, x ∈ (−1, 1),(14)

U (±1)= 0.(15)

Proposition 5. Let U ∈ C2([−1, 1]) be a nonnegative solution to (14), (15). Then
there is ϑ ∈ [0, 1] such that U = Uϑ , where

Uϑ(x) := M0
[
(1 −ϑ)α − (|x | −ϑ)α

+

]
, x ∈ [−1, 1].

Observe that Uϑ is constant on [−ϑ, ϑ] for each ϑ ∈ (0, 1) and that U1 ≡ 0.

Proof. Let U ∈ C2([−1, 1]) be a nonnegative solution to (14), (15). Then U
is concave by (14) and we infer from the nonnegativity of U and the boundary
conditions (15) that dU/dx(−1)≥ 0 and dU/dx(1)≤ 0.

If dU/dx(−1)= 0, the concavity of U entails that U is a nonincreasing function
in (−1, 1). Consequently, U ≡ 0 = U1 to comply with the boundary conditions
(15).

Similarly, if dU/dx(1) = 0, it follows from the concavity of U that U is non-
decreasing on (−1, 1), whence U ≡ 0 = U1 by (15).

We finally consider the case where dU/dx(−1) > 0 and dU/dx(1) < 0 and put

x I := sup {X ∈ (−1, 1) such that dU/dx(x) > 0 on [−1, X)},

xS := inf {X ∈ (−1, 1) such that dU/dx(x) < 0 on (X, 1]}.

Owing to the continuity of dU/dx , we have −1< x I ≤ xS < 1 and dU/dx(x)= 0
for x ∈ [x I , xS] by the concavity of U . Direct integration of (14) then entails that
there are two constants A and B such that

(16)
∣∣∣∣dU

dx
(x)

∣∣∣∣−p dU
dx
(x)+ (1 − p) x =

{
A if x ∈ (xS, 1],

B if x ∈ [−1, x I ).

Since p ∈ (0, 1) and dU/dx vanishes for x ∈ {x I , xS}, we may let x → x I and
x → xS in (16) to deduce that A = (1 − p) xS and B = (1 − p) x I . We next
integrate (16) to obtain that there are two constants C I and CS such that

U (x)=

{
CS − M0 (x − xS)

α if x ∈ (xS, 1],

C I − M0 (x I − x)α if x ∈ [−1, x I ).
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Requiring the boundary conditions (15) to be fulfilled provides the values of C I

and CS , whence

U (x)=

{
M0 (1 − xS)

α
− M0 (x − xS)

α if x ∈ (xS, 1],

M0 (x I + 1)α − M0 (x I − x)α if x ∈ [−1, x I ).

Now, since dU/dx vanishes for x ∈ [x I , xS], we shall have U (xS)= U (x I ), which
implies that 1 − xS = x I + 1, whence xS = −x I . Thus, necessarily, xS ∈ [0, 1],
from which the equality U = UxS readily follows. �

It is worth mentioning that ‖Uϑ‖∞ ≤ M0 for each ϑ ∈ [0, 1]. Combining this
property with the convergence to a steady state to be proved in Section 5, we will
conclude that M∞ ≤ M0.

Remark 6. Proposition 5 shows in particular that there is nonuniqueness of classi-
cal solutions to (14), (15). A similar construction is performed in [Alaa and Pierre
1993; Lions 1985] for the boundary-value problem

−1u = |∇u|
p in B(0, 1), u = 0 on ∂B(0, 1),

where B(0, 1) denotes the open unit ball of RN , N > 1, to establish the nonunique-
ness of weak solutions for p > N/(N − 1).

3. Some properties of {u(t) ; t ≥ 0}

Introducing the positive cone Y+ := {w ∈ Y such that w ≥ 0} of Y , we first prove
that M∞ > 0 for u0 ∈ Y+, u0 6≡ 0, by constructing suitable subsolutions to (1)–(3)
with the help of U0.

Lemma 7. Let u0 ∈ Y+ and denote by u the corresponding classical solution to
(1)–(3). If u0 6≡ 0, we have M∞ > 0.

Proof. Since u0 6≡ 0, there are x0 ∈ (−1, 1), δ ∈ (0, 1) and m > 0 such that
(x0 − δ, x0 + δ)⊂ (−1, 1) and

(17) u0(x)≥ m for x ∈ (x0 − δ, x0 + δ).

We put x1 := (x0 − 1)∨ (−1), x2 := (x0 + 1)∧ 1, J := [x1, x2],

λ := 1 ∧
m

M0 − U0(δ)
,

and v(x) := λ (U0(x − x0)− U0(δ)) for x ∈ J .
On the one hand, it follows from (1) and (14) that

∂tv− ∂2
x v− |∂xv|

p
= (λ− λp) |∂xU0(.− x0)|

p
≤ 0 = ∂t u − ∂2

x u − |∂x u|
p
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on [0,∞) × J . On the other hand, the nonnegativity of u0 and the maximum
principle entail the nonnegativity of u which then warrants that

v(x1)≤ v(x0 − δ)= 0 ≤ u(t, x1),

v(x2)≤ v(x0 + δ)= 0 ≤ u(t, x2),

while the choice of λ entails that

v(x)≤ λ (M0 − U0(δ))≤ m ≤ u0(x) for x ∈ (x0 − δ, x0 + δ),

v(x)≤ v(x0 ± δ)= 0 ≤ u0(x) for x ∈ J \ (x0 − δ, x0 + δ).

We then infer from the comparison principle that u(t, x)≥v(x) for (t, x)∈[0,∞)×

J . In particular, M(t) = ‖u(t)‖∞ ≥ u(t, x0) ≥ v(x0) = λ (M0 − U0(δ)) for each
t ≥ 0, whence M∞ ≥ λ (M0 − U0(δ)) > 0. �

We now turn to the question of global boundedness of the trajectory {u(t) ; t ≥0}

in C1([−1, 1]).

Lemma 8. Let u0 ∈ Y+ and denote by u the corresponding classical solution to
(1)–(3). There is a constant 3 > 0 depending only on ‖u0‖W 1,∞(−1,1) and p such
that

(18) ‖u(t)‖W 1,∞(−1,1) ≤3 for t ≥ 0.

Proof. We first recall that {u(t) ; t ≥ 0} is bounded in L∞(−1, 1) by (6) and we are
left with the proof that {∂x u(t) ; t ≥ 0} is bounded in L∞(−1, 1). For that purpose,
we choose λ > 1 such that

(19) λ≥

[(
2

1 − p

)1/(1−p)

‖∂x u0‖∞

]
∨

[
‖u0‖∞

(1 − 2−α) M0

]
.

Putting v := λU0, we first notice that the condition λ > 1 ensures that

∂tv− ∂2
x v− |∂xv|

p
= (λ− λp) |∂xU0|

p
≥ 0 in (0,∞)× (−1, 1),

while v(±1)= u(t,±1)= 0 for each t ≥ 0. Next, on the one hand, it follows from
(19) and the monotonicity properties of U0 that, if x ∈ (−1/2, 1/2), we have

v(x)= λ U0(x)≥ λ U0(1/2)= λ M0 (1 − 2−α)≥ ‖u0‖∞ ≥ u0(x).

On the other hand, if x ∈ [1/2, 1], we have by (19) that

v(x)= λ (U0(x)− U0(1))= λ

∫ 1

x

∣∣∣∣dU0

dx
(y)

∣∣∣∣ dy = α λ M0

∫ 1

x
y1/(1−p) dy

≥ α λ M0

∫ 1

x
2−1/(1−p) dy ≥

∫ 1

x
‖∂x u0‖∞ dy ≥

∫ 1

x
|∂x u0(y)|dy

≥ u0(x).
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A similar computation shows that v(x)≥ u0(x) also holds true for x ∈ [−1,−1/2].
Therefore, v ≥ u0 in [−1, 1] and the previous analysis allows us to apply the
comparison principle and conclude that u(t, x)≤v(x) for (t, x)∈[0,∞)×[−1, 1].
In particular, if t ≥ 0 and x ∈ (0, 1), we have

u(t, x)− u(t, 1)
x − 1

=
u(t, x)
x − 1

≥
v(x)
x − 1

=
v(x)− v(1)

x − 1
.

Letting x → 1, we deduce that ∂x u(t, 1) ≥ ∂xv(1) = −λ (1 − p)1/(1−p). Since
u0 ≥ 0, the comparison principle ensures that u(t, x) ≥ 0 = u(t, 1) for x ∈ (0, 1),
so that we also have ∂x u(t, 1) ≤ 0. Arguing in a similar way for x = −1, we end
up with

(20) |∂x u(t,±1)| ≤ λ (1 − p)1/(1−p) for t ≥ 0.

We now put k := ‖∂x u0‖∞ ∨ λ (1 − p)1/(1−p), z := ∂x u and R := {(t, x) ∈

(0,∞)× (−1, 1) , z(t, x) 6= 0}. In the neighbourhood of each point (t0, x0) of R,
the function |∂x u|

p is smooth, and classical parabolic regularity theory implies that
z is C1,2 in a neighbourhood of (t0, x0) and satisfies

∂t z(t, x)− ∂2
x z(t, x)= p |z(t, x)|p−2 z(t, x) ∂x z(t, x).

Since {(t, x) ∈ (0,∞)× (−1, 1) , z(t, x) > k} ⊂ R, we deduce from the previous
identity and (20) that

1
2

d
dt

‖(z − k)+‖
2
2 =

[
(z − k)+ ∂x z

]x=1
x=−1 −

∫ 1

−1
|∂x(z − k)+|

2 dx

+

[(
p

p + 1
z − k

)
|z|p (z − k)+

|z − k|

]x=1

x=−1

= −

∫ 1

−1
|∂x(z − k)+|

2 dx,

whence

‖(z(t)− k)+‖
2
2 ≤ ‖(z(0)− k)+‖

2
2 = 0,

the last equality being true thanks to the choice of k. Consequently, ∂x u(t, x) =

z(t, x) ≤ k in [0,∞) × [−1, 1]. By a similar argument, we also establish that
∂x u(t, x)= z(t, x)≥ −k in [0,∞)× [−1, 1]. Therefore,

|∂x u(t, x)| ≤ ‖∂x u0‖∞ ∨ λ (1 − p)1/(1−p)

for (t, x) ∈ [0,∞)× [−1, 1], which completes the proof of Lemma 8. �
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4. A Liapunov functional

We now construct a Liapunov functional for nonnegative solutions to (1)–(3) with
the help of the technique developed in [Zelenyak 1968]. Let u0 ∈ Y+ and denote
by u the corresponding classical solution to (1)–(3) which is also nonnegative by
the maximum principle. We look for a pair of functions 8 and % ≥ 0 such that

(21)
d
dt

∫ 1

−1
8(u, ∂x u) dx =

∫ 1

−1
% (u, ∂x u) |∂t u|

2 dx .

Since ∂t u(t,±1) = 0 by (2), the first term of the right-hand side of this equality
also reads

d
dt

∫ 1

−1
8(u, ∂x u) dx

=

∫ 1

−1
[∂18(u, ∂x u) ∂t u + ∂28(u, ∂x u) ∂x∂t u] dx

=

∫ 1

−1

[
∂18(u, ∂x u)− ∂1∂28(u, ∂x u) ∂x u − ∂2

28(u, ∂x u) ∂2
x u

]
∂t u dx,

and it is then natural to require that[
∂18(u, ∂x u)− ∂1∂28(u, ∂x u) ∂x u − ∂2

28(u, ∂x u) ∂2
x u

]
= % (u, ∂x u) ∂t u

= % (u, ∂x u)
(
|∂x u|

p
+ ∂2

x u
)

for (21) to hold true. Following [Zelenyak 1968], we realize that a sufficient con-
dition for the previous equality to be valid is

∂18(u, ∂x u)− ∂1∂28(u, ∂x u) ∂x u = % (u, ∂x u) |∂x u|
p,(22)

−∂2
28(u, ∂x u)= % (u, ∂x u) .(23)

Performing the computations as in [Zelenyak 1968], we see that the functions

8(u, ∂x u) := u −
|∂x u|

2−p

(2 − p)(1 − p)
and % (u, ∂x u) := |∂x u|

−p

solve the differential system (22), (23). However, % is singular when ∂x u vanishes
and it is not clear how to give a meaning to (21) for such a choice of functions 8
and %. Nevertherless, we have the following weaker result which turns out to be
sufficient for our purposes.
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Proposition 9. For each t > 0 and δ ∈ (0, 1], we have

(24)
d
dt

∫ 1

−1

(
|∂x u(t, x)|2−p

(2 − p)(1 − p)
− u(t, x)

)
dx +

∫ 1

−1

|∂t u|
2(

|∂x u|2 + δ2
)p/2 dx ≤ 0.

Proof. We fix δ ∈ (0, 1] and define ψε by

ψε(0)= ψ ′

ε(0)= 0 and ψ ′′

ε (r)= (|r | ∨ ε)−p , r ∈ R

for ε ∈ (0, δ). We infer from (1) and (2) that

d
dt

∫ 1

−1
[ψε (∂x u)− u] dx

=

∫ 1

−1

[
ψ ′

ε (∂x u) ∂x∂t u − ∂t u
]

dx

=
[
ψ ′

ε (∂x u) ∂t u
]x=1

x=−1 −

∫ 1

−1

[
ψ ′′

ε (∂x u) ∂2
x u + 1

]
∂t u dx

= −

∫ 1

−1
ψ ′′

ε (∂x u)
(
∂2

x u + (|∂x u| ∨ ε)p) ∂t u dx

= −

∫ 1

−1
ψ ′′

ε (∂x u)
(
∂t u + (|∂x u| ∨ ε)p

− |∂x u|
p) ∂t u dx

= −

∫ 1

−1
ψ ′′

ε (∂x u) |∂t u|
2 dx −

∫ 1

−1

(
1 −

|∂x u|
p

ε p

)
+

∂t u dx .

On the one hand, since ε ∈ (0, δ), we have

|∂x u| ∨ ε ≤
(
|∂x u|

2
+ δ2)1/2

,

so that ∫ 1

−1
ψ ′′

ε (∂x u) |∂t u|
2 dx ≥

∫ 1

−1

|∂t u|
2(

|∂x u|2 + δ2
)p/2 dx .

On the other hand, introducing

ξ(r) :=


r −

|r |
pr

(p + 1)ε p if |r | ≤ ε,

pε
p + 1

r
|r |

if |r | ≥ ε,
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we have ξ ′(r)= (1 − |r |
p/ε p)+ and |ξ(r)| ≤ ε. Therefore, thanks to (1),∣∣∣∣∫ 1

−1

(
1 −

|∂x u|
p

ε p

)
+

∂t u dx
∣∣∣∣

≤

∣∣∣∣∫ 1

−1

(
1 −

|∂x u|
p

ε p

)
+

∂2
x u dx

∣∣∣∣ + ε p
∫ 1

−1

(
1 −

|∂x u|
p

ε p

)
+

dx

≤

∣∣∣∣∫ 1

−1
∂xξ (∂x u) dx

∣∣∣∣ + 2 ε p

≤ |ξ(∂x u(t, 1))| + |ξ(∂x u(t,−1))| + 2 ε p
≤ 4ε p.

Consequently, for each ε ∈ (0, δ), we have

(25)
d
dt

∫ 1

−1
[ψε (∂x u)− u] dx +

∫ 1

−1

|∂t u|
2(

|∂x u|2 + δ2
)p/2 dx ≤ 4ε p.

It remains to pass to the limit in (25) as ε→ 0. For that purpose, we notice that∣∣∣∣ψ ′

ε(r)−
|r |

−pr
1 − p

∣∣∣∣ ≤
p

1 − p
ε1−p

for r ∈ R, so that (ψε) converges uniformly towards r 7→ |r |
2−p/((2− p)(1− p)) on

compact subsets of R. Recalling that ∂x u(t) belongs to L∞(−1, 1) by Lemma 8,
we may let ε→ 0 in (25) and obtain (24). �

Remark 10. It turns out that, at least formally, the functional

w 7→

∫ 1

−1

(
|∂xw(x)|2−p

(2 − p)(1 − p)
−w(x)

)
dx

is also a Liapunov functional for (1)–(3) when p ∈ (1, 2), while

w 7→

∫ 1

−1
(|∂xw(x)| ln (|∂xw(x)|)− |∂xw(x)| −w(x)) dx

is a Liapunov functional for (1)–(3) when p = 1. For p > 2, (1)–(3) still have
Liapunov functionals but of a different kind [Arrieta et al. 2004].

Corollary 11. We have

(26)
∫

∞

0

∫ 1

−1
|∂t u(t, x)|2 dx dt <∞.
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Proof. Let T > 0. We integrate (24) with δ = 1 over (0, T ) and use (18) and the
nonnegativity of u to obtain∫ T

0

∫ 1

−1

|∂t u(t, x)|2(
1 +32

)p/2 dx dt

≤

∫ T

0

∫ 1

−1

|∂t u(t, x)|2(
|∂x u(t, x)|2 + 1

)p/2 dx dt

≤

∫ 1

−1

(
|∂x u(0, x)|2−p

(2−p)(1−p)
− u(0, x)

)
dx −

∫ 1

−1

(
|∂x u(T, x)|2−p

(2 − p)(1 − p)
− u(T, x)

)
dx

≤
2 ‖∂x u0‖

2−p
∞

(2 − p)(1 − p)
+

∫ 1

−1
u(T, x) dx ≤

2 ‖∂x u0‖
2−p
∞

(2 − p)(1 − p)
+ 2 3.

Since the right-hand side does not depend on T > 0, we deduce (26). �

5. Convergence to steady states

Proof of Theorem 2: nonnegative initial data. Let u0 ∈ Y+, u0 6≡ 0, and denote by u
the corresponding classical solution to (1)–(3). We consider an increasing sequence
(tn)n≥1 of positive real numbers such that tn →∞ as n →∞ and define a sequence
of functions (un)n≥1 by un(t, x) := u(tn + t, x) for (t, x) ∈ [0, 1] × [−1, 1] and
n ≥ 1. We next denote by gn the solution to

∂t gn − ∂2
x gn = 0, (t, x) ∈ (0, 1)× (−1, 1),(27)

gn(t,±1)= 0, t ∈ (0, 1),(28)

gn(0)= un(0)= u(tn), x ∈ (−1, 1),(29)

and put hn = un − gn . Then hn is a solution to

∂t hn − ∂2
x hn = |∂x un|

p, (t, x) ∈ (0, 1)× (−1, 1),(30)

hn(t,±1)= 0, t ∈ (0, 1),(31)

hn(0)= 0, x ∈ (−1, 1).(32)

By Lemma 8, the sequence (|∂x un|
p) is bounded in Lq((0, 1)× (−1, 1)) for every

q ∈ (1,∞). Since hn is a solution to (30)–(32), we infer from [Ladyženskaja et al.
1968, Theorem IV.9.1] that (hn) is bounded in {w ∈ Lq(0, 1; W 2,q(−1, 1)) , ∂tw ∈

Lq((0, 1)× (−1, 1))} for every q ∈ (1,∞). We may then use [Ladyženskaja et al.
1968, Lemma II.3.3] with q = 4 to deduce that there is β ∈ (0, 1) such that (hn)

and (∂x hn) are bounded in Cβ/2,β([0, 1] × [−1, 1]). This last property together
with the Arzelà–Ascoli theorem entail that (hn) and (∂x hn) are relatively compact
in C([0, 1] × [−1, 1]).
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At the same time, it follows from Lemma 8 and classical regularity properties of
the heat equation that (gn) is relatively compact in C([0, 1]×[−1, 1]), while (∂x gn)

is relatively compact in C([τ, 1]×[−1, 1]) for each τ ∈ (0, 1). Consequently, there
are a subsequence of (un) (not relabeled) and U ∈ C([0, 1] × [−1, 1]) such that
∂xU ∈ C((0, 1] × [−1, 1]) and

(33)
un −→ U in C([0, 1] × [−1, 1]),

∂x un −→ ∂xU in C([τ, 1] × [−1, 1])

for every τ ∈ (0, 1).
Now, since (un) satisfies (1), (2), a straightforward consequence of (33) is that

(34) ∂tU − ∂2
x U = |∂xU |

p in D′((0, 1)× (−1, 1)).

Furthermore, it follows from Corollary 11 that

lim
n→∞

∫ 1

0

∫ 1

−1
|∂t un|

2 dx dt = lim
n→∞

∫ 1+tn

tn

∫ 1

−1
|∂t u|

2 dx dt = 0.

By a weak lower semicontinuity argument, we infer from (33) and the previous
identity that ∂tU = 0. Then U does not depend on time and thus belongs to
C1([−1, 1]). Furthermore, recalling (34), we conclude that ∂2

x U + |∂xU |
p

= 0 in
D′(−1, 1). The already established regularity of U implies that U ∈ C2([−1, 1])

and solves (14), (15). Consequently, by Proposition 5, there exists ϑ ∈ [0, 1] such
that U = Uϑ and (un(0))= (u(tn)) converges towards Uϑ in C([−1, 1]) as n → ∞

by (33). In particular, recalling that M(t) is defined by (7), we have

M0 (1 −ϑ)α = ‖Uϑ‖∞ = lim
n→∞

‖u(tn)‖∞ = lim
n→∞

M(tn)= M∞,

whence M∞ ≤ M0 and

(35) ϑ = 1 −

(
M∞

M0

)1/α

.

Since this identity determines ϑ in a unique way, we deduce that the set of cluster
points of {u(t) ; t ≥ 0} is reduced to a single point {Uϑ } with ϑ given by (35).
The set {u(t) ; t ≥ 0} being relatively compact in C([−1, 1]) by Lemma 8 and the
Arzelà–Ascoli theorem, we finally conclude that ‖u(t)− Uϑ‖∞ → 0 as t → ∞,
whence (10). In addition, since u0 6≡ 0, Lemma 7 guarantees that ϑ < 1, so that
Uϑ is indeed a nontrivial steady state to (1)–(3). We have thus proved that,

(36)
if u0 ∈ Y+, u0 6≡ 0, then M∞ > 0 and there is ϑ ∈ [0, 1) such that
‖u(t)− Uϑ‖∞ → 0 as t → ∞,

and Theorem 2 holds true for nonnegative initial data. �
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6. Sign-changing solutions

We now show that the family (Uϑ)ϑ∈[0,1] of nonnegative steady states to (1)–
(2) constructed in Proposition 5 also describes the large time behaviour of sign-
changing solutions to (1)–(3). For that purpose, we first establish that any solution
to (1)–(3) becomes nonnegative after a finite time.

Lemma 12. Consider u0 ∈ Y and denote by u the corresponding classical solution
to (1)–(3). Then there is T?> 0 such that u(t, x)≥ 0 for (t, x)∈ [T?,∞)×[−1, 1].
Moreover, if u0 ≤ 0, then u(t, x)= 0 for (t, x) ∈ [T?,∞)× [−1, 1].

Proof. We put ũ0(x) = 0 ∧ u0(x) for x ∈ [−1, 1] and ũ0(x) = 0 for x ∈ R \

[−1, 1]. Since ũ0 is a nonpositive, bounded and continuous function in R, we
infer from [Gilding et al. 2003, Theorem 3] that there is a unique classical solution
ũ ∈ C([0,∞)× R)∩ C1,2((0,∞)× R)) to the Cauchy problem

∂t ũ − ∂2
x ũ = a |∂x ũ|

p, (t, x) ∈ (0,∞)× R,(37)

ũ(0)= ũ0, x ∈ R.(38)

Furthermore, ũ is nonpositive in (0,∞)× R and is thus clearly a subsolution to
(1)–(3) since ũ0 ≤ u0. The comparison principle then entails that

ũ(t, x)≤ u(t, x) for (t, x) ∈ [0,∞)× [−1, 1].

But, since ũ0 is a nonpositive, bounded and continuous function with compact
support in R, it follows from [Benachour et al. 2002; Gilding 2005] that ũ enjoys
the property of finite time extinction, that is, there is T? > 0 such that

ũ(t, x)= 0 for (t, x) ∈ [T?,∞)× R.

Combining these two facts yield the first assertion of Lemma 12. Next, if u0 ≤ 0,
we have also u ≤ 0 in [0,∞)× [−1, 1] by (6) and u thus identically vanishes in
[T?,∞)× [−1, 1]. �

Proof of Theorem 2: sign-changing initial data. By Lemma 12, there is T? > 0
such that u(T?, x)≥ 0 for x ∈ [−1, 1]. Then either u(T?)≡ 0 and thus u(t)≡ 0 for
t ≥ T?, and u(t) converges towards U1 as t → ∞. Or u(T?) 6≡ 0 and we infer from
(36) that there is ϑ ∈ [0, 1) such that u(t + T?) converges towards Uϑ as t → ∞,
which completes the proof of the first statement of Theorem 2.

Assume next that u0 fulfils (11). Putting ϕ1(x) := cos (πx/2) for x ∈ [−1, 1]

and λ1 := π2/4, we recall that −d2ϕ1/dx2
= λ1ϕ1 in (−1, 1) with ϕ1(±1) = 0.

We infer from (1), (11) and the nonnegativity of ϕ1 and |∂x u|
p that∫ 1

−1
u(t, x) ϕ1(x) dx ≥ e−λ1t

∫ 1

−1
u0(x) ϕ1(x) dx > 0
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for t ≥ 0. In particular, with the previous notations, we have u(T?)≥ 0 with∫ 1

−1
u(T?, x) ϕ1(x) dx > 0,

which, together with the positivity of ϕ1 on (−1, 1), ensures that u(T?) is nonneg-
ative with u(T?) 6≡ 0. Arguing as before, we infer from (36) that there is ϑ ∈ [0, 1)
such that u(t) converges towards Uϑ as t → ∞, which completes the proof of the
second statement of Theorem 2. �

7. Partial extinction of ∂x u in finite time

Before proceeding with the proof of Theorem 4, we recall that, if σ ∈ (0,∞) and
µ ∈ R, the function (t, x) 7→ µ + Wσ (x − σ t) is a travelling wave solution to
∂tw− ∂2

xw = |∂xw|
p in (0,∞)× R (see [Gilding and Kersner 2004, Chapter 13],

for instance), where

(39) Wσ (ξ) := −σ−1/(1−p)
∫ ξ

0

(
1 − e−σ(1−p)η)1/(1−p)

+
dη, ξ ∈ R.

Introducing W0(ξ)= −M0 ξ
α
+

for ξ ∈ R, we claim that

(40) 0 ≤ Wσ (ξ)− W0(ξ)≤ σ κp ξ
1+α
+

, ξ ∈ R,

with κp := (1 − p)α/(2(3 − 2p)). Indeed, introducing ζ(r) := (r − 1 + e−r )/r2

and ζ1(r) := rζ(r) for r ≥ 0, we have for ξ ≥ 0

Wσ (ξ)− W0(ξ)=

∫ ξ

0
((1 − p)η)1/(1−p) {

1 − (1 − ζ1(σ (1 − p)η))1/(1−p)} dη.

We deduce from the elementary inequalities 0 ≤ ζ1(r)≤ 1 for r ≥ 0 and

(1 − r)1/(1−p)
≥ 1 −

r
1 − p

, r ∈ [0, 1],

that Wσ (ξ)− W0(ξ)≥ 0 and

Wσ (ξ)− W0(ξ)≤

∫ ξ

0
((1 − p)η)1/(1−p) ζ1(σ (1 − p)η)

1 − p
dη.

We next use the fact that ζ(r)≤ 1/2 for r ≥ 0 to complete the proof of (40).

Proof of Theorem 4. As mentioned, the proof is similar to that of [Gilding 2005,
Theorem 9], the main difference being due to the boundary conditions. We never-
theless reproduce the whole argument here for the sake of completeness. We first
observe that (12) implies that u0(x) ≥ m0 − M0 + U0(x) for x ∈ [−1, 1] and that
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m0 − M0 + U0 is a subsolution to (1) with m0 − M0 + U0(±1) ≤ 0. We then infer
from the comparison principle and (6) that

(41) m0 − M0 + U0(x)≤ u(t, x)≤ m0 for (t, x) ∈ [0,∞)× [−1, 1].

In particular,

(42) u(t, 0)= m0 for t ∈ [0,∞).

We now consider σ ∈ (0, ε/κp) and put wσ (t, x)= m0 +Wσ (x −σ t) for (t, x)∈
[0,∞)× R (recall that ε and m0 are both defined in (12)). We readily have that

(43) ∂twσ − ∂2
xwσ − |∂xwσ |

p
= 0 = ∂t u − ∂2

x u − |∂x u|
p in (0,∞)× (0, 1)

with

(44) wσ (t, 0)= m0 = u(t, 0), t ≥ 0,

by (39) and (42). In addition, we infer from (12), (40) and the choice of σ that, for
x ∈ [0, 1],

(45) wσ (0, x)= m0 + Wσ (x)= m0 + W0(x)+ Wσ (x)− W0(x)

≤ m0 − M0 xα + σ κp x1+α
≤ m0 − M0 xα + ε x1+α

≤ u0(x).

Finally, if δ ∈ (0, δ0) and t ∈ [0, δ/σ ], it follows from (40) that

(46) wσ (t, 1)= m0 + Wσ (1 − σ t)

= m0 + W0(1 − σ t)+ Wσ (1 − σ t)− W0(1 − σ t)

≤ m0 − M0 (1 − σ t)α + σ κp (1 − σ t)1+α

≤ M0
(
(1 − δ0)

α
− (1 − δ)α

)
+ σ κp

≤ 0

as soon as σ is sufficiently small. Owing to (43), (44), (45) and (46), there is σδ
depending only on p, m0, ε and δ such that, if σ ∈ (0, σδ), we may apply the
comparison principle on [0, δ/σ ] × [0, 1] to deduce that

(47) wσ (t, x)≤ u(t, x), (t, x) ∈ [0, δ/σ ] × [0, 1].

Recalling (41), we conclude from (47) that, if σ ∈ (0, σδ),

(48) u(t, x)= m0 for t ∈ [0, δ/σ ] and x ∈ [0, σ t].

A first consequence of (47) is that, if t > 0, we may find σ small enough such
that σ ∈ (0, σδ) and t ∈ [0, δ/σ ]. It then follows from (48) that u(t, x) = m0 for
x ∈ [0, X (t)] with X (t) := σ t .
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As a second consequence of (47), we note that, if t ≥ T (δ) := δ/σδ, there is
σ ∈ (0, σδ) such that t = δ/σ . Then u(t, x)= m0 for x ∈ [0, δ] by (48).

To complete the proof of Theorem 4, it suffices to notice that v : (t, x) 7→

u(t,−x) also solves (1)–(2) with initial datum x 7→ u0(−x) which satisfies (12).
Then, v also enjoys the above two properties from which we deduce that we have
also u(t, x)=m0 for x ∈[−X (t), 0] for every t>0 and u(t, x)=m0 for x ∈[−δ, 0]

and t ≥ T (δ), thus completing the proof of Theorem 4. �
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