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IRREDUCIBLE REPRESENTATIONS FOR THE ABELIAN
EXTENSION OF THE LIE ALGEBRA OF DIFFEOMORPHISMS
OF TORI IN DIMENSIONS GREATER THAN 1

CUIPO JIANG AND QIFEN JIANG

We classify the irreducible weight modules of the abelian extension of the
Lie algebra of diffeomorphisms of tori of dimension greater than 1, with
finite-dimensional weight spaces.

1. Introduction

Let W, be the Lie algebra of diffeomorphisms of the (v+1)-dimensional torus.
If v = 0, the universal central extension of the complex Lie algebra W is the
Virasoro algebra, which, together with its representations, plays a very important
role in many areas of mathematics and physics [Belavin et al. 1984; Dotsenko and
Fateev 1984; Di Francesco et al. 1997]. The representation theory of the Virasoro
algebra has been studied extensively; see, for example, [Kac 1982; Kaplansky and
Santharoubane 1985; Chari and Pressley 1988; Mathieu 1992].

If v > 1, however, the Lie algebra W, has no nontrivial central extension
[Ramos et al. 1990]. But W, 1| has abelian extensions whose abelian ideals are the
central parts of the corresponding toroidal Lie algebras; see [Berman and Billig
1999], for example. There is a close connection between irreducible integrable
modules of the toroidal Lie algebra and irreducible modules of the abelian ex-
tension &; see [Berman and Billig 1999; Eswara Rao and Moody 1994; Jiang
and Meng 2003], for instance. In fact, the classification of integrable modules of
toroidal Lie algebras and their subalgebras depends heavily on the classification
of irreducible representations of & and its subalgebras. See [Billig 2003] for the
constructions of the abelian extensions for the group of diffeomorphisms of a torus.

In this paper we study the irreducible weight modules of &, for v > 1. If V is
an irreducible weight module of &£ some of whose central charges cy, ..., ¢, are
nonzero, one can assume that co, ..., cy are Z-linearly independent and cyy] =
---=¢, =0, where N > 0. We prove that if N > 1, then V must have weight
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spaces which are infinite-dimensional. So if all the weight spaces of V are finite-
dimensional, N vanishes. We classify the irreducible modules of & with finite-
dimensional weight spaces and some nonzero central charges. We prove that such
a module V is isomorphic to a highest weight module. The highest weight space
T is isomorphic to an irreducible (#,+ W, )-module all of whose weight spaces
have the same dimension, where 4, is the ring of Laurent polynomials in v com-
muting variables, regarded as a commutative Lie algebra. An important step is to
characterize the #,-module structure of 7. It turns out that the action of #{, on T
is essentially multiplication by polynomials in s4,. Therefore T can be identified
with Larsson’s construction [1992] by a result in [Eswara Rao 2004]. That is, T is
a tensor product of g/,-module with .

When all the central charges of V are zero, we prove that the abelian part acts
on V as zero if V is a uniformly bounded £-module. So the result in this case is
not complete.

Throughout the paper, C, Z, and Z_ denote the sets of complex numbers, pos-
itive integers and negative integers.

2. Basic concepts and results

Let A, = C[til, tlil, el tjﬂ] (v > 1) be the ring of Laurent polynomials in
commuting variables g, t1, ..., t,. Forn=(ny, ny, ..., n,) €Z’, ng € Z, we denote
15t - 1) by 1,°t". Let K be the free s,1-module with basis {ko, k1, ..., k,}

and let d% be the subspace spanned by all elements of the form

vV
Yo rity’t'ki,  for (ro,r) =(ro,r1, ..., 1) € VARRS
=0

Set 9 = 9/dJt and denote the image of 15°t"k; still by itself. Then ¥ is spanned
by the elements {tgotfkp |p=0,1,...,v,r9 € Z,r € 7'} with relations

v

(2-1) > rpttk, = 0.
p=0

Let 9 be the Lie algebra of derivations on ;. Then
vV
QD: { pr(t()atlv "'7tl))d]7 | fp(IO’tl’ "'9tl)) G&QU-F]}»
p=0

where d,, =1,0/9t,, p =0, 1,...,v. From [Berman and Billig 1999] we know
that the algebra % admits two nontrivial 2-cocycles with values in J{:
%
T (11" dy, 171" dy) = —ngmyp Z mpty O
p=0
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vV
Tty " dy, 1)° " dp) = many, Z mpty O,
p=0
Let T = u1t1 + (212 be an arbitrary linear combination of 7; and 7,. Then the
corresponding abelian extension of & is
L=DBHA,

with the Lie bracket
v
+ +
(2-2) [tglofmda, tg‘)tﬂkb] — nat(;"‘) nogmAng 4§ Z mpt(')"o notm+ﬂkp’
p=0
(1501 d,, 15012 dp) = naty "), — mptg T,
+ Tty 1" dy, 1,°1" dp).

The sum
v v
h=(PCk)a (D Ccd)
i=0 i=0
is an abelian Lie subalgebra of £. An £-module V is called a weight module if
V=D
rebh*

where V, ={ve V |h-v=A(h)v for all h € h}. Denote by P(V) the set of all
weights. Throughout the paper, we assume that V' is an irreducible weight module
of & with finite-dimensional weight spaces. Since V is irreducible, we have

kily = ci,
where the constants ¢;, fori =0, 1, ..., v, are called the central charges of V.

Lemma 2.1. Let A = (a;;) (0 < i, j <v) be a (v+1) x (v+1) matrix such that
det A =1 and a;; € Z. There exists an automorphism o of & such that

vV v
oK) =Y apt™ k,, o)=Y bit™ d,,  0<j<v,
p=0 p=0

o »
where t" =1,°t", B = (b;j) = A~".

3. The structure of V with nonzero central charges

In this section, we discuss the weight module V which has nonzero central charges.
It follows from Lemma 2.1 that we can assume that cq, cy, ..., cy are Z-linearly
independent, i.e., if vazo a;c; =0,a; € Z,thenall q;(i =0, ..., N) must be zero,
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and cy41 = cy42 =+ = ¢, =0, where N > 0. For m = (mg, m), denote z;°1™
by ™ as in Lemma 2.1. It is easy to see that V has the decomposition

V= @ Vi,

,;lEZV-H
where Vi = {v e V | d;(v) = (o(d;) + mj)v,i =0,1,...,v}, with yg € P(V)
a fixed weight, and m = (mg, my, ..., m,) € 7't If V has finite-dimensional

weight spaces, the V;; are finite-dimensional, for i € 7+,

In Lemmas 3.1-3.6 we assume that V has finite-dimensional weight spaces.

Lemma 3.1. For pe {0, 1,...,v}and 0 # t’hkp € <, if there is a nonzero element
vin V such that tmkpv =0, then t’hkp is locally nilpotent on V.

Lemma 3.2. Let t(')" '™k, € &£ be such that m = (mo, m) # 0, and there exists
0<a <N suchthatmg, #0if N < p <v. If t;'°t"k,, is locally nilpotent on 'V,
then dim V;; > dim Vi for all n € 7+,

Proof. Case 1: p €{0,1,..., N}. We first prove that dim V; > dim V;; for all
nez"t. Suppose dim V; =m, dim V;; =n. Let {w, wy, ..., w,} be a basis of
Vi and {w], w), ..., w,,} a basis of V;. We can assume that m, # 0 for some
0 <a <v distinct from p, where m = (mg, m) = (mg, my, ..., m,). Since t’;’kp is
locally nilpotent on V and V;; is finite-dimensional, there exists £ > 0 such that
(t"k »)* Vi = 0. Therefore

" d) (k) (Wi, wa, ..., wy) =0,

On the other hand, by induction on k, we can deduce that

k

_ B} k' k! S S )
—m ko .m k __ i 0 c.m k—i/,—m k—i
(" d ) (1" k ) —;“(k_i)!(k_i)!macp(t k) H M d )k
Therefore
i (N k! i i (i Nk—1—i =i g Nk—1—i\ —i
t p( Z mmacp(t kp) (t da) )t da(U)], W2,y wn)
i=0 1l —1l). —1l).
:—k!mﬁcﬁ(wl,wg,...,wn).
Assume that
ol klk! i iy Nk=1—i g~ g \k—1—i\,—i
T GO G P ) U ACTI BRI
i—=0 - —1). —1).
l = (w}, Wh, ..., w,)C,

with C € C™*", and that

(3-1) "k (W, wh, ..., wh) = (wi, wa, ..., w,)B,
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with B € C"*™_ Then
k k
BC =—klmg,c,I.
This implies that m > n. So dim V; > dim V. for all 7 € Z"*!. Also, by (3-1)
and the fact that r(B) = n, we know that m > n if and only if there exists v € V;

such that t’hkp -v =0. Since t’hkp is locally nilpotent on V, there exist an integer
s >0 and w € Vj1; such that

(t"kp) - w = 0.

Therefore (t"k,)t"k, - w = t"k,(t "k, - w) = 0. If t "k, - w = 0, by the
proof above, dim Vj; 5 s < dim Vi1 47, contradicting the fact that dim Vi 55 >
dim Vj;445. Therefore (t_’hkp)’ -w # 0 for all r € N. Since

"k p) 1"k - w = 1"k, (t k) - w =0

and (t_’;’kp)s -w € Vj, it follows that there is a nonzero element v in V; such that
t"kp-v=0. Thus n < m.

Case 2: N < p <v. The proof is similar to that of case 1, but we have to consider
t™"d, and t"'k, instead and use the Z-linear independence of ¢y, ..., cy. ]

Lemma 3.3. Let 0 # t"k, € £ and 0 # "k, € & be such that (my, ..., my) # 0,
(ng,...,ny) #Z0if N < p <v,where m = (mg, my, ..., m,).
(1) Ift’;’kp is locally nilpotent on V , tmkq is locally nilpotent forq =0, 1, ..., v.

(2) If both O # t';’kp and 0 # t’_’kp are locally nilpotent on V, then t’;’+’_’kp is
locally nilpotent.

3) If0 £ t”_Hﬁkp is lo_cally ni{potent onV and (mg+nog,...,my +ny) Z0if
N < p <v, thent"k, ort"k, is locally nilpotent.

Lemma 34. For 0 < p <v, let 0 # t"_’kp € & be such that (mog, ..., my) % 0,
where m = (mg, my, ..., m,). Then t’;’kp or f”akp is locally nilpotent on V.

Proof. The proof occupies the next few pages. We first deal with the case 0 <p < N.
Without losing generality, we can take p = 0.
Suppose the lemma is false. By Lemma 3.2, for any 7 € Z"*! we have

dim Viem = dim V; = dim V;_z, tr;lk() Vi = Vigm, l_mk0V; = Vi_m.

Fix 7 = (rg, r) € Z"*! such that V: #0. Let {vy, ..., v,} be a basis of V; and set

1 _
vi(km) = —t""ko v, i=1,2,...,n,
o
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where k € Z\ {0}. Then {vy(km), va(km), ..., v,(km)} is a basis of Vi ;. Let

(O] (0)
BT, & By € C™" be such that
Ly Z 1 7)) = ©0)
! ko(vi(=m), va(=m), ..., va(=m)) = (v1, V2, ..., V) B -,
0
Ly 7 7 7)) = B©
. t™"ko(v1 (), v2(m), ..., v, (M) = (v1, V2, ..., V) BIS o
0

Since 1" ko and t "k, are commutative, it is easy to deduce that

© _ pO
Bn_'z,—n_z_B

—m,m
By Lemma 3.1, Bn(-? )4;, i1s an n x n invertible matrix.
Claim. B,%Ol,ﬂ does not have distinct eigenvalues.

Proof. Set ¢ = 1/cg. To prove the claim, we need to consider ct"koct ko — A id,
where A € C*. As in the proof of Lemma 3.1, we can deduce that if there is a
nonzero element v in V such that (ct"koct ko — A id)v = 0, then ¢t koct ko —
A id is locally nilpotent on V. On the other hand, we have

(ct™koct ko — 2 id) (v, 2, .o, V) = (V1L V2, .-, V) (BY) - — Aid).

Therefore the claim holds. O
For pef{l,2,...,v}, let Cr: & Cn’%ﬁn-l € C"*" be such that
kU1, 02, V) = (10, - v (D)) C
k(01 (=), ..., V(=) = (V1 V2, ... 0O .
Since
| P
—t kol kp(vl,vz,...,vn):t kp—t ko(vl,vz,...,vn),
o co
we have
(p) ) (p)
(3-2) Clln= B_,h,,hcn_f’é.

Furthermore, by the fact that
1 m 1 —m m m 1 m 1 —m
—t"kog—1t kot kp(vl,vz,...,vn):t kp—l ko—t "ko(vy, v, ..., V)
co co o o

and

SO D S

m —m m __.m —m m

t"kg—t""kot"k, =t"k,—t""kot"ky,
co o
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we deduce that

(3_3) B(—Or)h,nﬁcl,(ﬁp)_ — C(P)_B(O)_ C(P) C(‘]) C(‘I)_C(P)_

m,0" —m,m’ m,0 m,0 m,0 " m,0’

1<p,g=<v.

Hence there exists D € " such that {D~'B®. _D, D~ lC(p) D|1<p<v}are

—m,m

all upper triangular matrices. If we set

(wlvw2’""wl’l):(vlavz""vvn)D
and |
w; (ki) = —t""kow;, 1 <i <n,k € Z\{0},
co

then

lkiﬁ - - = _ (0)

Ct ko(wi (=), wa (=), ..., wy(—m)) = (wi, ..., w,) D' BO) i Do

0

(Wi, W, wa) = @i, - wa () DT CIYD

So we can assume that B, . C(_p 2-), and C” .. for 1 < p < v are all invertible

upper triangular matrices. Furthermore because

( e -1-r*mk0-xld) W1, V2, - 0) = (U1, 02, 0 (CL) = Rid),

the argument used in the proof of the claim shows that C,(;ff )_n-1 also does not have
distinct eigenvalues. For 1 < p < N, set

1
» ()
Bn-f% = C_Crh‘l?fn‘z
P
and for 0 < p < N denote by A, the eigenvalue of B, p) e
Let A7) 5 and AT, for 0 <a < v and k. k1. ky € Z\ {0, be such that

kym,kom?

M dy 1, 2, v = ik, va ki), v (kD) AL o
97 dy (v (ko) va (ko) . . ., v (ki)

= (v (kg + ki), « . ., vp (kyim + ko)) ALY

kym,koym*

Case 1: v > 1. Since t"ky = t(')"ot’hko # 0, it follows that there exists 1 < a < v
such that m, # 0, where m = (m, ma, ..., m,). Let b € {1, ..., v} be such that
a # b. Consider

- 1 - 1 _ _
(3-4) [t7"dy, —t"ko]l = mga—ko, [t7"dy, t"kp] = mgky.
co co

Case 1.1: There exists b € {0, 1, ..., v} such that b # 0, a and c, = 0. Then

A9 BO A L A9 c® = c® @

—m,m *m —m,0 —m,m = m,0 —n_1,0'
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By (3-2) and (3-3),

A rmBY T =P A e

—m,0 "m0

But the 1sum on the left-hand side cannot be similar to A( @) 0" since m, # 0 and
B(O) - isan invertible upper triangular matrix and does not have different eigen-

Values Thus this case is excluded.
Case 1.2: ¢y, #0 forallb € {0, 1, ...,v}, b #0, a. By (3-4) and (3-2), we have

O 4@ pO ! o 1 » !
B —mA_na,()Bn‘i,fnﬁ +maBy i —maBy 1
—_ pO (®) p@ b " pO ~
=B; _x;C_ A_m 0C Bn-L_,;l
- o ! ® ~.
(D) There exists b # 0 and a such that Ay # A,. Then m, By a7 —maBg 5 s
an invertible upper triangular matrix and does not have different eigenvalues. As

in case 1.1, we deduce a contradiction.

(ID) Ao =Ap forall b € {1, ..., v} distinct from a.
(II.1) Suppose first that ¢, = 0 (in this case N =v —1,a = v) or ¢, # 0 and
Aq = Ao (in this case N = v). Since Z;:O mpt"_’kp =0, we have

1
Zm,, "k, —t_mko—O
p=0

v
So > mpCr(;f)_m =0, and therefore

p=0 ;
E mpc, =0,
p=0

which contradicts the assumption that ¢y, ..., cy are Z-linearly independent.
(II.2) Now suppose ¢, # 0, A, # Ao and there exists b # 0 and a such that
myp # 0. We deduce a contradiction as in case 1.2(I) by interchanging a by b.
(IL.3) Suppose ¢, #0, Ay # Ag and my, =0 for all b € {1, ..., v} distinct from
a. Then mycoro + mycaha = 0. The proof of this case is the same as in case 2.2
below.

Case 2.: v=1.Inthis case a = 1.
Case 2.1: ¢, = 0. Since [t "dy, t"'ko] = [t kg, t"dy] = 0, we have

A = BO A0 A9 L —BO 40

—m,m —m,0’ —m,m* 5 0

Therefore

—i 7 0 0 0
[t me, tmdo](vl7 v2s LR vn) = (v17 UZa LA ] Un)B(,,);,’,ﬁ;, [A(_’)ﬁ,(‘)a Al(’l_’l,)(_)]
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At the same time, we have
[t do, 1™ do] = 2modo + mg(—pu1 + p2) (moko + m k1),
where T = 171 + U272 as above. So

(3-5) BY), 7147 o AV 1= (2mo(yo(do)+ro)+mi (= 1+ u2) (moco+micn)) I,

-m,0’
where yg is the weight fixed above. Since yy is arbitrary, we can choose it such
that

2mo(vo(do) +1o) + mi(—pm1 + pa)(moco +micy) # 0.

But B(_O,)ﬁ ;7 18 an invertible triangular matrix and does not have different eigenval-
ues, in contradiction with (3-5).
Case 2.2: ¢, # 0. Since

[t~ dy, t" kol = —miky, [t "dy, t" ko] = m1ko and

[t"do, t kol = miky, [t"dy, t "ko] = —m ko,

we have
[kot ™ do + kit~ dy, ko] = [kot™do + k1" dy, t ko] = O.
Therefore
koAD) s +kAl) L =B . (kOA(f);a,é thi Agiﬁ,ﬁ)’
koA +kiAG 5 =B, (koA +kiAL),
and

[kot ™™ do + kit~ dy, kot™do + k1™ di1(vy, . . ., vy)
_ 0) 0) (N 0) (1)
=(,..., ”n)Bna,—na [kOA—rh,(_) —|—k1A_ kOArﬁ,(_) +k1An’1,(_)]'

m,0’
At the same time, we have
[kot ™ do + kit ™" dy, kot™do + k1" d1 ]
= 2(moco +mic1)(codo + c1dy) — (moco +mici)> (u1 — pa) id.

Since cg and c; are Z-linearly independent, we know that moco +mic; # 0. As in
case 2.1, we deduce a contradiction.

This concludes the first part of the proof. We next turn to the second major case,
N<p=<v.

If N>1or N=0, we have (my, ..., m,) # 0, and the lemma follows from the
first part and Lemma 3.3. Otherwise, let 1"k, =1,k . Set £y = D,y Cty 'do®
Cko and W = U(&%p)v, where v € V; is a homogeneous element. Since ¢y # 0,
the sets {dim W, 0)+5 | no € Z} are not uniformly bounded. But if neither t(’)" 'k p
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nor #, "k, is locally nilpotent, then 7ok, and ty 'k p are not locally nilpotent. So
by Lemmas 3.2 and 3.1, dim V|, 0)4+5 = dim V; for all ng € Z, which is impossible
since dimV/(,,, 0)+5 > dim W, 0)+5. This proves Lemma 3.4 O

For 0 < p < N, consider the direct sum
& cr7d, & Tk,
mpyel

which is a Virasoro Lie subalgebra of &£. Since c;, # 0, it follows from [Mathieu
1992] that there is a nonzero v, € V; for some r € Z"*! such that

(3-6) ty'dyv,=0 forallm,eZ,
or
(3-7) ty'dyv, =0 forallm,eZ_.

Lemma 3.5. If v, € V; satisfies (3-6), the sets

mpy,

{ty"'kg|mpeZ,,q=0,1,2,...,v,q # p}
are all locally nilpotent on V. Likewise for (3-7), with Z, replaced by 7 .

Proof. We only prove the first statement. Suppose it is false; then by Lemma 3.3
tpkg is not locally nilpotent on V for some g € {0, 1, ..., v}, ¢ # p. By Lemma
34,1, Ik, is locally nilpotent. Therefore there exists k € Z such that

(t, k) v, £0, (1, k) v, =0.

So
tody(t, k) vy = —ktpky (25 k) v, + (8 k) 1 d v
= —ktyky (1, kg) "0, = 0.
This implies that 7,k is locally nilpotent, a contradiction. O

Lemma 3.6. If v, € V; satisfies (3-6), the sets
{t"k, | m = (mo, ...,my) €Z" \m, e}
are all locally nilpotent on V. Likewise for (3-7), with Z 1 replaced by 7 _.

Proof. Again we only prove the first statement. Without loss of generality, we
assume that p = 0. Let H’ be the subspace of H spanned by elements of I which
are locally nilpotenton V. If t2 kg, for any m € Z"\{0}, is not locally nilpotenton V,
the lemma holds thanks to Lemmas 3.3 and 3.5. Suppose H' N{tZko | m € 7"} #{0}.
By Lemmas 3.2, 3.3 and 3.5, if t”ko € H', then r ko ¢ H', and t(')"‘)tmko e I’ for
all mg > 0.

Case 1: Suppose 1t ko € I’ for any t"ky € K'. Then the lemma is proved.
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Case 2: Suppose there exists 0 £ t”ky € H' such that ot ko ¢ H'. Since m =
(my,...,m,) #0, we can assume that m, # 0 for some a € {1, 2, ..., v}. Let Vj
be such that

dim V;, = min{dim V; | V; # 0,5 € 2"*}.

Case 2.1: Assume tét_mko ¢ A’ forany i > 0. Letl € Z, and consider

I
(3-8) Z aity 't kotyt kov = 0,
i=0

where v € V5, \ {0}. By Lemma 3.4, {tétmko, t()_itmko |ieZ,} CH'. SobyLemma
3.2, we have

1512 ko Vi, = 1o 1%k Vi, = 101 d, Vi, = 1y ' 12d, V5, = 0,i € Z4,0 < p < v.

Let j €{0,1,...,1}. From (3-8) we have

l
o 12ty 12da (Y aity kot ko)v = 0.

i=0
Therefore
I
> ai(—ma)ty " ko(—ma)ty kov = ajmicGv = 0.
i=0
Soa;j =0, j =0,1,...,1. This means {t()_it_mkotét_mkg)v | 0 <i <1} are

linearly independent. Since / can be any positive integer, it follows that Vi _ 0 2m)
is infinite-dimensional, a contradiction.

Case 2.2: Assume there exists | € 7 such that
to 't ko ¢ K, 1t ko € W

(I) Assume that t(l)t_imko e H foranyi € Z,. Let s > 0 and consider
N
Z aity 1™ kot "™ kv = 0.
i=1

Similar to the proof above, we can deduce that V7 _( o) is infinite-dimensional, in
contradiction with the assumption that V' has finite-dimensional weight spaces.

(IT) Assume there exists s; € Z, such that
ko e W, ttT ko e K, ..., ko e N, themCTDME, ¢ K
Then there exist s, 53, ..., Sk, ... such thats; > s fori =2,3,...,k,... and

X T ¥ s (W =E A
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téll‘(_sl_sz_”'_si’l_Si)mko eH, télt(—sl_SZ_”'_si*I_Si_l)mko ¢ A,

Assume that

S1 852
(Z a,‘to_ltlmkot_lmko + Z asl_H'tO_ZZt(sl+l)mk0l(l)t_(sl+l)mko
i=1 i=1
53
+ Z s, +55+i t0_3lt(51+52+1)mkotgltf(sl‘f’n‘kl)mko 4+

i=l1
Sk
—ki sy K—1) (5| 4rrbsp_ | +i
+Zasl+...+sk71+,~t0 t(sl+ Sk I—H)mkol(g )I (S14-F5 I+l)mk0)l}:0.
i=1
Let
M d b d,, 1<j<si,
to—lt(sl-i-j)mdatglt—(sl+j)mda, 1<j<s,

L)

t()—(k—l)lt(s1+sz+---+sk_|+j)mdat(l)clt—(s1+sz+---+sk_1+j)mda’ 1<j<s

act on the two sides of the above equation respectively. By Lemma 3.4, we deduce
that q; =0, fori =1, 2,..., s, and that

asl+...+sj71+,~:0 fOl‘i:l,Z,...,sj, 25]5](

Since k can be any positive integer, it follows that Vi _( o) is infinite-dimensional,
which contradicts our assumption. The lemma is proved. |

Lemmas 3.1 through 3.6 immediately yield the following result.

Theorem 3.7. Let V be an irreducible weight module of & such that cy, ..., cy
are Z-linearly independent and N > 1. Then V has weight spaces that are infinite-
dimensional.

Let

v v
+1 +1
Fr =Y tClto, 1, ...t Tk, ® Y 10Clto, 1, ..., t']d,,
p=0 p=0
v

v
o= 'Cly 5k, @ Y Il 5 L 1 d,
p=0 p=0
Vv V
Fo =Y Clt, .t Tk, @ Y CI L F1d,,.
p=0 p=0

Then
=L, DLyDL_.
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Definition 3.8. Let W be a weight module of &. If there is a nonzero vector vo € W
such that

§£+v0 = 0, W= U(Si)vo,

then W is called a highest weight module of &. If there is a nonzero vector vg € W
such that

(§£,Uo = 0, W= U(iB)vo,
then W is called a lowest weight module of £.
From Lemmas 3.2 and 3.6, we obtain:

Theorem 3.9. Let V be an irreducible weight module of & with finite-dimensional
weight spaces and with central charges co #0,ci =cy=---=c¢, =0. Then V is
a highest or lowest weight module of .

In the remainder of this section we assume that V' is an irreducible weight mod-
ule of &£ with finite-dimensional weight spaces and with central charges ¢y # O,
cir=---=c¢,=0.

Set

T fveV|ZLiv=0} ifV is ahighest weight module of &,
B feV | _v=0} ifV isalowest weight module of ¥.

Then T is a £y-module and
V=U&)T or V=UE)T.
Since V is an irreducible ¥-module, T is an irreducible £y-module. 7T has the

decomposition
=@ T

meZz

where m = (my,ma, ..., m,), Ty ={veT|dv=m;+un(d)v,1<i<v}and
wu is a fixed weight of 7. As in the proof in [Jiang and Meng 2003; Eswara Rao
and Jiang 2005], we can deduce:

Theorem 3.10. (1) Forallm,ne 7', p=1,2,...,v, we have
dim7T, =dimT,, "k, -T =0,
"ko(vi(n), ..., vu(n)) = co(vi(m +n), v2(m +n), ..., v,(m+n)),
t"dy(v1(n), v2(n), ..., va(n)) = u(do) (Vi (m +n), va(m +n), ..., v(m+n)),

where {v1(0), ..., v,(0)} is a basis of Ty and v;(m) = Cltmkov,-(g),fori =1,2,
0
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2) Asan (A, & D,)-module, T is isomorphic to
F(Y,b) =V, b) @C[, ..., 5]

for some o = (ay, ...,ay), ¥, and b, where A, = (E[tlil, el tjcl], 9D, is
the derivation algebra of A, and V (Y, b) is an m-dimensional, irreducible
gl (C)-module satisfying (1) = bidy y ) and

Vv

dp(w ™) = (mp +p)w @1+ " (Eip)w @ 1712
i=1
forw e V (i, b).

Let
M= Indéﬂ%0 T or M= Indg,ﬂfo T.

Theorem 3.11. Among the submodules of M intersecting T trivially, there is a
maximal one, which we denote by M™3. Moreover V.= M/ M™.

4. The structure of V withcy=:--=¢, =0

Assume that V is an irreducible weight module of & with finite-dimensional weight
spaces and cg =---=¢, =0.

Lemma 4.1. For any tfkp e, tfkp or t_fkp is locally nilpotent on V.

Lemma 4.2. If V is uniformly bounded, t" kp is locally nilpotent on 'V for any
t"kp € K.

Proof. For tfkp € X, by Lemma 4.1, tfkp or t_fkp is nilpotent on V;; for all
m € Z"*!. Since V is uniformly bounded, i.e., max{dim V;; | m € Z"*!} < oo,
there exists N € Z, such that

(" kpt Tkp)NV =0, (tTkpt k)N TV £0

If the lemma is false, we can assume that =" kp is not locally nilpotent on V.
Therefore for any 0 # v € V, we have t_;kpv #0. So

t"k,)NV =0.
Let t~%'d, € 9 be such that p # g and r, # 0. By the fact that [t=2'd,, t"k,] =
rqt ""k,, we deduce that t "k, (t"k,)N "1V =0, a contradiction. O

Lemma 4.3. If there exists 0 # v € V such that t’ﬁkpv =0 for all m € 7"+ and
0<p<v. ThenX(V)=0.

Proof. This follows from (2-2), since ¥ is commutative and V is an irreducible
<£-module. Il

Theorem 4.4. If V is uniformly bounded, t" k,V vanishes for any 1" k, €.
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Proof. Let 0 # t;k, € K. 1If t;k,V =0, it is easy to prove that H(V) = 0. If
tik,V #0. Since V is uniformly bounded, by Lemma 4.2, there exists / € Z such
that

(4-1) (tikpt” 'k )'V =0,  (tikpt; k) "'V #£0.

If there exists s € Z such that (t; 'k,)*V =0, (t; 'k,)* "'V # 0. By the fact that
[17d;, 7 kp] = —1;7 1"k, and [t"d,,, 17 k,] = 1,17 k;, we have

'kt k) TV =1kt TTk,) TV =0 forall 7 e 2V,

If (tl._lkp)sV # 0 for all s € Z. Then by (4-1) there is r > 0 such that
(tikp)! (¢ k) V = 0 for all 0 < i < r, and (t:k,) "1t k) H1V £ 0.
So for any 7/ € Z'*!, we have

t—nﬁdi (tikp)l_r (ti_lkp)l+r+1 V =0, t—rﬁdp (tikp)l_r (ti_lkp)l+r+1 V =0.

Therefore i
trkp(tjkp)l_r_] (l,iflkp)l-‘rrﬂ-l V= 0’

ljki (tikp)l_r_l(li_lkp)l+r+1 V = 0’
for all 7 € Z"*1.

Case 1: v €27+ 1. By the preceding discussion, there exist nonnegative integers
liand r;, fori =0,2,4,...,v—1, such that

(toky— 1)1 () Koy ) (ty—2ky—3) 2 (2 ey —3) 7= - - - (1K) (2] ko) V £ 0
and
1"k (tky 1)1 (1) ey 1) (ty—aky—3) 2 (1) Sk —3) 0 - (ko) (5 o) 0V

vanishes forall 0 < p <vand m € V/ARRS By Lemma 4.3, the conclusion of the
theorem holds.

Case 2: v € 27. Then there exist nonnegative integers /; and r;, fori =0, 2,4, .. .,
v — 2, such that

W = (ty—1ky-2)" 2 (1, ey —2) 2 B3k )4 (1) sy —a) - (ko) 0 (1 ko) V
is nonzero and

(4-2) t"k,W =0

forall0<p<v—1landme€ VARRS By (2-1), we know that

(4-3) "k, W =0,



100 CUIPO JIANG AND QIFEN JIANG

for m € 7"+ such that m, # 0. If there exists "0k, satisfying t"0k, W # 0, let

P, = span {t%d;, t"d,, 1%k, | = =1)°" ", 0<i <v—1,
m=(mo,....my_1) €2’ mel" "}

W =UE,)W.

Then W’ # 0 and
t"k,W' =0,  t"k,2W =0,

forall0 < p<v—1, meZ"*, and i € 7! such that n, # 0. If there exists
0 # t™k, such that 1k, W’ # 0, we have

) k)W =0 and (%) T @ 2k) W £ 0

for some [ € Z,. As in the preceding proof, we can deduce that there exists a
nonzero v € W’ such that

t2k,2v=0
for all n € Z". Therefore
tmkpv =0
for all m € 7"+ and 0 < p < v. We have proved that X (V) =0. O
References

[Belavin et al. 1984] A. A. Belavin, A. M. Polyakov, and A. B. Zamolodchikov, “Infinite confor-
mal symmetry in two-dimensional quantum field theory”, Nuclear Phys. B 241:2 (1984), 333-380.
MR 86m:81097 Zbl 0661.17013

[Berman and Billig 1999] S. Berman and Y. Billig, “Irreducible representations for toroidal Lie
algebras”, J. Algebra 221:1 (1999), 188-231. MR 2000k:17004 Zbl 0942.17016

[Billig 2003] Y. Billig, “Abelian extensions of the group of diffeomorphisms of a torus”, Lett. Math.
Phys. 64:2 (2003), 155-169. MR 2004h:22012 Zbl 1079.58004

[Chari and Pressley 1988] V. Chari and A. Pressley, “Unitary representations of the Virasoro algebra
and a conjecture of Kac”, Compositio Math. 67:3 (1988), 315-342. MR 89h:17025 Zbl 0661.17022

[Di Francesco et al. 1997] P. Di Francesco, P. Mathieu, and D. Sénéchal, Conformal field theory,
Springer, New York, 1997. MR 97g:81062 Zbl 0869.53052

[Dotsenko and Fateev 1984] V. S. Dotsenko and V. A. Fateev, “Conformal algebra and multipoint
correlation functions in 2D statistical models”, Nuclear Phys. B 240:3 (1984), 312-348. MR 85i:
82061

[Eswara Rao 2004] S. Eswara Rao, “Partial classification of modules for Lie algebra of diffeo-
morphisms of d-dimensional torus”, J. Math. Phys. 45:8 (2004), 3322-3333. MR 2005d:17028
Zbl 1071.17020

[Eswara Rao and Jiang 2005] S. Eswara Rao and C. Jiang, “Classification of irreducible integrable
representations for the full toroidal Lie algebras™, J. Pure Appl. Algebra 200:1-2 (2005), 71-85.
MR 2006b:17038 Zbl 1070.17009



ABELIAN EXTENSION OF LIE ALGEBRA OF DIFFEORMORPHISMS OF 7" 101

[Eswara Rao and Moody 1994] S. Eswara Rao and R. V. Moody, “Vertex representations for n-
toroidal Lie algebras and a generalization of the Virasoro algebra”, Comm. Math. Phys. 159:2
(1994), 239-264. MR 94m:17028 Zbl 0808.17018

[Jiang and Meng 2003] C. Jiang and D. Meng, “Integrable representations for generalized Virasoro-
toroidal Lie algebras”, J. Algebra 270:1 (2003), 307-334. MR 2005b:17053 Zbl 1037.17029

[Kac 1982] V. G. Kac, “Some problems on infinite-dimensional Lie algebras and their representa-
tions”, pp. 117-126 in Lie algebras and related topics (New Brunswick, NJ, 1981), edited by D. J.
Winter, Lecture Notes in Math. 933, Springer, Berlin, 1982. MR 84e:17010 Zbl 0493.17011

[Kaplansky and Santharoubane 1985] I. Kaplansky and L. J. Santharoubane, “Harish-Chandra mod-
ules over the Virasoro algebra”, pp. 217-231 in Infinite dimensional groups with applications
(Berkeley, 1984), edited by V. Kac, Math. Sci. Res. Inst. Publ. 4, Springer, New York, 1985.
MR 87d:17013 Zbl 0589.17013

[Larsson 1992] T. A. Larsson, “Conformal fields: a class of representations of Vect(N)”, Internat.
J. Modern Phys. A 7:26 (1992), 6493-6508. MR 93h:17053 Zbl 0972.17502

[Mathieu 1992] O. Mathieu, “Classification of Harish-Chandra modules over the Virasoro Lie alge-
bra”, Invent. Math. 107:2 (1992), 225-234. MR 93d:17034 Zbl 0779.17025

[Ramos et al. 1990] E. Ramos, C.-H. Sah, and R. E. Shrock, “Algebras of diffeomorphisms of the
N-torus”, J. Math. Phys. 31:8 (1990), 1805-1816. MR 91j:17043 Zbl 0733.17014

Received December 3, 2005.

CuIPO JIANG

DEPARTMENT OF MATHEMATICS
SHANGHAI JIAOTONG UNIVERSITY
SHANGHATI 200030

CHINA

cpjiang @sjtu.edu.cn

QIFEN JIANG

DEPARTMENT OF MATHEMATICS
SHANGHAI JTJAOTONG UNIVERSITY
SHANGHATI 200030

CHINA

qfjiang @sjtu.edu.cn






