Vol. 231, No. 1, 2007

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Equivariant Nielsen invariants for discrete groups

Julia Weber

Vol. 231 (2007), No. 1, 239–256
Abstract

For discrete groups G, we introduce equivariant Nielsen invariants. They are equivariant analogs of the Nielsen number and give lower bounds for the number of fixed point orbits in the G-homotopy class of an equivariant endomorphism f : X X. Under mild hypotheses, these lower bounds are sharp.

We use the equivariant Nielsen invariants to show that a G-equivariant endomorphism f is G-homotopic to a fixed point free G-map if the generalized equivariant Lefschetz invariant λG(f) is zero. Finally, we prove a converse of the equivariant Lefschetz fixed point theorem.

Keywords
Nielsen number, discrete groups, equivariant, Lefschetz fixed point theorem
Mathematical Subject Classification 2000
Primary: 55M20, 57R91
Secondary: 54H25, 57S99
Milestones
Received: 16 November 2005
Revised: 21 June 2006
Accepted: 17 August 2006
Published: 1 May 2007
Authors
Julia Weber
Max-Planck-Institut für Mathematik
Vivatsgasse 7
D-53111 Bonn
Germany