IRREDUCIBLE REPRESENTATIONS FOR THE ABELIAN EXTENSION OF THE LIE ALGEBRA OF DIFFEOMORPHISMS OF TORI IN DIMENSIONS GREATER THAN 1

CUIPO JIANG AND QIFEN JIANG

Volume 231 No. 1 May 2007
IRREDUCIBLE REPRESENTATIONS FOR THE ABELIAN EXTENSION OF THE LIE ALGEBRA OF DIFFEOMORPHISMS OF TORI IN DIMENSIONS GREATER THAN 1

CUIPO JIANG AND QIFEN JIANG

We classify the irreducible weight modules of the abelian extension of the Lie algebra of diffeomorphisms of tori of dimension greater than 1, with finite-dimensional weight spaces.

1. Introduction

Let $W_{\nu+1}$ be the Lie algebra of diffeomorphisms of the $(\nu+1)$-dimensional torus. If $\nu = 0$, the universal central extension of the complex Lie algebra W_1 is the Virasoro algebra, which, together with its representations, plays a very important role in many areas of mathematics and physics [Belavin et al. 1984; Dotsenko and Fateev 1984; Di Francesco et al. 1997]. The representation theory of the Virasoro algebra has been studied extensively; see, for example, [Kac 1982; Kaplansky and Santharoubane 1985; Chari and Pressley 1988; Mathieu 1992].

If $\nu \geq 1$, however, the Lie algebra $W_{\nu+1}$ has no nontrivial central extension [Ramos et al. 1990]. But $W_{\nu+1}$ has abelian extensions whose abelian ideals are the central parts of the corresponding toroidal Lie algebras; see [Berman and Billig 1999], for example. There is a close connection between irreducible integrable modules of the toroidal Lie algebra and irreducible modules of the abelian extension \mathcal{L}; see [Berman and Billig 1999; Eswara Rao and Moody 1994; Jiang and Meng 2003], for instance. In fact, the classification of integrable modules of toroidal Lie algebras and their subalgebras depends heavily on the classification of irreducible representations of \mathcal{L} and its subalgebras. See [Billig 2003] for the constructions of the abelian extensions for the group of diffeomorphisms of a torus.

In this paper we study the irreducible weight modules of \mathcal{L}, for $\nu \geq 1$. If V is an irreducible weight module of \mathcal{L}, some of whose central charges c_0, \ldots, c_{ν} are nonzero, one can assume that c_0, \ldots, c_{N} are \mathbb{Z}-linearly independent and $c_{N+1} = \cdots = c_{\nu} = 0$, where $N \geq 0$. We prove that if $N \geq 1$, then V must have weight

MSC2000: primary 17B67, 17B65; secondary 17B68.
Keywords: irreducible representation, abelian extension, central charge.
Work supported in part by NSF of China, grants No. 10271076 and No. 10571119.
spaces which are infinite-dimensional. So if all the weight spaces of \(V \) are finite-dimensional, \(N \) vanishes. We classify the irreducible modules of \(\mathcal{L} \) with finite-dimensional weight spaces and some nonzero central charges. We prove that such a module \(V \) is isomorphic to a highest weight module. The highest weight space \(T \) is isomorphic to an irreducible \((\mathcal{A}_v+W_v) \)-module all of whose weight spaces have the same dimension, where \(\mathcal{A}_v \) is the ring of Laurent polynomials in \(v \) commuting variables, regarded as a commutative Lie algebra. An important step is to characterize the \(\mathcal{A}_v \)-module structure of \(T \). It turns out that the action of \(\mathcal{A}_v \) on \(T \) is essentially multiplication by polynomials in \(\mathcal{A}_v \). Therefore \(T \) can be identified with Larsson’s construction [1992] by a result in [Eswara Rao 2004]. That is, \(T \) is a tensor product of \(gl_v \)-module with \(\mathcal{A}_v \).

When all the central charges of \(V \) are zero, we prove that the abelian part acts on \(V \) as zero if \(V \) is a uniformly bounded \(\mathcal{L} \)-module. So the result in this case is not complete.

Throughout the paper, \(\mathbb{C}, \mathbb{Z}_+ \) and \(\mathbb{Z}_- \) denote the sets of complex numbers, positive integers and negative integers.

2. Basic concepts and results

Let \(\mathcal{A}_{v+1} = \mathbb{C}[t_0^{\pm 1}, t_1^{\pm 1}, \ldots, t_v^{\pm 1}] \) \((v \geq 1)\) be the ring of Laurent polynomials in commuting variables \(t_0, t_1, \ldots, t_v \). For \(n = (n_1, n_2, \ldots, n_v) \in \mathbb{Z}^v, n_0 \in \mathbb{Z} \), we denote \(t_0^{n_0} t_1^{n_1} \cdots t_v^{n_v} \) by \(t_0^n t^v \). Let \(\mathcal{K} \) be the free \(\mathcal{A}_{v+1} \)-module with basis \(\{ k_0, k_1, \ldots, k_v \} \) and let \(d\mathcal{K} \) be the subspace spanned by all elements of the form

\[
\sum_{i=0}^v r_i t_0^{r_0} t^i k_i, \quad \text{for } (r_0, r) = (r_0, r_1, \ldots, r_v) \in \mathbb{Z}^{v+1}.
\]

Set \(\mathcal{H} = \mathcal{K} / d\mathcal{K} \) and denote the image of \(t_0^{r_0} t^i k_i \) itself. Then \(\mathcal{H} \) is spanned by the elements \(\{ t_0^{r_0} t^r k_p \mid p = 0, 1, \ldots, v, r_0 \in \mathbb{Z}, r \in \mathbb{Z}^v \} \) with relations

\[
\sum_{p=0}^v r_p t_0^{r_0} t^r k_p = 0.
\]

(2-1)

Let \(\mathcal{D} \) be the Lie algebra of derivations on \(\mathcal{A}_{v+1} \). Then

\[
\mathcal{D} = \left\{ \sum_{p=0}^v f_p(t_0, t_1, \ldots, t_v) d_p \mid f_p(t_0, t_1, \ldots, t_v) \in \mathcal{A}_{v+1} \right\},
\]

where \(d_p = t_p \partial / \partial t_p \), \(p = 0, 1, \ldots, v \). From [Berman and Billig 1999] we know that the algebra \(\mathcal{D} \) admits two nontrivial 2-cocycles with values in \(\mathcal{K} \):

\[
\tau_1(t_0^{m_0} t^m d_u, t_0^{m_0} t^m d_b) = -n_u m_b \sum_{p=0}^v m_p t_0^{m_0+n_0} t^{m+n} k_p.
\]
ABELIAN EXTENSION OF LIE ALGEBRA OF DIFFEOMORPHISMS OF T^n

Let $\tau = \mu_1 \tau_1 + \mu_2 \tau_2$ be an arbitrary linear combination of τ_1 and τ_2. Then the corresponding abelian extension of \mathcal{D} is

$$\mathcal{L} = \mathcal{D} \oplus \mathcal{H},$$

with the Lie bracket

(2-2)

$$\begin{align*}
[t^{m_0} a, t^{n_0} b] &= n_a t^{m_0 + n_0} k_p + \delta_{ab} \sum_{p=0}^{v} m_p t^{m_0 + n_0 + n_p} k_p, \\
[t^{m_0} d, t^{n_0} b] &= n_d t^{m_0 + n_0} b_p + n_{kd} t^{m_0 + n_0} d_p + \tau (t^{m_0} d, t^{n_0} b).
\end{align*}$$

The sum

$$\mathfrak{h} = \left(\bigoplus_{i=0}^{v} \mathbb{C} k_i \right) \oplus \left(\bigoplus_{i=0}^{v} \mathbb{C} d_i \right)$$

is an abelian Lie subalgebra of \mathcal{L}. An \mathcal{L}-module V is called a weight module if

$$V = \bigoplus_{\lambda \in \mathfrak{h}^*} V_{\lambda},$$

where $V_{\lambda} = \{v \in V \mid h \cdot v = \lambda(h) v \text{ for all } h \in \mathfrak{h}\}$. Denote by $P(V)$ the set of all weights. Throughout the paper, we assume that V is an irreducible weight module of \mathcal{L} with finite-dimensional weight spaces. Since V is irreducible, we have

$$k_i | V = c_i,$$

where the constants c_i, for $i = 0, 1, \ldots, v$, are called the central charges of V.

Lemma 2.1. Let $A = (a_{ij})$ $(0 \leq i, j \leq v)$ be a $(v+1) \times (v+1)$ matrix such that $\det A = 1$ and $a_{ij} \in \mathbb{Z}$. There exists an automorphism σ of \mathcal{L} such that

$$\begin{align*}
\sigma (t^{m} k_j) &= \sum_{p=0}^{v} a_{pj} t^{m A^T} k_p, \\
\sigma (t^{m} d_j) &= \sum_{p=0}^{v} b_{jp} t^{m A^T} d_p, \quad 0 \leq j \leq v,
\end{align*}$$

where $t^{m} = t^{m_0} t^{m}$, $B = (b_{ij}) = A^{-1}$.

3. The structure of V with nonzero central charges

In this section, we discuss the weight module V which has nonzero central charges. It follows from Lemma 2.1 that we can assume that c_0, c_1, \ldots, c_N are \mathbb{Z}-linearly independent, i.e., if $\sum_{i=0}^{N} a_i c_i = 0$, $a_i \in \mathbb{Z}$, then all $a_i (i = 0, \ldots, N)$ must be zero,
and $c_{N+1} = c_{N+2} = \cdots = c_v = 0$, where $N \geq 0$. For $\tilde{m} = (m_0, m)$, denote $t_{0}^{m_0}t_{m}^{}$ by $t_{\tilde{m}}^{}$ as in Lemma 2.1. It is easy to see that V has the decomposition

$$V = \bigoplus_{\tilde{m} \in \mathbb{Z}^{v+1}} V_{\tilde{m}},$$

where $V_{\tilde{m}} = \{ v \in V \mid d_i(v) = (\gamma_0(d_i) + m_i)v, i = 0, 1, \ldots, v \}$, with $\gamma_0 \in P(V)$ a fixed weight, and $\tilde{m} = (m_0, m_1, \ldots, m_v) \in \mathbb{Z}^{v+1}$. If V has finite-dimensional weight spaces, the $V_{\tilde{m}}$ are finite-dimensional, for $\tilde{m} \in \mathbb{Z}^{v+1}$.

In Lemmas 3.1–3.6 we assume that V has finite-dimensional weight spaces.

Lemma 3.1. For $p \in \{0, 1, \ldots, v\}$ and $0 \neq t_{\tilde{m}}^{} k_p \in \mathcal{L}$, if there is a nonzero element v in V such that $t_{\tilde{m}}^{} k_p v = 0$, then $t_{\tilde{m}}^{} k_p$ is locally nilpotent on V.

Lemma 3.2. Let $t_{0}^{m_0}t_{m}^{} k_p \in \mathcal{L}$ be such that $\tilde{m} = (m_0, m) \neq \tilde{0}$, and there exists $0 \leq a \leq N$ such that $m_a \neq 0$ if $N < p \leq v$. If $t_{0}^{m_0}t_{m}^{} k_p$ is locally nilpotent on V, then $\dim V_{\tilde{a}} > \dim V_{\tilde{a} + \tilde{m}}$ for all $\tilde{n} \in \mathbb{Z}^{v+1}$.

Proof. Case 1: $p \in \{0, 1, \ldots, N\}$. We first prove that $\dim V_{\tilde{a}} \geq \dim V_{\tilde{a} + \tilde{m}}$ for all $\tilde{n} \in \mathbb{Z}^{v+1}$. Suppose $\dim V_{\tilde{a}} = m$, $\dim V_{\tilde{a} + \tilde{m}} = n$. Let $\{w_1, w_2, \ldots, w_n\}$ be a basis of $V_{\tilde{a} + \tilde{m}}$ and $\{w'_1, w'_2, \ldots, w'_m\}$ a basis of $V_{\tilde{a}}$. We can assume that $m_a \neq 0$ for some $0 \leq a \leq v$ distinct from p, where $\tilde{m} = (m_0, m) = (m_0, m_1, \ldots, m_v)$. Since $t_{\tilde{m}}^{} k_p$ is locally nilpotent on V and $V_{\tilde{a} + \tilde{m}}$ is finite-dimensional, there exists $k > 0$ such that $(t_{\tilde{m}}^{} k_p)^k V_{\tilde{a} + \tilde{m}} = 0$. Therefore

$$(t_{-\tilde{m}}^{} d_a)^k (t_{\tilde{m}}^{} k_p)^k (w_1, w_2, \ldots, w_n) = 0.$$

On the other hand, by induction on k, we can deduce that

$$(t_{-\tilde{m}}^{} d_a)^k (t_{\tilde{m}}^{} k_p)^k = \sum_{i=0}^{k} \frac{k!}{i! (k-i)! (k-i)!} m_a^i c_p^i (t_{\tilde{m}}^{} k_p)^{k-1-i} (t_{-\tilde{m}}^{} d_a)^{k-i}.$$

Therefore

$$t_{\tilde{m}}^{} k_p \left(\sum_{i=0}^{k-1} \frac{k!}{i! (k-i)! (k-i)!} m_a^i c_p^i (t_{\tilde{m}}^{} k_p)^{k-1-i} (t_{-\tilde{m}}^{} d_a)^{k-1-i} \right) t_{-\tilde{m}}^{} d_a (w_1, w_2, \ldots, w_n) = -k! m_a^k c_p^k (w_1, w_2, \ldots, w_n).$$

Assume that

$$\left(\sum_{i=0}^{k-1} \frac{k!}{i! (k-i)! (k-i)!} m_a^i c_p^i (t_{\tilde{m}}^{} k_p)^{k-1-i} (t_{-\tilde{m}}^{} d_a)^{k-1-i} \right) t_{-\tilde{m}}^{} d_a (w_1, w_2, \ldots, w_n) = (w'_1, w'_2, \ldots, w'_m) C,$$

with $C \in \mathbb{C}^{m \times n}$, and that

$$t_{\tilde{m}}^{} k_p (w'_1, w'_2, \ldots, w'_m) = (w_1, w_2, \ldots, w_n) B,$$

where B is an $n \times n$ matrix.
with $B \in \mathbb{C}^{n \times m}$. Then

$$BC = -k!m^k_0c^k_p f.$$

This implies that $m \geq n$. So dim $V_\bar{n} \geq$ dim $V_{\bar{n}+\bar{m}}$ for all $\bar{n} \in \mathbb{Z}^{v+1}$. Also, by (3-1) and the fact that $r(B) = n$, we know that $m > n$ if and only if there exists $v \in V_\bar{n}$ such that $t^{\bar{m}}k_p \cdot v = 0$. Since $t^{\bar{m}}k_p$ is locally nilpotent on V, there exist an integer $s \geq 0$ and $w \in V_{\bar{n}+s\bar{m}}$ such that

$$(t^{\bar{m}}k_p) \cdot w = 0.$$

Therefore $(t^{\bar{m}}k_p) t^{\bar{m}}k_p \cdot w = t^{\bar{m}}k_p(t^{\bar{m}}k_p \cdot w) = 0$. If $t^{\bar{m}}k_p \cdot w = 0$, by the proof above, dim $V_{\bar{n}+s\bar{m}−\bar{m}} \leq$ dim $V_{\bar{n}+s\bar{m}}$, contradicting the fact that dim $V_{\bar{n}+s\bar{m}−\bar{m}}$ \geq dim $V_{\bar{n}+s\bar{m}}$. Therefore $(t^{\bar{m}}k_p)^r \cdot w \neq 0$ for all $r \in \mathbb{N}$. Since

$$(t^{\bar{m}}k_p)^s t^{\bar{m}}k_p \cdot w = t^{\bar{m}}k_p(t^{\bar{m}}k_p)^s \cdot w = 0$$

and $(t^{\bar{m}}k_p)^s \cdot w \in V_\bar{n}$, it follows that there is a nonzero element v in $V_\bar{n}$ such that $t^{\bar{m}}k_p \cdot v = 0$. Thus $n < m$.

Case 2: $N < p \leq v$. The proof is similar to that of case 1, but we have to consider $t^{\bar{m}}d_p$ and $t^{\bar{m}}k_p$ instead and use the \mathbb{Z}-linear independence of c_1, \ldots, c_N. \hfill \Box

Lemma 3.3. Let $0 \neq t^{\bar{m}}k_p \in \mathcal{L}$ and $0 \neq t^{\bar{m}}k_p \in \mathcal{L}$ be such that $(m_0, \ldots, m_N) \neq 0$, $(n_0, \ldots, n_N) \neq 0$ if $N < p \leq v$, where $\bar{m} = (m_0, m_1, \ldots, m_v)$.

1. If $t^{\bar{m}}k_p$ is locally nilpotent on V, $t^{\bar{m}}k_q$ is locally nilpotent for $q = 0, 1, \ldots, v$.
2. If both $0 \neq t^{\bar{m}}k_p$ and $0 \neq t^{\bar{m}}k_q$ are locally nilpotent on V, then $t^{\bar{m}+\bar{m}}k_p$ is locally nilpotent.
3. If $0 \neq t^{\bar{m}+\bar{m}}k_p$ is locally nilpotent on V and $(m_0+n_0, \ldots, m_N+n_N) \neq 0$ if $N < p \leq v$, then $t^{\bar{m}}k_p$ or $t^{\bar{m}}k_p$ is locally nilpotent.

Lemma 3.4. For $0 \leq p \leq v$, let $0 \neq t^{\bar{m}}k_p \in \mathcal{L}$ be such that $(m_0, \ldots, m_N) \neq 0$, where $\bar{m} = (m_0, m_1, \ldots, m_v)$. Then $t^{\bar{m}}k_p$ or $t^{\bar{m}}k_p$ is locally nilpotent on V.

Proof. The proof occupies the next few pages. We first deal with the case $0 \leq p \leq N$. Without losing generality, we can take $p = 0$.

Suppose the lemma is false. By Lemma 3.2, for any $\bar{r} \in \mathbb{Z}^{v+1}$ we have

$$\dim V_{\bar{r}+\bar{m}} = \dim V_{\bar{r}} = \dim V_{\bar{r}−\bar{m}}, \quad t^{\bar{m}}k_0V_{\bar{r}} = V_{\bar{r}+\bar{m}}, \quad t^{−\bar{m}}k_0V_{\bar{r}} = V_{\bar{r}−\bar{m}}.$$

Fix $\bar{r} = (r_0, \bar{r}) \in \mathbb{Z}^{v+1}$ such that $V_{\bar{r}} \neq 0$. Let $\{v_1, \ldots, v_n\}$ be a basis of $V_{\bar{r}}$ and set

$$v_i(k\bar{m}) = \frac{1}{c_0} t^{\bar{m}}k_0 \cdot v_i, \quad i = 1, 2, \ldots, n.$$
where $k \in \mathbb{Z} \setminus \{0\}$. Then \(\{v_1(k\tilde{m}), v_2(k\tilde{m}), \ldots, v_n(k\tilde{m})\}\) is a basis of \(V_{r+k\tilde{m}}\). Let
\(B_{-\tilde{m},\tilde{m}}^{(0)}, B_{\tilde{m},-\tilde{m}}^{(0)} \in \mathbb{C}^{n \times n}\) be such that
\[
\frac{1}{c_0} t^{\tilde{m}} k_0 (v_1(-\tilde{m}), v_2(-\tilde{m}), \ldots, v_n(-\tilde{m})) = (v_1, v_2, \ldots, v_n) B_{-\tilde{m},\tilde{m}}^{(0)},
\]
\[
\frac{1}{c_0} t^{-\tilde{m}} k_0 (v_1(\tilde{m}), v_2(\tilde{m}), \ldots, v_n(\tilde{m})) = (v_1, v_2, \ldots, v_n) B_{\tilde{m},-\tilde{m}}^{(0)}.
\]
Since \(t^{\tilde{m}} k_0 \) and \(t^{-\tilde{m}} k_0\) are commutative, it is easy to deduce that
\[
B_{-\tilde{m},\tilde{m}}^{(0)} = B_{\tilde{m},-\tilde{m}}^{(0)}.
\]
By Lemma 3.1, \(B_{-\tilde{m},\tilde{m}}^{(0)}\) is an \(n \times n\) invertible matrix.

Claim. \(B_{-\tilde{m},\tilde{m}}^{(0)}\) does not have distinct eigenvalues.

Proof. Set \(c = 1/c_0\). To prove the claim, we need to consider \(ct^{\tilde{m}} k_0 ct^{-\tilde{m}} k_0 - \lambda \text{id}\), where \(\lambda \in \mathbb{C}^*\). As in the proof of Lemma 3.1, we can deduce that if there is a nonzero element \(v\) in \(V\) such that \((ct^{\tilde{m}} k_0 ct^{-\tilde{m}} k_0 - \lambda \text{id}) v = 0\), then \(ct^{\tilde{m}} k_0 ct^{-\tilde{m}} k_0 - \lambda \text{id}\) is locally nilpotent on \(V\). On the other hand, we have
\[
(ct^{\tilde{m}} k_0 ct^{-\tilde{m}} k_0 - \lambda \text{id})^l (v_1, v_2, \ldots, v_n) = (v_1, v_2, \ldots, v_n) (B_{-\tilde{m},\tilde{m}}^{(0)} - \lambda \text{id})^l.
\]
Therefore the claim holds. \(\square\)

For \(p \in \{1, 2, \ldots, v\}\), let \(C_{-\tilde{m},\tilde{m}}^{(p)}; C_{\tilde{m},-\tilde{m}}^{(p)} \in \mathbb{C}^{n \times n}\) be such that
\[
t^{\tilde{m}} k_p (v_1, v_2, \ldots, v_n) = (v_1, v_2, \ldots, v_n) C_{-\tilde{m},\tilde{m}}^{(p)},
\]
\[
t^{\tilde{m}} k_p (v_1(-\tilde{m}), v_2(-\tilde{m}), \ldots, v_n(-\tilde{m})) = (v_1, v_2, \ldots, v_n) C_{\tilde{m},-\tilde{m}}^{(p)}.
\]
Since
\[
\frac{1}{c_0} t^{-\tilde{m}} k_0 t^{\tilde{m}} k_p (v_1, v_2, \ldots, v_n) = t^{\tilde{m}} k_p \frac{1}{c_0} t^{-\tilde{m}} k_0 (v_1, v_2, \ldots, v_n),
\]
we have
\[
C_{-\tilde{m},\tilde{m}}^{(p)} = B_{-\tilde{m},\tilde{m}}^{(0)} C_{-\tilde{m},\tilde{m}}^{(p)}.
\]
Furthermore, by the fact that
\[
\frac{1}{c_0} t^{\tilde{m}} k_0 \frac{1}{c_0} t^{-\tilde{m}} k_0 t^{\tilde{m}} k_p (v_1, v_2, \ldots, v_n) = t^{\tilde{m}} k_p \frac{1}{c_0} t^{-\tilde{m}} k_0 (v_1, v_2, \ldots, v_n)
\]
and
\[
t^{\tilde{m}} k_q \frac{1}{c_0} t^{-\tilde{m}} k_0 t^{\tilde{m}} k_p = t^{\tilde{m}} k_p \frac{1}{c_0} t^{-\tilde{m}} k_0 t^{\tilde{m}} k_q,
\]
we deduce that

\begin{equation}
B^{(p)}_{\bar{m}, \bar{m}} C^{(p)}_{\bar{m}, \bar{0}} = C^{(p)}_{\bar{m}, \bar{m}} B^{(p)}_{\bar{m}, \bar{m}}, \quad C^{(p)}_{\bar{m}, \bar{0}} C^{(q)}_{\bar{m}, \bar{0}} = C^{(q)}_{\bar{m}, \bar{m}} C^{(p)}_{\bar{m}, \bar{0}} \quad 1 \leq p, q \leq v.
\end{equation}

Hence there exists \(D \in \mathbb{C}^{n \times n} \) such that \(\{ D^{-1} B^{(p)}_{\bar{m}, \bar{m}} D, D^{-1} C^{(p)}_{\bar{m}, \bar{0}} D \mid 1 \leq p \leq v \} \) are all upper triangular matrices. If we set

\[
(w_1, w_2, \ldots, w_n) = (v_1, v_2, \ldots, v_n) D
\]

and

\[
w_i(k\bar{m}) = \frac{1}{c_0} t^{k\bar{m}} k_0 w_i, 1 \leq i \leq n, k \in \mathbb{Z} \setminus \{0\},
\]

then

\[
\frac{1}{c_0} t^{k\bar{m}} k_0 (w_1(-\bar{m}), w_2(-\bar{m}), \ldots, w_n(-\bar{m})) = (w_1, \ldots, w_n) D^{-1} B^{(0)}_{\bar{m}, \bar{m}} D,
\]

\[
t^{\bar{m}} k_p (w_1, w_2, \ldots, w_n) = (w_1(\bar{m}), \ldots, w_n(\bar{m})) D^{-1} C^{(p)}_{\bar{m}, \bar{0}} D.
\]

So we can assume that \(B^{(0)}_{\bar{m}, \bar{m}}, C^{(p)}_{\bar{m}, \bar{0}}, \) and \(C^{(p)}_{\bar{m}, -\bar{m}}, \) for \(1 \leq p \leq v \) are all invertible upper triangular matrices. Furthermore, because

\[
\left(t^{\bar{m}} k_p \frac{1}{c_0} t^{-\bar{m}} k_0 - \lambda \text{id}\right)^l (v_1, v_2, \ldots, v_n) = (v_1, v_2, \ldots, v_n) (C^{(p)}_{\bar{m}, -\bar{m}} - \lambda \text{id})^l,
\]

the argument used in the proof of the claim shows that \(C^{(p)}_{\bar{m}, -\bar{m}} \) also does not have distinct eigenvalues. For \(1 \leq p \leq N, \) set

\[
B^{(p)}_{\bar{m}, -\bar{m}} = \frac{1}{c_0} C^{(p)}_{\bar{m}, -\bar{m}}
\]

and for \(0 \leq p \leq N \) denote by \(\lambda_p \) the eigenvalue of \(B^{(p)}_{\bar{m}, -\bar{m}}. \)

Let \(A^{(a)}_{\bar{k}\bar{m}, \bar{0}} \) and \(A^{(a)}_{\bar{k}\bar{m}, \bar{k}\bar{m}} \), for \(0 \leq a \leq v \) and \(k, k_1, k_2 \in \mathbb{Z} \setminus \{0\}, \) be such that

\[
t^{k\bar{m}} d_a (v_1, v_2, \ldots, v_n) = (v_1(k\bar{m}), v_2(k\bar{m}), \ldots, v_n(k\bar{m})) A^{(a)}_{\bar{k}\bar{m}, \bar{0}},
\]

\[
t^{k\bar{m}} d_a (v_1(k\bar{m}), v_2(k\bar{m}), \ldots, v_n(k\bar{m})) = (v_1(k_1\bar{m} + k_2\bar{m}), \ldots, v_n(k_1\bar{m} + k_2\bar{m})) A^{(a)}_{\bar{k}\bar{m}, \bar{k}\bar{m}}.
\]

Case 1: \(v > 1. \) Since \(t^{\bar{m}} k_0 = t^{\bar{m}} k_0 \neq 0, \) it follows that there exists \(1 \leq a \leq v \) such that \(m_a \neq 0, \) where \(m = (m_1, m_2, \ldots, m_v). \) Let \(b \in \{1, \ldots, v\} \) be such that \(a \neq b. \) Consider

\begin{equation}
[t^{-\bar{m}} d_a, \frac{1}{c_0} t^{\bar{m}} k_0] = m_a \frac{1}{c_0} k_0, \quad [t^{-\bar{m}} d_a, t^{\bar{m}} k_b] = m_a k_b.
\end{equation}

Case 1.1: There exists \(b \in \{0, 1, \ldots, v\} \) such that \(b \neq 0, a \) and \(c_b = 0. \) Then

\[
A^{(a)}_{\bar{m}, \bar{k}\bar{m}} = B^{(0)}_{\bar{m}, \bar{m}} A^{(a)}_{\bar{m}, \bar{0}} + m_a I, \quad A^{(a)}_{\bar{m}, \bar{m}} C^{(b)}_{\bar{m}, \bar{0}} = C^{(b)}_{\bar{m}, -\bar{m}} A^{(a)}_{\bar{m}, \bar{0}}.
\]
By (3-2) and (3-3),

\[A^{(a)}_{\bar{m}, \tilde{0}} + m_a B^{(0)}_{\bar{m}, \tilde{m}}^{-1} = C^{(b)}_{\tilde{m}, \bar{0}} A^{(a)}_{\bar{m}, \bar{0}} C^{(b)}_{\tilde{m}, \bar{0}}^{-1}. \]

But the sum on the left-hand side cannot be similar to \(A^{(a)}_{\bar{m}, \tilde{0}} \), since \(m_a \neq 0 \) and \(B^{(0)}_{\bar{m}, \tilde{m}}^{-1} \) is an invertible upper triangular matrix and does not have different eigenvalues. Thus this case is excluded.

Case 1.2: \(c_b \neq 0 \) for all \(b \in \{0, 1, \ldots, v\}, b \neq 0, a \). By (3-4) and (3-2), we have

\[
B^{(0)}_{\bar{m}, \tilde{m}} A^{(a)}_{\bar{m}, \tilde{0}} B^{(0)}_{\tilde{m}, \bar{m}}^{-1} + m_a B^{(0)}_{\bar{m}, \tilde{m}}^{-1} - m_a B^{(b)}_{\bar{m}, \tilde{m}}^{-1} = B^{(0)}_{\bar{m}, \tilde{m}} C^{(b)}_{\tilde{m}, \bar{0}} A^{(a)}_{\bar{m}, \bar{0}} C^{(b)}_{\tilde{m}, \bar{0}}^{-1} B^{(0)}_{\tilde{m}, \bar{m}}^{-1}. \]

(1) There exists \(b \neq 0 \) and \(a \) such that \(\lambda_0 \neq \lambda_b \). Then \(m_a B^{(0)}_{\bar{m}, \tilde{m}}^{-1} - m_a B^{(b)}_{\bar{m}, \tilde{m}}^{-1} \) is an invertible upper triangular matrix and does not have different eigenvalues. As in case 1.1, we deduce a contradiction.

(II) \(\lambda_0 = \lambda_b \) for all \(b \in \{1, \ldots, v\} \) distinct from \(a \).

(II.1) Suppose first that \(c_a = 0 \) (in this case \(N = v - 1, a = v \)) or \(c_a \neq 0 \) and \(\lambda_a = \lambda_0 \) (in this case \(N = v \)). Since \(\sum_{p=0}^{v} m_p t^m k_p = 0 \), we have

\[
\sum_{p=0}^{v} m_p t^m k_p = 0.
\]

So \(\sum_{p=0}^{v} m_p C^{(p)}_{\tilde{m}, \bar{m}} = 0 \), and therefore

\[
\sum_{p=0}^{v} m_p c_p = 0,
\]

which contradicts the assumption that \(c_0, \ldots, c_N \) are \(\mathbb{Z}\)-linearly independent.

(II.2) Now suppose \(c_a \neq 0 \), \(\lambda_a \neq \lambda_0 \) and there exists \(b \neq 0 \) and \(a \) such that \(m_b \neq 0 \). We deduce a contradiction as in case 1.2(1) by interchanging \(a \) by \(b \).

(II.3) Suppose \(c_a \neq 0 \), \(\lambda_a \neq \lambda_0 \) and \(m_b = 0 \) for all \(b \in \{1, \ldots, v\} \) distinct from \(a \). Then \(m_0 c_0 \lambda_0 + m_a c_a \lambda_a = 0 \). The proof of this case is the same as in case 2.2 below.

Case 2: \(v = 1 \). In this case \(a = 1 \).

Case 2.1: \(c_a = 0 \). Since \([t^{-\tilde{m}} d_0, t^\tilde{m} k_0] = [t^{-\tilde{m}} k_0, t^\tilde{m} d_0] = 0\), we have

\[
A^{(0)}_{\bar{m}, \bar{m}} = B^{(0)}_{\bar{m}, \tilde{m}} A^{(0)}_{\tilde{m}, \bar{m}}, \quad A^{(0)}_{\bar{m}, \tilde{m}} = B^{(0)}_{\bar{m}, \tilde{m}} A^{(0)}_{\tilde{m}, \bar{m}}.
\]

Therefore

\[
[t^{-\tilde{m}} d_0, t^\tilde{m} d_0](v_1, v_2, \ldots, v_n) = (v_1, v_2, \ldots, v_n) B^{(0)}_{\tilde{m}, \bar{m}}\left[A^{(0)}_{\tilde{m}, \bar{m}}, A^{(0)}_{\bar{m}, \bar{m}}\right].
\]
At the same time, we have
\[[t^{-\vec{m}}d_0, t^{\vec{m}}d_0] = 2m_0d_0 + m_0^2(-\mu_1 + \mu_2)(m_0c_0 + m_1c_1), \]
where \(\tau = \mu_1 \tau_1 + \mu_2 \tau_2 \) as above. So
\[
\tag{3-5} B_{-\vec{m}, \vec{m}}^{(0)}[A_{-\vec{m}, \vec{0}}^{(0)}, A_{\vec{m}, \vec{0}}^{(0)}] = (2m_0(\gamma_0(d_0) + r_0) + m_0^2(-\mu_1 + \mu_2)(m_0c_0 + m_1c_1))I,
\]
where \(\gamma_0 \) is the weight fixed above. Since \(\gamma_0 \) is arbitrary, we can choose it such that
\[2m_0(\gamma_0(d_0) + r_0) + m_0^2(-\mu_1 + \mu_2)(m_0c_0 + m_1c_1) \neq 0. \]
But \(B_{-\vec{m}, \vec{m}}^{(0)} \) is an invertible triangular matrix and does not have different eigenvalues, in contradiction with (3-5).

Case 2.2: \(c_0 \neq 0. \) Since
\[
[t^{-\vec{m}}d_0, t^{\vec{m}}k_0] = -m_1k_1, [t^{-\vec{m}}d_1, t^{\vec{m}}k_0] = m_1k_0 \text{ and }
[t^{\vec{m}}d_0, t^{-\vec{m}}k_0] = m_1k_1, [t^{\vec{m}}d_1, t^{-\vec{m}}k_0] = -m_1k_0,
\]
we have
\[
[k_0t^{-\vec{m}}d_0 + k_1t^{-\vec{m}}d_1, t^{\vec{m}}k_0] = [k_0t^{\vec{m}}d_0 + k_1t^{\vec{m}}d_1, t^{-\vec{m}}k_0] = 0.
\]
Therefore
\[
k_0A_{-\vec{m}, \vec{m}}^{(0)} + k_1A_{-\vec{m}, \vec{m}}^{(1)} = B_{-\vec{m}, \vec{m}}^{(0)}(k_0A_{-\vec{m}, \vec{0}}^{(0)} + k_1A_{-\vec{m}, \vec{0}}^{(1)}),
k_0A_{\vec{m}, -\vec{m}}^{(0)} + k_1A_{\vec{m}, -\vec{m}}^{(1)} = B_{\vec{m}, -\vec{m}}^{(0)}(k_0A_{\vec{m}, \vec{0}}^{(0)} + k_1A_{\vec{m}, \vec{0}}^{(1)}),
\]
and
\[
[k_0t^{-\vec{m}}d_0 + k_1t^{-\vec{m}}d_1, k_0t^{\vec{m}}d_0 + k_1t^{\vec{m}}d_1](v_1, \ldots, v_n)
= (v_1, \ldots, v_n)B_{-\vec{m}, \vec{m}}^{(0)}[k_0A_{-\vec{m}, \vec{0}}^{(0)} + k_1A_{-\vec{m}, \vec{0}}^{(1)}], k_0A_{\vec{m}, \vec{0}}^{(0)} + k_1A_{\vec{m}, \vec{0}}^{(1)}].
\]
At the same time, we have
\[
[k_0t^{-\vec{m}}d_0 + k_1t^{-\vec{m}}d_1, k_0t^{\vec{m}}d_0 + k_1t^{\vec{m}}d_1]
= 2(m_0c_0 + m_1c_1)(c_0d_0 + c_1d_1) - (m_0c_0 + m_1c_1)^3(\mu_1 - \mu_2) \text{ id}.
\]
Since \(c_0 \) and \(c_1 \) are \(\mathbb{Z} \)-linearly independent, we know that \(m_0c_0 + m_1c_1 \neq 0. \) As in case 2.1, we deduce a contradiction.

This concludes the first part of the proof. We next turn to the second major case, \(N < p \leq \nu. \)

If \(N \geq 1 \) or \(N = 0, \) we have \((m_1, \ldots, m_\nu) \neq 0, \) and the lemma follows from the first part and Lemma 3.3. Otherwise, let \(t^{\vec{m}}k_\nu = t_0^{m_0}k_\nu. \) Set \(\mathcal{J}_0 = \bigoplus_{m_0 \in \mathbb{Z}} \mathbb{C}t_0^{m_0}d_0 \oplus \mathbb{C}k_0 \) and \(W = U(\mathcal{J}_0)v, \) where \(v \in V_\tau \) is a homogeneous element. Since \(c_0 \neq 0, \) the sets \(\{ \dim W_{(m_0, 0)+i} | n_0 \in \mathbb{Z} \} \) are not uniformly bounded. But if neither \(t_0^{m_0}k_\nu \)
nor $t_0^{-m_0}k_p$ is locally nilpotent, then t_0k_p and $t_0^{-1}k_p$ are not locally nilpotent. So by Lemmas 3.2 and 3.1, $\dim V(n_0,0)+\bar{t} = \dim V\bar{t}$ for all $n_0 \in \mathbb{Z}$, which is impossible since $\dim V(n_0,0)+\bar{t} \geq \dim W(n_0,0)+\bar{t}$. This proves Lemma 3.4 \square

For $0 \leq p \leq N$, consider the direct sum

$$\bigoplus_{m_p \in \mathbb{Z}} C t_p^m d_p \oplus C k_p,$$

which is a Virasoro Lie subalgebra of \mathcal{L}. Since $c_p \neq 0$, it follows from [Mathieu 1992] that there is a nonzero $v_p \in V\bar{t}$ for some $\bar{r} \in \mathbb{Z}^{v+1}$ such that

$$t_p^m d_p v_p = 0 \quad \text{for all } m_p \in \mathbb{Z}_+$$

or

$$t_p^m d_p v_p = 0 \quad \text{for all } m_p \in \mathbb{Z}_-. $$

Lemma 3.5. If $v_p \in V\bar{t}$ satisfies (3-6), the sets

$$\{t_p^m k_q \mid m_p \in \mathbb{Z}_+, q = 0, 1, 2, \ldots, v, q \neq p\}$$

are all locally nilpotent on V. Likewise for (3-7), with \mathbb{Z}_+ replaced by \mathbb{Z}_-.

Proof. We only prove the first statement. Suppose it is false; then by Lemma 3.3 $t_p k_q$ is not locally nilpotent on V for some $q \in \{0, 1, \ldots, v\}$, $q \neq p$. By Lemma 3.4, $t_p^{-1}k_q$ is locally nilpotent. Therefore there exists $k \in \mathbb{Z}_+$ such that

$$(t_p^{-1}k_q)^{k-1}v_p \neq 0, \quad (t_p^{-1}k_q)^{k}v_p = 0.$$

So

$$t_p^2 d_p (t_p^{-1}k_q)^{k}v_p = -kt_p k_q (t_p^{-1}k_q)^{k-1}v_p + (t_p^{-1}k_q)^{k}t_p^2 d_p v_p$$

$$= -kt_p k_q (t_p^{-1}k_q)^{k-1}v_p = 0.$$

This implies that $t_p k_q$ is locally nilpotent, a contradiction. \square

Lemma 3.6. If $v_p \in V\bar{t}$ satisfies (3-6), the sets

$$\{t^\bar{m} k_p \mid \bar{m} = (m_0, \ldots, m_v) \in \mathbb{Z}^{v+1}, m_p \in \mathbb{Z}_+\}$$

are all locally nilpotent on V. Likewise for (3-7), with \mathbb{Z}_+ replaced by \mathbb{Z}_-.

Proof. Again we only prove the first statement. Without loss of generality, we assume that $p = 0$. Let \mathcal{K} be the subspace of \mathcal{L} spanned by elements of \mathcal{K} which are locally nilpotent on V. If $t^{\bar{m}} k_0$, for any $\bar{m} \in \mathbb{Z}^{v} \setminus \{0\}$, is not locally nilpotent on V, the lemma holds thanks to Lemmas 3.3 and 3.5. Suppose $\mathcal{K} \cap \{t^{\bar{m}} k_0 \mid \bar{m} \in \mathbb{Z}^v\} \neq \{0\}$. By Lemmas 3.2, 3.3 and 3.5, if $t^{\bar{m}} k_0 \in \mathcal{K}$, then $t^{-\bar{m}} k_0 \notin \mathcal{K}$, and $t^{m_0} t^{\bar{m}} k_0 \in \mathcal{K}$ for all $m_0 > 0$.

Case 1: Suppose $t_0^{-m_0} t^{-\bar{m}} k_0 \in \mathcal{K}$ for any $t^{\bar{m}} k_0 \in \mathcal{K}$. Then the lemma is proved.
Case 2: Suppose there exists 0 ≠ \(t^m k_0 \in \mathcal{K} \) such that \(t_0 t^{-m} k_0 \notin \mathcal{K} \). Since \(m = (m_1, \ldots, m_v) \neq 0 \), we can assume that \(m_a \neq 0 \) for some \(a \in \{1, 2, \ldots, v\} \). Let \(V_{t_0} \) be such that
\[
\dim V_{t_0} = \min\{\dim V_{\tilde{s}} \mid V_{\tilde{s}} \neq 0, \tilde{s} \in \mathbb{Z}^{v+1}\}.
\]

Case 2.1: Assume \(t_0^i t^{-m} k_0 \notin \mathcal{K} \) for any \(i > 0 \). Let \(l \in \mathbb{Z}_+ \) and consider
\[
(3-8) \quad \sum_{i=0}^{l} a_i t_0^{-i} t^{-m} k_0 t_0^i t^{-m} k_0 v = 0,
\]
where \(v \in V_{t_0} \setminus \{0\} \). By Lemma 3.4, \(\{t_0^i t^{-m} k_0, t_0^{-i} t^m k_0 \mid i \in \mathbb{Z}_+\} \subseteq \mathcal{K} \). So by Lemma 3.2, we have
\[
t_0^i t^{-m} k_0 V_{t_0} = t_0^{-i} t^m k_0 V_{t_0} = t_0^i t^{-m} d_p V_{t_0} = t_0^{-i} t^m d_p V_{t_0} = 0, \quad i \in \mathbb{Z}_+, 0 \leq p \leq v.
\]

Let \(j \in \{0, 1, \ldots, l\} \). From (3-8) we have
\[
t_0^{-j} t^m d_a t_0^{-i} t^m d_a \left(\sum_{i=0}^{l} a_i t_0^{-i} t^{-m} k_0 t_0^i t^{-m} k_0 \right) v = 0.
\]
Therefore
\[
\sum_{i=0}^{l} a_i (-m_a) t_0^{-i} k_0 (-m_a) t_0^{-j} k_0 v = a_j m^2 k_0^2 = 0.
\]
So \(a_j = 0, j = 0, 1, \ldots, l \). This means \(\{t_0^{-i} t^{-m} k_0 t_0^i t^{-m} k_0 \mid 0 \leq i \leq l\} \) are linearly independent. Since \(l \) can be any positive integer, it follows that \(V_{t_0-(0,2m)} \) is infinite-dimensional, a contradiction.

Case 2.2: Assume there exists \(l \in \mathbb{Z}_+ \) such that
\[
t_0^{-l} t^{-m} k_0 \notin \mathcal{K}, \quad t_0^l t^{-m} k_0 \in \mathcal{K}.
\]
(I) Assume that \(t_0^i t^{-m} k_0 \in \mathcal{K} \) for any \(i \in \mathbb{Z}_+ \). Let \(s > 0 \) and consider
\[
\sum_{i=1}^{s} a_i t_0^{-i} t^m k_0 t^{-i} t^m k_0 v = 0.
\]
Similar to the proof above, we can deduce that \(V_{t_0-(l,0)} \) is infinite-dimensional, in contradiction with the assumption that \(V \) has finite-dimensional weight spaces.

(II) Assume there exists \(s_1 \in \mathbb{Z}_+ \) such that
\[
t_0^l t^{-m} k_0 \in \mathcal{K}, \quad t_0^l t^{-2m} k_0 \in \mathcal{K}, \quad \ldots, \quad t_0^l t^{-s_1 m} k_0 \in \mathcal{K}, \quad t_0^l t^{-(s_1+1) m} k_0 \notin \mathcal{K}.
\]
Then there exist \(s_2, s_3, \ldots, s_k, \ldots \) such that \(s_i \geq s_1 \) for \(i = 2, 3, \ldots, k, \ldots \) and
\[
t_0^l t^{-(s_1-s_2-\cdots-s_{i-2}) m} k_0 \in \mathcal{K}, \quad t_0^l t^{-(s_1-s_2-\cdots-s_{i-2}-1) m} k_0 \in \mathcal{K}, \quad \ldots
\]

Let V be an irreducible weight module of \mathcal{L}, \(t_0^{\mu} t^{(-s_1-s_2-\cdots-s_{i-1})m} k_0 \in \mathcal{H} \), \(t_0^{\mu} t^{(-s_1-s_2-\cdots-s_{i-1})m} k_0 \not\in \mathcal{H} \).

Assume that
$$
\sum_{i=1}^{s_1} a_i t_0^{-l} t_{i}^{m} k_0 t^{-l} t_{-i}^{m} k_0 + \sum_{i=1}^{s_2} a_{s_1+i} t_0^{-2l} t^{(s_1+i)m} k_0 t^{-(s_1+i)m} k_0 + \ldots
$$
$$
+ \sum_{i=1}^{s_3} a_{s_1+s_2+i} t_0^{-3l} t^{(s_1+s_2+i)m} k_0 t^{-(s_1+s_2+i)m} k_0 + \ldots
$$
$$
+ \sum_{i=1}^{s_4} a_{s_1+s_2+s_3+i} t_0^{-4l} t^{(s_1+s_2+s_3+i)m} k_0 t^{-(s_1+s_2+s_3+i)m} k_0 \bigg) v = 0.
$$

Let
$$
t_{-j}^m d_a t_{0}^l t_{-j}^m d_a, \quad 1 \leq j \leq s_1,
$$
$$
t_{-j}^{-l} t^{(s_1+j)m} d_a t_{0}^{2l} t^{-(s_1+j)m} d_a, \quad 1 \leq j \leq s_2,
$$
$$
\ldots,
$$
$$
t_{-j}^{-(k-1)l} t^{(s_1+s_2+\cdots+s_{j-1}+j)m} d_a t_{0}^{kl} t^{-(s_1+s_2+\cdots+s_{j-1}+j)m} d_a, \quad 1 \leq j \leq s_k
$$
act on the two sides of the above equation respectively. By Lemma 3.4, we deduce that \(a_i = 0 \), for \(i = 1, 2, \ldots, s_1 \), and that

$$
a_{s_1+s_2+\cdots+s_{j-1}+i} = 0 \quad \text{for} \quad i = 1, 2, \ldots, s_j, \quad 2 \leq j \leq k.
$$

Since \(k \) can be any positive integer, it follows that \(V_{t_0-\{0\}} \) is infinite-dimensional, which contradicts our assumption. The lemma is proved. \(\square \)

Lemmas 3.1 through 3.6 immediately yield the following result.

Theorem 3.7. Let \(V \) be an irreducible weight module of \(\mathcal{L} \) such that \(c_0, \ldots, c_N \) are \(\mathbb{Z} \)-linearly independent and \(N \geq 1 \). Then \(V \) has weight spaces that are infinite-dimensional.

Let
$$
\mathcal{L}_+ = \sum_{p=0}^{\nu} t_0 C[t_0, t_1^{\pm 1}, \ldots, t_v^{\pm 1}] k_p \oplus \sum_{p=0}^{\nu} t_0 C[t_0, t_1^{\pm 1}, \ldots, t_v^{\pm 1}] d_p,
$$
$$
\mathcal{L}_- = \sum_{p=0}^{\nu} t_0^{-1} C[t_0^{-1}, t_1^{\pm 1}, \ldots, t_v^{\pm 1}] k_p \oplus \sum_{p=0}^{\nu} t_0^{-1} C[t_0^{-1}, t_1^{\pm 1}, \ldots, t_v^{\pm 1}] d_p,
$$
$$
\mathcal{L}_0 = \sum_{p=0}^{\nu} C[t_1^{\pm 1}, \ldots, t_v^{\pm 1}] k_p \oplus \sum_{p=0}^{\nu} C[t_1^{\pm 1}, \ldots, t_v^{\pm 1}] d_p.
$$

Then
$$
\mathcal{L} = \mathcal{L}_+ \oplus \mathcal{L}_0 \oplus \mathcal{L}_-.
$$
Definition 3.8. Let W be a weight module of \mathcal{L}. If there is a nonzero vector $v_0 \in W$ such that

$$\mathcal{L}_+ v_0 = 0, \ W = U(\mathcal{L}) v_0,$$

then W is called a highest weight module of \mathcal{L}. If there is a nonzero vector $v_0 \in W$ such that

$$\mathcal{L}_- v_0 = 0, \ W = U(\mathcal{L}) v_0,$$

then W is called a lowest weight module of \mathcal{L}.

From Lemmas 3.2 and 3.6, we obtain:

Theorem 3.9. Let V be an irreducible weight module of \mathcal{L} with finite-dimensional weight spaces and with central charges $c_0 \neq 0$, $c_1 = c_2 = \cdots = c_v = 0$. Then V is a highest or lowest weight module of \mathcal{L}.

In the remainder of this section we assume that V is an irreducible weight module of \mathcal{L} with finite-dimensional weight spaces and with central charges $c_0 \neq 0$, $c_1 = \cdots = c_v = 0$.

Set

$$T = \begin{cases} \{ v \in V \mid \mathcal{L}_+ v = 0 \} & \text{if } V \text{ is a highest weight module of } \mathcal{L}, \\ \{ v \in V \mid \mathcal{L}_- v = 0 \} & \text{if } V \text{ is a lowest weight module of } \mathcal{L}. \end{cases}$$

Then T is a \mathcal{L}_0-module and

$$V = U(\mathcal{L}_-) T \quad \text{or} \quad V = U(\mathcal{L}_+) T.$$

Since V is an irreducible \mathcal{L}-module, T is an irreducible \mathcal{L}_0-module. T has the decomposition

$$T = \bigoplus_{m \in \mathbb{Z}^v} T_m,$$

where $m = (m_1, m_2, \ldots, m_v)$, $T_m = \{ v \in T \mid d_i v = (m_i + \mu(d_i))v, 1 \leq i \leq v \}$ and μ is a fixed weight of T. As in the proof in [Jiang and Meng 2003; Eswara Rao and Jiang 2005], we can deduce:

Theorem 3.10. (1) For all $m, n \in \mathbb{Z}^v$, $p = 1, 2, \ldots, v$, we have

$$\dim T_m = \dim T_n, t^{m} k_p \cdot T = 0, t^{m} k_0 (v_1(n), \ldots, v_m(n)) = c_0 (v_1(m + n), v_2(m + n), \ldots, v_n(m + n)), t^{m} d_0 (v_1(n), v_2(n), \ldots, v_n(n)) = \mu(d_0) (v_1(m + n), v_2(m + n), \ldots, v_n(m + n)),$$

where $\{v_1(0), \ldots, v_m(0)\}$ is a basis of T_0 and $v_i(m) = \frac{1}{c_0} t^{m} k_0 v_i(0)$, for $i = 1, 2, \ldots, m$.
(2) As an \((\mathcal{A}_v \oplus \mathcal{D}_v)\)-module, \(T\) is isomorphic to

\[F^\alpha (\psi, b) = V(\psi, b) \otimes \mathbb{C}[t_1^{\pm 1}, \ldots, t_v^{\pm 1}] \]

for some \(\alpha = (\alpha_1, \ldots, \alpha_v)\), \(\psi\), and \(b\), where \(\mathcal{A}_v = \mathbb{C}[t_1^{\pm 1}, \ldots, t_v^{\pm 1}]\). \(\mathcal{D}_v\) is the derivation algebra of \(\mathcal{A}_v\), and \(V(\psi, b)\) is an \(m\)-dimensional, irreducible \(\mathcal{D}_v\)-module satisfying \(\psi(I) = b \text{id}_{V(\psi, b)}\).

\[t^\ell d_p(w \otimes t^m) = (m_p + \alpha_p)w \otimes t^{\ell+m} + \sum r_i \psi(E_{ip})w \otimes t^{\ell+m} \]

for \(w \in V(\psi, b)\).

Let

\[M = \text{Ind}_{\mathcal{L}_+ + \mathfrak{J}_0}^{\mathcal{L}} T \quad \text{or} \quad M = \text{Ind}_{\mathcal{L}_+ + \mathfrak{J}_0}^{\mathcal{L}} T. \]

Theorem 3.11. Among the submodules of \(M\) intersecting \(T\) trivially, there is a maximal one, which we denote by \(M^{\text{ind}}\). Moreover \(V \cong M / M^{\text{ind}}\).

4. The structure of \(V\) with \(c_0 = \cdots = c_v = 0\)

Assume that \(V\) is an irreducible weight module of \(\mathcal{L}\) with finite-dimensional weight spaces and \(c_0 = \cdots = c_v = 0\).

Lemma 4.1. For any \(\tilde{t}^\ell k_p \in \mathcal{L}\), \(\tilde{t}^\ell k_p\) or \(t^{\ell-1} k_p\) is locally nilpotent on \(V\).

Lemma 4.2. If \(V\) is uniformly bounded, \(\tilde{t}^\ell k_p\) is locally nilpotent on \(V\) for any \(\tilde{t}^\ell k_p \in \mathcal{L}\).

Proof. For \(\tilde{t}^\ell k_p \in \mathcal{L}\), by Lemma 4.1, \(\tilde{t}^\ell k_p\) or \(t^{\ell-1} k_p\) is nilpotent on \(V_m\) for all \(m \in \mathbb{Z}^{v+1}\). Since \(V\) is uniformly bounded, i.e., \(\max\{\dim V_m \mid m \in \mathbb{Z}^{v+1}\} < \infty\), there exists \(N \in \mathbb{Z}_+\) such that

\[(\tilde{t}^\ell k_p t^{\ell-1} k_p)^N V = 0, \ (\tilde{t}^\ell k_p t^{\ell-1} k_p)^{N-1} V \neq 0 \]

If the lemma is false, we can assume that \(t^{\ell-1} k_p\) is not locally nilpotent on \(V\). Therefore for any \(0 \neq v \in V\), we have \(t^{\ell-1} k_p v \neq 0\). So

\[(\tilde{t}^\ell k_p)^N V = 0. \]

Let \(t^{-2\ell} d_q \in \mathcal{L}\) be such that \(p \neq q\) and \(r_q \neq 0\). By the fact that \([t^{-2\ell} d_q, \tilde{t}^\ell k_p] = r_q t^{\ell-1} k_p\), we deduce that \(t^{\ell-1} k_p (t^{\ell-1} k_p)^{N-1} V = 0\), a contradiction. \(\Box\)

Lemma 4.3. If there exists \(0 \neq v \in V\) such that \(t^m k_p v = 0\) for all \(m \in \mathbb{Z}^{v+1}\) and \(0 \leq p \leq v\). Then \(\mathcal{L}(V) = 0\).

Proof. This follows from (2-2), since \(\mathcal{L}\) is commutative and \(V\) is an irreducible \(\mathcal{L}\)-module. \(\Box\)

Theorem 4.4. If \(V\) is uniformly bounded, \(\tilde{t}^\ell k_p V\) vanishes for any \(\tilde{t}^\ell k_p \in \mathcal{L}\).
Proof. Let $0 \neq t_i k_p \in \mathcal{K}$. If $t_i k_p V = 0$, it is easy to prove that $\mathcal{K}(V) = 0$. If $t_i k_p V \neq 0$. Since V is uniformly bounded, by Lemma 4.2, there exists $l \in \mathbb{Z}_+$ such that
\begin{equation}
(t_i k_p t_i^{-1} k_p)^l V = 0, \quad (t_1 k_p t_1^{-1} k_p)^l \neq 0.
\end{equation}
If there exists $s \in \mathbb{Z}_+$ such that $(t_1^{-1} k_p)^s V = 0$, $(t_1^{-1} k_p)^s \neq 0$. By the fact that $[t^\mu d_i, t_i^{-1} k_p] = -t_i^{-1} r^\mu k_p$ and $[t^\mu d_p, t_i^{-1} k_p] = t_i^{-1} r^\mu k_i$, we have
\begin{equation}
t^\tilde{r} k_p (t_i^{-1} k_p)^s V = t^\tilde{r} k_i (t^{-\tilde{r}} k_p)^s V = 0 \quad \text{for all } \tilde{r} \in \mathbb{Z}^{v+1}.
\end{equation}

If $(t_i^{-1} k_p)^s V \neq 0$ for all $s \in \mathbb{Z}_+$. Then by (4-1) there is $r \geq 0$ such that $(t_i k_p)^{l-r} (t_i^{-1} k_p)^{l+r} V = 0$ for all $0 \leq i \leq r$, and $(t_i k_p)^{l-r} (t_i^{-1} k_p)^{l+r+1} V \neq 0$. So for any $\tilde{m} \in \mathbb{Z}^{v+1}$, we have
\begin{equation}
t^{-\tilde{m}} d_i (t_i k_p)^{l-r} (t_i^{-1} k_p)^{l+r+1} V = 0, \quad t^{-\tilde{m}} d_p (t_i k_p)^{l-r} (t_i^{-1} k_p)^{l+r+1} V = 0.
\end{equation}
Therefore
\begin{align*}
t^\tilde{r} k_p (t_i k_p)^{l-r} (t_i^{-1} k_p)^{l+r+1} V &= 0, \\
t^\tilde{r} k_i (t_i k_p)^{l-r} (t_i^{-1} k_p)^{l+r+1} V &= 0,
\end{align*}
for all $\tilde{r} \in \mathbb{Z}^{v+1}$.

Case 1: $\nu \in 2\mathbb{Z} + 1$. By the preceding discussion, there exist nonnegative integers l_i and r_i, for $i = 0, 2, 4, \ldots, \nu - 1$, such that
\begin{equation}
(t_i k_{v-1})^{l_i} (t_i^{-1} k_{v-1})^{r_i} (t_{v-2} k_{v-3})^{l_{v-3}} (t_{v-2}^{-1} k_{v-3})^{r_{v-3}} \cdots (t_1 k_0)^{l_0} (t_1^{-1} k_0)^{r_0} V \neq 0
\end{equation}
and
\begin{equation}
t^{\tilde{m}} k_p (t_i k_{v-1})^{l_i} (t_i^{-1} k_{v-1})^{r_i} (t_{v-2} k_{v-3})^{l_{v-3}} (t_{v-2}^{-1} k_{v-3})^{r_{v-3}} \cdots (t_1 k_0)^{l_0} (t_1^{-1} k_0)^{r_0} V
\end{equation}
vanishes for all $0 \leq p \leq \nu$ and $\tilde{m} \in \mathbb{Z}^{v+1}$. By Lemma 4.3, the conclusion of the theorem holds.

Case 2: $\nu \in 2\mathbb{Z}$. Then there exist nonnegative integers l_i and r_i, for $i = 0, 2, 4, \ldots, \nu - 2$, such that
\begin{equation}
W = (t_{v-1} k_{v-2})^{l_{v-2}} (t_{v-1}^{-1} k_{v-2})^{r_{v-2}} (t_{v-3} k_{v-4})^{l_{v-4}} (t_{v-3}^{-1} k_{v-4})^{r_{v-4}} \cdots (t_1 k_0)^{l_0} (t_1^{-1} k_0)^{r_0} V
\end{equation}
is nonzero and
\begin{equation}
(t^\tilde{m} k_p W = 0
\end{equation}
for all $0 \leq p \leq \nu - 1$ and $\tilde{m} \in \mathbb{Z}^{v+1}$. By (2-1), we know that
\begin{equation}
(t^\tilde{m} k_p W = 0,
\end{equation}
for $\tilde{m} \in \mathbb{Z}^{v+1}$ such that $m_v \neq 0$. If there exists $t^{\tilde{m}}_0 k_v$ satisfying $t^{\tilde{m}}_0 k_v W \neq 0$, let

$$\mathcal{L}_v = \text{span}\{ t^m d_i, t^m d_v, t^m k_v \mid t^m = t_0^{m_0} t_1^{m_1} \cdots t_{v-1}^{m_{v-1}}, 0 \leq i \leq v - 1, \}
= \langle m_0, \ldots, m_{v-1}, 1 \rangle, \quad \tilde{m} = (m_0, \ldots, m_{v-1}) \in \mathbb{Z}^v, \tilde{m} \in \mathbb{Z}^{v+1} \rangle,$$

$$W' = U(\mathcal{L}_v) W.$$ Then $W' \neq 0$ and

$$t^\tilde{m} k_p W' = 0, \quad t^\tilde{m} k_v W' = 0,$$ for all $0 \leq p \leq v - 1$, $\tilde{m} \in \mathbb{Z}^{v+1}$, and $\tilde{n} \in \mathbb{Z}^{v+1}$ such that $n_v \neq 0$. If there exists $0 \neq t^\tilde{n} k_v$ such that $t^\tilde{n} k_v W' \neq 0$, we have

$$(t^{-m} k_v)^l(t^m k_v)^l W' = 0 \quad \text{and} \quad (t^{-m} k_v)^l-1(t^m k_v)^l-1 W' \neq 0$$

for some $l \in \mathbb{Z}_+$. As in the preceding proof, we can deduce that there exists a nonzero $\nu \in W'$ such that

$$t^{\tilde{m}} k_v \nu = 0$$
for all $\tilde{n} \in \mathbb{Z}^v$. Therefore

$$t^{\tilde{m}} k_p \nu = 0$$
for all $\tilde{m} \in \mathbb{Z}^{v+1}$ and $0 \leq p \leq v$. We have proved that $\mathfrak{X}(V) = 0$. \hfill \Box

References

Received December 3, 2005.

Cuipo Jiang
Department of Mathematics
Shanghai Jiaotong University
Shanghai 200030
China
cpjjiang@sjtu.edu.cn

Qifen Jiang
Department of Mathematics
Shanghai Jiaotong University
Shanghai 200030
China
qfjiang@sjtu.edu.cn