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CONVERGENCE TO STEADY STATES FOR A
ONE-DIMENSIONAL VISCOUS HAMILTON-JACOBI
EQUATION WITH DIRICHLET BOUNDARY CONDITIONS

PHILIPPE LAURENCOT

We investigate the convergence to steady states of the solutions to the one-
dimensional viscous Hamilton-Jacobi equation d,u — 8314 = |0,u|?, where
(¢, x) € (0,00) x (—1, 1) and p € (0, 1), with homogeneous Dirichlet bound-
ary conditions. For that purpose, a Liapunov functional is constructed
by the approach of Zelenyak (1968). Instantaneous extinction of 9,z on
a subinterval of (—1, 1) is shown for suitable initial data.

1. Introduction

Nonnegative solutions to the one-dimensional viscous Hamilton—Jacobi equation

(1) du—0%u=a |dulP, (t,x)€(0,00) x (—1,1),
) u(t,£1)=0, 1€ (0,00),
3) u@) =uy>0, xe(—1,1),

exhibit a rich variety of qualitative behaviours, according to the sign of a € {—1, 1}
and the values of p € (0, 00). On the one hand, extinction in finite time (that is,
there is T, > 0 such that u(t) =0 for ¢t > T,) occurs fora=—1 and p € (0, 1), while
u(t) converges exponentially fast to zero as t — oo if a = —1 and p > 1 [Benachour
et al. 2007]. On the other hand, if a = 1 and p > 2, finite time gradient blow-up
takes place for suitably large initial data [Souplet 2002] while convergence to zero
of u(t) as t — oo still holds true for global solutions [Arrieta et al. 2004; Souplet
and Zhang 2006]. In addition, all solutions are global for a =1 and p € [1, 2] and
converge to zero as t — oo [Benachour et al. 2007; Souplet and Zhang 2006].
The case a = 1 and p € (0, 1) offers an interesting novelty and is the subject
of the present paper. Indeed, in contrast to the previous cases, the initial-boundary
value problem (1)—(3) has a one parameter family (Uy )y <o, 17 of steady states when
a=1and p € (0, 1) with U; =0 and Uy is not constant if 9 € [0, 1). These steady
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states play an important role in the dynamics of solutions to (1)—(3): indeed, we
will prove that any solution u to (1)—(3) converges as t — oo towards a steady
state, which is nontrivial if, for instance, the initial datum u( is nonnegative with
a positive maximum. An interesting feature of Uy for & € (0, 1) is that they are
constant on a subinterval of (—1, 1). This property is of course related to the fact
that p ranges in (0, 1) and is reminiscent of the finite time extinction phenomenon
already alluded to for nonnegative solutions when a = —1 and p € (0, 1). It is
then natural to wonder whether the nonlinear term |d,#|” may induce a similar
singular behaviour on the dynamics of u. More precisely, for a particular class of
nonnegative initial data, we will show that the gradient d,u vanishes identically on
[T, 00) x I for some T, > 0 and some subinterval / of (—1, 1). Let us point out
here that, for nonnegative initial data, extinction in finite time cannot occur when
a=1and p € (0, 1), for the comparison principle warrants that « is bounded from
below by the solution to the linear heat equation with the same initial and boundary
data.
From now on, we thus assume that

4) a=1 and pe(0,1),
and
5) upe Y :={wee' (1,11, w(xl)=0}.

It then follows from [Benachour and Dabuleanu 2003, Theorem 3.1 and Propo-
sition 4.1] that the initial-boundary value problem (1)—(3) has a unique classical
solution

u € €([0, 00) x [—1, 1]) N€>1((0, 00) x (—1, 1))
satisfying

(6) [mlirll]uo <u(t,x) < max uo, (r,x) €[0,00) x [-1, 1].

In addition, setting

(7 M(t):= max u(t,x),
xe[—1,1]

the comparison principle ensures that ¢ — M (¢) is a nonincreasing function of time
and we put

®) My := lim M(t) € [ min uo, max uo].
=00 [—1,1] [—1,1]

We recall that classical solutions to (1)—(3) enjoy the comparison principle; this
may be proved by standard arguments, as in [Gilding et al. 2003, Theorem 4].
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Remark 1. The initial-boundary value problem (1)—(3) is actually well-posed in
a larger space than Y, which depends on p, and we refer to [Benachour and Dab-
uleanu 2003] for a more detailed account. Still, the solutions constructed in that
reference belong to Y for any positive time. Since we are interested here in the
large time behaviour, the assumption (5) that g € Y is thus not restrictive.

For further use, we also introduce the following notations:

2— 1—p)©
9 o= -r and My := Q
I—p 2-p
We may now state our main result.

Theorem 2. Consider ug € Y and denote by u the corresponding classical solution
to (1)-(3). Then My € [0, Mo] and there is a nonnegative stationary solution ug to
(H)—(2) such that

(10) lim [Ju(r) — uslloo = 0.
—00

Furthermore, ugy # 0 and My, > 0 if

1
(11) /mecmcgyU>a
-1
It readily follows from the second assertion of Theorem 2 that the set of nontriv-
ial and nonnegative steady states to (1)—(2) attracts all solutions to (1)—(3) starting
from a nonnegative initial datum u % 0. Observe however that the set of nontrivial
and nonnegative steady states to (1)—(2) also attracts sign-changing solutions u to
(1)—(3) since there are sign-changing initial data fulfilling (11).

The proof of Theorem 2 requires several steps and is performed as follows: we
first identify the stationary solutions to (1)—(2) in Section 2 and use them together
with comparison arguments to establish that, if #g € Y is nonnegative with ug # 0,
then Mo, > 0 and {u(¢); ¢t > 0} is bounded in €' ([—1, 1]) (Section 3). In Section 4,
we employ the technique of [Zelenyak 1968] to construct a Liapunov functional
for nonnegative solutions to (1)—(3). Let us mention here that this technique has
also been used recently for related problems in [Arrieta et al. 2004; Simondon
and Touré 1996]. For nonnegative initial data convergence towards a steady state
then follows from the results of Section 3 and Section 4 by a LaSalle invariance
principle argument. The large time behaviour of sign-changing initial data is next
deduced from that of nonnegative solutions after observing that the negative part
of any solution to (1)—(3) vanishes in a finite time (Section 6).

Remark 3. A further outcome of Theorem 2 is that the large behaviour of solutions
to (1) on a bounded interval is more complex for homogeneous Dirichlet boundary
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conditions than for periodic and homogeneous Neumann boundary conditions. In-
deed, for the latter boundary conditions, it follows from [Benachour and Dabuleanu
2005; Benachour et al. 2002] that there are 7, > 0 and m, € R such that u(t) = m,
for t > T, whatever the signs of a and ug are.

In Section 7, we prove the extinction in finite time of d,u on a subinterval of
(—1, 1) for a specific class of initial data. More precisely, we have the following
result:

Theorem 4. Assume further that there are my € (0, My) and € > 0 such that
(12) mo —dlo [x]* + ¢ [x|'"** <up(x) <mg, xe[-1,1].
Then, for each t € (0, 00), there is X (t) € (0, 1) such that

u(t,x)y=mgy for xe(—=X@), X(1)).

Furthermore, if

mo 1/a
(13) So:=1-— (JI/L_) € (0, 1),

0

and § € (0, &y), there exists T (8) > 0 such that
u(t,x)=mg for (t,x)€[T($),00)x[-4,4].

An example of initial datum in Y fulfilling (12) is the following: ug(x) = Mg —
e — My |x|* +¢e |x|? for x € [—1, 1], where B € (a, &« + 1] and ¢ € (0, a.llo/B).

The second assertion of Theorem 4 shows that d,u vanishes identically after
some time on a subinterval of [—1, 1], a phenomenon which one could call finite
time incomplete extinction in comparison to what occurs for periodic or homoge-
neous Neumann boundary conditions. But the first assertion of Theorem 4 reveals
that the extinction mechanism is somewhat stronger since, even if dyug(x) van-
ishes only for x =0, d,u vanishes instantaneously on a subinterval of [—1, 1] with
positive measure.

Another consequence of Theorem 4 and (6) is that ||u(¢) ||c =mg for every t > 0.
Therefore, for an initial datum uq in Y satisfying (12), the corresponding solution
u to (1)—(3) does not obey the strong maximum principle.

The proof of Theorem 4 relies on comparison arguments with travelling wave
solutions to (1) and is similar to that of [Gilding 2005, Theorem 9], some care
being needed to cope with the boundary conditions.
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Notations. Throughout the paper, we denote by r, := max {r, 0} the positive part
of the real number r. Forr e Rand s € R, we put r Vs := max {r, s} and r A s :=
min {r, s}. Also, for g € [1, o], ||.||; denotes the L?(—1, 1)-norm.

2. Nonnegative steady states

In this section, we look for nonnegative stationary solutions to (1), (2), that is,
nonnegative functions U € ©%([—1, 1]) such that

(14) U 14U’ 0 e(—-1,1
—_— _ — X J—
dx? dx ’ T
(15) U(x1) =0.

Proposition 5. Let U € €%([—1, 1]) be a nonnegative solution to (14), (15). Then
there is O € [0, 1] such that U = Uy, where

Up(x) =l [(1 == (x| —»)%]. xe[-1,1]

Observe that Uy is constant on [—, ©#] for each @ € (0, 1) and that U; = 0.

Proof. Let U € €*([—1, 1]) be a nonnegative solution to (14), (15). Then U
is concave by (14) and we infer from the nonnegativity of U and the boundary
conditions (15) that dU /dx(—1) > 0 and dU /dx(1) <O0.

IfdU/dx(—1) =0, the concavity of U entails that U is a nonincreasing function
in (=1, 1). Consequently, U = 0 = U; to comply with the boundary conditions
(19).

Similarly, if dU/dx(1) = 0, it follows from the concavity of U that U is non-
decreasing on (—1, 1), whence U = 0 = U, by (15).

We finally consider the case where dU /dx(—1) > 0 and dU /dx(1) <0 and put

xy:=sup{X € (—1,1) suchthat dU/dx(x) >0 on [—1, X)},
xs:=inf{X € (=1, 1) such that dU/dx(x) <0 on (X, 1]}.

Owing to the continuity of dU /dx, we have —1 <x; <xs <1l and dU/dx(x) =0
for x € [x;, xs] by the concavity of U. Direct integration of (14) then entails that
there are two constants A and B such that

dUu
(16) T

P A if xe(xg, 1],

B if xe[-1,x)).

dUu
Tr (X)+(1—p)x:{
X

Since p € (0, 1) and dU/dx vanishes for x € {x, xs}, we may let x — x; and
Xx — xg in (16) to deduce that A = (1 — p) xs and B = (1 — p) x;. We next
integrate (16) to obtain that there are two constants C; and Cg such that

Cs—Mp (x —xg5)* if x € (xg,1],

Ulx) = { Cr— Mo (x; —x)* if xe[-1,x)).



352 PHILIPPE LAURENCOT

Requiring the boundary conditions (15) to be fulfilled provides the values of C;
and Cg, whence

Mo (1 —xg5)% — Mo (x —x5)* if x € (xg, 1],

v = { Mo (xp + D = Mo (xp —x)* if x €[—1,x).

Now, since dU /dx vanishes for x € [x;, xg], we shall have U (xg) = U (x;), which
implies that 1 — xg = x; + 1, whence xg = —x;. Thus, necessarily, xs € [0, 1],
from which the equality U = U, readily follows. g

It is worth mentioning that |Uy ||cc < Mg for each ¥+ € [0, 1]. Combining this
property with the convergence to a steady state to be proved in Section 5, we will
conclude that My, < Jy.

Remark 6. Proposition 5 shows in particular that there is nonuniqueness of classi-
cal solutions to (14), (15). A similar construction is performed in [Alaa and Pierre
1993; Lions 1985] for the boundary-value problem

—Au=1|Vul? in B(,1), u=0 on 3dB(0,1),
where B(0, 1) denotes the open unit ball of RV, N > 1, to establish the nonunique-
ness of weak solutions for p > N/(N —1).
3. Some properties of {u(t) ; ¢t > 0}

Introducing the positive cone Y4 := {w € Y such that w > 0} of Y, we first prove
that M, > 0 for ug € Y, ug # 0, by constructing suitable subsolutions to (1)—(3)
with the help of Uj.

Lemma 7. Let ug € Y1 and denote by u the corresponding classical solution to
(D~@3). If ug # 0, we have M, > 0.

Proof. Since ug # 0, there are xo € (—1,1), § € (0,1) and m > 0 such that
(xo—38,x0+68) C(—1,1) and
(17 up(x) >m for x e (xg—26,xy+39).

We put x1 := (xo — 1) V(=1), x2:= (xo+ 1) A1, J :=[x1, x2],
m
AN o 17 o
Mo — Up(d)

and v(x) := A (Up(x —x9) — Up(8)) for x € J.
On the one hand, it follows from (1) and (14) that

Ai=1

dv— 820 —[8,v]” = (A — AP) 8, Up(. — x0)|P < 0= du — 82u — |d,ul|”
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on [0,00) x J. On the other hand, the nonnegativity of uy and the maximum
principle entail the nonnegativity of # which then warrants that

v(x1) = vlxo—8) =0=<u(r, x1),
v(x2) < v(xo+8) =0=<u(, x),
while the choice of A entails that
v(x) <A (Mo —Uy(S)) <m <up(x) for x € (xg—46,x9+9),
v(x) <v(xg=Ed) =0<up(x) for x e J\ (x0—38,x0+9).

We then infer from the comparison principle that u (¢, x) > v(x) for (¢, x) € [0, 00) x
J. In particular, M (¢) = ||u(?)|lco = u(t, xo) > v(xg) = A (Mo — Up(8)) for each

t >0, whence My, > A (Mo — Uy(8)) > 0. U

We now turn to the question of global boundedness of the trajectory {u(¢) ; ¢t >0}
in6!([—1, 1]).

Lemma 8. Let ug € Y and denote by u the corresponding classical solution to
(1)=(3). There is a constant A > 0 depending only on |[ug ||y 1) and p such
that

(18) lu@ i1y <A for t20.

Proof. We first recall that {u(¢) ; r > 0} is bounded in L°°(—1, 1) by (6) and we are
left with the proof that {d,u () ; t >0} is bounded in L>°(—1, 1). For that purpose,
we choose A > 1 such that

o [(2) 7 et | [l
(19) = (E) 10x 10l 0o [m .

Putting v := AUy, we first notice that the condition A > 1 ensures that
0w — 07v — [9,v]P = (A —AP) [0, Up|” = 0 in (0, 00) x (—1, 1),

while v(£1) = u(¢, 1) = 0 for each r > 0. Next, on the one hand, it follows from
(19) and the monotonicity properties of Uy that, if x € (—1/2, 1/2), we have

v(x) =24 Up(x) = A Up(1/2) =2 Mo (1 —27%) = [luglloc = uo(x).

On the other hand, if x € [1/2, 1], we have by (19) that

1 1
v(x) = (Uo(x)—Uo(l))Z)»/ %(y)‘ dyzommo/ y/=P gy

1 1 1
Za)»MO/ 2-1/0=p) dyz/ 1stt0 1o dyz/ Brtt0(y)Idy
X X X

> up(x).
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A similar computation shows that v(x) > ug(x) also holds true for x e [—1, —1/2].
Therefore, v > ug in [—1, 1] and the previous analysis allows us to apply the
comparison principle and conclude that u (¢, x) <v(x) for (¢, x) € [0, c0) x[—1, 1].
In particular, if # > 0 and x € (0, 1), we have

u(t,x)—u(t, 1) . u(t, x) - v(x) _ v(x) —v(l)

x—1 Cox—1 "x—1 x—1

Letting x — 1, we deduce that d,u(z, 1) > d,v(l) = —1 (1 — p)/1=P)_ Since
ug > 0, the comparison principle ensures that u(z, x) > 0 = u(¢, 1) for x € (0, 1),

so that we also have d,u(¢, 1) < 0. Arguing in a similar way for x = —1, we end
up with
(20) 10,u(t, £ <A (1= p)YI=P) for 1> 0.

We now put k := ||d,upllec VA (1 — p)/I=P) 7z := . and R := {(t,x) €
(0,00) x (—1, 1), z(t, x) # 0}. In the neighbourhood of each point (#y, xg) of R,
the function |0, u|? is smooth, and classical parabolic regularity theory implies that
zis®"?ina neighbourhood of (#g, xg) and satisfies

dz(t, x) —dz(t,x) = p |z(t, )72 z(t, x) dz(t, x).

Since {(¢, x) € (0, 00) x (—1, 1), z(t, x) > k} C R, we deduce from the previous
identity and (20) that

d . 1
Emenﬁ=UmwnmdﬁL—/”a@—mgﬂu

—k X:1
+[< P z—k) |z|? &=b+ )+:|
p+1 lz—kl |—_4

1
=—/|m@—mu%m
-1

| =

whence
1(z(t) = k)4 113 < 11(z(0) — k)4 |13 =0,

the last equality being true thanks to the choice of k. Consequently, d,u(t, x) =
z(t,x) < k in [0, 00) x [—1,1]. By a similar argument, we also establish that
dcu(t,x)=1z(t,x) > —kin [0, c0) x [—1, 1]. Therefore,

10,u(t, X)| < [|8xutolloc V A (1 — p)!/d=P)

for (¢, x) € [0, 00) x [—1, 1], which completes the proof of Lemma 8. O
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4. A Liapunov functional

We now construct a Liapunov functional for nonnegative solutions to (1)—(3) with
the help of the technique developed in [Zelenyak 1968]. Let ug € Y and denote
by u the corresponding classical solution to (1)—(3) which is also nonnegative by
the maximum principle. We look for a pair of functions ® and ¢ > 0 such that

1

d 1
Q1) - CD(u,axu)dx=/ o (u, du) |dul?dx.
-1 -1

Since d;u(t, 1) = 0 by (2), the first term of the right-hand side of this equality
also reads
1

d
o » O (u, o,u)dx

1
:/ [01D (u, Oxu) Oju+ 0P (u, Oxu) 0x0;u] dx
-1

1
=f [91® (u, dxtt) — 3132P (u, dyu) dpu — 35D (u, dyu) d2u] dudx,
—1

and it is then natural to require that

[91® (u, dcu) — 3132® (u, dyu) dyu — 3D (u, dyu) dju]

=0 (u, dyu) dru

=0 (u, dsu) (|dxul” + d;u)
for (21) to hold true. Following [Zelenyak 1968], we realize that a sufficient con-
dition for the previous equality to be valid is
(22) 01D (u, dxu) — 0102 (u, yu) du =0 (u, dyu) |dyul?,
(23) —33® (u, dyu) = 0 (u, d;u) .

Performing the computations as in [Zelenyak 1968], we see that the functions

@ (1, ) AT g g G, B o= ol
u,ou) :=u———-———— and o (u, dyu) :=|0xu

) 2—p)(1—p) ) y
solve the differential system (22), (23). However, o is singular when d,u vanishes
and it is not clear how to give a meaning to (21) for such a choice of functions ®
and o. Nevertherless, we have the following weaker result which turns out to be
sufficient for our purposes.
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Proposition 9. For eacht > 0 and § € (0, 1], we have

d (' (19u, x)*? ! |9 u|?

24) — —— —u(t,x) |dx + —zdeO.
dr ]y \ @~ p)(1-p) 1 (|9euf? +52)"

Proof. We fix § € (0, 1] and define ¢, by

Ye(0) =¢,(0)=0 and ¢ (r)=(rlve)™”, reR

for ¢ € (0, §). We infer from (1) and (2) that
d 1
Ef_l [Ve (Oxu) —u] dx

1
:/ [V: (0xu) Oxdu — du] dx
-1

1

= [¥i (3,u) 8tu]§zl_1 —f [v. (0xu) 3%u + 1] dudx

1
1
:_f Wl (Bu) (37u+ (19,ul vV e)P) dudx
—1
1
=_/ v (0yu) (B + (|0ul v &) — [0,ul”) dudx
-1

1 1 ax P
Z—/ U, (Oxi) |3tu|2dX—/ (1 _ 1] ) dudx.
-1 —1 er /4

On the one hand, since ¢ € (0, §), we have

1/2
0cul Ve < (1u+6%)"

so that

/dw“w ) lould >/1 LG
u) |0ul~dx > —dx.
T 1 (j0,ul? +82)"?

On the other hand, introducing

r|Pr

r————— if |r| <e,
(p+1)er
E(r) =
PEZ i rlze,
p+1 7|
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we have &'(r) = (1 — |r|?/eP), and |E(r)| < e. Therefore, thanks to (1),

[ 5) e

By ! deu|?
‘/ ( | ”') 02 dx +s!’/ (1—"‘”') dx
+ -1 el )4
ﬂ/ag@mm
—1

< [§@xulr, D)+ 15 @u(r, 1) +2 &P < 4e”.

+2¢&?

Consequently, for each ¢ € (0, §), we have

dx < 4¢P,

25) d/JW(a> ]d+/1 10"
— « (0,u) —u] dx B ——
dr ), 1 (j0,ul? +82)""

It remains to pass to the limit in (25) as ¢ — 0. For that purpose, we notice that

p
| | r p 8]—[7

=1-,

for r € R, so that (1) converges uniformly towards r — |r|2—P /(2—p)(1—p))on
compact subsets of R. Recalling that d,u(¢) belongs to L>°(—1, 1) by Lemma 8,
we may let ¢ — 0 in (25) and obtain (24). O
Remark 10. It turns out that, at least formally, the functional
1 2—
P p
» > / (% _ w(x)> dx
1 \@2=p)d-p)

is also a Liapunov functional for (1)—(3) when p € (1, 2), while

1
w > fl(laxw(X)l In (|3, w(x)]) — [dxw(x)| —w(x))dx

is a Liapunov functional for (1)—(3) when p = 1. For p > 2, (1)—(3) still have
Liapunov functionals but of a different kind [Arrieta et al. 2004].

Corollary 11. We have

00 1
(26) / / |0,u(t, x)|> dx dt < co.
0 —1
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Proof. Let T > 0. We integrate (24) with § = 1 over (0, T') and use (18) and the
nonnegativity of u to obtain

1 2
/ f [0;u(t, x)| dx dt
(14 A2) (1+A2)2
2
5/ / [O;u(t, x)| S dxds
o J-1 (Jout, x)2+1)"
1 2— 1 2—
5/ <—|8xu(0,x)| ! —u(O,x)) dx—/ (—laxu(T,x)l " —u(T,x)) dx
1\ @=p)(1—p) a\N@2=p)(1—=p)

2—p 1 2-p
< 2 ||0xuollso / u(T. x) dx 2 |10xuollo oA
2-p)A-p) (2 p){1—p)

Since the right-hand side does not depend on T > 0, we deduce (26). O

5. Convergence to steady states

Proof of Theorem 2: nonnegative initial data. Let ug € Y, ug #0, and denote by u
the corresponding classical solution to (1)—(3). We consider an increasing sequence
(ty)n>1 of positive real numbers such that 7, — 0o as n — oo and define a sequence
of functions (u,),>1 by u,(t, x) := u(t, +1,x) for (¢,x) € [0, 1] x [—1, 1] and
n > 1. We next denote by g, the solution to

27 0ign— 0780 =0, (t,x) € (0, 1) x (=1,1),
(28) gn(t, £1)=0, 1€(0,1),

(29) 8n(0) =up(0) =u(ty), xe(=1,1),
and put h, = u,, — g,. Then h, is a solution to

(30) dhy — dghy = |3xun|?,  (£,x) € (0, 1) x (=1, 1),
(31) hy(t,£1)=0, te(0,1),

(32) h,(0)=0, xe(-1,1).

By Lemma 8, the sequence (|d,u,|?) is bounded in L9((0, 1) x (—1, 1)) for every
q € (1, 00). Since h, is a solution to (30)—(32), we infer from [LadyZenskaja et al.
1968, Theorem IV.9.1] that (/,,) is bounded in {w € L7(0, 1; W>4(—1, 1)), d,w €
L9((0,1) x (—1, 1))} for every g € (1, oo). We may then use [LadyZenskaja et al.
1968, Lemma I1.3.3] with ¢ = 4 to deduce that there is 8 € (0, 1) such that (k)
and (d,h,) are bounded in €#/%A([0, 1] x [—1, 1]). This last property together
with the Arzela—Ascoli theorem entail that (,,) and (d.A,) are relatively compact
in €([0, 1] x [—1, 1]).
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At the same time, it follows from Lemma 8 and classical regularity properties of
the heat equation that (g,) is relatively compact in € ([0, 1] x[—1, 1]), while (0, g,)
is relatively compact in €([t, 1] x[—1, 1]) for each t € (0, 1). Consequently, there
are a subsequence of (u,) (not relabeled) and U € €([0, 1] x [—1, 1]) such that
0,U € 6((0,1] x[—1, 1]) and

u, — U in “€([0,1] x[-1,1]),

(33)
dupy —> U in 6([r, 1] x [—1,1])

for every 7 € (0, 1).
Now, since (u,) satisfies (1), (2), a straightforward consequence of (33) is that

(34) B,U—B)%U:IBXUV’ in 9'(0, 1) x (=1, 1)).

Furthermore, it follows from Corollary 11 that

1 1 141, 1
lim/ / 10,1, |? dx dt = limf f |0,u|?> dx dt = 0.
n—o0 Jo 1 n—o00 ty 1

By a weak lower semicontinuity argument, we infer from (33) and the previous
identity that d;U = 0. Then U does not depend on time and thus belongs to
@'([—1, 1]). Furthermore, recalling (34), we conclude that 83U + 0, U|” =0in
9'(—1, 1). The already established regularity of U implies that U € €>([—1, 1])
and solves (14), (15). Consequently, by Proposition 5, there exists ¢ € [0, 1] such
that U = Uy and (1, (0)) = (u(t,)) converges towards Uy in €([—1, 1]) as n — oo
by (33). In particular, recalling that M (¢) is defined by (7), we have

Mo (1 =) = 1Uplloc = lim Jlu(ta)lloo = lim M (ty) = Mo,
n—00 n—00

whence My, < Al and

Moo 1/a

Since this identity determines ¢ in a unique way, we deduce that the set of cluster
points of {u(t); ¢t > 0} is reduced to a single point {Uy} with ¥ given by (35).
The set {u(t); t > 0} being relatively compact in €([—1, 1]) by Lemma 8 and the
Arzela—Ascoli theorem, we finally conclude that |u(t) — Uy|lcc — 0 as t — 00,
whence (10). In addition, since ug # 0, Lemma 7 guarantees that ¥ < 1, so that
Uy is indeed a nontrivial steady state to (1)—(3). We have thus proved that,

if ug € Y4, ug #0, then My, > 0 and there is ¥ € [0, 1) such that

(36) lu(®) — Uplloo — 0 as t — oo,

and Theorem 2 holds true for nonnegative initial data. O
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6. Sign-changing solutions

We now show that the family (Uy)sejo,1) of nonnegative steady states to (1)-
(2) constructed in Proposition 5 also describes the large time behaviour of sign-
changing solutions to (1)—(3). For that purpose, we first establish that any solution
to (1)—-(3) becomes nonnegative after a finite time.

Lemma 12. Consider ug € Y and denote by u the corresponding classical solution
to (1)—(3). Then there is T, > 0 such that u(t, x) > 0 for (¢, x) € [T, 00) x [—1, 1].
Moreover, if ug <0, then u(t, x) =0 for (¢, x) € [Ty, 00) x [—1, 1].

Proof. We put ig(x) = 0 A ug(x) for x € [—1,1] and ug(x) = 0 for x € R\
[—1,1]. Since ug is a nonpositive, bounded and continuous function in R, we
infer from [Gilding et al. 2003, Theorem 3] that there is a unique classical solution
i € 6([0, 00) x R)yN€!2((0, 00) x R)) to the Cauchy problem

(37) ol — 3?11 =a |0 ul’, (t,x)€(0,00) xR,
(38) u(0)=up, xeR.

Furthermore, & is nonpositive in (0, co) x R and is thus clearly a subsolution to
(1)-(3) since g < ug. The comparison principle then entails that

u(t,x) <u(t,x) for (t,x)e€[0,00)x[—1,1].

But, since #1g is a nonpositive, bounded and continuous function with compact
support in R, it follows from [Benachour et al. 2002; Gilding 2005] that & enjoys
the property of finite time extinction, that is, there is 7, > 0 such that

u,x)=0 for (¢t,x)e[T,, ) xR.

Combining these two facts yield the first assertion of Lemma 12. Next, if ug <0,
we have also u < 0 in [0, c0) x [—1, 1] by (6) and u thus identically vanishes in
[T\, 00) x [—1, 1]. O

Proof of Theorem 2: sign-changing initial data. By Lemma 12, there is 7, > 0
such that u(7,, x) > 0 for x € [—1, 1]. Then either u(7,) =0 and thus u () = 0 for
t > T,, and u(t) converges towards U; as t — 0o. Or u(7,) # 0 and we infer from
(36) that there is ¥ € [0, 1) such that u(¢ 4+ T,) converges towards Uy as t — 00,
which completes the proof of the first statement of Theorem 2.

Assume next that ug fulfils (11). Putting ¢;(x) := cos (wx/2) for x € [—1, 1]
and A := 7%/4, we recall that —d?¢; /dx?> = A 1¢; in (—1, 1) with ¢;(£1) = 0.
We infer from (1), (11) and the nonnegativity of ¢, and |0, u|” that

1 1
/ u(t, x) 1 (x)dx > e ! / uo(x) @1(x)dx >0

1 1
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for ¢t > 0. In particular, with the previous notations, we have u(7,) > 0 with

1
/ u(Ty, x) p1(x)dx > 0,
-1

which, together with the positivity of ¢; on (—1, 1), ensures that #(7,) is nonneg-
ative with u(7,) # 0. Arguing as before, we infer from (36) that there is ¢ € [0, 1)
such that u(t) converges towards Uy as t — oo, which completes the proof of the
second statement of Theorem 2. O

7. Partial extinction of 9, u in finite time

Before proceeding with the proof of Theorem 4, we recall that, if o € (0, co) and
@ € R, the function (¢, x) — w + W,(x — ot) is a travelling wave solution to
dw — 3fw = |0, w|? in (0, o) x R (see [Gilding and Kersner 2004, Chapter 13],
for instance), where

= —1/(1=p) ¢ —o(1=p)n\ 1/(1=p)
(39)  W,(§):=—0 (1—e )P 4y g eR
0

Introducing Wy (§) = — Mo &Y for & € R, we claim that
(40) 0<We(&)—Wo(6) <ok, &7, E€R,
with «, :== (1 — p)*/(2(3 —2p)). Indeed, introducing ¢(r) := (r — 1 + e")/r2

and ¢;(r) :=r¢(r) for r > 0, we have for £ > 0

£

Ws () —Wo(§) = /0 ((1— p)n)l/(lfp) {1 —(1=zi(o(1— p)n))l/(lfp)} dn.

We deduce from the elementary inequalities 0 < £;(r) <1 for r > 0 and

A=nW0=r>1__T " repo,1],
I-p
that W5 (§) — Wo(§) > 0 and

3 1
Wo (§) — Wo(&) 5/0 (1= pyp/a=» fl(“l(fpp)") dn.

We next use the fact that ¢(r) < 1/2 for r > 0 to complete the proof of (40).

Proof of Theorem 4. As mentioned, the proof is similar to that of [Gilding 2005,
Theorem 9], the main difference being due to the boundary conditions. We never-
theless reproduce the whole argument here for the sake of completeness. We first
observe that (12) implies that ug(x) > mg — Mg + Up(x) for x € [—1, 1] and that
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mg — Mo + Uy is a subsolution to (1) with my — Mg + Up(£1) < 0. We then infer
from the comparison principle and (6) that

41 my — Mo+ Up(x) <u(t,x) <mg for (t,x)€[0,00) x[—1,1].

In particular,

(42) u(t,0)=mpy for te[0,c0).

We now consider o € (0, ¢/« ,) and put w, (¢, x) =mo+ W, (x —ot) for (1, x) €
[0, 00) x R (recall that & and m¢ are both defined in (12)). We readily have that

43)  dwy — 2wy — [0, we [P =0=du — d%u — |d,ul’ in (0,00) x (0, 1)
with
(44) we (t,0) =mo=u(t,0), >0,

by (39) and (42). In addition, we infer from (12), (40) and the choice of o that, for
x €10, 1],

(45) Wo (0, x) = mo + Wo (x) = mo + Wo(x) + Wo (x) — Wo(x)
<mgo— Mo x*+0 Kkp 2 < mg— Mo x¥ + & x1H
< up(x).

Finally, if § € (0, §g) and ¢ € [0, § /o], it follows from (40) that

(46) we (1, 1) =mo+ W (1 —ot)

=mo+Wo(l—0t)+Ws(1—0t) —Wy(l —0t)
<my—Mo (1—0t)*+0 k, (1—ct)'
<My ((1=380)*—(1—=8))+0 kp

<0

as soon as o is sufficiently small. Owing to (43), (44), (45) and (46), there is o}
depending only on p, mg, ¢ and § such that, if o € (0, 05), we may apply the
comparison principle on [0, §/0] x [0, 1] to deduce that

47) we (¢, x) <u(t,x), (t,x)€l0,3/0]x][0,1].
Recalling (41), we conclude from (47) that, if o € (0, o;),
(48) u(t,x)=mgy for te€l[0,8/0] and x €[0,o01].

A first consequence of (47) is that, if + > 0, we may find o small enough such
that o € (0, 05) and ¢ € [0, §/o]. It then follows from (48) that u(¢, x) = mg for
x €[0, X(¢)] with X (¢) :=0 1.
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As a second consequence of (47), we note that, if t > T (8) := §/o5, there is
o € (0, 03) such that t = 6/0. Then u(t, x) = mg for x € [0, §] by (48).

To complete the proof of Theorem 4, it suffices to notice that v : (¢, x) +—>
u(t, —x) also solves (1)—(2) with initial datum x > uo(—x) which satisfies (12).
Then, v also enjoys the above two properties from which we deduce that we have
alsou(t, x)=mq forx € [—X (¢), 0] for every t > 0 and u (¢, x) =mg for x € [-$, O]
and ¢t > T (8), thus completing the proof of Theorem 4. U
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