
Pacific
Journal of
Mathematics

IRREDUCIBLE REPRESENTATIONS FOR THE ABELIAN
EXTENSION OF THE LIE ALGEBRA OF DIFFEOMORPHISMS

OF TORI IN DIMENSIONS GREATER THAN 1

CUIPO JIANG AND QIFEN JIANG

Volume 231 No. 1 May 2007



PACIFIC JOURNAL OF MATHEMATICS
Vol. 231, No. 1, 2007
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EXTENSION OF THE LIE ALGEBRA OF DIFFEOMORPHISMS

OF TORI IN DIMENSIONS GREATER THAN 1

CUIPO JIANG AND QIFEN JIANG

We classify the irreducible weight modules of the abelian extension of the
Lie algebra of diffeomorphisms of tori of dimension greater than 1, with
finite-dimensional weight spaces.

1. Introduction

Let Wν+1 be the Lie algebra of diffeomorphisms of the (ν+1)-dimensional torus.
If ν = 0, the universal central extension of the complex Lie algebra W1 is the
Virasoro algebra, which, together with its representations, plays a very important
role in many areas of mathematics and physics [Belavin et al. 1984; Dotsenko and
Fateev 1984; Di Francesco et al. 1997]. The representation theory of the Virasoro
algebra has been studied extensively; see, for example, [Kac 1982; Kaplansky and
Santharoubane 1985; Chari and Pressley 1988; Mathieu 1992].

If ν ≥ 1, however, the Lie algebra Wν+1 has no nontrivial central extension
[Ramos et al. 1990]. But Wν+1 has abelian extensions whose abelian ideals are the
central parts of the corresponding toroidal Lie algebras; see [Berman and Billig
1999], for example. There is a close connection between irreducible integrable
modules of the toroidal Lie algebra and irreducible modules of the abelian ex-
tension L; see [Berman and Billig 1999; Eswara Rao and Moody 1994; Jiang
and Meng 2003], for instance. In fact, the classification of integrable modules of
toroidal Lie algebras and their subalgebras depends heavily on the classification
of irreducible representations of L and its subalgebras. See [Billig 2003] for the
constructions of the abelian extensions for the group of diffeomorphisms of a torus.

In this paper we study the irreducible weight modules of L, for ν ≥ 1. If V is
an irreducible weight module of L some of whose central charges c0, . . . , cν are
nonzero, one can assume that c0, . . . , cN are Z-linearly independent and cN+1 =

· · · = cν = 0, where N ≥ 0. We prove that if N ≥ 1, then V must have weight
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spaces which are infinite-dimensional. So if all the weight spaces of V are finite-
dimensional, N vanishes. We classify the irreducible modules of L with finite-
dimensional weight spaces and some nonzero central charges. We prove that such
a module V is isomorphic to a highest weight module. The highest weight space
T is isomorphic to an irreducible (Aν+Wν)-module all of whose weight spaces
have the same dimension, where Aν is the ring of Laurent polynomials in ν com-
muting variables, regarded as a commutative Lie algebra. An important step is to
characterize the Aν-module structure of T . It turns out that the action of Aν on T
is essentially multiplication by polynomials in Aν . Therefore T can be identified
with Larsson’s construction [1992] by a result in [Eswara Rao 2004]. That is, T is
a tensor product of glν-module with Aν .

When all the central charges of V are zero, we prove that the abelian part acts
on V as zero if V is a uniformly bounded L-module. So the result in this case is
not complete.

Throughout the paper, C, Z+ and Z− denote the sets of complex numbers, pos-
itive integers and negative integers.

2. Basic concepts and results

Let Aν+1 = C[t±1
0 , t±1

1 , . . . , t±1
ν ] (ν ≥ 1) be the ring of Laurent polynomials in

commuting variables t0, t1, . . . , tν . For n = (n1, n2, . . . , nν)∈Zν , n0 ∈Z, we denote
tn0
0 tn1

1 · · · tnν
ν by tn0

0 tn . Let K̃ be the free Aν+1-module with basis {k0, k1, . . . , kν}
and let dK̃ be the subspace spanned by all elements of the form

ν∑
i=0

ri t
r0
0 tr ki , for (r0, r)= (r0, r1, . . . , rν) ∈ Zν+1.

Set K = K̃/dK̃ and denote the image of tr0
0 tr ki still by itself. Then K is spanned

by the elements {tr0
0 tr kp | p = 0, 1, . . . , ν, r0 ∈ Z, r ∈ Zν} with relations

(2-1)
ν∑

p=0

rptr0
0 tr kp = 0.

Let D be the Lie algebra of derivations on Aν+1. Then

D =

{ ν∑
p=0

f p(t0, t1, . . . , tν)dp | f p(t0, t1, . . . , tν) ∈ Aν+1

}
,

where dp = tp∂/∂tp, p = 0, 1, . . . , ν. From [Berman and Billig 1999] we know
that the algebra D admits two nontrivial 2-cocycles with values in K:

τ1(t
m0
0 tmda, tn0

0 tndb)= −namb

ν∑
p=0

m ptm0+n0
0 tm+nkp,
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τ2(t
m0
0 tmda, tn0

0 tndb)= manb

ν∑
p=0

m ptm0+n0
0 tm+nkp.

Let τ = µ1τ1 + µ2τ2 be an arbitrary linear combination of τ1 and τ2. Then the
corresponding abelian extension of D is

L = D ⊕ K,

with the Lie bracket

(2-2) [tm0
0 tmda, tn0

0 tnkb] = natm0+n0
0 tm+nkb + δab

ν∑
p=0

m ptm0+n0
0 tm+nkp,

[tm0
0 tmda, tn0

0 tndb] = natm0+n0
0 tm+ndb − mbtm0+n0

0 tm+nda

+ τ(tm0
0 tmda, tn0

0 tndb).

The sum

h =

( ν⊕
i=0

Cki

)
⊕

( ν⊕
i=0

Cdi

)
is an abelian Lie subalgebra of L. An L-module V is called a weight module if

V =

⊕
λ∈h∗

Vλ,

where Vλ = {v ∈ V | h · v = λ(h)v for all h ∈ h}. Denote by P(V ) the set of all
weights. Throughout the paper, we assume that V is an irreducible weight module
of L with finite-dimensional weight spaces. Since V is irreducible, we have

ki |V = ci ,

where the constants ci , for i = 0, 1, . . . , ν, are called the central charges of V .

Lemma 2.1. Let A = (ai j ) (0 ≤ i, j ≤ ν) be a (ν+1)× (ν+1) matrix such that
det A = 1 and ai j ∈ Z. There exists an automorphism σ of L such that

σ(t m̄k j )=

ν∑
p=0

apj t m̄ AT
kp, σ (t m̄d j )=

ν∑
p=0

b j pt m̄ AT
dp, 0 ≤ j ≤ ν,

where t m̄
= tm0

0 tm , B = (bi j )= A−1.

3. The structure of V with nonzero central charges

In this section, we discuss the weight module V which has nonzero central charges.
It follows from Lemma 2.1 that we can assume that c0, c1, . . . , cN are Z-linearly
independent, i.e., if

∑N
i=0 ai ci = 0, ai ∈ Z, then all ai (i = 0, . . . , N ) must be zero,
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and cN+1 = cN+2 = · · · = cν = 0, where N ≥ 0. For m̄ = (m0,m), denote tm0
0 tm

by t m̄ as in Lemma 2.1. It is easy to see that V has the decomposition

V =

⊕
m̄∈Zν+1

Vm̄,

where Vm̄ = {v ∈ V | di (v) = (γ0(di )+ mi )v, i = 0, 1, . . . , ν}, with γ0 ∈ P(V )
a fixed weight, and m̄ = (m0,m1, . . . ,mν) ∈ Zν+1. If V has finite-dimensional
weight spaces, the Vm̄ are finite-dimensional, for m̄ ∈ Zν+1.

In Lemmas 3.1–3.6 we assume that V has finite-dimensional weight spaces.

Lemma 3.1. For p ∈ {0, 1, . . . , ν} and 0 6= t m̄kp ∈ L, if there is a nonzero element
v in V such that t m̄kpv = 0, then t m̄kp is locally nilpotent on V .

Lemma 3.2. Let tm0
0 tmkp ∈ L be such that m̄ = (m0,m) 6= 0̄, and there exists

0 ≤ a ≤ N such that ma 6= 0 if N < p ≤ ν. If tm0
0 tmkp is locally nilpotent on V ,

then dim Vn̄ > dim Vn̄+m̄ for all n̄ ∈ Zν+1.

Proof. Case 1: p ∈ {0, 1, . . . , N }. We first prove that dim Vn̄ ≥ dim Vn̄+m̄ for all
n̄ ∈ Zν+1. Suppose dim Vn̄ = m, dim Vn̄+m̄ = n. Let {w1, w2, . . . , wn} be a basis of
Vn̄+m̄ and {w′

1, w
′

2, . . . , w
′
m} a basis of Vn̄ . We can assume that ma 6= 0 for some

0 ≤ a ≤ ν distinct from p, where m̄ = (m0,m)= (m0,m1, . . . ,mν). Since t m̄kp is
locally nilpotent on V and Vn̄+m̄ is finite-dimensional, there exists k > 0 such that
(t m̄kp)

k Vn̄+m̄ = 0. Therefore

(t−m̄da)
k(t m̄kp)

k(w1, w2, . . . , wn)= 0.

On the other hand, by induction on k, we can deduce that

(t−m̄da)
k(t m̄kp)

k
=

k∑
i=0

k! k!

i ! (k − i)! (k − i)!
mi

aci
p(t

m̄kp)
k−i (t−m̄da)

k−i .

Therefore

t m̄kp

( k−1∑
i=0

k! k!

i ! (k−i)! (k−i)!
mi

aci
p(t

m̄kp)
k−1−i (t−m̄da)

k−1−i
)

t−m̄da(w1,w2, . . . ,wn)

= −k! mk
ack

p(w1, w2, . . . , wn).

Assume that( k−1∑
i=0

k! k!

i ! (k − i)! (k − i)!
mi

aci
p(t

m̄kp)
k−1−i (t−m̄da)

k−1−i
)

t−m̄da(w1, w2, . . . , wn)

= (w′

1, w
′

2, . . . , w
′

m)C,

with C ∈ Cm×n , and that

(3-1) t m̄kp(w
′

1, w
′

2, . . . , w
′

m)= (w1, w2, . . . , wn)B,
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with B ∈ Cn×m . Then

BC = −k! mk
ack

p I.

This implies that m ≥ n. So dim Vn̄ ≥ dim Vn̄+m̄ for all n̄ ∈ Zν+1. Also, by (3-1)
and the fact that r(B) = n, we know that m > n if and only if there exists v ∈ Vn̄

such that t m̄kp · v = 0. Since t m̄kp is locally nilpotent on V , there exist an integer
s ≥ 0 and w ∈ Vn̄+sm̄ such that

(t m̄kp) ·w = 0.

Therefore (t−m̄kp)t m̄kp · w = t m̄kp(t−m̄kp · w) = 0. If t−m̄kp · w = 0, by the
proof above, dim Vn̄+sm̄−m̄<dim Vn̄+sm̄ , contradicting the fact that dim Vn̄+sm̄−m̄ ≥

dim Vn̄+sm̄ . Therefore (t−m̄kp)
r
·w 6= 0 for all r ∈ N. Since

(t−m̄kp)
s t m̄kp ·w = t m̄kp(t−m̄kp)

s
·w = 0

and (t−m̄kp)
s
·w ∈ Vn̄ , it follows that there is a nonzero element v in Vn̄ such that

t m̄kp · v = 0. Thus n < m.

Case 2: N < p ≤ ν. The proof is similar to that of case 1, but we have to consider
t−m̄dp and t m̄kp instead and use the Z-linear independence of c1, . . . , cN . �

Lemma 3.3. Let 0 6= t m̄kp ∈ L and 0 6= t n̄kp ∈ L be such that (m0, . . . ,m N ) 6= 0,
(n0, . . . , nN ) 6= 0 if N < p ≤ ν, where m̄ = (m0,m1, . . . ,mν).

(1) If t m̄kp is locally nilpotent on V , t m̄kq is locally nilpotent for q = 0, 1, . . . , ν.

(2) If both 0 6= t m̄kp and 0 6= t n̄kp are locally nilpotent on V , then t m̄+n̄kp is
locally nilpotent.

(3) If 0 6= t m̄+n̄kp is locally nilpotent on V and (m0 + n0, . . . ,m N + nN ) 6= 0 if
N < p ≤ ν, then t m̄kp or t n̄kp is locally nilpotent.

Lemma 3.4. For 0 ≤ p ≤ ν, let 0 6= t m̄kp ∈ L be such that (m0, . . . ,m N ) 6= 0,
where m̄ = (m0,m1, . . . ,mν). Then t m̄kp or t−m̄kp is locally nilpotent on V .

Proof. The proof occupies the next few pages. We first deal with the case 0≤ p≤ N .
Without losing generality, we can take p = 0.

Suppose the lemma is false. By Lemma 3.2, for any r̄ ∈ Zν+1 we have

dim Vr̄+m̄ = dim Vr̄ = dim Vr̄−m̄, t m̄k0Vr̄ = Vr̄+m̄, t−m̄k0Vr̄ = Vr̄−m̄ .

Fix r̄ = (r0, r) ∈ Zν+1 such that Vr̄ 6= 0. Let {v1, . . . , vn} be a basis of Vr̄ and set

vi (km̄)=
1
c0

tkm̄k0 · vi , i = 1, 2, . . . , n,
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where k ∈ Z \ {0}. Then {v1(km̄), v2(km̄), . . . , vn(km̄)} is a basis of Vr̄+km̄ . Let
B(0)

−m̄,m̄ , B(0)m̄,−m̄ ∈ Cn×n be such that

1
c0

t m̄k0(v1(−m̄), v2(−m̄), . . . , vn(−m̄))= (v1, v2, . . . , vn)B
(0)
m̄,−m̄,

1
c0

t−m̄k0(v1(m̄), v2(m̄), . . . , vn(m̄))= (v1, v2, . . . , vn)B
(0)
−m̄,m̄ .

Since t m̄k0 and t−m̄k0 are commutative, it is easy to deduce that

B(0)m̄,−m̄ = B(0)
−m̄,m̄ .

By Lemma 3.1, B(0)m̄,−m̄ is an n × n invertible matrix.

Claim. B(0)m̄,−m̄ does not have distinct eigenvalues.

Proof. Set c = 1/c0. To prove the claim, we need to consider ct m̄k0ct−m̄k0 − λ id,
where λ ∈ C∗. As in the proof of Lemma 3.1, we can deduce that if there is a
nonzero element v in V such that (ct m̄k0ct−m̄k0 −λ id)v = 0, then ct m̄k0ct−m̄k0 −

λ id is locally nilpotent on V . On the other hand, we have

(ct m̄k0ct−m̄k0 − λ id)l(v1, v2, . . . , vn)= (v1, v2, . . . , vn)(B
(0)
m̄,−m̄ − λ id)l .

Therefore the claim holds. �

For p ∈ {1, 2, . . . , ν}, let C p
m̄,0̄
,C p

m̄,−m̄ ∈ Cn×n be such that

t m̄kp(v1, v2, . . . , vn)= (v1(m̄), . . . , vn(m̄))C
(p)
m̄,0̄
,

t m̄kp(v1(−m̄), . . . , vn(−m̄))= (v1, v2, . . . , vn)C
(p)
m̄,−m̄ .

Since

1
c0

t−m̄k0t m̄kp(v1, v2, . . . , vn)= t m̄kp
1
c0

t−m̄k0(v1, v2, . . . , vn),

we have

(3-2) C (p)
m̄,−m̄ = B(0)

−m̄,m̄C (p)
m̄,0̄
.

Furthermore, by the fact that

1
c0

t m̄k0
1
c0

t−m̄k0t m̄kp(v1, v2, . . . , vn)= t m̄kp
1
c0

t m̄k0
1
c0

t−m̄k0(v1, v2, . . . , vn)

and

t m̄kq
1
c0

t−m̄k0t m̄kp = t m̄kp
1
c0

t−m̄k0t m̄kq ,



ABELIAN EXTENSION OF LIE ALGEBRA OF DIFFEORMORPHISMS OF T n 91

we deduce that

(3-3) B(0)
−m̄,m̄C (p)

m̄,0̄
= C (p)

m̄,0̄
B(0)

−m̄,m̄, C (p)
m̄,0̄

C (q)
m̄,0̄

= C (q)
m̄,0̄

C (p)
m̄,0̄
, 1 ≤ p, q ≤ ν.

Hence there exists D ∈ Cn×n such that {D−1 B(0)
−m̄,m̄ D, D−1C (p)

m̄,0̄
D | 1 ≤ p ≤ ν} are

all upper triangular matrices. If we set

(w1, w2, . . . , wn)= (v1, v2, . . . , vn)D

and
wi (km̄)=

1
c0

tkm̄k0wi , 1 ≤ i ≤ n, k ∈ Z \ {0},

then
1
c0

tkm̄k0(w1(−m̄), w2(−m̄), . . . , wn(−m̄))= (w1, . . . , wn)D−1 B(0)
−m̄,m̄ D,

t m̄kp(w1, w2, . . . , wn)= (w1(m̄), . . . , wn(m̄))D−1C (p)
m̄,0̄

D.

So we can assume that B(0)
−m̄,m̄ , C (p)

m̄,0̄
, and C (p)

m̄,−m̄ , for 1 ≤ p ≤ ν are all invertible
upper triangular matrices. Furthermore, because(

t m̄kp
1
c0

t−m̄k0 − λ id
)l
(v1, v2, . . . , vn)= (v1, v2, . . . , vn)(C

(p)
m̄,−m̄ − λ id)l,

the argument used in the proof of the claim shows that C (p)
m̄,−m̄ also does not have

distinct eigenvalues. For 1 ≤ p ≤ N , set

B(p)m̄,−m̄ =
1
cp

C (p)
m̄,−m̄

and for 0 ≤ p ≤ N denote by λp the eigenvalue of B(p)m̄,−m̄ .
Let A(a)

km̄,0̄
and A(a)k1m̄,k2m̄ , for 0 ≤ a ≤ ν and k, k1, k2 ∈ Z \ {0}, be such that

tkm̄da(v1, v2, . . . , vn)

tk1m̄da(v1(k2m̄), v2(k2m̄), . . . , vn(k2m̄))

= (v1(km̄), v2(km̄), . . . , vn(km̄))A(a)
km̄,0̄

,

= (v1(k1m̄ + k2m̄), . . . , vn(k1m̄ + k2m̄))A(a)k1m̄,k2m̄ .

Case 1: ν > 1. Since t m̄k0 = tm0
0 t m̄k0 6= 0, it follows that there exists 1 ≤ a ≤ ν

such that ma 6= 0, where m = (m1,m2, . . . ,mν). Let b ∈ {1, . . . , ν} be such that
a 6= b. Consider

(3-4) [t−m̄da,
1
c0

t m̄k0] = ma
1
c0

k0, [t−m̄da, t m̄kb] = makb.

Case 1.1: There exists b ∈ {0, 1, . . . , ν} such that b 6= 0, a and cb = 0. Then

A(a)
−m̄,m̄ = B(0)m̄,−m̄ A(a)

−m̄,0̄
+ ma I, A(a)

−m̄,m̄C (b)
m̄,0̄

= C (b)
m̄,−m̄ A(a)

−m̄,0̄
.
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By (3-2) and (3-3),

A(a)
−m̄,0̄

+ ma B(0)m̄,−m̄
−1

= C (b)
m̄,0̄

A(a)
−m̄,0̄

C (b)
m̄,0̄

−1
.

But the sum on the left-hand side cannot be similar to A(a)
−m̄,0̄

, since ma 6= 0 and
B(0)m̄,−m̄

−1
is an invertible upper triangular matrix and does not have different eigen-

values. Thus this case is excluded.

Case 1.2: cb 6= 0 for all b ∈ {0, 1, . . . , ν}, b 6= 0, a. By (3-4) and (3-2), we have

B(0)m̄,−m̄ A(a)
−m̄,0̄

B(0)m̄,−m̄
−1

+ ma B(0)m̄,−m̄
−1

− ma B(b)m̄,−m̄
−1

= B(0)m̄,−m̄C (b)
m̄,0̄

A(a)
−m̄,0̄

C (b)
m̄,0̄

−1
B(0)m̄,−m̄

−1
.

(I) There exists b 6= 0 and a such that λ0 6= λb. Then ma B(0)m̄,−m̄
−1

− ma B(b)m̄,−m̄
−1

is
an invertible upper triangular matrix and does not have different eigenvalues. As
in case 1.1, we deduce a contradiction.

(II) λ0 = λb for all b ∈ {1, . . . , ν} distinct from a.
(II.1) Suppose first that ca = 0 (in this case N = ν − 1, a = ν) or ca 6= 0 and

λa = λ0 (in this case N = ν). Since
∑ν

p=0 m pt m̄kp = 0, we have

ν∑
p=0

m pt m̄kp
1
c0

t−m̄k0 = 0.

So
ν∑

p=0
m pC (p)

m̄,−m̄ = 0, and therefore
ν∑

p=0

m pcp = 0,

which contradicts the assumption that c0, . . . , cN are Z-linearly independent.
(II.2) Now suppose ca 6= 0, λa 6= λ0 and there exists b 6= 0 and a such that

mb 6= 0. We deduce a contradiction as in case 1.2(I) by interchanging a by b.
(II.3) Suppose ca 6= 0, λa 6= λ0 and mb = 0 for all b ∈ {1, . . . , ν} distinct from

a. Then m0c0λ0 + macaλa = 0. The proof of this case is the same as in case 2.2
below.

Case 2.: ν = 1. In this case a = 1.

Case 2.1: ca = 0. Since [t−m̄d0, t m̄k0] = [t−m̄k0, t m̄d0] = 0, we have

A(0)
−m̄,m̄ = B(0)m̄,−m̄ A(0)

−m̄,0̄
, A(0)m̄,−m̄ = B(0)

−m̄,m̄ A(0)
m̄,0̄
.

Therefore

[t−m̄d0, t m̄d0](v1, v2, . . . , vn)= (v1, v2, . . . , vn)B
(0)
−m̄,m̄

[
A(0)

−m̄,0̄
, A(0)

m̄,0̄

]
.
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At the same time, we have

[t−m̄d0, t m̄d0] = 2m0d0 + m2
0(−µ1 +µ2)(m0k0 + m1k1),

where τ = µ1τ1 +µ2τ2 as above. So

(3-5) B(0)
−m̄,m̄[A(0)

−m̄,0̄
, A(0)

m̄,0̄
]=

(
2m0(γ0(d0)+r0)+m2

0(−µ1+µ2)(m0c0+m1c1)
)
I,

where γ0 is the weight fixed above. Since γ0 is arbitrary, we can choose it such
that

2m0(γ0(d0)+ r0)+ m2
0(−µ1 +µ2)(m0c0 + m1c1) 6= 0.

But B(0)
−m̄,m̄ is an invertible triangular matrix and does not have different eigenval-

ues, in contradiction with (3-5).
Case 2.2: ca 6= 0. Since

[t−m̄d0, t m̄k0] = −m1k1, [t−m̄d1, t m̄k0] = m1k0 and

[t m̄d0, t−m̄k0] = m1k1, [t m̄d1, t−m̄k0] = −m1k0,

we have

[k0t−m̄d0 + k1t−m̄d1, t m̄k0] = [k0t m̄d0 + k1t m̄d1, t−m̄k0] = 0.

Therefore

k0 A(0)
−m̄,m̄ + k1 A(1)

−m̄,m̄ = B(0)m̄,−m̄

(
k0 A(0)

−m̄,0̄
+ k1 A(1)

−m̄,0̄

)
,

k0 A(0)m̄,−m̄ + k1 A(1)m̄,−m̄ = B(0)
−m̄,m̄

(
k0 A(0)

m̄,0̄
+ k1 A(1)

m̄,0̄

)
,

and

[k0t−m̄d0 + k1t−m̄d1, k0t m̄d0 + k1t m̄d1](v1, . . . , vn)

= (v1, . . . , vn)B
(0)
m̄,−m̄

[
k0 A(0)

−m̄,0̄
+ k1 A(1)

−m̄,0̄
, k0 A(0)

m̄,0̄
+ k1 A(1)

m̄,0̄

]
.

At the same time, we have

[k0t−m̄d0 + k1t−m̄d1, k0t m̄d0 + k1t m̄d1]

= 2(m0c0 + m1c1)(c0d0 + c1d1)− (m0c0 + m1c1)
3(µ1 −µ2) id .

Since c0 and c1 are Z-linearly independent, we know that m0c0 + m1c1 6= 0. As in
case 2.1, we deduce a contradiction.

This concludes the first part of the proof. We next turn to the second major case,
N < p ≤ ν.

If N ≥ 1 or N = 0, we have (m1, . . . ,mν) 6= 0, and the lemma follows from the
first part and Lemma 3.3. Otherwise, let t m̄kp = tm0

0 kp. Set L0 =
⊕

m0∈Z Ctm0
0 d0 ⊕

Ck0 and W = U (L0)v, where v ∈ Vs̄ is a homogeneous element. Since c0 6= 0,
the sets {dim W(n0,0)+s̄ | n0 ∈ Z} are not uniformly bounded. But if neither tm0

0 kp
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nor t−m0
0 kp is locally nilpotent, then t0kp and t−1

0 kp are not locally nilpotent. So
by Lemmas 3.2 and 3.1, dim V(n0,0)+s̄ = dim Vs̄ for all n0 ∈ Z, which is impossible
since dimV(n0,0)+s̄ ≥ dim W(n0,0)+s̄ . This proves Lemma 3.4 �

For 0 ≤ p ≤ N , consider the direct sum⊕
m p∈Z

Ctm p
p dp ⊕ Ckp,

which is a Virasoro Lie subalgebra of L. Since cp 6= 0, it follows from [Mathieu
1992] that there is a nonzero vp ∈ Vr̄ for some r̄ ∈ Zν+1 such that

(3-6) tm p
p dpvp = 0 for all m p ∈ Z+

or

(3-7) tm p
p dpvp = 0 for all m p ∈ Z−.

Lemma 3.5. If vp ∈ Vr̄ satisfies (3-6), the sets

{tm p
p kq | m p ∈ Z+, q = 0, 1, 2, . . . , ν, q 6= p}

are all locally nilpotent on V . Likewise for (3-7), with Z+ replaced by Z−.

Proof. We only prove the first statement. Suppose it is false; then by Lemma 3.3
tpkq is not locally nilpotent on V for some q ∈ {0, 1, . . . , ν}, q 6= p. By Lemma
3.4, t−1

p kq is locally nilpotent. Therefore there exists k ∈ Z+ such that

(t−1
p kq)

k−1vp 6= 0, (t−1
p kq)

kvp = 0.

So
t2
pdp(t−1

p kq)
kvp = −ktpkq(t−1

p kq)
k−1vp + (t−1

p kq)
k t2

pdpvp

= −ktpkq(t−1
p kq)

k−1vp = 0.

This implies that tpkq is locally nilpotent, a contradiction. �

Lemma 3.6. If vp ∈ Vr̄ satisfies (3-6), the sets

{t m̄kp | m̄ = (m0, . . . ,mν) ∈ Zν+1,m p ∈ Z+}

are all locally nilpotent on V . Likewise for (3-7), with Z+ replaced by Z−.

Proof. Again we only prove the first statement. Without loss of generality, we
assume that p = 0. Let K′ be the subspace of K spanned by elements of K which
are locally nilpotent on V . If tmk0, for any m ∈Zν\{0}, is not locally nilpotent on V ,
the lemma holds thanks to Lemmas 3.3 and 3.5. Suppose K′

∩{tmk0 |m ∈Zν} 6= {0}.
By Lemmas 3.2, 3.3 and 3.5, if tmk0 ∈ K′, then t−mk0 /∈ K′, and tm0

0 tmk0 ∈ K′ for
all m0 > 0.

Case 1: Suppose tm0
0 t−mk0 ∈ K′ for any tmk0 ∈ K′. Then the lemma is proved.
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Case 2: Suppose there exists 0 6= tmk0 ∈ K′ such that t0t−mk0 /∈ K′. Since m =

(m1, . . . ,mν) 6= 0, we can assume that ma 6= 0 for some a ∈ {1, 2, . . . , ν}. Let Vr̄0

be such that
dim Vr̄0 = min{dim Vs̄ | Vs̄ 6= 0, s̄ ∈ Zν+1

}.

Case 2.1: Assume t i
0t−mk0 /∈ K′ for any i > 0. Let l ∈ Z+ and consider

(3-8)
l∑

i=0

ai t−i
0 t−mk0t i

0t−mk0v = 0,

where v ∈ Vr̄0 \{0}. By Lemma 3.4, {t i
0tmk0, t−i

0 tmk0 | i ∈ Z+} ⊆ K′. So by Lemma
3.2, we have

t i
0tmk0Vr̄0 = t−i

0 tmk0Vr̄0 = t i
0tmdpVr̄0 = t−i

0 tmdpVr̄0 = 0, i ∈ Z+, 0 ≤ p ≤ ν.

Let j ∈ {0, 1, . . . , l}. From (3-8) we have

t− j
0 tmdat j

0 tmda(

l∑
i=0

ai t−i
0 t−mk0t i

0t−mk0)v = 0.

Therefore
l∑

i=0

ai (−ma)t
j−i

0 k0(−ma)t
i− j
0 k0v = a j m2

ac2
0v = 0.

So a j = 0, j = 0, 1, . . . , l. This means {t−i
0 t−mk0t i

0t−mk0)v | 0 ≤ i ≤ l} are
linearly independent. Since l can be any positive integer, it follows that Vr̄0−(0,2m)

is infinite-dimensional, a contradiction.

Case 2.2: Assume there exists l ∈ Z+ such that

t l−1
0 t−mk0 /∈ K′, t l

0t−mk0 ∈ K′.

(I) Assume that t l
0t−imk0 ∈ K′ for any i ∈ Z+. Let s > 0 and consider

s∑
i=1

ai t−l
0 t imk0t−imk0v = 0.

Similar to the proof above, we can deduce that Vr̄0−(l,0) is infinite-dimensional, in
contradiction with the assumption that V has finite-dimensional weight spaces.

(II) Assume there exists s1 ∈ Z+ such that

t l
0t−mk0 ∈ K′, t l

0t−2mk0 ∈ K′, . . . , t l
0t−s1mk0 ∈ K′, t l

0t−(s1+1)mk0 /∈ K′.

Then there exist s2, s3, . . . , sk, . . . such that si ≥ s1 for i = 2, 3, . . . , k, . . . and

t il
0 t (−s1−s2−···−si−1−1)mk0 ∈ K′, t il

0 t (−s1−s2−···−si−1−2)mk0 ∈ K′, . . . ,
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t il
0 t (−s1−s2−···−si−1−si )mk0 ∈ K′, t il

0 t (−s1−s2−···−si−1−si −1)mk0 /∈ K′.

Assume that( s1∑
i=1

ai t−l
0 t imk0t−imk0 +

s2∑
i=1

as1+i t−2l
0 t (s1+i)mk0t l

0t−(s1+i)mk0

+

s3∑
i=1

as1+s2+i t−3l
0 t (s1+s2+i)mk0t2l

0 t−(s1+s2+i)mk0 + · · ·

+

sk∑
i=1

as1+···+sk−1+i t−kl
0 t (s1+···+sk−1+i)mk0t (k−1)l

0 t−(s1+···+sk−1+i)mk0

)
v = 0.

Let

t jmdat l
0t− jmda, 1 ≤ j ≤ s1,

t−l
0 t (s1+ j)mdat2l

0 t−(s1+ j)mda, 1 ≤ j ≤ s2,

. . . ,

t−(k−1)l
0 t (s1+s2+···+sk−1+ j)mdatkl

0 t−(s1+s2+···+sk−1+ j)mda, 1 ≤ j ≤ sk

act on the two sides of the above equation respectively. By Lemma 3.4, we deduce
that ai = 0, for i = 1, 2, . . . , s1, and that

as1+···+s j−1+i = 0 for i = 1, 2, . . . , s j , 2 ≤ j ≤ k.

Since k can be any positive integer, it follows that Vr̄0−(l,0) is infinite-dimensional,
which contradicts our assumption. The lemma is proved. �

Lemmas 3.1 through 3.6 immediately yield the following result.

Theorem 3.7. Let V be an irreducible weight module of L such that c0, . . . , cN

are Z-linearly independent and N ≥ 1. Then V has weight spaces that are infinite-
dimensional.

Let

L+ =

ν∑
p=0

t0C[t0, t±1
1 , . . . , t±1

ν ]kp ⊕

ν∑
p=0

t0C[t0, t±1
1 , . . . , t±1

ν ]dp,

L− =

ν∑
p=0

t−1
0 C[t−1

0 , t±1
1 , . . . , t±1

ν ]kp ⊕

ν∑
p=0

t−1
0 C[t−1

0 , t±1
1 , . . . , t±1

ν ]dp,

L0 =

ν∑
p=0

C[t±1
1 , . . . , t±1

ν ]kp ⊕

ν∑
p=0

C[t±1
1 , . . . , t±1

ν ]dp.

Then
L = L+ ⊕ L0 ⊕ L−.
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Definition 3.8. Let W be a weight module of L. If there is a nonzero vector v0 ∈ W
such that

L+v0 = 0,W = U (L)v0,

then W is called a highest weight module of L. If there is a nonzero vector v0 ∈ W
such that

L−v0 = 0,W = U (L)v0,

then W is called a lowest weight module of L.

From Lemmas 3.2 and 3.6, we obtain:

Theorem 3.9. Let V be an irreducible weight module of L with finite-dimensional
weight spaces and with central charges c0 6= 0, c1 = c2 = · · · = cν = 0. Then V is
a highest or lowest weight module of L.

In the remainder of this section we assume that V is an irreducible weight mod-
ule of L with finite-dimensional weight spaces and with central charges c0 6= 0,
c1 = · · · = cν = 0.

Set

T =

{
{v ∈ V | L+v = 0} ifV is a highest weight module of L,

{v ∈ V | L−v = 0} ifV is a lowest weight module of L.

Then T is a L0-module and

V = U (L−)T or V = U (L+)T .

Since V is an irreducible L-module, T is an irreducible L0-module. T has the
decomposition

T =

⊕
m∈Zν

Tm,

where m = (m1,m2, . . . ,mν), Tm = {v ∈ T | div = (mi +µ(di ))v, 1 ≤ i ≤ ν} and
µ is a fixed weight of T . As in the proof in [Jiang and Meng 2003; Eswara Rao
and Jiang 2005], we can deduce:

Theorem 3.10. (1) For all m, n ∈ Zν , p = 1, 2, . . . , ν, we have

dim Tm = dim Tn, tmkp · T = 0,

tmk0(v1(n), . . . , vm(n))= c0(v1(m + n), v2(m + n), . . . , vn(m + n)),

tmd0(v1(n), v2(n), . . . , vn(n))= µ(d0)(v1(m + n), v2(m + n), . . . , vn(m + n)),

where {v1(0), . . . , vm(0)} is a basis of T0 and vi (m) =
1
c0

tmk0vi (0), for i = 1, 2,
. . . ,m.
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(2) As an (Aν ⊕ Dν)-module, T is isomorphic to

Fα(ψ, b)= V (ψ, b)⊗ C[t±1
1 , . . . , t±1

ν ]

for some α = (α1, . . . , αν), ψ , and b, where Aν = C[t±1
1 , . . . , t±1

ν ], Dν is
the derivation algebra of Aν , and V (ψ, b) is an m-dimensional, irreducible
glν(C)-module satisfying ψ(I )= b idV (ψ,b) and

tr dp(w⊗ tm)= (m p +αp)w⊗ tr+m
+

ν∑
i=1

riψ(Ei p)w⊗ tr+m

for w ∈ V (ψ, b).

Let
M = IndL

L++L0
T or M = IndL

L−+L0
T .

Theorem 3.11. Among the submodules of M intersecting T trivially, there is a
maximal one, which we denote by M rad. Moreover V ∼= M/M rad.

4. The structure of V with c0 = · · · = cν = 0

Assume that V is an irreducible weight module of L with finite-dimensional weight
spaces and c0 = · · · = cν = 0.

Lemma 4.1. For any t r̄ kp ∈ K, t r̄ kp or t−r̄ kp is locally nilpotent on V .

Lemma 4.2. If V is uniformly bounded, t r̄ kp is locally nilpotent on V for any
t r̄ kp ∈ K.

Proof. For t r̄ kp ∈ K, by Lemma 4.1, t r̄ kp or t−r̄ kp is nilpotent on Vm̄ for all
m̄ ∈ Zν+1. Since V is uniformly bounded, i.e., max{dim Vm̄ | m̄ ∈ Zν+1

} < ∞,
there exists N ∈ Z+ such that

(t r̄ kpt−r̄ kp)
N V = 0, (t r̄ kpt−r̄ kp)

N−1V 6= 0

If the lemma is false, we can assume that t−r̄ kp is not locally nilpotent on V .
Therefore for any 0 6= v ∈ V , we have t−r̄ kpv 6= 0. So

(t r̄ kp)
N V = 0.

Let t−2r̄ dq ∈ K be such that p 6= q and rq 6= 0. By the fact that [t−2r̄ dq , t r̄ kp] =

rq t−r̄ kp, we deduce that t−r̄ kp(t r̄ kp)
N−1V = 0, a contradiction. �

Lemma 4.3. If there exists 0 6= v ∈ V such that t m̄kpv = 0 for all m̄ ∈ Zν+1 and
0 ≤ p ≤ ν. Then K(V )= 0.

Proof. This follows from (2-2), since K is commutative and V is an irreducible
L-module. �

Theorem 4.4. If V is uniformly bounded, t r̄ kpV vanishes for any t r̄ kp ∈ K.
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Proof. Let 0 6= ti kp ∈ K. If ti kpV = 0, it is easy to prove that K(V ) = 0. If
ti kpV 6= 0. Since V is uniformly bounded, by Lemma 4.2, there exists l ∈ Z+ such
that

(4-1) (ti kpt−1
i kp)

l V = 0, (t1kpt−1
1 kp)

l−1V 6= 0.

If there exists s ∈ Z+ such that (t−1
i kp)

s V = 0, (t−1
i kp)

s−1V 6= 0. By the fact that
[t m̄di , t−1

i kp] = −t−1
i t m̄kp and [t m̄dp, t−1

i kp] = t−1
i t m̄ki , we have

t r̄ kp(t−1
i kp)

s−1V = t r̄ ki (t−r̄ kp)
s−1V = 0 for all r̄ ∈ Zν+1.

If (t−1
i kp)

s V 6= 0 for all s ∈ Z+. Then by (4-1) there is r ≥ 0 such that
(ti kp)

l−i (t−1
i kp)

l+i V = 0 for all 0 ≤ i ≤ r , and (ti kp)
l−r−1(t−1

i kp)
l+r+1V 6= 0.

So for any m̄ ∈ Zν+1, we have

t−m̄di (ti kp)
l−r (t−1

i kp)
l+r+1V = 0, t−m̄dp(ti kp)

l−r (t−1
i kp)

l+r+1V = 0.

Therefore
t r̄ kp(ti kp)

l−r−1(t−1
i kp)

l+r+1V = 0,

t r̄ ki (ti kp)
l−r−1(t−1

i kp)
l+r+1V = 0,

for all r̄ ∈ Zν+1.

Case 1: ν ∈ 2Z++1. By the preceding discussion, there exist nonnegative integers
li and ri , for i = 0, 2, 4, . . . , ν− 1, such that

(tνkν−1)
lν−1(t−1

ν kν−1)
rν−1(tν−2kν−3)

lν−3(t−1
ν−2kν−3)

rν−3 · · · (t1k0)
l0(t−1

1 k0)
r0 V 6= 0

and

t m̄kp(tνkν−1)
lν−1(t−1

ν kν−1)
rν−1(tν−2kν−3)

lν−3(t−1
ν−2kν−3)

rν−3 · · · (t1k0)
l0(t−1

1 k0)
r0 V

vanishes for all 0 ≤ p ≤ ν and m̄ ∈ Zν+1. By Lemma 4.3, the conclusion of the
theorem holds.

Case 2: ν ∈ 2Z. Then there exist nonnegative integers li and ri , for i = 0, 2, 4, . . . ,
ν− 2, such that

W = (tν−1kν−2)
lν−2(t−1

ν−1kν−2)
rν−2(tν−3kν−4)

lν−4(t−1
ν−3kν−4)

rν−4 · · ·(t1k0)
l0(t−1

1 k0)
r0 V

is nonzero and

(4-2) t m̄kpW = 0

for all 0 ≤ p ≤ ν− 1 and m̄ ∈ Zν+1. By (2-1), we know that

(4-3) t m̄kνW = 0,
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for m̄ ∈ Zν+1 such that mν 6= 0. If there exists t r̄0kν satisfying t r̄0kνW 6= 0, let

Lν = span {tmdi , t m̄dν, tmkν | tm
= tm0

0 tm1
1 · · · tmν−1

ν−1 , 0 ≤ i ≤ ν− 1,

m = (m0, . . . ,mν−1) ∈ Zν, m̄ ∈ Zν+1
},

W ′
= U (Lν)W.

Then W ′
6= 0 and

t m̄kpW ′
= 0, t n̄kνW ′

= 0,

for all 0 ≤ p ≤ ν − 1, m̄ ∈ Zν+1, and n̄ ∈ Zν+1 such that nν 6= 0. If there exists
0 6= tmkν such that tmkνW ′

6= 0, we have

(t−mkν)l(tmkν)l W ′
= 0 and (t−mkν)l−1(tmkν)l−1W ′

6= 0

for some l ∈ Z+. As in the preceding proof, we can deduce that there exists a
nonzero v ∈ W ′ such that

tnkνv = 0

for all n ∈ Zν . Therefore
t m̄kpv = 0

for all m̄ ∈ Zν+1 and 0 ≤ p ≤ ν. We have proved that K(V )= 0. �
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