Vol. 231, No. 1, 2007

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
On isoperimetric surfaces in general relativity

Justin Corvino, Aydin Gerek, Michael Greenberg and Brian Krummel

Vol. 231 (2007), No. 1, 63–84
Abstract

We obtain the isoperimetric profile for the standard initial slices in the Reissner–Nordstrom and Schwarzschild anti-de Sitter spacetimes, following recent work of Bray and Morgan on isoperimetric comparison. We then discuss these results in the context of Bray’s isoperimetric approach to the Penrose inequality.

Keywords
differential geometry, isoperimetric problem, general relativity
Mathematical Subject Classification 2000
Primary: 53C21, 83C99
Milestones
Received: 3 January 2006
Revised: 2 March 2007
Accepted: 7 March 2007
Published: 1 May 2007
Authors
Justin Corvino
Department of Mathematics
Lafayette College
Easton, PA 18042
United States
Aydin Gerek
Department of Mathematics
Lafayette College
Easton, PA 18042
United States
Michael Greenberg
Department of Mathematics
Brown University
Box 1917
Providence, RI 02912
United States
Brian Krummel
Department of Mathematics
Stanford University
Stanford, CA 94305
United States