Vol. 231, No. 1, 2007

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Nonexistence results and convex hull property for maximal surfaces in Minkowski three-space

Rosa Maria Barreiro Chaves and Leonor Ferrer

Vol. 231 (2007), No. 1, 1–26
Abstract

We study properly immersed maximal surfaces with nonempty boundary and singularities in three-dimensional Minkowski space. We use the maximum principle and scaling arguments to obtain nonexistence results for these surfaces when the boundary is planar. We also give sufficient conditions for such surfaces to satisfy the convex hull property.

Keywords
maximal surfaces
Mathematical Subject Classification 2000
Primary: 53C50
Secondary: 53C42, 53C80
Milestones
Received: 15 December 2005
Accepted: 10 April 2006
Published: 1 May 2007
Authors
Rosa Maria Barreiro Chaves
Departamento de Matemática
Instituto de Matemática e Estatística
Universidade de São Paulo
Rua do Matão, 1010
05508-090 São Paulo, SP
Brazil
http://www.ime.usp.br
Leonor Ferrer
Departamento de Geometría y Topología
Universidad de Granada
18071, Granada
Spain
http://www.ugr.es/~lferrer