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NONEXISTENCE RESULTS AND CONVEX HULL PROPERTY
FOR MAXIMAL SURFACES IN MINKOWSKI THREE-SPACE

ROSA MARIA BARREIRO CHAVES AND LEONOR FERRER

We study properly immersed maximal surfaces with nonempty boundary
and singularities in three-dimensional Minkowski space. We use the max-
imum principle and scaling arguments to obtain nonexistence results for
these surfaces when the boundary is planar. We also give sufficient condi-
tions for such surfaces to satisfy the convex hull property.

1. Introduction

In recent years, maximal hypersurfaces in a Lorentzian manifold — that is, space-
like submanifolds of codimension one with zero mean curvature — have been the
object of considerable interest. Such hypersurfaces, and in general those having
constant mean curvature, have a special significance in classical relativity [Marsden
and Tipler 1980].

When the ambient space is the flat Minkowski space Ln+1, Calabi [1970] (for
n ≤ 3) and Cheng and Yau [1976] (for arbitrary dimension) proved that a complete
maximal hypersurface is necessarily a spacelike hyperplane. This result remains
valid if we replace the completeness hypothesis by properness; see [Fernández and
López 2004b]. Therefore, it does not make sense to consider global problems on
regular maximal hypersurfaces in Ln+1. Interesting problems are then those that
deal with hypersurfaces with nonempty boundary or having certain type of singu-
larities. In this line, Bartnik and Simon [1982/83] obtained results on the existence
and regularity of spacelike solutions to the boundary value problem for the mean
curvature operator in Ln+1, and Kobayashi [1984] investigated surfaces with cone-
like singularities. Estudillo and Romero [1992] defined a class of maximal surfaces
with singularities of other types and studied criteria for such a surface to be a plane.
On the other hand, Klyachin and Mikyukov [1993] have tackled the problem of ex-
istence of solutions to the maximal hypersurface equation in Ln+1 with prescribed
boundary conditions and a finite number of singularities. Fernández, López and
Souam [Fernández et al. 2005] proved that a complete embedded maximal surface
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with a finite set of singularities is an entire graph over any spacelike plane and that
this family of maximal graphs has a structure of moduli space. We also mention
the work of Umehara and Yamada [2006] where topological obstructions to the
existence of this type of surfaces are given.

Maximal surfaces in L3 and minimal surfaces in Euclidean space are closely
related. Both are solutions of variational problems, namely they are local maxima
(minima) for the area functional. Both admit a Weierstrass representation (see
[Kobayashi 1983] for maximal surfaces). The maximal surface equation and the
minimal surface equation are both quasilinear elliptic equations and therefore enjoy
a maximum principle. But contrary to the minimal case, solutions to the maximal
surface equation can have isolated singularities, that is to say, points where the
solution is not differentiable. Such points correspond to possible degeneracy of
the ellipticity of the maximal surface equation. Geometrically at these singular
points the Gauss curvature blows up, the Gauss map has no well-defined limit and
the surface is asymptotic to the light cone.

In the minimal case, the maximum principle has been used by Schoen [1983],
Hoffman and Meeks [1990], Meeks and Rosenberg [1993], López and Martı́n
[2001], and others to derive remarkable results. In this paper we apply the maxi-
mum principle and scaling arguments to properly immersed maximal surfaces with
nonempty boundary and isolated singularities in L3. We get two types of results:
nonexistence results for properly immersed maximal surfaces with singularities
and planar boundary contained in a timelike or lightlike plane, and results general-
izing the convex hull property for such surfaces. Recall that a surface satisfies the
convex hull property if it lies in the convex hull of its boundary. Although compact
maximal surfaces in L3 satisfy this property, since they have nonpositive euclidean
Gauss curvature (see [Osserman 1971/72]), this is not true if compactness is not
assumed. We give sufficient conditions for a properly immersed maximal surface
(not necessarily compact and with singularities) to satisfy the convex hull property.

Organization of paper. Section 2 contains the necessary notations and definitions,
a description of the behavior of maximal surfaces around an isolated singularity,
and a discussion of the maximal surfaces we use as barriers: Lorentzian catenoids,
maximal surfaces of Riemann and Scherk type, and spacelike planes. We finish
the section giving a first generalization of the convex hull property to compact
maximal surfaces with singularities.

In Section 3 we obtain nonexistence results for properly immersed maximal
surfaces with singularities and boundary contained in a timelike plane. Letting

C+
= {(x1, x2, x3) ∈ R3

| x2
1 + x2

2 − x2
3 ≤ 0, x3 ≥ 0}

be the positive solid half-cone, we show:
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Theorem A. There exists no connected properly immersed maximal surface M
such that M ⊂ {(x1, x2, x3) ∈ R3

| x2 ≥ 0, −ax2 + x3 ≥ 0} and ∂ M ⊂ C+
∩

{(x1, x2, x3) ∈ R3
| x2 = 0}, for a ∈ ]−1, 1[.

This theorem holds even if we allow certain singularities (see Theorem 3.5).
Section 4 is devoted to the study of properly immersed maximal surfaces whose

boundary is contained in a spacelike plane. Consider any region V of the form

V = {(x1, x2, x3) ∈ R3
| x3 ≥ 0, −ax2 + x3 ≤ 0, x1 + bx2 + c ≥ 0},

with a ∈ ]0, 1[ and b, c ∈ ]−∞, ∞[.

Theorem B. Let M be a connected properly immersed maximal surface contained
in V and such that ∂ M lies in a spacelike plane. Then M is a planar region.

This result, too, holds even if we allow certain singularities (see Theorem 4.2
and Corollary 4.3). In the proof we construct a barrier surface ad hoc using the
aforementioned Bartnik and Simon existence result. Theorem B is still valid if we
replace V by C+ (see Proposition 4.4).

Finally, in Section 5 we exploit the results of the preceding sections to give
nonexistence results for properly immersed maximal surfaces with the boundary
on a lightlike plane. We also prove:

Theorem C. Any connected properly immersed maximal surface with singularities
contained either in V or C+ lies in the convex hull of its boundary and some of its
singularities.

Propositions 5.3 and 5.4 provide a precise formulation of this result.

2. Preliminaries

We denote by L3 the three dimensional Lorentz–Minkowski space (R3, 〈 , 〉), where
the inner product corresponds to the form dx2

1 + dx2
2 − dx2

3 . A nonzero vector
v ∈ R3 is called spacelike, timelike or lightlike if 〈v, v〉 is positive, negative or
zero, respectively. The vector (0, 0, 0) is considered spacelike. We say that a
plane in L3 is spacelike, timelike or lightlike if the induced metric is Riemannian,
nondegenerate and indefinite or degenerate, respectively. We also say that an affine
plane in L3 is spacelike, timelike or lightlike if it is parallel to a spacelike, timelike
or lightlike vector plane.

The light cone at y = (y1, y2, y3) ∈ L3 is defined as

C(y) = {x ∈ L3
| 〈x − y, x − y〉 = 0}.

We also set C+(y) = C(y) ∩ {x3 ≥ y3} and C−(y) = C(y) ∩ {x3 ≤ y3}. Observe
that lightlike vectors in L3 lie in the light cone C((0, 0, 0)).
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Further, set H2
= H2

+
∪ H2

−
, where H2

+
= {x ∈ L3

| 〈x, x〉 = −1} ∩ {x3 ≥ 0} and
H2

−
= {x ∈ L3

| 〈x, x〉 = −1} ∩ {x3 ≤ 0}.
Consider the stereographic projection σ : C − {|z| = 1} → H2 for H2, given by

(2-1) σ(z) =

(
2 Im z
|z|2 − 1

,
2 Re z
|z|2 − 1

,
|z|2 + 1
|z|2 − 1

)
,

where C = C ∪ {∞} and σ(∞) = (0, 0, 1).
An immersion X : M → L3 is spacelike if the tangent plane at any point is

spacelike. In this case M must be orientable, that is to say, the Gauss map N is
globally well defined and N (M) lies in one of the components of H2.

A maximal immersion is a spacelike immersion X : M → L3 whose mean cur-
vature vanishes. In this case X (M) is said to be a maximal surface in L3. Using
isothermal parameters compatible with a fixed orientation N : M →H2, M acquires
a natural conformal structure, and the map g =σ−1

◦N is meromorphic. Moreover,
there exists a holomorphic 1-form 83 on M such that the 1-forms

(2-2) 81 =
i
2

(1
g

− g
)
83, 82 = −

1
2

(1
g

+ g
)
83

are holomorphic, and together with 83, have no real periods on M and no common
zeros. Up to a translation, the immersion is given by

(2-3) X = Re
∫

(81, 82, 83).

The induced Riemannian metric ds2 on M is given by ds2
= λ(du2

+dv2), where
z = u + iv is a conformal parameter and

λ =
1
2

(
|81|

2
+ |82|

2
− |83|

2)
=

(
|83|

2

(
1
|g|

− |g|

))2

.

Since M is spacelike, we have |g| 6= 1 on M and we can assume |g| < 1.
Conversely, let M , g and 83 be a Riemann surface, a meromorphic map on M

and a holomorphic 1-form on M . If |g(p)| 6=1 for all p ∈ M , and if the 1-forms 81,
82, 83 defined as above are holomorphic, have no real periods and no common
zeros, then the conformal immersion X defined in (2-3) is maximal and its Gauss
map is σ ◦ g. We call (M, g, 83) the Weierstrass representation of X . For more
details see [Kobayashi 1983].

A maximal surface in L3 can be represented locally as a graph x3 = u(x1, x2) of
a smooth function u such that u2

x1
+ u2

x2
< 1 and

(2-4) (1 − u2
x1

)ux2x2 + 2ux1ux2ux1x2 + (1 − u2
x2

)ux1x1 = 0.

The maximum principle for elliptic quasilinear equations then gives rise to:
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Maximum principle for maximal surfaces. Let S1 and S2 be two maximal sur-
faces in L3 which intersect tangentially at a point p ∈ S1 ∩ S2. Suppose that ui , for
i = 1, 2 denotes the function defining Si around p and that u1 ≥ u2 (we say S1 is
above S2 or S2 is below S1). Then S1 = S2 locally around p.

Maximal surfaces with singularities. If in a maximal immersion X : M → L3

we allow points q ∈ M where the induced metric is not Riemannian we say that
X (respectively, X (M)) has singularities and q (respectively, X (q)) is called a
singular point. The different kinds of isolated singularities of maximal surfaces
and the behavior of maximal surfaces around these points are well known; see
[Kobayashi 1984; Ecker 1986; Miklyukov 1992; Fernández et al. 2005]. We recall
the necessary material.

Let D be an open disc and X : D → L3 a maximal immersion with a singular
point in q ∈ D. There are two possibilities: either N extends continuously to q (q
is a spacelike singular point) or not (q is a lightlike singular point).

In the second case D − {q} with the induced metric is conformally equivalent
to {z ∈ C, 0 < r < |z| < 1} and X extends to a conformal map X : Ar → L3 with
X (S1) = X (q) = p, where Ar = {z ∈ C, r < |z| ≤ 1} and S1

= {z ∈ C, |z| = 1}.
Denote by J (z) = 1/z the inversion about S1. Then Schwarz reflection allows us
to assert that X extends analytically to Br = {z ∈ C, r < |z| < 1/r} and satisfies
X ◦ J = −X + 2p. Therefore if (g, 83) are the Weierstrass data of the extended
immersion we have J ∗(8k) = −8k for k = 1, 2, 3, where J ∗(8k) denotes the
pullback of 8k under J : if 8k = fk dz then J ∗(8k) = −z−2( fk ◦ J ) dz. Thus
g◦ J = 1/g and consequently |g| = 1 on S1. Let 5 be a spacelike plane containing
p = X (S1) and label π : L3

→ 5 as the Lorentzian orthogonal projection. If n
(always even) is the number of zeros of 83 on S1 and m denotes the degree of the
map g : S1

→ S1, we have:

Lemma 2.1 [Fernández et al. 2005]. There exists a small closed disc U in 5

centered at p such that (π ◦ X)−1(p) ∩ V = S1 and (π ◦ X) : V − S1
→ U − {p}

is a covering of m +
1
2 n sheets, where V is the annular connected component of

(π ◦ X)−1(U ) containing S1.

As a consequence, X is an embedding around q if and only if m = 1 and n = 0.
In this case the point p = X (S1) is said to be a conelike singularity of the maximal
surface X (D). Moreover, for r0 close enough to 1, X (Ar0) is the graph of a function
u over 5. Locally, conelike singularities are points where the function defining the
graph is not differentiable and correspond to possible degeneracy of the equation
(2-4). Moreover, the graph of u is either above 5 and asymptotic to C+(p) or
below 5 and asymptotic to C−(p), and the point p is called a downward or upward
pointing conelike singularity, respectively.
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(b)

(a)

(d)

(c)

Figure 1. Different types of isolated singularities. (a) A down-
ward pointing conelike singularity (m = 1, n = 0). (b) a downward
pointing lightlike singularity with m = 2, n = 0. (c) a lightlike
singularity with m = 1, n = 2. (d) a spacelike singularity with
n = 2.

Lemma 2.2. Let D be an open disc and X : D → L3 a maximal immersion with a
lightlike singular point in q ∈ D. Set p = X (q). The neighborhoods U and V of
Lemma 2.1 can be chosen so that:

(i) If p is a lightlike singularity with n = 0, then X (V ) is either over 5 and
asymptotic to C+(p) or below 5 and asymptotic to C−(p) (see Figure 1a,b).

(ii) If , on the contrary, p is a lightlike singularity with n > 0, there exist points of
X (V ) in both sides of the plane 5. In particular there exist a pair of curves α,
β in V starting at q such that X (α)−{p} is over 5 and asymptotic to C+(p)

and X (β) − {p} is below 5 and asymptotic to C−(p) (see Figure 1c).

Proof. Up to a Lorentzian isometry we can assume 5 = {x3 = 0} and p = (0, 0, 0).
Let X : Ar → R3 be a conformal reparametrization of the maximal immersion with
X (S1) = p and consider U , V as in Lemma 2.1. A thoughtful reading of the proof
of Lemma 2.1 in [Fernández et al. 2005] will convince the reader that the same
arguments prove (i).
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For the proof of (ii) we use again the ideas of the same lemma. The Weierstrass
data can be written in a neighborhood of S1 as

(2-5) g(z) = zm, 83(z) = i

∏n
j=1(z − a j )

zn/2+1 f (z) dz,

where a1, . . . , an are the zeros of 83 on S1 (with multiplicity) and f is a nonva-
nishing holomorphic function. Recall that the multiplicity of the zero of 83 at ai

coincides with the number of nodal curves of the harmonic function x3 meeting
at ai minus one. By the maximum principle there are no domains bounded by
nodal curves and x3 changes sign when crossing a nodal curve. Since n ≥ 2 there
are points of X (V ) in both sides of 5 and there exist at least a pair of domains
0, 0′

⊂ V bounded by a pair of nodal curves of x3, a piece of ∂V −S1 and a point
or a piece of S1, such that x3(X (0)) > 0 and x3(X (0′)) < 0.

To conclude we prove that the image of all the curves ρθ (s) = seiθ , for θ ∈

K = [0, 2π ]−{arg(a1), . . . , arg(an)}, is asymptotic to the cone C(p). Taking into
account (2-5) we can write

X (ρθ (s)) = Re
∫ s

1

i
∏n

j=1(te
iθ

− a j )

tn/2+1(eiθ )n/2 f (teiθ )

×

(
i
2
(
e−imθ

tm − tmeimθ ), −
1
2
(
e−imθ

tm + tmeimθ ), 1
)

dt.

Since J ∗(83) = −83, we deduce that

Im

(
i
∏n

j=1(e
iθ

− a j )

(eiθ )
n
2

f (eiθ )

)
= 0.

Using this it is straightforward to see that

lim
s→1

∥∥∥∥ X (ρθ (s))
x3(X (ρθ (s)))

−
(
sin(mθ), − cos(mθ), 1

)∥∥∥∥
1
= 0,

where ‖ · ‖1 is the C1 norm in C1(K , R3). Therefore, we can consider a pair of
curves α ∈ 0 and β ∈ 0′ satisfying the requirements of statement (ii). �

Definition 2.3. A point p as in Lemma 2.2(i) is called a downward or upward
pointing lightlike singularity, as the case may be. We also call it a general conelike
singularity.

If D is an open disc and X : D → L3 is a maximal immersion with a spacelike
singular point in q ∈ D, the local behavior at the singularity is similar to the case
of minimal surfaces in R3 (see [Dierkes et al. 1992; Estudillo and Romero 1992;
Fernández et al. 2005]): X is not a topological embedding, D−{q} with the induced
metric is conformally equivalent to {z ∈C |0< |z|<1}, the Weierstrass data (g, 83)
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extend analytically to q , |g(q)| < 1 and 8 = (81, 82, 83) has a zero at q . Up to
a Lorentzian isometry we can assume that the tangent plane of X (D) at p = X (q)

is 5 = {x3 = 0} and p = (0, 0, 0). The Weierstrass data of the immersion can be
written as

g(z) = zm f (z), 83(z) = zm+n dz,

where m > 0, n is the order of the zero of 8 at q and f is a holomorphic function
with f (0) 6= 0. Up to a rotation around the axis x3, we can assume Im( f (0)) = 0.
From here it is easy to derive that the asymptotic behavior of the immersion around
the singularity is in polar coordinates

X (seiθ ) =

(
−sn+1

2 f (0)(n+1)
sin((n+1)θ) + O(sn+2),

−sn+1

2 f (0)(n+1)
cos((n+1)θ) + O(sn+2),

sm+n+1

m + n+1
cos((m+n+1)θ)

)
,

where by O(sn+2) we denote a function such that s−n−2O(sn+2) is bounded as
s → 0. Therefore, it is clear that X has a branch point at q of order n in the sense
of [Gulliver et al. 1973].

Lemma 2.4 [Gulliver et al. 1973, Lemma 2.12]. Let X : D → L3 be a maximal
immersion with a spacelike singular point at q ∈ D. Set p = X (q) and let be S
an embedded surface in L3 with p ∈ S. Suppose that for a neighborhood V of q,
X (V ) lies on one side of S. Then the tangent plane to S at p coincides with the
tangent plane to X (D) at p.

Remark 2.5. In the case of spacelike singularities, we always assume that the
immersion X : D → L3 is not a branched covering of an embedded surface; that is
to say, q is not a false branch point. See [Gulliver et al. 1973].

Finally, we mention a property of maximal surfaces with singularities (see for
example [Fernández and López 2004a]).

Lemma 2.6. Let X : M → L3 be a maximal immersion with isolated singularities.
Then for all q ∈ M there exists a neighborhood V , such that X (V ) − {X (q)} is
contained in the exterior of C(X (q)).

Remark 2.7. Let S be an embedded surface and p ∈ S. If the tangent plane of S
at p is spacelike then S can be written in a neighborhood of p as the graph of a
function h on a domain � of the plane {x3 =0}. Let M be another surface (possibly
with singularities) and denote by π the orthogonal projection on {x3 = 0}. In this
context, we say that M lies above S in a neighborhood of p if x3(p′) ≥ h(x1, x2)

for all (x1, x2)∈� and p′
∈ M ∩π−1(x1, x2). Naturally, M lies below S if x3(p′)≤

h(x1, x2) instead.
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Maximal surfaces with boundary. Let S′ be a maximal surface, possibly with
isolated singularities. Consider S ⊂ S′ such that the topological boundary of S
in S′ is nonempty and piecewise C1. Then S is called a maximal surface with
boundary; the topological boundary of S in S′ is called the boundary of S, written
∂S. The interior of S is Int S = S − ∂S. Our definition allows singularities on the
boundary of S.

Since the components of a maximal immersion are harmonic functions, the in-
tersection of such an S with any plane 5 having ∂S entirely to one side is a union
of piecewise analytic curves, and each connected component of S−(S∩5) is itself
a maximal surface with boundary.

We say that S is a properly immersed maximal surface with boundary if, in the
preceding situation, S′ is a maximal surface properly immersed in L3.

Theorem [Fernández and López 2004b]. Let M be a properly immersed maximal
surface with boundary such that, except for a compact set, it is contained in the
region {x ∈ L3

| 〈x, x〉 ≥ ε}, for ε > 0. Then M is relative parabolic, it is to say,
bounded harmonic functions on M are determined uniquely by their values at the
boundary and the interior isolated singularities.

(Note that in [Fernández and López 2004b] the definition of a maximal surface
with boundary is more general than in this paper.)

Corollary 2.8. Let M be a connected properly immersed maximal surface with
boundary such that M ⊂ {(x1, x2, x3) ∈ R3

| 0 ≤ x3 ≤ k} and the boundary and the
singularities are contained in {(x1, x2, x3) ∈ R3

| x3 = k}, for k > 0. Then M is a
planar region.

Barrier surfaces. For any v ∈ R3
− {(0, 0, 0)} and y ∈ R3, define

H(y, v) = {x ∈ R3
| 〈v, x − y〉e = 0},

H+(y, v) = {x ∈ R3
| 〈v, x − y〉e ≥ 0},

H−(y, v) = {x ∈ R3
| 〈v, x − y〉e ≤ 0},

where 〈 , 〉e is the Euclidean metric on R3. Next, for θ ∈ [−
π
4 , π

4 ] and t ∈ R, set

5θ t = H
(
(0, 0, t), (0, −tan θ, 1)

)
,

5+

θ t = H+
(
(0, 0, t), (0, −tan θ, 1)

)
,

5−

θ t = H−
(
(0, 0, t), (0, −tan θ, 1)

)
.

In the case of t = 0 we write simply 5θ instead of 5θ0, and so on.
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We also consider, for α ∈ ]−
π
4 , π

4 [,

6α = H
(
(0, 0, 0), (0, 1, −tan α)

)
,

6+

α = H+
(
(0, 0, 0), (0, 1, −tan α)

)
,

6−

α = H−
(
(0, 0, 0), (0, 1, −tan α)

)
.

Observe that 5π/4,t and 5−π/4,t are lightlike planes, while the 5θ t are spacelike
planes for θ ∈ ]−

π
4 , π

4 [. Also, for any θ ∈ ]−
π
4 , π

4 [, there is an orthochronous
hyperbolic rotation fs of L3 of the form

fs

 x1

x2

x3

=

 1 0 0
0 cosh s sinh s
0 sinh s cosh s

 x1

x2

x3

 ,

which preserves (individually) the light half-cones C+((0, 0, 0)) and C−((0, 0, 0))

and satisfies fs(5θ )=50. Analogously, for θ ∈]−
π
4 , π

4 [, there is an orthochronous
isometry f̃s of L3 composed of an orthochronous hyperbolic rotation fs and a ver-
tical translation, and such that f̃s(5

+

θ t)=5+

0 and f̃s(5
−

θ t)=5−

0 , so also f̃s(5θ t)=

50. As for the 6α, they are timelike planes and there is an orthochronous hyper-
bolic rotation fs of L3 that preserves the light half-cones and satisfies fs(6α)=60.
For more details about these isometries of L3, see [Fernández and López 2004a].

Now we present the maximal surfaces that we use as barriers.

Lorentzian catenoids. The (vertical) Lorentzian catenoid Ca is the maximal sur-
face given on D − {0} = {z ∈ C | 0 < |z| ≤ 1} by the Weierstrass data g = z and
83 = a dz/z (see figure for the case a = 1). We can express Ca as the graph of the
radially symmetric function

u(r) = −

∫ r

0

a
√

t2 + a2
dt, r > 0.

Let C = {Ca, a ∈ ]0, ∞[} be the family of such catenoids. Lorentzian catenoids
have been used as barriers for applications of the maximum principle in [Bartnik
and Simon 1982/83] and [Ecker 1986].
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Maximal surfaces of Riemann type. R. López, F. J. López and R. Souam studied
in [López et al. 2000] the set of maximal surfaces in L3 that are foliated by pieces
of circles. From among them, we take the one-parameter family of Riemann-
type maximal surfaces. This is a family of singly periodic maximal surfaces that
plays the same role that Riemann’s minimal examples play in Euclidean space, and
whose fundamental piece is a graph over a spacelike plane, having one planar end
and two conelike singularities:

We recall the Weierstrass representation of one-half of a fundamental piece of
such surfaces. For r ∈ ]1, ∞[, consider the four-punctured torus

N = {(z, w) ∈ C∗
× C | w2

= z(z2
+ 2r z + 1)}

and define in the z-plane

s0 = {z ∈ C | |z| = 1}, s1 = [r1, 0[ × {0}, s2 = ]−∞, r2] × {0},

where r1 = −r +
√

r2 − 1 and r2 = −r −
√

r2 − 1. Observe that r2 < −1 < r1 < 0.
Define N ⊂ N as the connected component of z−1

(
C −

⋃2
i=0 si

)
containing the

point ( 1
2 ,

√
5
8 +

1
2r
)
.

Finally set M = N , the closure of N in N.
For brevity, when z(z2

+ 2r z + 1) ∈ R+, we set

z+ = (z, +
√

z(z2 + 2r z + 1)), z− = (z, −
√

z(z2 + 2r z + 1)).

On M we consider the Weierstrass data g = z and 83 = dz/w and the 1-forms
8 j , j = 1, 2 given by (2-2). The lift γ of s0 to M generates H1(M, Z). It is not
difficult to see that 81 is exact and that 82, 83 have no real periods on γ , so we
can consider the maximal immersion X = (X1, X2, X3) = Re

∫ z
z0

(81, 82, 83).
Denote by γ1 the lift to M of s1. It is not hard to prove that X (γ1) is a line

parallel to {x2 = x3 = 0}. The set of singularities of the immersion is the trace of
γ , and the image of these points under the immersion X is a single point, which we
label Pr . We can choose z0 so that X (γ1) = {x2 = x3 = 0} and Pr

= (0, Pr
2 , Pr

3 ).
Let 2(r) ∈ [−π, π[ be the angle between (0, 1, 0) and the vector Pr , given by

cos 2(r) =
Pr

2√
(Pr

2 )2 + (Pr
3 )2

, sin 2(r) =
Pr

3√
(Pr

2 )2 + (Pr
3 )2

.
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To use the surfaces of this family as barriers, we study the function 2(r). We have
2(r) = arctan (h(r)/d(r)), where

h(r) = X3(−1−) − X3(r1) = X3(1+) − X3(0), d(r) = X2(−1−) − X2(r1).

Hence

h(r) = Re
∫

−1−

r1

83 =

∫ r1

−1

dt√
t (t2 + 2r t + 1)

,

h(r) = Re
∫ 1+

0
83 =

∫ 1

0

dt√
t (t2 + 2r t + 1)

,(2-6)

d(r) = Re
∫

−1−

r1

82 = −
1
2

∫ r1

−1

(1 + t2) dt

t
√

t (t2 + 2r t + 1)
.

Since h and d are positive functions, 2(r) lies in ]0, π
2 [. Moreover,

(2-7) d(r) = rh(r) + I (r),

where

(2-8) I (r) =
1
2

∫ r1

−1

√
t (t2 + 2r t + 1) dt

t2 .

From (2-7) and (2-8) we see that limr→1 2(r) =
π
4 and limr→+∞ 2(r) = 0. From

(2-6) we observe that

(2-9) h′(r) =

∫ 1

0

−t2dt
(t (t2 + 2r t + 1))3/2 .

On the other hand, from (2-7) and (2-8) the derivative of d respect to r is

(2-10) d ′(r) = rh′(r) +
3
2 h(r).

According to (2-7) and (2-10) we have

2′(r) =
h′(r) d(r) − h(r) d ′(r)

h(r)2 + d(r)2 =
I (r)h′(r) −

3
2 h(r)2

h(r)2 + d(r)2 .

Taking into account (2-8) and (2-9) we get 2′(r)< 0, so 2 is a one-to-one function
2 : ]1, ∞[ → ]0, π

4 [.
For δ ∈ ]0, π

4 [ we shall denote by Rδ the maximal surface with boundary defined
in L3 by the above immersion for r = 2−1(δ) (see figure at the top of next page).
We also set

R = {Rδ | δ ∈ ]0, π
4 [}.

Finally, we need to prove that Rδ ⊂5−

δ ∩{x3 ≥0}. It is not difficult to see that the
point {0} is a planar end of the surface asymptotic to the plane {x3 = 0}. Therefore,
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Rδ for δ = 0.595881.

X3 is bounded on M . From Corollary 2.8 we deduce that Rδ ⊂{x3 ≥ 0}. Moreover,
from the above facts there exists t > 0 such that Rδ ⊂5−

δt . The maximum principle
allows us to assert that Rδ ⊂ 5−

δ .

Maximal surfaces of Scherk type. This family of singly periodic maximal surfaces
of Scherk type was studied in depth in [Fernández and López 2004a], although an
example had already appeared in [Kobayashi 1984]. For b ∈ ]0, 1[, consider the
maximal surface given on D − {b, −b} by the Weierstrass data g(z) = i z and

83(z) =
z dz

(z2 − b2)(b2z2 − 1)
.

The surface is a graph over a spacelike plane, it is invariant under translation by(
0, π/(2b(b2

+1)), 0
)
, and each fundamental piece of it has a conelike singularity.

Up to translation we can assume that one of these singularities is at (0, 0, 0), and
then all the conelike singularities lie on the line {x1 = x3 = 0}. The ends are
asymptotic to the totally geodesic horizontal half-cylinder ∂Wδ, where

Wδ = {(x1, x2, x3) ∈ R3
| −tan δ x1 + x3 ≥ 0, tan δ x1 + x3 ≥ 0},

for δ = arctan
(
2b/(1 + b2)

)
∈ ]0, π

4 [; for this reason we denote this Scherk-type
surface by Sδ. By Corollary 2.8, Sδ lies entirely in Wδ.

The convex hull property. We now prove that a compact maximal surface, even
one with isolated singularities, satisfies the convex hull property, that is, it lies in the
convex hull of its boundary plus singularities. We will need the following version
of the maximum principle for maximal surfaces with singularities. We would like
to point out that the proof is inspired in the work [Gulliver et al. 1973].

Proposition 2.9. Let X : D →L3 be a maximal immersion with an isolated singular
point in q ∈ D. Set p = X (q) and let S be an embedded maximal surface (without
singularities) in L3 with p ∈ S.
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(i) If X (D) is above S, then p is a downward pointing lightlike singularity.

(ii) If X (D) is below S, then p is an upward pointing lightlike singularity.

Proof. We prove (i); the proof of part (ii) is similar. Suppose first that p is a lightlike
singularity but not downward pointing. Denote by 5 the tangent plane to S at p
that is a spacelike plane. From Lemma 2.2 we obtain a curve in X (D) asymptotic
to C−(p). Since S is asymptotic to 5 in a neighborhood of p we deduce that there
are points of X (D) below S and this contradicts our assumptions.

Now assume p is a spacelike singularity. By Lemma 2.4, the tangent plane to
X (D) at p coincides with the tangent plane to S at p. Denote this plane by 5

and by π the Lorentzian orthogonal projection on 5. Up to a Lorentzian isometry
we can suppose that p = (0, 0, 0) and 5 = 50. Consider a disk 1 in 5 centered
at (0, 0) such that S is the graph of a function h on 1 and 1 ⊂ π(X (D)). Set
M = X (V ), where V is the connected component of (π ◦ X)−1(1) containing q .
If ∂(M)∩h(1) 6=∅, we have an interior regular point in X (D)∩S. By applying the
maximum principle we obtain M = h(1) and then h(1) must contain a spacelike
singularity. Taking into account Remark 2.5 we get a contradiction.

Suppose then that ∂ M lies strictly above h(1). Then there exists θ ∈ ]−
π
4 , 0[

sufficiently small and f an hyperbolic rotation in L3 such that f (5) = 5θ and
f (∂ M) remains strictly above h(1). Note that the tangent plane to the maximal
surface f (M) at (0, 0, 0) is 5θ and thus we can assert that there are points of f (M)

below h(1). Translating in the positive x3-direction, we find a last contact point
with h(1) which must be an interior regular point. As in the previous case, by using
the maximum principle we obtain that h(1) coincides with the translate of f (M)

by some vector (0, 0, t0), for t0 > 0. From Lemma 2.6 we see that π−1(0, 0, 0)

intersects this translate at (0, 0, t0). But this implies (0, 0, t0) = (0, 0, 0), again a
contradiction. �

Proposition 2.10. Let M be a compact maximal surface with isolated singularities.
Then M lies in the convex hull of ∂ M and its general conelike singularities.

Proof. Let A be the set of general conelike singularities. If M is contained in a
plane the result is obvious. Assume M is not flat and consider v ∈ S2 and y ∈ R3

such that (∂(M) ∪ A) ⊂ H+(y, v). We prove that M ⊂ H+(y, v).
We proceed by contradiction. Suppose that M ∩

(
H−(y, v)− H(y, v)

)
6= ∅.

Let M ′ be a connected component of M ∩ H−(y, v); then M ′ does not contain
general conelike singularities.

First, assume v is a timelike vector, that is, H(y, v) is a spacelike plane. There
exists an interior point p ∈ M ′ such that M ′ is contained in the slab determined
by the parallel planes H(p, v) and H(y, v). Therefore we can use Proposition 2.9
to infer that p is a regular point of M ′. Using the maximum principle we find
M ′

= H(p, v), a contradiction.
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Analogously, if v is either spacelike or lightlike, we can deduce the existence
of an interior point p ∈ M ′ such that M ′ is contained in the slab determined by
the parallel planes H(p, v) and H(y, v). If p were a spacelike singularity, Lemma
2.4 implies H(p, v) is the tangent plane to M ′ at p, contradicting |g(q)| < 1.
Assume p is a lightlike singularity. Up to a Lorentzian isometry we can assume
that p = (0, 0, 0) and

• H(p, v) = 6θ and M ′
⊂ 6−

α if v is spacelike,

• H(p, v) = 5π/4 and M ′
⊂ 5+

π/4 if v is lightlike.

By Lemma 2.6, M ′ is in the exterior of C((0, 0, 0)). Consider π , the Lorentzian
orthogonal projection onto 50. It is easy to prove that the preceding conditions
imply that π(M ′) ⊂ (50 −{(0, y, 0) | y ∈ R}) in a neighborhood of (0, 0, 0). This
contradicts Lemma 2.1. Therefore, since p is not a singular point we infer that
H(y, v) is the tangent plane to M ′ at p, in contradiction with the fact that M is
spacelike. �

Remark 2.11. Proposition 2.10 holds even if M cannot be extended to an open
maximal surface M ′.

3. Maximal surfaces whose boundary is contained in a timelike plane

Recall that we defined

C+
= {(x1, x2, x3) ∈ R3

| x2
1 + x2

2 − x2
3 ≤ 0, x3 ≥ 0}.

For θ ∈ ]0, π
4 [ and δ, δ′

∈ ]0, π[, we also define the convex region

V (θ, δ, δ′) = 5+

0 ∩ 5−

θ ∩ H+
(
(0, 0, 0), (1, −cot δ, cot θ(cot δ − cot δ′))

)
.

This is the convex hull of the half-lines with origin in (0, 0, 0) and directions
(1, 0, 0), (cot δ, 1, 0) and (cot δ′, 1, tan θ) (see figure).

Let τt denote the translation along the vector (0, 0, t), where t ∈ R.
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Proposition 3.1. Let α ∈ ]−
π
4 , π

4 [ be arbitrary. Suppose M is a connected, prop-
erly immersed maximal surface contained in 5+

π/4 ∩ 6+
α , such that ∂ M ⊂ 6α. If

there is a point p0 ∈ ∂ M minimizing x3 on ∂ M , there must be some downward
pointing lightlike singularity in the interior of M.

Proof. After applying an orthochronous hyperbolic rotation fs of L3, we can as-
sume α = 0.

Let M be as in the hypothesis of the proposition and define t̂ = x3(p0). For any
θ ∈ [0, π

4 [, consider the set

Iθ = {t ∈ [0, t̂ ] | M ⊂ 5+

θ t }.

Since Iθ contains 0, it is nonempty. Suppose there is no singularity in Int M as in
the conclusion; we shall prove that Iθ = [0, t̂ ], and from there we will derive a
contradiction.

We may assume t̂ > 0, the case t̂ = 0 being obvious. Clearly Iθ is closed; we
show that it is open. If t ∈ Iθ then [0, t] ⊂ Iθ . We claim that if t ∈ Iθ ∩ [0, t̂[,
there exists ε > 0 such that [t, t+ε[ ⊂ Iθ . If not, we have two possibilities: either

(a) there is an interior point p of M in the plane 5θ t , or

(b) M is asymptotic to 5θ t at infinity.

In case (a), p is not a singularity, for if it were, it would be downward pointing by
Proposition 2.9(i), contrary to assumption. But if p is not a singularity, the interior
maximum principle implies that M and 5θ t coincide, in contradiction with the
inequality x3(p0) = t̂ > t .

In case (b), we can assume M ∩5θ t = ∅; otherwise there exists an interior point
of M in 5θ t and we may apply the previous argument. Consider an orthochronous
isometry f of L3 such that f (5θ t) = 50 and f (5+

θ t) = 5+

0 . Set M̃ = f (M). Then
we have a properly immersed maximal surface M̃ ⊂ 5+

0 asymptotic to 50 and
disjoint from it.

Since the immersion is proper and (0, 0, 0) 6∈ M̃ we can find ε > 0 sufficiently
small so that the ball B(ε) of radius ε around (0, 0, 0) is disjoint from M̃ . Hence,
there exists ε′

∈ ]0, ε[ and a0 > 0 small enough such that τε′(Ca0) ⊂ B(ε) ∪ 5−

0 .
Now define

A = {a ∈ ]0, a0] | τε′(Ca) ∩ M̃ = ∅}.

Clearly, a0 ∈ A and we can consider the infimum a′ of A. We claim that a′
= 0.

Assume on the contrary that a′ > 0. Since τε′(Ca) and M̃ do not have a contact
at infinity, there exists an interior point p of M̃ in τε′(Ca′). Taking into account
Proposition 2.9(i) and the assumed absence of singularities, we see that p is a
regular point of M̃ . Applying the maximum principle, we obtain M̃ = τε′(Ca′), in
contradiction with ∂ M̃ ⊂ 60 ∩ 5+

0 .
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We have shown that if the conclusion of the theorem fails, then Iθ is open
and Iθ = [0, t̂ ]. Hence M ⊂ 5+

θ t̂ for all θ ∈ [0, π
4 [ and thus M ⊂ 5+

π/4,t̂ . Now
consider p0: if it is not a singular point in ∂ M , the fact that p0 ∈ ∂(M)∩5π/4,t̂ and
M ⊂ 5+

π/4,t̂ ∩ 6+

0 implies that the tangent plane p0 is lightlike of timelike, which
is a contradiction. If instead p0 is a singular point, Lemma 2.6 implies that around
p0 the surface is in the exterior of C(p0), which again contradicts M ⊂ 5+

π/4,t̂ . �

Corollary 3.2. There exists no connected properly immersed maximal surface M
without downward pointing lightlike singularities in the interior and such that M ⊂

C+
∩ 6+

α and ∂ M ⊂ 6α, for any α ∈ ]−
π
4 , π

4 [.

Proof. This follows immediately from Proposition 3.1. �

Corollary 3.3. There exists no connected properly immersed maximal surface M
without downward pointing lightlike singularities in the interior and such that M ⊂

C+ and ∂ M lies in the intersection of C+ with a timelike plane P.

Proof. Assume that there exists such a maximal surface and consider a connected
component M ′ of M −(M ∩ P). Up to an elliptic rotation and a translation we can
assume the timelike plane is the plane 6α, for α ∈ ]−

π
4 , π

4 [, M ′
⊂ C+

∩ 6+
α and

∂ M ′
⊂ 6α. An immediate application of Corollary 3.2 to M ′ leads to a contradic-

tion. �

Theorem 3.4. There exists no connected properly immersed maximal surface M
without downward pointing lightlike singularities in the interior and such that M ⊂

Wδ ∩ 6+
α and ∂ M ⊂ 6α ∩ C+, for δ ∈ ]0, π

4 [, α ∈ ]−
π
4 , π

4 [.

Proof. Consider the isometry fε of L3 with tanh ε = tan π
8 . It is not difficult to see

that fε(M) ⊂ 5+

π/8 ∩ Wδ′ ∩ 6+

α′ and ∂ fε(M) ⊂ 6α′ ∩ C+, where

tan α′
=

tan α + tan π
8

tan π
8 tan α + 1

,

tan δ′
= min{tan π

8 , cosh ε tan δ(tan π
8 tan α + 1)}.

For simplicity of notation we consider M ⊂5+

π/8∩Wδ∩6+
α and ∂ M ⊂6α∩C+.

We claim that (0, 0, 0) 6∈ ∂ M and so ∂ M ⊂ 5+

0 − 50. If not, we deduce
from Lemma 2.6 that around (0, 0, 0) the maximal surface M is in the exterior
of C((0, 0, 0)), but this contradicts ∂ M ⊂ C+.

Now consider the Scherk-type maximal surface Sδ/2 (page 13) asymptotic to
the boundary of the region Wδ/2. We will prove that Sδ/2 ∩ M = ∅. It is clear
that there exist t0 ∈ ]−∞, 0] and t1 ∈ ]0, ∞[ such that τt0(Sδ/2) ∩ M = ∅ and
τt1(Sδ/2) ∩ M 6= ∅. Therefore, we can define

t̂ = infimum
{
t ∈ ]t0, ∞[

∣∣ τt(Sδ/2) ∩ M 6= ∅
}
.
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Suppose t̂ ≤ 0. Observe that, since M ⊂ 5+

π/8 ∩ Wδ ∩ 6+
α , ∂ M ⊂ C+

− {(0, 0, 0)}

and Sδ/2 ∩C+
= {(0, 0, 0)}, then τt̂(Sδ/2) and M can have a contact point neither at

infinity nor at the boundary. Hence there exists an interior point of M in τt̂(Sδ/2).
Taking into account our assumptions on the singularities and Proposition 2.9(i)
we deduce that this point is not a singularity. Then, by applying the maximum
principle we get that M and τt̂(Sδ/2) coincide which contradicts the hypothesis on
∂ M . Thus t̂ > 0 and Sδ/2 ∩ M = ∅.

Now consider Sλ
δ/2, the homothetic shrinking of Sδ/2 by λ, λ≥ 1. We shall prove

that Sλ
δ/2 ∩ M = ∅ for all λ ≥ 1. Suppose on the contrary that there exists λ′

≥ 1
such that Sλ′

δ/2 ∩ M 6= ∅. We set

λ̂ = infimum
{
λ ∈ ]1, ∞[

∣∣ Sλ
δ/2 ∩ M 6= ∅

}
.

Clearly Sλ̂
δ/2 and M do not touch either at infinity or at the boundary. Therefore

there must exist an interior point of M in Sλ̂
δ/2. Again using Proposition 2.9(i) and

our hypothesis on the singularities we deduce that this point is not a singularity
and so by applying the maximum principle we obtain that Sλ̂

δ/2 and M coincide.
But this contradicts our assumptions on ∂ M .

Thus Sλ
δ/2 ∩ M = ∅ for all λ ≥ 1. Taking into account that Sδ/2 is asymptotic to

C+((0, 0, 0)) near the conelike singularity (0, 0, 0), we deduce that M ⊂ C+ and
the Corollary 3.2 finishes the proof. �

Theorem 3.5. There exist no connected properly immersed maximal surface M
without downward pointing lightlike singularities in the interior and such that M ⊂

5+

θ ∩ 6+
α and ∂ M ⊂ 6α ∩ C+, for θ, α ∈ ]−

π
4 , π

4 [.

Proof. Suppose there exists such an M . We observe that if θ ≤ 0 or α < 0 we can
consider an orthochronous hyperbolic rotation fs such that fs(M) ⊂ 5+

θ ′ ∩6+

α′ and
∂ fs(M) ⊂ 6α′ ∩ C+ for some θ ′

∈ ]0, π
4 [, α′

∈ [0, π
4 [. As in the previous theorem,

for the sake of simplicity of notation we assume M ⊂5+

θ ∩6+
α and ∂ M ⊂6α∩C+,

for θ ∈ ]0, π
4 [, α ∈ [0, π

4 [.
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Since ∂ M ⊂6α∩C+ we have that there exists p0 ∈ ∂ M such that x3(p0)≤ x3(p)

for all p ∈ ∂ M . As in the preceding theorem it is easy to see that p0 6= (0, 0, 0)

and so λ = x3(p0) > 0. Then, reasoning as in Proposition 3.1 we can conclude
M ⊂ 5+

θλ ∩ 6+
α .

Denote by R̃δ the Riemann type maximal example that results after applying
an elliptic rotation of π

2 along the axis x3 on Rδ for any δ ∈ ]0, π
4 [. We assert

that M ∩ R̃δ = ∅. Observe that we can consider t0 ≤ 0 and t1 ∈ R such that
τt0(R̃δ) ∩ M = ∅ and τt1(R̃δ) ∩ M 6= ∅. Now define

t̂ = infimum
{
t ∈ ]t0, ∞[

∣∣τt(R̃δ) ∩ M 6= ∅
}
.

Suppose t̂ ≤ 0. Note that τt̂(R̃δ) and M can have a contact point neither at infinity
nor at the boundary. Hence there exists an interior point of M in τt̂(R̃δ). Making
use of Proposition 2.9(i) and taking into account our assumptions on singularities,
we deduce that the point is not a singularity. Therefore, by applying the maximum
principle we get that τt̂(R̃δ) and M coincide. But this contradicts our hypothesis
on ∂ M . Thus t̂ > 0 and R̃δ ∩ M = ∅.

Consider now R̃λ
δ the homothetic shrinking of R̃δ by λ, λ>0. Next we prove that

R̃λ
δ ∩ M = ∅ for all λ ≥ 1. Assume that there exists λ′ > 1 such that R̃λ′

δ ∩ M 6= ∅.
We define

λ̂ = infimum
{
λ ∈ ]1, λ′

[
∣∣R̃λ

δ ∩ M 6= ∅
}
.

Observe that R̃λ′

δ and M do not touch either at infinity or at the boundary for all
λ≥1. Therefore there is an interior point of M in R̃λ′

δ . Using again our assumptions
on singularities and Proposition 2.9(i) we deduce that the point is not a singularity.
Then by applying the maximum principle we obtain that R̃λ′

δ and M coincide, which
contradicts our hypothesis on ∂ M . The same argument proves that R̃λ

δ ∩ M = ∅
for all λ ≤ 1.

Analogously, considering R̂δ the Riemann type maximal example that results
after applying a rotation of −

π
2 along the axis x3 on Rδ for any δ ∈ ]0, π

4 [, we
obtain R̂λ

δ ∩ M = ∅ for all λ ∈ R.
Furthermore, it is not difficult to prove that

(5+

θ ∩6+

α )−

(⋃
λ∈R

R̃λ
δ ∪

⋃
λ∈R

R̂λ
δ

)
⊂ {(x1, x2, x3) ∈ R3

| −tan δ x1 + x2 + x3 ≥ 0}

∩ {(x1, x2, x3) ∈ R3
| tan δx1 + x2 + x3 ≥ 0}.

Taking this into account, we can assert

M ⊂ (5+

θ ∩6+

α )∩{(x1, x2, x3)∈ R3
|−tan δ x1+x2+x3 ≥0, tan δ x1+x2+x3 ≥0}.

A direct computation shows that

5+

θ ∩ {(x1, x2, x3) ∈ R3
| −tan δ x1 + x2 + x3 ≥ 0, tan δ x1 + x2 + x3 ≥ 0} ⊂ Wδ′,
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where δ′
∈ ]0, π

4 [ is given by tan δ′
= tan δ tan θ/(1 + tan θ). Then Theorem 3.4

concludes the proof. �

To finish this section, we analyze the case of maximal surfaces whose boundary
is contained in a timelike plane but not necessarily in C+.

Proposition 3.6. There exists no connected properly immersed maximal surface
M with at least one connected component of ∂ M contained in the intersection
6+

α ∩ 6+

−α ∩ {(x1, x2, x3) ∈ R3
| x1 = 0}, where α ∈ ]0, π

4 [.

Proof. Let B a connected component of ∂ M satisfying

B ⊂ 6+

α ∩ 6+

−α ∩ {(x1, x2, x3) ∈ R3
| x1 = 0},

where α ∈ ]0, π
4 [. The function x2 has at least one minimum on B, and this mini-

mum cannot be a singularity. Then, the tangent vector to the boundary at this point
is vertical and therefore the tangent plane of the maximal surface at this point is
timelike, which is contrary to our assumptions. �

Corollary 3.7. There exists no connected properly immersed maximal surface M
contained in V (θ, δ, δ′) with ∂ M contained in a timelike plane.

Proof. From the hypothesis it is not difficult to see that there exists an isometry
of L3 that sends the timelike plane to the plane {(x1, x2, x3) ∈ R3

| x1 = 0} and in
particular the image of ∂ M lies in 6+

α ∩6+

−α ∩{(x1, x2, x3) ∈ R3
| x1 = 0} for some

α ∈ ]0, π
4 [. The result is then a consequence of Proposition 3.6. �

4. Maximal surfaces whose boundary is contained in a spacelike plane

We now obtain, using the maximum principle, other results about maximal surfaces
whose boundary is contained in a spacelike plane but that cannot be inferred from
the theorem of Fernández and López quoted on page 9. We start with a result
similar to Corollary 2.8.

Proposition 4.1. Let M be a connected properly immersed maximal surface with-
out downward pointing lightlike singularities in the interior such that

M ⊂ {(x1, x2, x3) ∈ R3
| 0 ≤ x3 ≤ k} and ∂ M ⊂ {(x1, x2, x3) ∈ R3

| x3 = k},

for k > 0. Then M is a planar region.

Proof. We proceed by contradiction. Assume that there exists t ≥ 0 such that
M ⊂ 5+

0t but M 6⊂ 5+

0t ′ for any t < t ′. We claim that M ∩ 50t = ∅. If not,
there exists an interior point p of M in 50t . Then, from Proposition 2.9(i) and our
assumptions on singularities, we deduce that p is a regular point. It then follows
from the maximum principle that M = 50t , contradicting the hypothesis on ∂ M .



NONEXISTENCE RESULTS FOR MAXIMAL SURFACES IN MINKOWSKI SPACE 21

Since M is properly immersed and M ∩ 50t = ∅ we can find ε > 0 such that
the ball of radius ε about (0, 0, t) does not meet M . Hence, there are constants
ε′

∈ ]0, ε[ and a0 > 0 sufficiently small such that τt+ε′(Ca0) is contained in 5−

0t
and also in the ball of radius ε around (0, 0, t). Now define

A = {a ∈ ]0, a0] | τt+ε′(Ca) ∩ M = ∅}.

Clearly, a0 ∈ A and we can consider the infimum a′ of A. We claim a′
= 0. Assume

on the contrary that a′ > 0. Then as τt+ε′(Ca) and M do not have a contact either at
infinity or at the boundary, we infer that there is an interior point of M in τt+ε′(Ca′).
Taking into account Proposition 2.9(i) and our assumptions on the singularities we
infer that the interior point is not a singularity and then, by applying the interior
maximum principle we obtain M = τt+ε′(Ca′) which contradicts the hypothesis on
∂ M .

Therefore, a′
= 0 and so M ⊂ 5+

0t+ε′ contradicting our assumption at the begin-
ning of the proof. �

Theorem 4.2. Let M be a connected properly immersed maximal surface without
upward pointing lightlike singularities in the interior such that M ⊂ V (θ, δ, δ′)

and ∂ M ⊂ 50. Then M is a planar region.

Proof. Up a translation we can assume that

M ∩ (5θ ∪ H
(
(0, 0, 0), (1, −cot δ, cot θ(cot δ − cot δ′))

)
= ∅.
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Now we observe that

τ−1(H
2
+
) ∩ 5θ ∩ V (θ, δ, δ′) = α1,

τ−1(H
2
+
) ∩ H((0, 0, 0), (1, −cot δ, cot θ(cot δ − cot δ′))) ∩ V (θ, δ, δ′) = α2,

where α1 and α2 are regular curves. The union of these curves is a continuous
curve of τ−1(H

2
+
) and the tangent vectors to these curves at the point (0, 0, 0) are

contained in the plane 50 and are linearly independent.
Since τ−1(H

2
+
) is a spacelike surface, it is well-known (see Theorem 4.1 in

[Bartnik and Simon 1982/83]) that there exists S a maximal surface (it is even a
graph on the x3-plane) spanned by the curve α1 ∪ α2. Note that the tangent plane
of S at (0, 0, 0) is the plane 50. On the other hand, using Proposition 2.10 and
Remark 2.11, we see that S is contained in the convex hull of its boundary and
thus S ⊂ V (θ, δ, δ′).

Now, we denote by Sλ the homothetic shrinking of S by λ, λ > 0. As M is
properly immersed it is possible to find λ0 > 0 such that Sλ0 ∩ M = ∅. Next we
prove that Sλ

∩ M = ∅ for all λ > 0. Assume that there exists λ′ > 0 such that
Sλ′

∩ M 6= ∅. We denote by

λ̂ = infimum
{
λ ∈ ]λ0, λ

′
]
∣∣ Sλ

∩ M 6= ∅
}
.

Observe that Sλ and M do not contact at the boundary for all λ>0. Therefore there
is an interior point of M in Sλ̂. It follows from Proposition 2.9(ii) and the conditions
on the singularities that the contact point is not a singularity. Then, by applying
the maximum principle we obtain Sλ

= M which contradicts the assumptions on
∂ M .

Hence, taking into account that the tangent plane of S at (0, 0, 0) is 50 we obtain

V (θ, δ, δ′) −

⋃
λ∈R

Sλ
⊂ 50,

from which we deduce that M ⊂ 50. �

Corollary 4.3. Let M be a connected properly immersed maximal surface without
general conelike singularities in the interior such that M ⊂ V (θ, δ, δ′) and ∂ M is
contained in a spacelike plane. Then M is a planar region.

Proof. Let 5 be the spacelike plane such that ∂ M ⊂ 5 and M ′ a connected com-
ponent of M − (M ∩5). Denote by 5+ the half-space determined by 5 such that
M ′

⊂ 5+. Then, it is not difficult to see that there exists an isometry of L3, f, that
verifies f (5) = 50 and f (V (θ, δ, δ′) ∩ 5+) ⊂ V (θ̂ , δ̂, δ̂′), for some θ̂ , δ̂ and δ̂′.
Therefore, the corollary follows from Theorem 4.2. �

By contrast:
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Proposition 4.4. Let M be a connected properly immersed maximal surface with-
out general conelike singularities in the interior such that M ⊂ C+ and ∂ M is
contained in a spacelike plane. Then M is a planar region.

Proof. Our hypotheses imply that ∂ M is compact. We consider the intersection of
M with all the timelike planes H(y, v) such that ∂ M ⊂ H+(y, v). By applying
Corollary 3.3 to the connected components of M contained in H−(y, v) we obtain
that M ⊂ H+(y, v) for all the timelike planes described above. Then M is also
compact and Proposition 2.10 proves that M is a planar region. �

5. Maximal surfaces whose boundary is contained in a lightlike plane and
the convex hull property

As a consequence of the previous sections we deduce the following results for
maximal surfaces whose boundary is contained in a lightlike plane.

Proposition 5.1. There exists no connected properly immersed maximal surface M
without general conelike singularities in the interior and such that M ⊂ V (θ, δ, δ′)

and ∂ M is contained in a lightlike plane.

Proof. Suppose there exists such an M . Let 5 be the lightlike plane such that
∂ M ⊂ 5. Then, we can consider the pencil of planes through the line L = 5∩50,
that is, the set of planes sharing the line L . Since M cannot be flat, it is possible to
find a spacelike or timelike plane in the pencil that intersects M transversally. But
Corollaries 4.3 and 3.7 lead to a contradiction in each case. �

Proposition 5.2. There exists no connected properly immersed maximal surface
M without general conelike singularities in the interior and such that M ⊂ C+ and
∂ M is contained in a lightlike plane.

Proof. This can be demonstrated like Proposition 5.1, but using Proposition 4.4
and Corollary 3.3. �

As we saw in Section 2, a compact maximal surface lies in the convex hull of
its boundary and the set of its general conelike singularities. This is not true for
noncompact maximal surfaces in general. However, Theorem 4.2 and Proposition
4.4 can be seen as a convex hull type property. We have proved that if certain
conditions are satisfied then the surfaces lie in the convex hull of their boundary.
In the remainder of the section, we use the results obtained in the previous sections
to give a generalization of these results. More precisely:

Proposition 5.3. Any connected properly immersed maximal surface contained in
V (θ, δ, δ′) lies in the convex hull of its boundary and its general conelike singular-
ities.
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Proof. Let M be a minimal surface satisfying the hypotheses of the proposition and
denote by A the set of general conelike singularities of M . If M is contained in a
plane the result is obvious. Assume then that M is not flat and consider v ∈ S2 and
y ∈ R3 such that (∂(M) ∪ A) ⊂ H+(y, v). We have to prove that M ⊂ H+(y, v)

too.
We proceed by contradiction, and suppose that M ∩

(
H−(y, v)− H(y, v)

)
6= ∅.

Let M ′ be a connected component of M ∩ H−(y, v).
If v is spacelike, so H(y, v) is a timelike plane, Corollary 3.7 leads to a contra-

diction.
If v is timelike, so H(y, v) is spacelike, the assumption that M ′ is not flat con-

tradicts Corollary 4.3.
Finally, if v is lightlike, so is the plane H(y, v), and Proposition 5.1 gives a

contradiction. �

Proposition 5.4. Any connected properly immersed maximal surface contained in
C+ lies in the convex hull of its boundary and its general conelike singularities.

Proof. The proof is obtained as for the preceding proposition, using Corollary 3.3
and Propositions 5.2 and 4.4. �

Acknowledgments

We are indebted to F. Martı́n, I. Fernández and especially to F. J. López for helpful
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RUA DO MATÃO, 1010
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UNIVERSIDAD DE GRANADA

18071, GRANADA

SPAIN

lferrer@ugr.es
http://www.ugr.es/~lferrer


