Pacific Journal of Mathematics

IRREDUCIBLE REPRESENTATIONS FOR THE ABELIAN EXTENSION OF THE LIE ALGEBRA OF DIFFEOMORPHISMS OF TORI IN DIMENSIONS GREATER THAN 1

CUIPO JIANG AND QIFEN JIANG

Volume 231 No. 1 May 2007

IRREDUCIBLE REPRESENTATIONS FOR THE ABELIAN EXTENSION OF THE LIE ALGEBRA OF DIFFEOMORPHISMS OF TORI IN DIMENSIONS GREATER THAN 1

CUIPO JIANG AND QIFEN JIANG

We classify the irreducible weight modules of the abelian extension of the Lie algebra of diffeomorphisms of tori of dimension greater than 1, with finite-dimensional weight spaces.

1. Introduction

Let $W_{\nu+1}$ be the Lie algebra of diffeomorphisms of the $(\nu+1)$ -dimensional torus. If $\nu=0$, the universal central extension of the complex Lie algebra W_1 is the Virasoro algebra, which, together with its representations, plays a very important role in many areas of mathematics and physics [Belavin et al. 1984; Dotsenko and Fateev 1984; Di Francesco et al. 1997]. The representation theory of the Virasoro algebra has been studied extensively; see, for example, [Kac 1982; Kaplansky and Santharoubane 1985; Chari and Pressley 1988; Mathieu 1992].

If $\nu \geq 1$, however, the Lie algebra $W_{\nu+1}$ has no nontrivial central extension [Ramos et al. 1990]. But $W_{\nu+1}$ has abelian extensions whose abelian ideals are the central parts of the corresponding toroidal Lie algebras; see [Berman and Billig 1999], for example. There is a close connection between irreducible integrable modules of the toroidal Lie algebra and irreducible modules of the abelian extension \mathcal{L} ; see [Berman and Billig 1999; Eswara Rao and Moody 1994; Jiang and Meng 2003], for instance. In fact, the classification of integrable modules of toroidal Lie algebras and their subalgebras depends heavily on the classification of irreducible representations of \mathcal{L} and its subalgebras. See [Billig 2003] for the constructions of the abelian extensions for the group of diffeomorphisms of a torus.

In this paper we study the irreducible weight modules of \mathcal{L} , for $\nu \geq 1$. If V is an irreducible weight module of \mathcal{L} some of whose central charges c_0, \ldots, c_{ν} are nonzero, one can assume that c_0, \ldots, c_N are \mathbb{Z} -linearly independent and $c_{N+1} = \cdots = c_{\nu} = 0$, where $N \geq 0$. We prove that if $N \geq 1$, then V must have weight

MSC2000: primary 17B67, 17B65; secondary 17B68.

Keywords: irreducible representation, abelian extension, central charge.

Work supported in part by NSF of China, grants No. 10271076 and No. 10571119.

spaces which are infinite-dimensional. So if all the weight spaces of V are finite-dimensional, N vanishes. We classify the irreducible modules of \mathcal{L} with finite-dimensional weight spaces and some nonzero central charges. We prove that such a module V is isomorphic to a highest weight module. The highest weight space T is isomorphic to an irreducible $(\mathcal{A}_{\nu}+W_{\nu})$ -module all of whose weight spaces have the same dimension, where \mathcal{A}_{ν} is the ring of Laurent polynomials in ν commuting variables, regarded as a commutative Lie algebra. An important step is to characterize the \mathcal{A}_{ν} -module structure of T. It turns out that the action of \mathcal{A}_{ν} on T is essentially multiplication by polynomials in \mathcal{A}_{ν} . Therefore T can be identified with Larsson's construction [1992] by a result in [Eswara Rao 2004]. That is, T is a tensor product of gl_{ν} -module with \mathcal{A}_{ν} .

When all the central charges of V are zero, we prove that the abelian part acts on V as zero if V is a uniformly bounded \mathcal{L} -module. So the result in this case is not complete.

Throughout the paper, \mathbb{C} , \mathbb{Z}_+ and \mathbb{Z}_- denote the sets of complex numbers, positive integers and negative integers.

2. Basic concepts and results

Let $\mathcal{A}_{\nu+1} = \mathbb{C}[t_0^{\pm 1}, t_1^{\pm 1}, \dots, t_{\nu}^{\pm 1}]$ $(\nu \geq 1)$ be the ring of Laurent polynomials in commuting variables t_0, t_1, \dots, t_{ν} . For $\underline{n} = (n_1, n_2, \dots, n_{\nu}) \in \mathbb{Z}^{\nu}$, $n_0 \in \mathbb{Z}$, we denote $t_0^{n_0} t_1^{n_1} \cdots t_{\nu}^{n_{\nu}}$ by $t_0^{n_0} t_1^{n}$. Let $\tilde{\mathcal{H}}$ be the free $\mathcal{A}_{\nu+1}$ -module with basis $\{k_0, k_1, \dots, k_{\nu}\}$ and let $d\tilde{\mathcal{H}}$ be the subspace spanned by all elements of the form

$$\sum_{i=0}^{\nu} r_i t_0^{r_0} t^r k_i, \quad \text{for } (r_0, \underline{r}) = (r_0, r_1, \dots, r_{\nu}) \in \mathbb{Z}^{\nu+1}.$$

Set $\mathcal{H} = \tilde{\mathcal{H}}/d\tilde{\mathcal{H}}$ and denote the image of $t_0^{r_0}t^{\underline{r}}k_i$ still by itself. Then \mathcal{H} is spanned by the elements $\{t_0^{r_0}t^{\underline{r}}k_p \mid p=0,1,\ldots,\nu,r_0\in\mathbb{Z},\underline{r}\in\mathbb{Z}^\nu\}$ with relations

(2-1)
$$\sum_{p=0}^{\nu} r_p t_0^{r_0} t^{\underline{r}} k_p = 0.$$

Let \mathfrak{D} be the Lie algebra of derivations on $\mathcal{A}_{\nu+1}$. Then

$$\mathfrak{D} = \left\{ \sum_{p=0}^{\nu} f_p(t_0, t_1, \dots, t_{\nu}) d_p \mid f_p(t_0, t_1, \dots, t_{\nu}) \in \mathcal{A}_{\nu+1} \right\},\,$$

where $d_p = t_p \partial/\partial t_p$, $p = 0, 1, ..., \nu$. From [Berman and Billig 1999] we know that the algebra \mathfrak{D} admits two nontrivial 2-cocycles with values in \mathcal{H} :

$$\tau_1(t_0^{m_0}t^{\underline{m}}d_a, t_0^{n_0}t^{\underline{n}}d_b) = -n_a m_b \sum_{p=0}^{\nu} m_p t_0^{m_0+n_0}t^{\underline{m}+\underline{n}}k_p,$$

$$\tau_2(t_0^{m_0}t^{\underline{m}}d_a, t_0^{n_0}t^{\underline{n}}d_b) = m_a n_b \sum_{p=0}^{\nu} m_p t_0^{m_0 + n_0} t^{\underline{m} + \underline{n}} k_p.$$

Let $\tau = \mu_1 \tau_1 + \mu_2 \tau_2$ be an arbitrary linear combination of τ_1 and τ_2 . Then the corresponding abelian extension of \mathfrak{D} is

$$\mathcal{L} = \mathfrak{D} \oplus \mathcal{K}$$
.

with the Lie bracket

$$(2-2) \quad [t_0^{m_0} t^{\underline{m}} d_a, t_0^{n_0} t^{\underline{n}} k_b] = n_a t_0^{m_0 + n_0} t^{\underline{m} + \underline{n}} k_b + \delta_{ab} \sum_{p=0}^{\nu} m_p t_0^{m_0 + n_0} t^{\underline{m} + \underline{n}} k_p,$$

$$[t_0^{m_0} t^{\underline{m}} d_a, t_0^{n_0} t^{\underline{n}} d_b] = n_a t_0^{m_0 + n_0} t^{\underline{m} + \underline{n}} d_b - m_b t_0^{m_0 + n_0} t^{\underline{m} + \underline{n}} d_a + \tau (t_0^{m_0} t^{\underline{m}} d_a, t_0^{n_0} t^{\underline{n}} d_b).$$

The sum

$$\mathfrak{h} = \left(\bigoplus_{i=0}^{\nu} \mathbb{C}k_i\right) \oplus \left(\bigoplus_{i=0}^{\nu} \mathbb{C}d_i\right)$$

is an abelian Lie subalgebra of \mathcal{L} . An \mathcal{L} -module V is called a weight module if

$$V = \bigoplus_{\lambda \in \mathfrak{h}^*} V_{\lambda},$$

where $V_{\lambda} = \{v \in V \mid h \cdot v = \lambda(h)v \text{ for all } h \in \mathfrak{h}\}$. Denote by P(V) the set of all weights. Throughout the paper, we assume that V is an irreducible weight module of \mathcal{L} with finite-dimensional weight spaces. Since V is irreducible, we have

$$k_i|_V=c_i$$

where the constants c_i , for i = 0, 1, ..., v, are called the central charges of V.

Lemma 2.1. Let $A = (a_{ij})$ $(0 \le i, j \le v)$ be a $(v+1) \times (v+1)$ matrix such that det A = 1 and $a_{ij} \in \mathbb{Z}$. There exists an automorphism σ of \mathcal{L} such that

$$\sigma(t^{\bar{m}}k_j) = \sum_{p=0}^{\nu} a_{pj} t^{\bar{m}A^T} k_p, \quad \sigma(t^{\bar{m}}d_j) = \sum_{p=0}^{\nu} b_{jp} t^{\bar{m}A^T} d_p, \quad 0 \le j \le \nu,$$

where $t^{\bar{m}} = t_0^{m_0} t^{\underline{m}}, B = (b_{ij}) = A^{-1}$.

3. The structure of V with nonzero central charges

In this section, we discuss the weight module V which has nonzero central charges. It follows from Lemma 2.1 that we can assume that $c_0, c_1, ..., c_N$ are \mathbb{Z} -linearly independent, i.e., if $\sum_{i=0}^{N} a_i c_i = 0$, $a_i \in \mathbb{Z}$, then all $a_i (i = 0, ..., N)$ must be zero,

and $c_{N+1} = c_{N+2} = \cdots = c_{\nu} = 0$, where $N \ge 0$. For $\bar{m} = (m_0, \underline{m})$, denote $t_0^{m_0} t^{\underline{m}}$ by $t^{\bar{m}}$ as in Lemma 2.1. It is easy to see that V has the decomposition

$$V = \bigoplus_{\bar{m} \in \mathbb{Z}^{\nu+1}} V_{\bar{m}},$$

where $V_{\bar{m}} = \{v \in V \mid d_i(v) = (\gamma_0(d_i) + m_i)v, i = 0, 1, \dots, \nu\}$, with $\gamma_0 \in P(V)$ a fixed weight, and $\bar{m} = (m_0, m_1, \dots, m_\nu) \in \mathbb{Z}^{\nu+1}$. If V has finite-dimensional weight spaces, the $V_{\bar{m}}$ are finite-dimensional, for $\bar{m} \in \mathbb{Z}^{\nu+1}$.

In Lemmas 3.1–3.6 we assume that V has finite-dimensional weight spaces.

Lemma 3.1. For $p \in \{0, 1, ..., v\}$ and $0 \neq t^{\bar{m}} k_p \in \mathcal{L}$, if there is a nonzero element v in V such that $t^{\bar{m}} k_p v = 0$, then $t^{\bar{m}} k_p$ is locally nilpotent on V.

Lemma 3.2. Let $t_0^{m_0}t^{\underline{m}}k_p \in \mathcal{L}$ be such that $\bar{m} = (m_0, \underline{m}) \neq \bar{0}$, and there exists $0 \leq a \leq N$ such that $m_a \neq 0$ if $N . If <math>t_0^{m_0}t^{\underline{m}}k_p$ is locally nilpotent on V, then dim $V_{\bar{n}} > \dim V_{\bar{n}+\bar{m}}$ for all $\bar{n} \in \mathbb{Z}^{v+1}$.

Proof. Case 1: $p \in \{0, 1, ..., N\}$. We first prove that $\dim V_{\bar{n}} \ge \dim V_{\bar{n}+\bar{m}}$ for all $\bar{n} \in \mathbb{Z}^{\nu+1}$. Suppose $\dim V_{\bar{n}} = m$, $\dim V_{\bar{n}+\bar{m}} = n$. Let $\{w_1, w_2, ..., w_n\}$ be a basis of $V_{\bar{n}+\bar{m}}$ and $\{w'_1, w'_2, ..., w'_m\}$ a basis of $V_{\bar{n}}$. We can assume that $m_a \ne 0$ for some $0 \le a \le \nu$ distinct from p, where $\bar{m} = (m_0, \underline{m}) = (m_0, m_1, ..., m_{\nu})$. Since $t^{\bar{m}}k_p$ is locally nilpotent on V and $V_{\bar{n}+\bar{m}}$ is finite-dimensional, there exists k > 0 such that $(t^{\bar{m}}k_p)^k V_{\bar{n}+\bar{m}} = 0$. Therefore

$$(t^{-\bar{m}}d_a)^k(t^{\bar{m}}k_p)^k(w_1, w_2, \dots, w_n) = 0.$$

On the other hand, by induction on k, we can deduce that

$$(t^{-\bar{m}}d_a)^k(t^{\bar{m}}k_p)^k = \sum_{i=0}^k \frac{k!\,k!}{i!\,(k-i)!\,(k-i)!} m_a^i c_p^i(t^{\bar{m}}k_p)^{k-i}(t^{-\bar{m}}d_a)^{k-i}.$$

Therefore

$$t^{\bar{m}}k_{p}\left(\sum_{i=0}^{k-1}\frac{k!\,k!}{i!\,(k-i)!\,(k-i)!}m_{a}^{i}c_{p}^{i}(t^{\bar{m}}k_{p})^{k-1-i}(t^{-\bar{m}}d_{a})^{k-1-i}\right)t^{-\bar{m}}d_{a}(w_{1},w_{2},\ldots,w_{n})$$

$$=-k!\,m_{a}^{k}c_{p}^{k}(w_{1},w_{2},\ldots,w_{n}).$$

Assume that

$$\left(\sum_{i=0}^{k-1} \frac{k! \, k!}{i! \, (k-i)! \, (k-i)!} m_a^i c_p^i (t^{\bar{m}} k_p)^{k-1-i} (t^{-\bar{m}} d_a)^{k-1-i}\right) t^{-\bar{m}} d_a(w_1, w_2, \dots, w_n)$$

$$= (w_1', w_2', \dots, w_m') C,$$

with $C \in \mathbb{C}^{m \times n}$, and that

(3-1)
$$t^{\bar{m}}k_p(w_1', w_2', \dots, w_m') = (w_1, w_2, \dots, w_n)B,$$

with $B \in \mathbb{C}^{n \times m}$. Then

$$BC = -k! \, m_a^k c_p^k I.$$

This implies that $m \ge n$. So dim $V_{\bar{n}} \ge \dim V_{\bar{n}+\bar{m}}$ for all $\bar{n} \in \mathbb{Z}^{v+1}$. Also, by (3-1) and the fact that r(B) = n, we know that m > n if and only if there exists $v \in V_{\bar{n}}$ such that $t^{\bar{m}}k_p \cdot v = 0$. Since $t^{\bar{m}}k_p$ is locally nilpotent on V, there exist an integer $s \ge 0$ and $w \in V_{\bar{n}+s\bar{m}}$ such that

$$(t^{\bar{m}}k_p)\cdot w=0.$$

Therefore $(t^{-\bar{m}}k_p)t^{\bar{m}}k_p \cdot w = t^{\bar{m}}k_p(t^{-\bar{m}}k_p \cdot w) = 0$. If $t^{-\bar{m}}k_p \cdot w = 0$, by the proof above, $\dim V_{\bar{n}+s\bar{m}-\bar{m}} < \dim V_{\bar{n}+s\bar{m}}$, contradicting the fact that $\dim V_{\bar{n}+s\bar{m}-\bar{m}} \geq \dim V_{\bar{n}+s\bar{m}}$. Therefore $(t^{-\bar{m}}k_p)^r \cdot w \neq 0$ for all $r \in \mathbb{N}$. Since

$$(t^{-\bar{m}}k_p)^s t^{\bar{m}}k_p \cdot w = t^{\bar{m}}k_p (t^{-\bar{m}}k_p)^s \cdot w = 0$$

and $(t^{-\bar{m}}k_p)^s \cdot w \in V_{\bar{n}}$, it follows that there is a nonzero element v in $V_{\bar{n}}$ such that $t^{\bar{m}}k_p \cdot v = 0$. Thus n < m.

<u>Case 2</u>: $N . The proof is similar to that of case 1, but we have to consider <math>t^{-\bar{m}}d_p$ and $t^{\bar{m}}k_p$ instead and use the \mathbb{Z} -linear independence of c_1, \ldots, c_N .

Lemma 3.3. Let $0 \neq t^{\bar{m}} k_p \in \mathcal{L}$ and $0 \neq t^{\bar{n}} k_p \in \mathcal{L}$ be such that $(m_0, \ldots, m_N) \neq 0$, $(n_0, \ldots, n_N) \neq 0$ if $N , where <math>\bar{m} = (m_0, m_1, \ldots, m_v)$.

- (1) If $t^{\bar{m}}k_p$ is locally nilpotent on V, $t^{\bar{m}}k_q$ is locally nilpotent for $q=0,1,\ldots,\nu$.
- (2) If both $0 \neq t^{\bar{m}}k_p$ and $0 \neq t^{\bar{n}}k_p$ are locally nilpotent on V, then $t^{\bar{m}+\bar{n}}k_p$ is locally nilpotent.
- (3) If $0 \neq t^{\bar{m}+\bar{n}}k_p$ is locally nilpotent on V and $(m_0+n_0,\ldots,m_N+n_N) \neq 0$ if $N , then <math>t^{\bar{m}}k_p$ or $t^{\bar{n}}k_p$ is locally nilpotent.

Lemma 3.4. For $0 \le p \le v$, let $0 \ne t^{\bar{m}} k_p \in \mathcal{L}$ be such that $(m_0, \ldots, m_N) \ne 0$, where $\bar{m} = (m_0, m_1, \ldots, m_v)$. Then $t^{\bar{m}} k_p$ or $t^{-\bar{m}} k_p$ is locally nilpotent on V.

Proof. The proof occupies the next few pages. We first deal with the case $0 \le p \le N$. Without losing generality, we can take p = 0.

Suppose the lemma is false. By Lemma 3.2, for any $\bar{r} \in \mathbb{Z}^{\nu+1}$ we have

$$\dim V_{\bar{r}+\bar{m}} = \dim V_{\bar{r}} = \dim V_{\bar{r}-\bar{m}}, \quad t^{\bar{m}} k_0 V_{\bar{r}} = V_{\bar{r}+\bar{m}}, \quad t^{-\bar{m}} k_0 V_{\bar{r}} = V_{\bar{r}-\bar{m}}.$$

Fix $\bar{r} = (r_0, \underline{r}) \in \mathbb{Z}^{\nu+1}$ such that $V_{\bar{r}} \neq 0$. Let $\{v_1, \dots, v_n\}$ be a basis of $V_{\bar{r}}$ and set

$$v_i(k\bar{m}) = \frac{1}{c_0} t^{k\bar{m}} k_0 \cdot v_i, \quad i = 1, 2, \dots, n,$$

where $k \in \mathbb{Z} \setminus \{0\}$. Then $\{v_1(k\bar{m}), v_2(k\bar{m}), \dots, v_n(k\bar{m})\}$ is a basis of $V_{\bar{r}+k\bar{m}}$. Let $B_{-\bar{m}.\bar{m}}^{(0)}, B_{\bar{m}.-\bar{m}}^{(0)} \in \mathbb{C}^{n \times n}$ be such that

$$\frac{1}{c_0} t^{\bar{m}} k_0(v_1(-\bar{m}), v_2(-\bar{m}), \dots, v_n(-\bar{m})) = (v_1, v_2, \dots, v_n) B_{\bar{m}, -\bar{m}}^{(0)},
\frac{1}{c_0} t^{-\bar{m}} k_0(v_1(\bar{m}), v_2(\bar{m}), \dots, v_n(\bar{m})) = (v_1, v_2, \dots, v_n) B_{-\bar{m}, \bar{m}}^{(0)}.$$

Since $t^{\bar{m}}k_0$ and $t^{-\bar{m}}k_0$ are commutative, it is easy to deduce that

$$B_{\bar{m},-\bar{m}}^{(0)} = B_{-\bar{m},\bar{m}}^{(0)}.$$

By Lemma 3.1, $B_{\bar{m},-\bar{m}}^{(0)}$ is an $n \times n$ invertible matrix.

Claim. $B_{\bar{m}-\bar{m}}^{(0)}$ does not have distinct eigenvalues.

Proof. Set $c=1/c_0$. To prove the claim, we need to consider $ct^{\bar{m}}k_0ct^{-\bar{m}}k_0 - \lambda$ id, where $\lambda \in \mathbb{C}^*$. As in the proof of Lemma 3.1, we can deduce that if there is a nonzero element v in V such that $(ct^{\bar{m}}k_0ct^{-\bar{m}}k_0 - \lambda \operatorname{id})v = 0$, then $ct^{\bar{m}}k_0ct^{-\bar{m}}k_0 - \lambda \operatorname{id})v = 0$, then $ct^{\bar{m}}k_0ct^{-\bar{m}}k_0 - \lambda \operatorname{id})v = 0$. On the other hand, we have

$$(ct^{\bar{m}}k_0ct^{-\bar{m}}k_0-\lambda id)^l(v_1, v_2, \dots, v_n)=(v_1, v_2, \dots, v_n)(B_{\bar{m}, -\bar{m}}^{(0)}-\lambda id)^l.$$

Therefore the claim holds.

For $p \in \{1, 2, ..., \nu\}$, let $C^p_{\bar{m}, \bar{0}}, C^p_{\bar{m}, -\bar{m}} \in \mathbb{C}^{n \times n}$ be such that

$$t^{\bar{m}}k_p(v_1, v_2, \dots, v_n) = (v_1(\bar{m}), \dots, v_n(\bar{m}))C_{\bar{m}, \bar{0}}^{(p)},$$

$$t^{\bar{m}}k_p(v_1(-\bar{m}), \dots, v_n(-\bar{m})) = (v_1, v_2, \dots, v_n)C_{\bar{m}, -\bar{m}}^{(p)}$$

Since

$$\frac{1}{c_0}t^{-\bar{m}}k_0t^{\bar{m}}k_p(v_1, v_2, \dots, v_n) = t^{\bar{m}}k_p\frac{1}{c_0}t^{-\bar{m}}k_0(v_1, v_2, \dots, v_n),$$

we have

(3-2)
$$C_{\bar{m},-\bar{m}}^{(p)} = B_{-\bar{m},\bar{m}}^{(0)} C_{\bar{m}\bar{0}}^{(p)}.$$

Furthermore, by the fact that

$$\frac{1}{c_0}t^{\bar{m}}k_0\frac{1}{c_0}t^{-\bar{m}}k_0t^{\bar{m}}k_p(v_1,v_2,\ldots,v_n) = t^{\bar{m}}k_p\frac{1}{c_0}t^{\bar{m}}k_0\frac{1}{c_0}t^{-\bar{m}}k_0(v_1,v_2,\ldots,v_n)$$

and

$$t^{\bar{m}}k_q \frac{1}{c_0} t^{-\bar{m}} k_0 t^{\bar{m}} k_p = t^{\bar{m}} k_p \frac{1}{c_0} t^{-\bar{m}} k_0 t^{\bar{m}} k_q,$$

we deduce that

$$(3\text{-}3) \qquad B^{(0)}_{-\bar{m},\bar{m}}C^{(p)}_{\bar{m},\bar{0}} = C^{(p)}_{\bar{m},\bar{0}}B^{(0)}_{-\bar{m},\bar{m}}, \quad C^{(p)}_{\bar{m},\bar{0}}C^{(q)}_{\bar{m},\bar{0}} = C^{(q)}_{\bar{m},\bar{0}}C^{(p)}_{\bar{m},\bar{0}}, \quad 1 \leq p,q \leq \nu.$$

Hence there exists $D \in \mathbb{C}^{n \times n}$ such that $\{D^{-1}B^{(0)}_{-\bar{m},\bar{m}}D, D^{-1}C^{(p)}_{\bar{m},\bar{0}}D \mid 1 \le p \le \nu\}$ are all upper triangular matrices. If we set

$$(w_1, w_2, \ldots, w_n) = (v_1, v_2, \ldots, v_n)D$$

and

$$w_i(k\bar{m}) = \frac{1}{c_0} t^{k\bar{m}} k_0 w_i, 1 \le i \le n, k \in \mathbb{Z} \setminus \{0\},$$

then

$$\frac{1}{c_0} t^{k\bar{m}} k_0(w_1(-\bar{m}), w_2(-\bar{m}), \dots, w_n(-\bar{m})) = (w_1, \dots, w_n) D^{-1} B_{-\bar{m}, \bar{m}}^{(0)} D,$$

$$t^{\bar{m}} k_p(w_1, w_2, \dots, w_n) = (w_1(\bar{m}), \dots, w_n(\bar{m})) D^{-1} C_{\bar{m}, \bar{0}}^{(p)} D.$$

So we can assume that $B_{-\bar{m},\bar{m}}^{(0)}$, $C_{\bar{m},\bar{0}}^{(p)}$, and $C_{\bar{m},-\bar{m}}^{(p)}$, for $1 \leq p \leq \nu$ are all invertible upper triangular matrices. Furthermore, because

$$\left(t^{\bar{m}}k_{p}\frac{1}{c_{0}}t^{-\bar{m}}k_{0}-\lambda \operatorname{id}\right)^{l}(v_{1}, v_{2}, \ldots, v_{n})=(v_{1}, v_{2}, \ldots, v_{n})(C_{\bar{m}, -\bar{m}}^{(p)}-\lambda \operatorname{id})^{l},$$

the argument used in the proof of the claim shows that $C_{\bar{m},-\bar{m}}^{(p)}$ also does not have distinct eigenvalues. For $1 \le p \le N$, set

$$B_{\bar{m},-\bar{m}}^{(p)} = \frac{1}{c_p} C_{\bar{m},-\bar{m}}^{(p)}$$

and for $0 \le p \le N$ denote by λ_p the eigenvalue of $B_{\bar{m},-\bar{m}}^{(p)}$.

Let $A_{k\bar{m},\bar{0}}^{(a)}$ and $A_{k_1\bar{m},k_2\bar{m}}^{(a)}$, for $0 \le a \le \nu$ and $k, k_1, k_2 \in \mathbb{Z} \setminus \{0\}$, be such that

$$t^{k\bar{m}}d_{a}(v_{1}, v_{2}, \dots, v_{n}) = (v_{1}(k\bar{m}), v_{2}(k\bar{m}), \dots, v_{n}(k\bar{m}))A^{(a)}_{k\bar{m},\bar{0}},$$

$$t^{k_{1}\bar{m}}d_{a}(v_{1}(k_{2}\bar{m}), v_{2}(k_{2}\bar{m}), \dots, v_{n}(k_{2}\bar{m}))$$

$$= (v_{1}(k_{1}\bar{m} + k_{2}\bar{m}), \dots, v_{n}(k_{1}\bar{m} + k_{2}\bar{m}))A^{(a)}_{k_{1}\bar{m}, k_{2}\bar{m}},$$

<u>Case 1</u>: v > 1. Since $t^{\bar{m}}k_0 = t_0^{m_0}t^{\bar{m}}k_0 \neq 0$, it follows that there exists $1 \leq a \leq v$ such that $m_a \neq 0$, where $\underline{m} = (m_1, m_2, \dots, m_v)$. Let $b \in \{1, \dots, v\}$ be such that $a \neq b$. Consider

$$[t^{-\bar{m}}d_a, \frac{1}{c_0}t^{\bar{m}}k_0] = m_a \frac{1}{c_0}k_0, \qquad [t^{-\bar{m}}d_a, t^{\bar{m}}k_b] = m_a k_b.$$

<u>Case 1.1</u>: There exists $b \in \{0, 1, ..., v\}$ such that $b \neq 0$, a and $c_b = 0$. Then

$$A^{(a)}_{-\bar{m},\bar{m}} = B^{(0)}_{\bar{m},-\bar{m}} A^{(a)}_{-\bar{m},\bar{0}} + m_a I, \qquad A^{(a)}_{-\bar{m},\bar{m}} C^{(b)}_{\bar{m},\bar{0}} = C^{(b)}_{\bar{m},-\bar{m}} A^{(a)}_{-\bar{m},\bar{0}}.$$

By (3-2) and (3-3),

$$A_{-\bar{m},\bar{0}}^{(a)} + m_a B_{\bar{m},-\bar{m}}^{(0)}^{-1} = C_{\bar{m},\bar{0}}^{(b)} A_{-\bar{m},\bar{0}}^{(a)} C_{\bar{m},\bar{0}}^{(b)}^{-1}.$$

But the sum on the left-hand side cannot be similar to $A^{(a)}_{-\bar{m},\bar{0}}$, since $m_a \neq 0$ and $B^{(0)}_{\bar{m},-\bar{m}}$ is an invertible upper triangular matrix and does not have different eigenvalues. Thus this case is excluded.

<u>Case 1.2</u>: $c_b \neq 0$ for all $b \in \{0, 1, ..., v\}$, $b \neq 0$, a. By (3-4) and (3-2), we have

Case 1.2:
$$c_b \neq 0$$
 for all $b \in \{0, 1, ..., v\}$, $b \neq 0$, a . By (3-4) and (3-2), we have
$$B_{\bar{m}, -\bar{m}}^{(0)} A_{-\bar{m}, \bar{0}}^{(a)} B_{\bar{m}, -\bar{m}}^{(0)} + m_a B_{\bar{m}, -\bar{m}}^{(0)} - m_a B_{\bar{m}, -\bar{m}}^{(b)} - m_a B_{\bar{m}, -\bar{m}}^{(b)} - m_a B_{\bar{m}, -\bar{m}}^{(b)} - m_a B_{\bar{m}, -\bar{m}}^{(0)} - m_a B_{\bar$$

- (I) There exists $b \neq 0$ and a such that $\lambda_0 \neq \lambda_b$. Then $m_a B_{\bar{m}, -\bar{m}}^{(0)} m_a B_{\bar{m}, -\bar{m}}^{(b)}$ is an invertible upper triangular matrix and does not have different eigenvalues. As in case 1.1, we deduce a contradiction.
- (II) $\lambda_0 = \lambda_b$ for all $b \in \{1, ..., \nu\}$ distinct from a.
- (II.1) Suppose first that $c_a = 0$ (in this case N = v 1, a = v) or $c_a \neq 0$ and $\lambda_a = \lambda_0$ (in this case $N = \nu$). Since $\sum_{p=0}^{\nu} m_p t^{\bar{m}} k_p = 0$, we have

$$\sum_{p=0}^{\nu} m_p t^{\bar{m}} k_p \frac{1}{c_0} t^{-\bar{m}} k_0 = 0.$$

So $\sum_{n=0}^{\nu} m_p C_{\bar{m},-\bar{m}}^{(p)} = 0$, and therefore

$$\sum_{p=0}^{\nu} m_p c_p = 0,$$

which contradicts the assumption that c_0, \ldots, c_N are \mathbb{Z} -linearly independent.

- (II.2) Now suppose $c_a \neq 0$, $\lambda_a \neq \lambda_0$ and there exists $b \neq 0$ and a such that $m_b \neq 0$. We deduce a contradiction as in case 1.2(I) by interchanging a by b.
- (II.3) Suppose $c_a \neq 0$, $\lambda_a \neq \lambda_0$ and $m_b = 0$ for all $b \in \{1, ..., \nu\}$ distinct from a. Then $m_0c_0\lambda_0 + m_ac_a\lambda_a = 0$. The proof of this case is the same as in case 2.2 below.

Case 2.: v = 1. In this case a = 1.

<u>Case 2.1</u>: $c_a = 0$. Since $[t^{-\bar{m}}d_0, t^{\bar{m}}k_0] = [t^{-\bar{m}}k_0, t^{\bar{m}}d_0] = 0$, we have

$$A^{(0)}_{-\bar{m},\bar{m}} = B^{(0)}_{\bar{m},-\bar{m}} A^{(0)}_{-\bar{m},\bar{0}}, \qquad A^{(0)}_{\bar{m},-\bar{m}} = B^{(0)}_{-\bar{m},\bar{m}} A^{(0)}_{\bar{m},\bar{0}}.$$

Therefore

$$[t^{-\bar{m}}d_0, t^{\bar{m}}d_0](v_1, v_2, \dots, v_n) = (v_1, v_2, \dots, v_n)B_{-\bar{m}, \bar{m}}^{(0)} \left[A_{-\bar{m}, \bar{0}}^{(0)}, A_{\bar{m}, \bar{0}}^{(0)}\right].$$

At the same time, we have

$$[t^{-\bar{m}}d_0, t^{\bar{m}}d_0] = 2m_0d_0 + m_0^2(-\mu_1 + \mu_2)(m_0k_0 + m_1k_1),$$

where $\tau = \mu_1 \tau_1 + \mu_2 \tau_2$ as above. So

$$(3-5) \ B_{-\bar{m},\bar{m}}^{(0)}[A_{-\bar{m},\bar{0}}^{(0)},A_{\bar{m},\bar{0}}^{(0)}] = (2m_0(\gamma_0(d_0)+r_0)+m_0^2(-\mu_1+\mu_2)(m_0c_0+m_1c_1))I,$$

where γ_0 is the weight fixed above. Since γ_0 is arbitrary, we can choose it such that

$$2m_0(\gamma_0(d_0) + r_0) + m_0^2(-\mu_1 + \mu_2)(m_0c_0 + m_1c_1) \neq 0.$$

But $B_{-\bar{m},\bar{m}}^{(0)}$ is an invertible triangular matrix and does not have different eigenvalues, in contradiction with (3-5).

Case 2.2: $c_a \neq 0$. Since

$$[t^{-\bar{m}}d_0, t^{\bar{m}}k_0] = -m_1k_1, [t^{-\bar{m}}d_1, t^{\bar{m}}k_0] = m_1k_0$$
 and $[t^{\bar{m}}d_0, t^{-\bar{m}}k_0] = m_1k_1, [t^{\bar{m}}d_1, t^{-\bar{m}}k_0] = -m_1k_0,$

we have

$$[k_0t^{-\bar{m}}d_0 + k_1t^{-\bar{m}}d_1, t^{\bar{m}}k_0] = [k_0t^{\bar{m}}d_0 + k_1t^{\bar{m}}d_1, t^{-\bar{m}}k_0] = 0.$$

Therefore

$$k_0 A_{-\bar{m},\bar{m}}^{(0)} + k_1 A_{-\bar{m},\bar{m}}^{(1)} = B_{\bar{m},-\bar{m}}^{(0)} \left(k_0 A_{-\bar{m},\bar{0}}^{(0)} + k_1 A_{-\bar{m},\bar{0}}^{(1)} \right),$$

$$k_0 A_{\bar{m},-\bar{m}}^{(0)} + k_1 A_{\bar{m},-\bar{m}}^{(1)} = B_{-\bar{m},\bar{m}}^{(0)} \left(k_0 A_{\bar{m},\bar{0}}^{(0)} + k_1 A_{\bar{m},\bar{0}}^{(1)} \right),$$

and

$$[k_0t^{-\bar{m}}d_0 + k_1t^{-\bar{m}}d_1, k_0t^{\bar{m}}d_0 + k_1t^{\bar{m}}d_1](v_1, \dots, v_n)$$

$$= (v_1, \dots, v_n)B_{\bar{m}, -\bar{m}}^{(0)} \left[k_0A_{-\bar{m}, \bar{0}}^{(0)} + k_1A_{-\bar{m}, \bar{0}}^{(1)}, k_0A_{\bar{m}, \bar{0}}^{(0)} + k_1A_{\bar{m}, \bar{0}}^{(1)}\right].$$

At the same time, we have

$$[k_0 t^{-\bar{m}} d_0 + k_1 t^{-\bar{m}} d_1, k_0 t^{\bar{m}} d_0 + k_1 t^{\bar{m}} d_1]$$

$$= 2(m_0 c_0 + m_1 c_1)(c_0 d_0 + c_1 d_1) - (m_0 c_0 + m_1 c_1)^3 (\mu_1 - \mu_2) \text{ id }.$$

Since c_0 and c_1 are \mathbb{Z} -linearly independent, we know that $m_0c_0 + m_1c_1 \neq 0$. As in case 2.1, we deduce a contradiction.

This concludes the first part of the proof. We next turn to the second major case, N .

If $N \ge 1$ or N = 0, we have $(m_1, \ldots, m_{\nu}) \ne 0$, and the lemma follows from the first part and Lemma 3.3. Otherwise, let $t^{\overline{m}}k_p = t_0^{m_0}k_p$. Set $\mathcal{L}_{\underline{0}} = \bigoplus_{m_0 \in \mathbb{Z}} \mathbb{C}t_0^{m_0}d_0 \oplus \mathbb{C}k_0$ and $W = U(\mathcal{L}_{\underline{0}})v$, where $v \in V_{\overline{s}}$ is a homogeneous element. Since $c_0 \ne 0$, the sets $\{\dim W_{(n_0,0)+\overline{s}} \mid n_0 \in \mathbb{Z}\}$ are not uniformly bounded. But if neither $t_0^{m_0}k_p$

nor $t_0^{-m_0}k_p$ is locally nilpotent, then t_0k_p and $t_0^{-1}k_p$ are not locally nilpotent. So by Lemmas 3.2 and 3.1, $\dim V_{(n_0,0)+\bar{s}} = \dim V_{\bar{s}}$ for all $n_0 \in \mathbb{Z}$, which is impossible since $\dim V_{(n_0,0)+\bar{s}} \ge \dim W_{(n_0,0)+\bar{s}}$. This proves Lemma 3.4

For $0 \le p \le N$, consider the direct sum

$$\bigoplus_{m_p\in\mathbb{Z}}\mathbb{C}t_p^{m_p}d_p\oplus\mathbb{C}k_p,$$

which is a Virasoro Lie subalgebra of \mathcal{L} . Since $c_p \neq 0$, it follows from [Mathieu 1992] that there is a nonzero $v_p \in V_{\bar{r}}$ for some $\bar{r} \in \mathbb{Z}^{\nu+1}$ such that

$$(3-6) t_p^{m_p} d_p v_p = 0 for all m_p \in \mathbb{Z}_+$$

or

$$(3-7) t_p^{m_p} d_p v_p = 0 for all m_p \in \mathbb{Z}_-.$$

Lemma 3.5. If $v_p \in V_{\bar{r}}$ satisfies (3-6), the sets

$$\{t_p^{m_p}k_q \mid m_p \in \mathbb{Z}_+, q = 0, 1, 2, \dots, \nu, q \neq p\}$$

are all locally nilpotent on V. Likewise for (3-7), with \mathbb{Z}_+ replaced by \mathbb{Z}_- .

Proof. We only prove the first statement. Suppose it is false; then by Lemma 3.3 $t_p k_q$ is not locally nilpotent on V for some $q \in \{0, 1, ..., v\}, q \neq p$. By Lemma 3.4, $t_p^{-1} k_q$ is locally nilpotent. Therefore there exists $k \in \mathbb{Z}_+$ such that

$$(t_p^{-1}k_q)^{k-1}v_p \neq 0, \quad (t_p^{-1}k_q)^k v_p = 0.$$

So

$$\begin{split} t_p^2 d_p (t_p^{-1} k_q)^k v_p &= -k t_p k_q (t_p^{-1} k_q)^{k-1} v_p + (t_p^{-1} k_q)^k t_p^2 d_p v_p \\ &= -k t_p k_q (t_p^{-1} k_q)^{k-1} v_p = 0. \end{split}$$

This implies that $t_p k_q$ is locally nilpotent, a contradiction.

Lemma 3.6. If $v_p \in V_{\bar{r}}$ satisfies (3-6), the sets

$$\{t^{\bar{m}}k_p \mid \bar{m} = (m_0, \dots, m_v) \in \mathbb{Z}^{v+1}, m_p \in \mathbb{Z}_+\}$$

are all locally nilpotent on V. Likewise for (3-7), with \mathbb{Z}_+ replaced by \mathbb{Z}_- .

Proof. Again we only prove the first statement. Without loss of generality, we assume that p=0. Let \mathcal{H}' be the subspace of \mathcal{H} spanned by elements of \mathcal{H} which are locally nilpotent on V. If $t^{\underline{m}}k_0$, for any $\underline{m} \in \mathbb{Z}^{\nu} \setminus \{0\}$, is not locally nilpotent on V, the lemma holds thanks to Lemmas 3.3 and 3.5. Suppose $\mathcal{H}' \cap \{t^{\underline{m}}k_0 \mid \underline{m} \in \mathbb{Z}^{\nu}\} \neq \{0\}$. By Lemmas 3.2, 3.3 and 3.5, if $t^{\underline{m}}k_0 \in \mathcal{H}'$, then $t^{-\underline{m}}k_0 \notin \mathcal{H}'$, and $t_0^{m_0}t^{\underline{m}}k_0 \in \mathcal{H}'$ for all $m_0 > 0$.

<u>Case 1</u>: Suppose $t_0^{m_0}t^{-\underline{m}}k_0 \in \mathcal{H}'$ for any $t^{\underline{m}}k_0 \in \mathcal{H}'$. Then the lemma is proved.

<u>Case 2</u>: Suppose there exists $0 \neq t^{\underline{m}} k_0 \in \mathcal{H}'$ such that $t_0 t^{-\underline{m}} k_0 \notin \mathcal{H}'$. Since $\underline{m} = (m_1, \dots, m_{\nu}) \neq 0$, we can assume that $m_a \neq 0$ for some $a \in \{1, 2, \dots, \nu\}$. Let $V_{\bar{r}_0}$ be such that

$$\dim V_{\bar{r}_0} = \min \{ \dim V_{\bar{s}} \mid V_{\bar{s}} \neq 0, \, \bar{s} \in \mathbb{Z}^{\nu+1} \}.$$

<u>Case 2.1</u>: Assume $t_0^i t^{-\underline{m}} k_0 \notin \mathcal{K}'$ for any i > 0. Let $l \in \mathbb{Z}_+$ and consider

(3-8)
$$\sum_{i=0}^{l} a_i t_0^{-i} t^{-\underline{m}} k_0 t_0^i t^{-\underline{m}} k_0 v = 0,$$

where $v \in V_{\bar{r}_0} \setminus \{0\}$. By Lemma 3.4, $\{t_0^i t^{\underline{m}} k_0, t_0^{-i} t^{\underline{m}} k_0 \mid i \in \mathbb{Z}_+\} \subseteq \mathcal{K}'$. So by Lemma 3.2, we have

$$t_0^i t^{\underline{m}} k_0 V_{\bar{r}_0} = t_0^{-i} t^{\underline{m}} k_0 V_{\bar{r}_0} = t_0^i t^{\underline{m}} d_p V_{\bar{r}_0} = t_0^{-i} t^{\underline{m}} d_p V_{\bar{r}_0} = 0, i \in \mathbb{Z}_+, 0 \le p \le \nu.$$

Let $j \in \{0, 1, ..., l\}$. From (3-8) we have

$$t_0^{-j} t^{\underline{m}} d_a t_0^j t^{\underline{m}} d_a (\sum_{i=0}^l a_i t_0^{-i} t^{-\underline{m}} k_0 t_0^i t^{-\underline{m}} k_0) v = 0.$$

Therefore

$$\sum_{i=0}^{l} a_i (-m_a) t_0^{j-i} k_0 (-m_a) t_0^{i-j} k_0 v = a_j m_a^2 c_0^2 v = 0.$$

So $a_j = 0$, j = 0, 1, ..., l. This means $\{t_0^{-i}t^{-\underline{m}}k_0t_0^it^{-\underline{m}}k_0)v \mid 0 \le i \le l\}$ are linearly independent. Since l can be any positive integer, it follows that $V_{\bar{r}_0-(0,2\underline{m})}$ is infinite-dimensional, a contradiction.

Case 2.2: Assume there exists $l \in \mathbb{Z}_+$ such that

$$t_0^{l-1}t^{-\underline{m}}k_0 \notin \mathcal{K}', \qquad t_0^lt^{-\underline{m}}k_0 \in \mathcal{K}'.$$

(I) Assume that $t_0^l t^{-i\underline{m}} k_0 \in \mathcal{K}'$ for any $i \in \mathbb{Z}_+$. Let s > 0 and consider

$$\sum_{i=1}^{s} a_i t_0^{-l} t^{i\underline{m}} k_0 t^{-i\underline{m}} k_0 v = 0.$$

Similar to the proof above, we can deduce that $V_{\bar{r}_0-(l,\underline{0})}$ is infinite-dimensional, in contradiction with the assumption that V has finite-dimensional weight spaces.

(II) Assume there exists $s_1 \in \mathbb{Z}_+$ such that

$$t_0^l t^{-\underline{m}} k_0 \in \mathcal{H}', \quad t_0^l t^{-2\underline{m}} k_0 \in \mathcal{H}', \quad \dots, \quad t_0^l t^{-s_1 \underline{m}} k_0 \in \mathcal{H}', \quad t_0^l t^{-(s_1+1) \underline{m}} k_0 \notin \mathcal{H}'.$$

Then there exist $s_2, s_3, \ldots, s_k, \ldots$ such that $s_i \ge s_1$ for $i = 2, 3, \ldots, k, \ldots$ and

$$t_0^{il}t^{(-s_1-s_2-\cdots-s_{i-1}-1)\underline{m}}k_0 \in \mathcal{K}', \ t_0^{il}t^{(-s_1-s_2-\cdots-s_{i-1}-2)\underline{m}}k_0 \in \mathcal{K}', \ldots,$$

$$t_0^{il}t^{(-s_1-s_2-\cdots-s_{i-1}-s_i)\underline{m}}k_0 \in \mathcal{K}', \ t_0^{il}t^{(-s_1-s_2-\cdots-s_{i-1}-s_i-1)\underline{m}}k_0 \notin \mathcal{K}'.$$

Assume that

$$\left(\sum_{i=1}^{s_{1}} a_{i} t_{0}^{-l} t^{i} \underline{m} k_{0} t^{-i} \underline{m} k_{0} + \sum_{i=1}^{s_{2}} a_{s_{1}+i} t_{0}^{-2l} t^{(s_{1}+i)} \underline{m} k_{0} t_{0}^{l} t^{-(s_{1}+i)} \underline{m} k_{0} \right)$$

$$+ \sum_{i=1}^{s_{3}} a_{s_{1}+s_{2}+i} t_{0}^{-3l} t^{(s_{1}+s_{2}+i)} \underline{m} k_{0} t_{0}^{2l} t^{-(s_{1}+s_{2}+i)} \underline{m} k_{0} + \cdots$$

$$+ \sum_{i=1}^{s_{k}} a_{s_{1}+\cdots+s_{k-1}+i} t_{0}^{-kl} t^{(s_{1}+\cdots+s_{k-1}+i)} \underline{m} k_{0} t_{0}^{(k-1)l} t^{-(s_{1}+\cdots+s_{k-1}+i)} \underline{m} k_{0} \right) v = 0.$$

Let

$$t^{j\underline{m}} d_{a} t_{0}^{l} t^{-j\underline{m}} d_{a}, \qquad 1 \leq j \leq s_{1},$$

$$t_{0}^{-l} t^{(s_{1}+j)\underline{m}} d_{a} t_{0}^{2l} t^{-(s_{1}+j)\underline{m}} d_{a}, \qquad 1 \leq j \leq s_{2},$$

$$\dots,$$

$$t_{0}^{-(k-1)l} t^{(s_{1}+s_{2}+\dots+s_{k-1}+j)\underline{m}} d_{a} t_{0}^{kl} t^{-(s_{1}+s_{2}+\dots+s_{k-1}+j)\underline{m}} d_{a}, \quad 1 \leq j \leq s_{k}$$

act on the two sides of the above equation respectively. By Lemma 3.4, we deduce that $a_i = 0$, for $i = 1, 2, ..., s_1$, and that

$$a_{s_1+\cdots+s_{j-1}+i}=0$$
 for $i=1,2,\ldots,s_j,\ 2\leq j\leq k$.

Since k can be any positive integer, it follows that $V_{\bar{r}_0-(l,\underline{0})}$ is infinite-dimensional, which contradicts our assumption. The lemma is proved.

Lemmas 3.1 through 3.6 immediately yield the following result.

Theorem 3.7. Let V be an irreducible weight module of \mathcal{L} such that c_0, \ldots, c_N are \mathbb{Z} -linearly independent and $N \geq 1$. Then V has weight spaces that are infinite-dimensional.

Let

$$\begin{split} \mathcal{L}_{+} &= \sum_{p=0}^{\nu} t_{0} \mathbb{C}[t_{0}, t_{1}^{\pm 1}, \dots, t_{\nu}^{\pm 1}] k_{p} \oplus \sum_{p=0}^{\nu} t_{0} \mathbb{C}[t_{0}, t_{1}^{\pm 1}, \dots, t_{\nu}^{\pm 1}] d_{p}, \\ \mathcal{L}_{-} &= \sum_{p=0}^{\nu} t_{0}^{-1} \mathbb{C}[t_{0}^{-1}, t_{1}^{\pm 1}, \dots, t_{\nu}^{\pm 1}] k_{p} \oplus \sum_{p=0}^{\nu} t_{0}^{-1} \mathbb{C}[t_{0}^{-1}, t_{1}^{\pm 1}, \dots, t_{\nu}^{\pm 1}] d_{p}, \\ \mathcal{L}_{0} &= \sum_{p=0}^{\nu} \mathbb{C}[t_{1}^{\pm 1}, \dots, t_{\nu}^{\pm 1}] k_{p} \oplus \sum_{p=0}^{\nu} \mathbb{C}[t_{1}^{\pm 1}, \dots, t_{\nu}^{\pm 1}] d_{p}. \end{split}$$

Then

$$\mathcal{L} = \mathcal{L}_{\perp} \oplus \mathcal{L}_{0} \oplus \mathcal{L}_{-}$$

Definition 3.8. Let W be a weight module of \mathcal{L} . If there is a nonzero vector $v_0 \in W$ such that

$$\mathcal{L}_+ v_0 = 0, W = U(\mathcal{L})v_0,$$

then W is called a highest weight module of \mathcal{L} . If there is a nonzero vector $v_0 \in W$ such that

$$\mathcal{L}_{-}v_0 = 0, W = U(\mathcal{L})v_0,$$

then W is called a lowest weight module of \mathcal{L} .

From Lemmas 3.2 and 3.6, we obtain:

Theorem 3.9. Let V be an irreducible weight module of \mathcal{L} with finite-dimensional weight spaces and with central charges $c_0 \neq 0$, $c_1 = c_2 = \cdots = c_{\nu} = 0$. Then V is a highest or lowest weight module of \mathcal{L} .

In the remainder of this section we assume that V is an irreducible weight module of \mathcal{L} with finite-dimensional weight spaces and with central charges $c_0 \neq 0$, $c_1 = \cdots = c_{\nu} = 0$.

Set

$$T = \begin{cases} \{v \in V \mid \mathcal{L}_+ v = 0\} & \text{if } V \text{ is a highest weight module of } \mathcal{L}, \\ \{v \in V \mid \mathcal{L}_- v = 0\} & \text{if } V \text{ is a lowest weight module of } \mathcal{L}. \end{cases}$$

Then T is a \mathcal{L}_0 -module and

$$V = U(\mathcal{L}_{-})T$$
 or $V = U(\mathcal{L}_{+})T$.

Since V is an irreducible \mathcal{L} -module, T is an irreducible \mathcal{L}_0 -module. T has the decomposition

$$T=\bigoplus_{m\in\mathbb{Z}^{\nu}}T_{\underline{m}},$$

where $\underline{m} = (m_1, m_2, \dots, m_{\nu})$, $T_{\underline{m}} = \{v \in T \mid d_i v = (m_i + \mu(d_i))v$, $1 \le i \le \nu\}$ and μ is a fixed weight of T. As in the proof in [Jiang and Meng 2003; Eswara Rao and Jiang 2005], we can deduce:

Theorem 3.10. (1) *For all* $m, n \in \mathbb{Z}^{\nu}, p = 1, 2, ..., \nu$, *we have*

$$\dim T_{\underline{m}} = \dim T_{\underline{n}}, t^{\underline{m}} k_p \cdot T = 0,$$

$$t^{\underline{m}} k_0(v_1(\underline{n}), \dots, v_m(\underline{n})) = c_0(v_1(\underline{m} + \underline{n}), v_2(\underline{m} + \underline{n}), \dots, v_n(\underline{m} + \underline{n})),$$

$$t^{\underline{m}} d_0(v_1(\underline{n}), v_2(\underline{n}), \dots, v_n(\underline{n})) = \mu(d_0)(v_1(\underline{m} + \underline{n}), v_2(\underline{m} + \underline{n}), \dots, v_n(\underline{m} + \underline{n})),$$

$$where \{v_1(\underline{0}), \dots, v_m(\underline{0})\} \text{ is a basis of } T_{\underline{0}} \text{ and } v_i(\underline{m}) = \frac{1}{c_0} t^{\underline{m}} k_0 v_i(\underline{0}), \text{ for } i = 1, 2, \dots, m.$$

(2) As an $(\mathcal{A}_{\nu} \oplus \mathfrak{D}_{\nu})$ -module, T is isomorphic to

$$F^{\alpha}(\psi, b) = V(\psi, b) \otimes \mathbb{C}[t_1^{\pm 1}, \dots, t_{\nu}^{\pm 1}]$$

for some $\alpha = (\alpha_1, \ldots, \alpha_{\nu})$, ψ , and b, where $\mathcal{A}_{\nu} = \mathbb{C}[t_1^{\pm 1}, \ldots, t_{\nu}^{\pm 1}]$, \mathfrak{D}_{ν} is the derivation algebra of \mathcal{A}_{ν} , and $V(\psi, b)$ is an m-dimensional, irreducible $gl_{\nu}(\mathbb{C})$ -module satisfying $\psi(I) = b \operatorname{id}_{V(\psi, b)}$ and

$$t^{\underline{r}}d_p(w \otimes t^{\underline{m}}) = (m_p + \alpha_p)w \otimes t^{\underline{r}+\underline{m}} + \sum_{i=1}^{\nu} r_i \psi(E_{ip})w \otimes t^{\underline{r}+\underline{m}}$$
 for $w \in V(\psi, b)$.

Let

$$M = \operatorname{Ind}_{\mathcal{L}_+ + \mathcal{L}_0}^{\mathcal{L}} T$$
 or $M = \operatorname{Ind}_{\mathcal{L}_- + \mathcal{L}_0}^{\mathcal{L}} T$.

Theorem 3.11. Among the submodules of M intersecting T trivially, there is a maximal one, which we denote by M^{rad} . Moreover $V \cong M/M^{\text{rad}}$.

4. The structure of V with $c_0 = \cdots = c_v = 0$

Assume that V is an irreducible weight module of \mathcal{L} with finite-dimensional weight spaces and $c_0 = \cdots = c_{\nu} = 0$.

Lemma 4.1. For any $t^{\bar{r}}k_p \in \mathcal{K}$, $t^{\bar{r}}k_p$ or $t^{-\bar{r}}k_p$ is locally nilpotent on V.

Lemma 4.2. If V is uniformly bounded, $t^{\bar{r}}k_p$ is locally nilpotent on V for any $t^{\bar{r}}k_p \in \mathcal{H}$.

Proof. For $t^{\bar{r}}k_p \in \mathcal{K}$, by Lemma 4.1, $t^{\bar{r}}k_p$ or $t^{-\bar{r}}k_p$ is nilpotent on $V_{\bar{m}}$ for all $\bar{m} \in \mathbb{Z}^{\nu+1}$. Since V is uniformly bounded, i.e., $\max\{\dim V_{\bar{m}} \mid \bar{m} \in \mathbb{Z}^{\nu+1}\} < \infty$, there exists $N \in \mathbb{Z}_+$ such that

$$(t^{\bar{r}}k_pt^{-\bar{r}}k_p)^NV = 0, (t^{\bar{r}}k_pt^{-\bar{r}}k_p)^{N-1}V \neq 0$$

If the lemma is false, we can assume that $t^{-\bar{r}}k_p$ is not locally nilpotent on V. Therefore for any $0 \neq v \in V$, we have $t^{-\bar{r}}k_pv \neq 0$. So

$$(t^{\bar{r}}k_p)^N V = 0.$$

Let $t^{-2\bar{r}}d_q \in \mathcal{H}$ be such that $p \neq q$ and $r_q \neq 0$. By the fact that $[t^{-2\bar{r}}d_q, t^{\bar{r}}k_p] = r_q t^{-\bar{r}}k_p$, we deduce that $t^{-\bar{r}}k_p(t^{\bar{r}}k_p)^{N-1}V = 0$, a contradiction.

Lemma 4.3. If there exists $0 \neq v \in V$ such that $t^{\bar{m}}k_pv = 0$ for all $\bar{m} \in \mathbb{Z}^{v+1}$ and $0 \leq p \leq v$. Then $\Re(V) = 0$.

Proof. This follows from (2-2), since \mathcal{K} is commutative and V is an irreducible \mathcal{L} -module.

Theorem 4.4. If V is uniformly bounded, $t^{\bar{r}}k_pV$ vanishes for any $t^{\bar{r}}k_p \in \mathcal{H}$.

Proof. Let $0 \neq t_i k_p \in \mathcal{H}$. If $t_i k_p V = 0$, it is easy to prove that $\mathcal{H}(V) = 0$. If $t_i k_p V \neq 0$. Since V is uniformly bounded, by Lemma 4.2, there exists $l \in \mathbb{Z}_+$ such that

(4-1)
$$(t_i k_p t_i^{-1} k_p)^l V = 0, \quad (t_1 k_p t_1^{-1} k_p)^{l-1} V \neq 0.$$

If there exists $s \in \mathbb{Z}_+$ such that $(t_i^{-1}k_p)^s V = 0$, $(t_i^{-1}k_p)^{s-1}V \neq 0$. By the fact that $[t^{\bar{m}}d_i, t_i^{-1}k_p] = -t_i^{-1}t^{\bar{m}}k_p$ and $[t^{\bar{m}}d_p, t_i^{-1}k_p] = t_i^{-1}t^{\bar{m}}k_i$, we have

$$t^{\bar{r}}k_p(t_i^{-1}k_p)^{s-1}V = t^{\bar{r}}k_i(t^{-\bar{r}}k_p)^{s-1}V = 0$$
 for all $\bar{r} \in \mathbb{Z}^{v+1}$.

If $(t_i^{-1}k_p)^s V \neq 0$ for all $s \in \mathbb{Z}_+$. Then by (4-1) there is $r \geq 0$ such that $(t_ik_p)^{l-i}(t_i^{-1}k_p)^{l+i}V = 0$ for all $0 \leq i \leq r$, and $(t_ik_p)^{l-r-1}(t_i^{-1}k_p)^{l+r+1}V \neq 0$. So for any $\bar{m} \in \mathbb{Z}^{\nu+1}$, we have

$$t^{-\bar{m}}d_i(t_ik_p)^{l-r}(t_i^{-1}k_p)^{l+r+1}V = 0, \quad t^{-\bar{m}}d_p(t_ik_p)^{l-r}(t_i^{-1}k_p)^{l+r+1}V = 0.$$

Therefore

$$t^{\bar{r}}k_p(t_ik_p)^{l-r-1}(t_i^{-1}k_p)^{l+r+1}V = 0,$$

$$t^{\bar{r}}k_i(t_ik_p)^{l-r-1}(t_i^{-1}k_p)^{l+r+1}V = 0,$$

for all $\bar{r} \in \mathbb{Z}^{\nu+1}$.

<u>Case 1</u>: $v \in 2\mathbb{Z}_+ + 1$. By the preceding discussion, there exist nonnegative integers l_i and r_i , for $i = 0, 2, 4, \dots, v - 1$, such that

$$(t_{\nu}k_{\nu-1})^{l_{\nu-1}}(t_{\nu}^{-1}k_{\nu-1})^{r_{\nu-1}}(t_{\nu-2}k_{\nu-3})^{l_{\nu-3}}(t_{\nu-2}^{-1}k_{\nu-3})^{r_{\nu-3}}\cdots(t_{1}k_{0})^{l_{0}}(t_{1}^{-1}k_{0})^{r_{0}}V\neq 0$$

and

$$t^{\bar{m}}k_{p}(t_{\nu}k_{\nu-1})^{l_{\nu-1}}(t_{\nu}^{-1}k_{\nu-1})^{r_{\nu-1}}(t_{\nu-2}k_{\nu-3})^{l_{\nu-3}}(t_{\nu-2}^{-1}k_{\nu-3})^{r_{\nu-3}}\cdots(t_{1}k_{0})^{l_{0}}(t_{1}^{-1}k_{0})^{r_{0}}V$$

vanishes for all $0 \le p \le \nu$ and $\bar{m} \in \mathbb{Z}^{\nu+1}$. By Lemma 4.3, the conclusion of the theorem holds.

<u>Case 2</u>: $\nu \in 2\mathbb{Z}$. Then there exist nonnegative integers l_i and r_i , for $i = 0, 2, 4, \ldots$, $\nu - 2$, such that

$$W = (t_{\nu-1}k_{\nu-2})^{l_{\nu-2}}(t_{\nu-1}^{-1}k_{\nu-2})^{r_{\nu-2}}(t_{\nu-3}k_{\nu-4})^{l_{\nu-4}}(t_{\nu-3}^{-1}k_{\nu-4})^{r_{\nu-4}}\cdots(t_1k_0)^{l_0}(t_1^{-1}k_0)^{r_0}V$$

is nonzero and

$$(4-2) t^{\bar{m}} k_p W = 0$$

for all $0 \le p \le \nu - 1$ and $\bar{m} \in \mathbb{Z}^{\nu+1}$. By (2-1), we know that

$$(4-3) t^{\bar{m}}k_{\nu}W = 0,$$

for $\bar{m} \in \mathbb{Z}^{\nu+1}$ such that $m_{\nu} \neq 0$. If there exists $t^{\bar{r}_0} k_{\nu}$ satisfying $t^{\bar{r}_0} k_{\nu} W \neq 0$, let

$$\mathcal{L}_{\nu} = \operatorname{span} \{ t^{\underline{m}} d_{i}, t^{\bar{m}} d_{\nu}, t^{\underline{m}} k_{\nu} \mid t^{\underline{m}} = t_{0}^{m_{0}} t_{1}^{m_{1}} \cdots t_{\nu-1}^{m_{\nu-1}}, 0 \leq i \leq \nu - 1, \\ \underline{m} = (m_{0}, \dots, m_{\nu-1}) \in \mathbb{Z}^{\nu}, \bar{m} \in \mathbb{Z}^{\nu+1} \}, \\ W' = U(\mathcal{L}_{\nu}) W.$$

Then $W' \neq 0$ and

$$t^{\bar{m}}k_pW'=0, \qquad t^{\bar{n}}k_{\nu}W'=0,$$

for all $0 \le p \le \nu - 1$, $\bar{m} \in \mathbb{Z}^{\nu+1}$, and $\bar{n} \in \mathbb{Z}^{\nu+1}$ such that $n_{\nu} \ne 0$. If there exists $0 \ne t^{\underline{m}} k_{\nu}$ such that $t^{\underline{m}} k_{\nu} W' \ne 0$, we have

$$(t^{-\underline{m}}k_{\nu})^{l}(t^{\underline{m}}k_{\nu})^{l}W' = 0$$
 and $(t^{-\underline{m}}k_{\nu})^{l-1}(t^{\underline{m}}k_{\nu})^{l-1}W' \neq 0$

for some $l \in \mathbb{Z}_+$. As in the preceding proof, we can deduce that there exists a nonzero $v \in W'$ such that

$$t^{\underline{n}}k_{\nu}v=0$$

for all $n \in \mathbb{Z}^{\nu}$. Therefore

$$t^{\bar{m}}k_pv=0$$

for all $\bar{m} \in \mathbb{Z}^{\nu+1}$ and $0 \le p \le \nu$. We have proved that $\mathcal{H}(V) = 0$.

References

[Belavin et al. 1984] A. A. Belavin, A. M. Polyakov, and A. B. Zamolodchikov, "Infinite conformal symmetry in two-dimensional quantum field theory", *Nuclear Phys. B* **241**:2 (1984), 333–380. MR 86m:81097 Zbl 0661.17013

[Berman and Billig 1999] S. Berman and Y. Billig, "Irreducible representations for toroidal Lie algebras", *J. Algebra* **221**:1 (1999), 188–231. MR 2000k:17004 Zbl 0942.17016

[Billig 2003] Y. Billig, "Abelian extensions of the group of diffeomorphisms of a torus", *Lett. Math. Phys.* **64**:2 (2003), 155–169. MR 2004h:22012 Zbl 1079.58004

[Chari and Pressley 1988] V. Chari and A. Pressley, "Unitary representations of the Virasoro algebra and a conjecture of Kac", *Compositio Math.* **67**:3 (1988), 315–342. MR 89h:17025 Zbl 0661.17022

[Di Francesco et al. 1997] P. Di Francesco, P. Mathieu, and D. Sénéchal, *Conformal field theory*, Springer, New York, 1997. MR 97g:81062 Zbl 0869.53052

[Dotsenko and Fateev 1984] V. S. Dotsenko and V. A. Fateev, "Conformal algebra and multipoint correlation functions in 2D statistical models", *Nuclear Phys. B* **240**:3 (1984), 312–348. MR 85i: 82061

[Eswara Rao 2004] S. Eswara Rao, "Partial classification of modules for Lie algebra of diffeomorphisms of *d*-dimensional torus", *J. Math. Phys.* **45**:8 (2004), 3322–3333. MR 2005d:17028 Zbl 1071.17020

[Eswara Rao and Jiang 2005] S. Eswara Rao and C. Jiang, "Classification of irreducible integrable representations for the full toroidal Lie algebras", *J. Pure Appl. Algebra* **200**:1-2 (2005), 71–85. MR 2006b:17038 Zbl 1070.17009

[Eswara Rao and Moody 1994] S. Eswara Rao and R. V. Moody, "Vertex representations for *n*-toroidal Lie algebras and a generalization of the Virasoro algebra", *Comm. Math. Phys.* **159**:2 (1994), 239–264. MR 94m:17028 Zbl 0808.17018

[Jiang and Meng 2003] C. Jiang and D. Meng, "Integrable representations for generalized Virasorotoroidal Lie algebras", *J. Algebra* **270**:1 (2003), 307–334. MR 2005b:17053 Zbl 1037.17029

[Kac 1982] V. G. Kac, "Some problems on infinite-dimensional Lie algebras and their representations", pp. 117–126 in *Lie algebras and related topics* (New Brunswick, NJ, 1981), edited by D. J. Winter, Lecture Notes in Math. **933**, Springer, Berlin, 1982. MR 84e:17010 Zbl 0493.17011

[Kaplansky and Santharoubane 1985] I. Kaplansky and L. J. Santharoubane, "Harish-Chandra modules over the Virasoro algebra", pp. 217–231 in *Infinite dimensional groups with applications* (Berkeley, 1984), edited by V. Kac, Math. Sci. Res. Inst. Publ. **4**, Springer, New York, 1985. MR 87d:17013 Zbl 0589.17013

[Larsson 1992] T. A. Larsson, "Conformal fields: a class of representations of Vect(N)", *Internat. J. Modern Phys. A* 7:26 (1992), 6493–6508. MR 93h:17053 Zbl 0972.17502

[Mathieu 1992] O. Mathieu, "Classification of Harish-Chandra modules over the Virasoro Lie algebra", *Invent. Math.* **107**:2 (1992), 225–234. MR 93d:17034 Zbl 0779.17025

[Ramos et al. 1990] E. Ramos, C.-H. Sah, and R. E. Shrock, "Algebras of diffeomorphisms of the *N*-torus", *J. Math. Phys.* **31**:8 (1990), 1805–1816. MR 91j:17043 Zbl 0733.17014

Received December 3, 2005.

CUIPO JIANG
DEPARTMENT OF MATHEMATICS
SHANGHAI JIAOTONG UNIVERSITY
SHANGHAI 200030
CHINA
cpjiang@sjtu.edu.cn

QIFEN JIANG
DEPARTMENT OF MATHEMATICS
SHANGHAI JIAOTONG UNIVERSITY
SHANGHAI 200030
CHINA

qfjiang@sjtu.edu.cn