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In this paper, we prove that the homotopy localization of an ACn-space
is an ACn-space so that the universal map is an ACn-map. This result is
used to study the higher homotopy commutativity of H-spaces with finitely
generated cohomology over the Steenrod algebra A∗

p. Our result shows that
for any prime p, if X is a connected AC p-space whose mod p cohomology
H∗(X; Z/ p) is finitely generated as an algebra over A∗

p, then X has the mod
p homotopy type of a Postnikov H-space.

1. Introduction

The theory of H -spaces has been studied in algebraic topology to understand ho-
motopy properties of Lie groups. Given a prime p, a Z/p-finite H -space is an
H -space whose mod p cohomology is finite dimensional. In recent decades, many
theorems have been proved about Z/p-finite H -spaces [Kane 1988; Lin 1995],
which suggest that they have many similar properties to those of Lie groups.

In this paper, we study an H -space which need not be Z/p-finite but whose
mod p cohomology is finitely generated as an algebra over the Steenrod algebra
A∗

p. For example, the n-connected covering X〈n〉 of a Z/p-finite H -space X is not
Z/p-finite for n ≥ 3 but the mod p cohomology is finitely generated as an algebra
over A∗

p, by [Castellana et al. 2006, Corollary 4.3]. Eilenberg–Mac Lane spaces
K (Z, n) and K (Z/pi , n) are other examples for n, i ≥ 1.

Using the homotopy localizations of Bousfield [1994] and Dror Farjoun [1996],
Castellana, Crespo and Scherer have studied H -spaces with finitely generated co-
homology over A∗

p [Castellana et al. 2007]. In their Theorem 7.3, these authors
proved that if X is such an H -space, the BZ/p-localization L BZ/p(X) is a Z/p-
finite H -space and the homotopy fiber F(φX ) of the universal map φX : X →

L BZ/p(X) is mod p homotopy equivalent to a Postnikov H -space (see Theorem
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5.1). Here an H -space is called Postnikov if the homotopy groups are finitely
generated over the p-adic integers Z∧

p which vanish above some dimension, and
mod p homotopy equivalence means homotopy equivalence up to p-completion in
the sense of [Bousfield and Kan 1972].

Moreover, by combining their main result with the mod 2 torus theorem by Hub-
buck [1969] and Lin [1985], Castellana et al. generalized results of Slack [1991]
and Lin and Williams [1991], as follows:

Theorem 1.1 [Castellana et al. 2007, Corollary 7.4]. If X is a connected homotopy
commutative H-space whose mod 2 cohomology H∗(X; Z/2) is finitely generated
as an algebra over A∗

2, then X is mod 2 homotopy equivalent to a Postnikov H-
space.

On the other hand, the odd prime version of Theorem 1.1 does not hold. In fact,
Iriye and Kono [1985] showed that for an odd prime p, any connected H -space
is mod p homotopy equivalent to a homotopy commutative H -space. Moreover,
Sp(2)∧3 for p = 3 and (S3)∧p for p ≥ 5 are examples of homotopy commutative
loop spaces which are not Postnikov H -spaces by McGibbon [1984], where Y ∧

p
denotes the p-completion of a space Y .

To describe an odd prime version of Theorem 1.1, we use the higher homotopy
commutativity of the multiplication. Such notions are first considered by Sugawara
[1960] and Williams [1969] in the case of topological monoids. (The higher ho-
motopy commutativity of the third order in the sense of Williams is illustrated by
the left hexagon in Figure 1.)

Williams’ definition was generalized to the case of An-spaces in [Hemmi and
Kawamoto 2004] (see also [Hemmi 1991]). An An-space with a multiplication
admitting the higher homotopy commutativity of the n-th order is called an ACn-
space. By [Hemmi and Kawamoto 2004, Example 3.2(1)], an AC2-space is the
same as a homotopy commutative H -space. Let X be an A3-space admitting an
AC2-structure. Then by using the associating homotopy M3 : I × X3

→ X and the
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Figure 1. The higher homotopy commutativity of the third order.
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commuting homotopy Q2 : I × X2
→ X , we can define a map Q̃3 : S1

× X3
→ X

illustrated by the right dodecagon in Figure 1. For example, the uppermost edge
represents the commuting homotopy between xy and yx given by Q2(t, x, y)z, and
the next right edge is the associating homotopy between (xy)z and x(yz) given by
M3(t, x, y, z). Then X is an AC3-space if and only if Q̃3 is extended to a map
Q3 : D2

× X3
→ X . In general, X is an ACn-space if and only if there is a family

of maps
{Qi : Di−1

× X i
→ X}1≤i≤n

with the relations in [Hemmi and Kawamoto 2004, Proposition 2.1].
To generalize Theorem 1.1 to the case of any prime p, we first show:

Theorem A. Let A be a topological space and n ≥1. If X is an ACn-space, then the
A-localization L A(X) is an ACn-space so that the universal map φX : X → L A(X)
is an ACn-map.

From Theorem A and [Castellana et al. 2007, Theorem 7.3], we can generalize
the mod p torus theorem stated in [Hemmi and Kawamoto 2004, Corollary 1.1] to
the case of AC p-spaces with finitely generated cohomology over A∗

p.

Theorem B. Let p be a prime. If X is a connected AC p-space whose mod p
cohomology H∗(X; Z/p) is finitely generated as an algebra over A∗

p, then X is
mod p homotopy equivalent to a Postnikov H-space.

Theorem B is a generalization of Theorem 1.1 to the case of any prime p since
an AC2-space is the same as a homotopy commutative H -space. In the above
theorem, the assumption of AC p-space cannot be relaxed to AC p−1-space. In
fact, by [Hemmi and Kawamoto 2004, Proposition 3.8], the (2m −1)-dimensional
sphere (S2m−1)∧p is an AC p−1-space but not a Postnikov H -space for m ≥ 2.

Moreover, since the loop space of an H -space admits an AC∞-structure by
[Hemmi and Kawamoto 2004, Example 3.2(3)], Theorem B implies:

Corollary 1.2 [Castellana et al. 2007, p. 17]. Let p be a prime. Assume that X is a
connected loop space whose mod p cohomology H∗(X; Z/p) is finitely generated
as an algebra over A∗

p. If the classifying space B X is an H-space, then X is mod
p homotopy equivalent to a Postnikov H-space.

There is an example of a Postnikov loop space Y admitting an AC p-structure
such that the classifying space BY is not an H -space by [McGibbon 1989, Example
5]. Corollary 1.2 is a generalization of results from [Aguadé and Smith 1986;
Kawamoto 1999; Lin 1994].

Bousfield [2001] studied the K (n)∗-localizations of Postnikov H -spaces, where
K (n)∗ denotes the Morava K -homology theory for n ≥ 1. By Theorem B and
[Bousfield 2001, Theorem 7.2], we have:
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Corollary 1.3. Let p be a prime and n ≥ 1. If X is a connected AC p-space
whose mod p cohomology H∗(X; Z/p) is finitely generated as an algebra over
A∗

p, then the K (n)∗-localization L K (n)∗(X
∧
p ) is mod p homotopy equivalent to the

6n BZ/p-localization L6n BZ/p(X∧
p ). In particular, X∧

p is K (n)∗-local if and only
if the n-fold loop space �n X∧

p is BZ/p-local.

We also generalize [Hemmi and Kawamoto 2007, Theorem B] to the case of
Ap-spaces with finitely generated cohomology over A∗

p.

Theorem C. Let p be an odd prime. Assume that X is a connected Ap-space admit-
ting an ACn-structure with n>(p−1)/2 and the mod p cohomology H∗(X; Z/p)
is finitely generated as an algebra over A∗

p. If the Steenrod operations P j act on
the indecomposable module Q H∗(X; Z/p) trivially for j ≥ 1, then X is mod p
homotopy equivalent to a finite product of (S1)∧ps, (CP∞)∧ps and BZ/pi s for i ≥ 1.

In Theorem C, the assumption n > (p − 1)/2 is necessary. In fact, by [Hemmi
1991, Theorem 2.4], (S3)∧p is an Ap-space admitting an AC(p−1)/2-structure for
any odd prime p.

Outline of article. In Section 2, we recall the associahedra, the multiplihedra and
the permuto-associahedra. Then we show that the permuto-associahedra are de-
composed by using the multiplihedra in a combinatorial way (see Proposition 2.1).
In Section 3, we give the definition of an ACn-map between ACn-spaces by using
Proposition 2.1 (see Definition 3.1). Section 4 is devoted to the proof of Theorem
A. We show that if φ : X → Y is an An-map between An-spaces and Y is φ-local,
then φ transmits an ACn-structure from X to Y (see Proposition 4.1). By applying
Proposition 4.1 to the universal map φX : X → L A(X) for the A-localization of
X , we prove Theorem A. In Section 5, we first recall the result of [Castellana
et al. 2007] on H -spaces with finitely generated cohomology over A∗

p (Theorem
5.1). From Theorem A, Theorem 5.1 and the results in [Hemmi 1991; Hemmi and
Kawamoto 2004], we prove Theorem B. Next Corollary 1.3 is proved by Theorem
B and the result from [Bousfield 2001] on the K (n)∗-localizations of Postnikov H -
spaces. We finally give the proof of Theorem C by using Theorem A and [Hemmi
and Kawamoto 2007, Theorem B].

The content of the paper was first presented in a conference on algebraic topol-
ogy at Shinshu University in July 2005. The author is grateful to the organizers for
their kind invitation and hospitality.

2. Decompositions of the permuto-associahedra

We first recall the associahedra {Kn}n≥2 of Stasheff and the multiplihedra {Jn}n≥1

of Iwase and Mimura.
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Figure 2. The associahedra K3 and K4.

Stasheff [1963, p. 283] constructed the associahedra {Kn}n≥2 to introduce the
concept of An-space (see Section 3). From the construction, the associahedron Kn

is an (n − 2)-dimensional polytope whose boundary ∂Kn is given by

∂Kn =

⋃
r,s,k

Kk(r, s)

for n ≥ 2, where r, s ≥ 2 with r + s = n + 1 and 1 ≤ k ≤ r . Here the facet
(codimension-one face) Kk(r, s) is homeomorphic to the product Kr × Ks by a
face operator ∂k(r, s) : Kr × Ks → Kk(r, s) with the relations in [Stasheff 1963,
p. 278, 3(a),(b)]. There is a family of degeneracy operators {θ j : Kn → Kn−1}1≤ j≤n

satisfying the relations in [Stasheff 1963, p. 278, Proposition 3].
The associahedra {Kn}n≥2 are also used in [Stasheff 1970, Definition 11.9] to

define an An-map from an An-space to a topological monoid.
Iwase and Mimura [1989, §2] introduced the multiplihedra {Jn}n≥1 for the pur-

pose of defining an An-map between An-spaces (see Section 3). From the proper-
ties in [Iwase and Mimura 1989, p. 200, (2-a) and (2-b)], the multiplihedron Jn is
an (n − 1)-dimensional polytope whose boundary ∂ Jn is given by

∂ Jn =

⋃
k,r,s

Jk(r, s)∪
⋃

q,r1,...,rq

J (q, r1, . . . , rq)

for n ≥ 1, where r ≥ 1, s ≥ 2 with r + s = n + 1 and 1 ≤ k ≤ r , and 2 ≤ q ≤ n,
r1, . . . , rq ≥1 with r1+· · ·+rq =n. As in the case of the associahedra, we have face
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Figure 3. The multiplihedra J2 and J3.
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Figure 4. The permuto-associahedra 02 and 03.

operators δk(r, s) : Jr × Ks → Jk(r, s) and δ(q, r1, . . . , rq) : Kq × Jr1 ×· · ·× Jrq →

J (q, r1, . . . , rq) with the relations in (2-c) of the same work. The degeneracy
operators {ξ j : Jn → Jn−1}1≤ j≤n satisfy the relations in (2-d).

We next recall the permuto-associahedra {0n}n≥1 constructed by Kapranov and
by Reiner and Ziegler. By [Kapranov 1993, Theorem 2.5] and [Reiner and Ziegler
1994, Theorem 2], the permuto-associahedron 0n is an (n−1)-dimensional poly-
tope whose faces are described in a combinatorial way for n ≥ 1 (see also [Ziegler
1995, Definition 9.13, Example 9.14]). In particular, a facet of 0n is represented
by a partition of the sequence n = (1, . . . , n) into at least two parts. Here a par-
tition of n of type (t1, . . . , tl) is an ordered sequence (α1, . . . , αl) consisting of
disjoint subsequences αi of n of length ti with α1 ∪ · · · ∪αl = n. See [Hemmi and
Kawamoto 2004; Ziegler 1995] for the full details of the partitions.

Let0(α1, . . . ,αl) denote the facet of0n corresponding to a partition (α1, . . . ,αl).
The boundary of 0n is given by

(2-1) ∂0n =

⋃
(α1,...,αl )

0(α1, . . . , αl),

where the union covers all partitions (α1, . . . , αl) of n with l ≥ 2. If (α1, . . . , αl)

is of type (t1, . . . , tl), then the facet 0(α1, . . . , αl) is homeomorphic to the product
Kl ×0t1 ×· · ·×0tl by a face operator ε(α1,...,αl ) : Kl ×0t1 ×· · ·×0tl →0(α1, . . . , αl)

with the relations in Proposition 2.1 of [Hemmi and Kawamoto 2004]. Moreover,
there are degeneracy operators {ω j : 0n → 0n−1}1≤ j≤n satisfying the relations in
Proposition 2.3 of the same reference.

In Definition 3.1, we need the following result:

Proposition 2.1. Let n ≥ 1.

(1) The permuto-associahedron 0n is decomposed by

0n =

⋃
(β1,...,βm)

B(β1, . . . , βm),
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where the union covers all partitions (β1, . . . , βm) of n with m ≥ 1.

(2) If (β1, . . . , βm) is a partition of n of type (u1, . . . , um), then B(β1, . . . , βm) is
homeomorphic to the product Jm ×0u1 × · · · ×0um by an operator

ι(β1,...,βm) : Jm ×0u1 × · · · ×0um → B(β1, . . . , βm).

By an inductive argument, we can show:

Lemma 2.2 [Stasheff 1963, p. 288, Proposition 25]. There is a family of homeo-
morphisms {ζm : I × Km → Jm}m≥2 with the relations

ζm(0, σ )= δ1(1,m)(∗, σ ),

ζm(t, ∂k(r, s)(ρ, σ ))= δk(r, s)(ζr (t, ρ), σ )

for r, s ≥ 2 with r + s = m + 1 and 1 ≤ k ≤ r .

Proof of Proposition 2.1. We work by induction on n. Since 01 = J1 = ∗, the result
is clear for n = 1. We put

(2-2) Un = 0n ∪{0}×∂0n I × ∂0n,

where I is the unit interval and {0} × ∂0n is identified with ∂0n ⊂ 0n . It is clear
that Un is homeomorphic to the (n − 1)-dimensional ball.

Let B(n) = 0n ⊂ Un . Then an operator ι(n) : J1 × 0n → B(n) is defined by
ι(n)(∗, τ ) = τ for τ ∈ 0n . If m ≥ 2, then by Lemma 2.2, we can identify Jm with

(2), (1)

(1, 2)

(1), (2)

?? rr rr

(1, 2, 3)

(1, 2), (3)

(1), (2), (3)

(1), (2, 3)

(1), (3), (2)

(1, 3), (2)

(3), (1), (2)

(3), (1, 2)

(3), (2), (1)

(2, 3), (1)

(2), (3), (1)

(2), (1, 3)

(2), (1), (3)

r r rr rr
rr

rr rr
rr rr

rr rr

rr
rr

rr

rr
rr
rr

rr

rr ? ���
)

���)

����

PPPi

PPP
i

6
���
1

��� 1

���
*

PPP
q

PPP q

"
""

b
bb

�
�

T
T

T
T

�
�

b
bb

"
""

b
b

b
b

"
"

"
"

"
"

"
"

b
b

b
b

"
""

b
bb

�
�

�
�

T
T
T
T

"
""

b
bb

T
T

T
T

�
�
�
�

Figure 5. The decompositions of 02 and 03.
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I × Km by ζm : I × Km → Jm . Assume that (β1, . . . , βm) is a partition of n of type
(u1, . . . , um) with m ≥ 2. Put

B(β1, . . . , βm)= I ×0(β1, . . . , βm)⊂ Un,

and define an operator ι(β1,...,βm) : Jm ×0u1 × · · · ×0um → B(β1, . . . , βm) by

ι(β1,...,βm)(ζm(t, σ ), τ1, . . . , τm)= (t, ε(β1,...,βm)(σ, τ1, . . . , τm)).

Then by (2-1) and (2-2), we have that

Un =

⋃
(β1,...,βm)

B(β1, . . . , βm),

where the union covers all partitions (β1, . . . , βm) of n with m ≥ 1.
By Lemma 2.2, we see that

ζm({1} × Km)=

⋃
q,r1,...,rq

J (q, r1, . . . , rq)

for 2 ≤ q ≤ m and r1, . . . , rq ≥ 1 with r1 + · · · + rq = m. This implies that

(2-3) ∂Un =

⋃
(β1,...,βm)

ι(β1,...,βm)

(( ⋃
q,r1,...,rq

J (q, r1, . . . , rq)

)
×0u1 ×· · ·×0um

)
for 2 ≤ q ≤ m and r1, . . . , rq ≥ 1 with r1 + · · · + rq = m, where (β1, . . . , βm)

are partitions of n of type (u1, . . . , um) with m ≥ 2. If we define face operators
on ∂Un satisfying the relations in [Hemmi and Kawamoto 2004, Proposition 2.1],
then ∂Un is homeomorphic to ∂0n , and it follows that Un is homeomorphic to 0n ,
which implies the required conclusion.

Recall that ∂0n is given by

∂0n =

⋃
(α1,...,αl )

0(α1, . . . , αl),

where the union covers all partitions (α1, . . . , αl) of n with l ≥ 2.
Assume that (α1, . . . , αl) is a partition of n of type (t1, . . . , tl) with l ≥ 2. Then

by inductive hypothesis, we can assume that

0t j =

⋃
(γ j,1,...,γ j,h j )

B(γ j,1, . . . , γ j,h j )

for 1 ≤ j ≤ l, where the union covers all partitions (γ j,1, . . . , γ j,h j ) of (1, . . . , t j )

with h j ≥1. If (γ j,1, . . . , γ j,h j ) is a partition of (1, . . . , t j ) of type (v j,1, . . . , v j,h j ),
then by inductive hypothesis, we have the operator ι(γ j,1,...,γ j,h j ) : Jh j ×0v j,1 ×· · ·×

0v j,h j
→ B(γ j,1, . . . , γ j,h j ) which is a homeomorphism. Put m = h1 + · · · + hl .
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We give a partition (β1, . . . , βm) of n of type (v1,1, . . . , v1,h1, . . . , vl,1, . . . , vl,hl )

by

βi (t)= α jγ j,i−(h1+···+h j−1)(t)

for h1 + · · · + h j−1 + 1 ≤ i ≤ h1 + · · · + h j and 1 ≤ t ≤ i − (h1 + · · · + h j−1).
Define a face operator ε(α1,...,αl ) : Kl ×0t1 × · · · ×0tl → ∂Un by

ε(α1,...,αl )(σ, ι(γ1,1,...,γ1,h1 )(ρ1, τ1,1, . . . , τ1,h1), . . . , ι
(γl,1,...,γl,hl )(ρl, τl,1, . . . , τl,hl ))

= ι(β1,...,βm)(δ(l, h1, . . . , hl)(σ, ρ1, . . . , ρl), τ1,1, . . . , τ1,h1, . . . , τl,1, . . . , τl,hl ).

By (2-3) and the relation [Iwase and Mimura 1989, p. 201, (c-4)], the face opera-
tor satisfies the relations in [Hemmi and Kawamoto 2004, Proposition 2.1]. This
implies that Un is homeomorphic to 0n , and so we have the required conclusion.
This completes the proof. �

Remark 2.3. The decomposition of 0n in Proposition 2.1 is compatible with the
degeneracy operators {ω j : 0n → 0n−1}1≤ j≤n . Assume that (β1, . . . , βm) is a par-
tition of n of type (u1, . . . , um) for u1, . . . , um ≥ 1 with u1 + · · · + um = n. Let
1 ≤ j ≤ n. Then βk(t)= j for some 1 ≤ k ≤ m and 1 ≤ t ≤ uk .

(i) If uk ≥ 2, then

ω j ι
(β1,...,βm)(σ, τ1, . . . , τm)= ι(β̃1,...,β̃m)(σ, τ1, . . . , τk−1, ωt(τk), τk+1, . . . , τm),

where (β̃1, . . . , β̃m) is the partition of (1, . . . , n − 1) of type (u1, . . . , uk−1, uk −

1, uk+1, . . . , um) given by

β̃k(s)=

{
βk(s) if βk(s) < j ,

βk(s + 1)− 1 if βk(s)≥ j

and for 1 ≤ i ≤ n with i 6= k,

(2-4) β̃i (s)=

{
βi (s) if βi (s) < j ,

βi (s)− 1 if βi (s) > j .

(ii) If uk = 1, then

ω j ι
(β1,...,βm)(σ,τ1,. . .,τm)= ι

(β̃1,...,β̃k−1,β̃k+1,...,β̃m)(ξk(σ ),τ1,. . .,τk−1,τk+1,. . .,τm),

where (β̃1, . . . , β̃k−1, β̃k+1, . . . , β̃m) is the partition of (1, . . . , n − 1) of type

(u1, . . . , uk−1, uk+1, . . . , um)

given by (2-4) and ξk denotes the degeneracy operator of Jm .
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3. Higher homotopy commutativity

We first recall the higher homotopy associativity of H -spaces and H -maps.
Sugawara [1957] gave a criterion for a topological space to have the homotopy

type of a loop space. Later Stasheff [1963] expanded his definition, and introduced
the concept of An-space by using the associahedra {Ki }i≥2. Let X be an H -space
whose multiplication is given by µ : X × X → X with µ(x, ∗) = µ(∗, x) = x for
x ∈ X . Then an An-form on X is a family of maps {Mi : Ki × X i

→ X}2≤i≤n with
the relations

M2(∗, x, y)= µ(x, y),

Mi (∂k(r,s)(ρ,σ ),x1,...,xi )= Mr (ρ,x1,...,xk−1,Ms(σ,xk,...,xk+s−1),xk+s,...,xi )

for r, s ≥ 2 with r + s = i + 1 and 1 ≤ k ≤ r , and

Mi (σ, x1, . . . , x j−1, ∗, x j+1, . . . , xi )= Mi−1(θ j (σ ), x1, . . . , x j−1, x j+1, . . . , xi )

for 1 ≤ j ≤ i .
An A1-space is just a topological space, and an H -space which admits an An-

form is called an An-space for n ≥ 2. From the definition, an A2-space and
an A3-space are an H -space and a homotopy associative H -space, respectively.
Moreover, an A∞-space X has the homotopy type of a loop space admitting the
classifying space B X with �(B X)' X (see [Kane 1988, §6-2]).

It is natural to consider the concept of An-map between An-spaces. Sugawara
[1960] first considered such a concept for a map between topological monoids.
Stasheff [1970] next studied an An-map from an An-space to a topological monoid
by using the associahedra {Ki }i≥2 used for the definition of an An-space.

The full generality was described by Iwase and Mimura [1989] by using the
multiplihedra {Ji }i≥1. Let X and Y be An-spaces with the An-forms {Mi }2≤i≤n

and {Ni }2≤i≤n , respectively. Assume that φ : X → Y is a map. Then an An-form
on φ is a family of maps {Fi : Ji × X i

→ Y }1≤i≤n with the relations

F1(∗, x)= φ(x),

Fi (δk(r,s)(ρ,σ ),x1,...,xi )= Fr (ρ,x1,...,xk−1,Ms(σ,xk,...,xk+s−1),xk+s,...,xi )

for r ≥ 1, s ≥ 2 with r + s = i + 1 and 1 ≤ k ≤ r ,

Fi (δ(q, r1, . . . , rq)(ρ, σ1, . . . , σq), x1, . . . , xi )

= Nq(ρ, Fr1(σ1, x1, . . . , xr1), . . . , Frq (σq , xr1+···+rq−1+1, . . . , xi ))

for q ≥ 2 and r1, . . . , rq ≥ 1 with r1 + · · · + rq = n, and

Fi (ρ, x1, . . . , x j−1, ∗, x j+1, . . . , xi )= Fi−1(ξ j (ρ), x1, . . . , x j−1, x j+1, . . . , xi )

for 1 ≤ j ≤ i .
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A map which admits an An-form is called an An-map for n ≥ 1. An A1-map is
just a map, and by [Iwase and Mimura 1989, p. 195, P8], an A2-map and an A3-map
are an H -map and an H -map preserving the homotopy associativity, respectively.
Moreover, an A∞-map φ is homotopic to a loop map which induces a map between
the classifying spaces Bφ : B X → BY with �(Bφ)' φ (see [Kane 1988, §6-4]).

We next recall the higher homotopy commutativity of H -spaces.
Sugawara [1960] gave a criterion for the classifying space of a topological

monoid to have the homotopy type of an H -space. His criterion is a higher ho-
motopy commutativity of the multiplication. Later Williams [1969] considered
another type of higher homotopy commutativity which is weaker than the one of
Sugawara, and defined Cn-spaces.

In [Hemmi and Kawamoto 2004], we generalized the definition of Williams to
the case of An-spaces, and defined ACn-spaces by using the permuto-associahedra
{0i }i≥1. Let X be an An-space with the An-form {Mi }2≤i≤n . Then an ACn-form
on X is a family of maps {Qi : 0i × X i

→ X}1≤i≤n with the relations

(3-1) Q1(∗, x)= x,

(3-2) Qi (ε
(α1,...,αl )(σ, τ1, . . . , τl), x1, . . . , xi )

= Ml(σ, Qt1(τ1, xα1(1), . . . , xα1(t1)), . . . , Qtl (τl, xαl (1), . . . , xαl (tl )))

for a partition (α1, . . . , αl) of i of type (t1, . . . , tl) with l ≥ 2, and

(3-3) Qi (τ,x1,. . .,x j−1,∗,x j+1,. . .,xi )= Qi−1(ω j (τ ),x1,. . .,x j−1,x j+1,. . .,xi )

for 1 ≤ j ≤ i .
An An-space admitting an ACn-form is called an ACn-space for n ≥ 1. By

Example 3.2(1) in [Hemmi and Kawamoto 2004], X is an AC2-space if and only
if X is a homotopy commutative H -space. Moreover, if X is a topological monoid,
then by Corollary 3.6 of the same work, X is an ACn-space if and only if X is a
Cn-space of Williams [1969].

Williams [1969, Definition 20], also considered the concept of Cn-map between
Cn-spaces. We generalize his definition to the case of maps between ACn-spaces.

Definition 3.1. Let X and Y be ACn-spaces with the ACn-forms {Qi }1≤i≤n and
{Ri }1≤i≤n , respectively. Assume that φ : X → Y is an An-map with the An-form
{Fi }1≤i≤n . Then an ACn-form on φ is a family of maps

{Di : I ×0i × X i
→ Y }1≤i≤n

with the relations

(3-4) D1(t, ∗, x)= φ(x),
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Figure 6. The ACn-forms on φ for n = 2, 3.

(3-5) Di (t, ε(α1,...,αl )(σ, τ1, . . . , τl), x1, . . . , xi )

= Nl(σ, Dt1(t, τ1, xα1(1), . . . , xα1(t1)), . . . , Dtl (t, τl, xαl (1), . . . , xαl (tl )))

for a partition (α1, . . . , αl) of i of type (t1, . . . , tl) with l ≥ 2,

(3-6) Di (0, ι(β1,...,βm)(σ, τ1, . . . , τm), x1, . . . , xi )

= Fm(σ, Qu1(τ1, xβ1(1), . . . , xβ1(u1)), . . . , Qum (τm, xβm(1), . . . , xβm(um)))

for a partition (β1, . . . , βm) of i of type (u1, . . . , um) with m ≥ 1,

(3-7) Di (1, τ, x1, . . . , xi )= Ri (τ, φ(x1), . . . , φ(xi )),

and

(3-8) Di (t, τ, x1, . . . , x j−1, ∗, x j+1, . . . , xi )

= Di−1(t, ω j (τ ), x1, . . . , x j−1, x j+1, . . . , xi )

for 1 ≤ j ≤ i .

An An-map admitting an ACn-form is called an ACn-map for n ≥ 1. If there is
a family of maps {Di }i≥1 such that {Di }1≤i≤n is an ACn-form on φ for any n ≥ 1,
then φ is called an AC∞-map.

Example 3.2. (1) An AC2-space is the same as a homotopy commutative H -
space by [Hemmi and Kawamoto 2004, Example 3.2(1)]. Then an AC2-map
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is a map between AC2-spaces preserving the homotopy commutativity, and
so it is the same as an HC-map of Zabrodsky [1976, p. 62].

(2) Let φ : X → Y be a homomorphism for topological monoids X, Y . Then φ is
an ACn-map if and only if φ is a Cn-map of [Williams 1969, Definition 20].

(3) If φ : X → Y is an H -map, then the loop map �φ : �X → �Y is an AC∞-
map.

4. Proof of Theorem A

Let S∗ denote the category of pointed and connected topological spaces having the
homotopy type of CW -complexes. Assume that f : A → B is a pointed map for
A, B ∈ S∗. According to Dror Farjoun [1996, p. 2, A.1], Z ∈ S∗ is called f -local
if the induced map

f #
: Map∗(B, Z) - Map∗(A, Z)

is a homotopy equivalence. In the case that B = ∗ and f : A → ∗ is the con-
stant map, Z is called A-local, that is, the pointed mapping space Map∗(A, Z) is
contractible.

Bousfield [1994, §2] and Dror Farjoun [1996, §1] constructed the A-localization
L A(X) with the universal map φX : X → L A(X) for X ∈ S∗ (see also [Chachólski
1996, §14]). By [Farjoun 1996, p. 4, A.4], L A(X) is A-local, and by [Bousfield
1994, Theorem 2.10(ii)], φX induces a homotopy equivalence

(4-1) (φX )
#
: Map∗(L A(X), Z) - Map∗(X, Z)

for any A-local space Z (see also [Chachólski 1996, Theorem 14.1]).
To prove Theorem A, we first show:

Proposition 4.1. Let φ : X → Y be an An-map for An-spaces X, Y . If X is an
ACn-space and Y is φ-local, then Y is an ACn-space so that φ is an ACn-map.

Lemma 4.2. Let φ : X → Y be a map. If Y is φ-local, then we have the homotopy
equivalences

(φn)# : Map∗(Y
n, Y )−→ Map∗(X

n, Y )(4-2)

(φ(n))# : Map∗(Y
(n), Y )−→ Map∗(X

(n), Y ),(4-3)

where Z (n) denotes the n-fold smash product of Z ∈ S∗ for n ≥ 1.
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Proof. We first show (4-2). From the homotopy commutative diagram of fibrations

Map∗(Y
n, Y )

(φn)#- Map∗(X
n, Y )

Map(Y n, Y )
?

(φn)#- Map(Xn, Y )
?

Y

e
?
============== Y,

e′

?

it is sufficient to show that the middle horizontal map is a homotopy equivalence
for n ≥ 1, where e and e′ are the evaluation maps at the base points.

We work by induction on n. Since Y is φ-local, the result is clear for n = 1. As-
sume that (φn−1)# : Map(Y n−1, Y ) → Map(Xn−1, Y ) is a homotopy equivalence.
By [Farjoun 1996, p. 5, A.8, e.2], Map(Y n−1, Y ) is φ-local. From the homotopy
commutative diagram

Map(Y n, Y )
(φn)# - Map(Xn, Y )

Map(Y,Map(Y n−1, Y ))

'

?

Map(X,Map(Xn−1, Y ))

'

?

Map(X,Map(Y n−1, Y ))

' φ#

?
((φn−1)#)#

'

- Map(X,Map(Xn−1, Y )),

wwwwww
we have that (φn)# : Map(Y n, Y )→ Map(Xn, Y ) is a homotopy equivalence.

In the case of (4-3), by similar arguments to the case of (4-2) and a homotopy
equivalence

Map∗(Z ∧ W,U )' Map∗(Z ,Map∗(W,U ))

for Z ,W,U ∈ S∗, we have the required conclusion. This completes the proof. �

Lemma 4.3. Let φ : Z → W be a homotopy equivalence for Z ,W ∈ S∗, and let
(K , L) be a relative CW -complex.

(1) If there are maps f : K → W and g : L → Z with φg = f |L , then we have a
map h : K → Z with h|L = g and φh ' f rel L.

(2) If h, k : K → Z are maps with h|L = k|L and φh ' φk rel L , then h ' k rel L.

Proof of Proposition 4.1. Let {Mi }2≤i≤n and {Ni }2≤i≤n be the An-form on X and
Y , respectively. Since φ : X → Y is an An-map, there is an An-form {Fi }1≤i≤n on
φ. Moreover, we denote the ACn-form on X by {Qi }1≤i≤n .
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We work by induction on n. By (3-1) and (3-4), the result is clear for n = 1.
Assume that there are ACn−1-forms {Ri }1≤i≤n−1 and {Di }1≤i≤n−1 on Y and φ,
respectively.

Put Vn(Z)= (I ×∂0n ∪{0}×0n)× Zn and Wn(Z)= I ×0n × Z [n], where Z [n]

denotes the n-fold fat wedge of Z ∈ S∗ given by

Z [n]
= {(z1, . . . , zn) ∈ Zn

| z j = ∗ for some 1 ≤ j ≤ n}.

Let En : Vn(X)∪ Wn(X)→ Y be the map defined by

En(t, ε(α1,...,αl )(σ, τ1, . . . , τl), x1, . . . , xn)

= Nl(σ, Dt1(t, τ1, xα1(1), . . . , xα1(t1)), . . . , Dtl (t, τl, xαl (1), . . . , xαl (tl )))

for a partition (α1, . . . , αl) of n of type (t1, . . . , tl) with l ≥ 2,

En(0, ι(β1,...,βm)(σ, τ1, . . . , τm), x1, . . . , xn)

= Fm(σ, Qu1(τ1, xβ1(1), . . . , xβ1(u1)), . . . , Qum (τm, xβm(1), . . . , xβm(um)))

for a partition (β1, . . . , βm) of n of type (u1, . . . , um) with m ≥ 1 and

En(t,τ, x1, . . . , x j−1,∗, x j+1, . . . , xn)= Dn−1(t,ω j (τ ), x1, . . . , x j−1, x j+1, . . . , xn)

for 1 ≤ j ≤ n.
Since there is a map Ẽn : I ×0n × Xn

→ Y with Ẽn|Vn(X)∪Wn(X) = En by the
homotopy extension property, we define a map Sn : 0n × Xn

→ Y by

Sn(τ, x1, . . . , xn)= Ẽn(1, τ, x1, . . . , xn).

Let γn : 0n → Map∗(X
n, Y )(φn)#(µn) be the adjoint of Sn , where µn : Y n

→ Y
is the map given by µn(y1, . . . , yn) = (· · · (y1 y2) · · · )yn . If a map κn : ∂0n →

Map∗(Y
n, Y )µn is defined by

κn(ε
(α1,...,αl )(σ, τ1, . . . , τl), y1, . . . , yn)

= Nl(σ, Rt1(τ1, yα1(1), . . . , yα1(t1)), . . . , Rtl (τl, yαl (1), . . . , yαl (tl ))),

then (φn)#(κn) = γn|∂0n , and so by (4-2) and Lemma 4.3 (1), we have a map
λn : 0n → Map∗(Y

n, Y )µn with λn|∂0n = κn and (φn)#(λn)' γn rel ∂0n .
To construct a map Rn : 0n × Y n

→ Y with the relations (3-1)–(3-3), we need
to show that the induced map

(4-4) (φ[n])# : Map∗(Y
[n], Y )νn −→ Map∗(X

[n], Y )(φ[n])#(νn)

is a homotopy equivalence, where νn : Y [n]
→ Y denotes the composite of µn with

the inclusion ιY : Y [n]
→ Y n . Since Y is an H -space, it is sufficient to show the
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same homotopy equivalence on the components of the constant maps. Consider
the following homotopy commutative diagram of fibrations:

Map∗(Y
(n), Y )C1

(φ(n))#

'

- Map∗(X
(n), Y )C2

Map∗(Y
n, Y )c

(πY )
#

?
(φn)#

'

- Map∗(X
n, Y )c

(πX )
#

?

Map∗(Y
[n], Y )c

(ιY )
#

?
(φ[n])#- Map∗(X

[n], Y )c,

(ιX )
#

?

where C1 = {h : Y (n) → Y | (πY )
#(h)' c} and C2 = {k : X (n)

→ Y | (πX )
#(k)' c}.

Since the vertical arrows are fibrations, the bottom horizontal arrow is a homotopy
equivalence, which implies (4-4).

Define a map ρn : 0n → Map∗(Y
[n], Y )νn by

ρn(τ )(y1, . . . , y j−1, ∗, y j+1, . . . , yn)= Rn−1(ω j (τ ), y1, . . . , y j−1, y j+1, . . . , yn)

for 1 ≤ j ≤ n. Then (φ[n])#(ιY )
#(λn) ' (φ[n])#(ρn) rel ∂0n , and so by (4-4) and

Lemma 4.3 (2), we have (ιY )#(λn)' ρn rel ∂0n , which implies that there is a map
ψn : I ×0n → Map∗(Y

[n], Y )νn with

ψn(t, τ )=

{
(ιY )

#(λn)(τ ) if (t, τ ) ∈ {0} ×0n ∪ I × ∂0n ,

ρn(τ ) if (t, τ ) ∈ {1} ×0n .

If a map Gn : Vn(Y )∪ Wn(Y )→ Y is given by

Gn(t, τ, y1, . . . , yn)=

{
λn(τ )(y1, . . . , yn) if (t, τ, y1, . . . , yn) ∈ Vn(Y ),

ψn(t, τ )(y1, . . . , yn) if (t, τ, y1, . . . , yn) ∈ Wn(Y ),

there is an extension G̃n : I × 0n × Y n
→ Y with G̃n|Vn(Y )∪Wn(Y ) = Gn . Let

Rn : 0n ×Y n
→ Y be the map defined by Rn(τ, y1, . . . , yn)= G̃n(1, τ, y1, . . . , yn).

Then Rn satisfies the relations (3-1)–(3-3).
Since Rn(10n ×φ

n)' Sn rel ∂0n×Xn , we have a map Hn : I ×0n×Xn
→Y with

Hn|Vn(X) = En|Vn(X) and Hn(1, τ, x1, . . . , xn) = Rn(τ, φ(x1), . . . , φ(xn)). More-
over, Hn|∂(I×0n)×X [n] = En|∂(I×0n)×X [n] , and so by [Williams 1969, Remark 10],
we can choose a map Dn : I ×0n × Xn

→ Y with Dn|∂(I×0n)×Xn = Hn|∂(I×0n)×Xn

and Dn|Wn(X)= En|Wn(X). Then Dn satisfies the relations (3-4)–(3-8), and we have
the required conclusion. This completes the proof. �

Let φ : X → Y be a homotopy equivalence. Then Y is φ-local, and so by Propo-
sition 4.1, we have:
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Proposition 4.4. Let X, Y be An-spaces. Assume that φ : X → Y is an An-map
which is a homotopy equivalence. If X is an ACn-space, then Y is an ACn-space
so that φ is an ACn-map.

Remark 4.5. By Proposition 4.4, the property of being an ACn-space is an invari-
ant of An-homotopy type. This is a generalization of [Williams 1969, Proposition
8, Theorem 9] for Cn-spaces in the category of topological monoids.

Proof of Theorem A. If X is an ACn-space, then the A-localization L A(X) is an
An-space so that the universal map φX : X → L A(X) is an An-map, by [Kawamoto
2002, Theorem 2.1(1)]. Since L A(X) is φX -local by (4-1), we have the required
conclusion by Proposition 4.1. This completes the proof of Theorem A. �

By [Farjoun 1996, p. 26, E.1], the Sm+1-localization L Sm+1(X) of X is the same
as the m-th stage Pm(X) of the Postnikov system of X for m ≥ 1, where St denotes
the t-dimensional sphere for t ≥ 1. Then by Theorem A, we have:

Corollary 4.6. Let n ≥ 1. If X is an ACn-space, then the m-th stage Pm(X) of the
Postnikov system of X is an ACn-space so that the projection ρm : X → Pm(X) is
an ACn-map for m ≥ 1.

Let A ∈ S∗. Dror Farjoun [1996, §2] constructed the A-colocalization CWA(X)
with the universal map ψX : CWA(X)→ X for X ∈ S∗ (see also [Chachólski 1996,
§7]).

Theorem 4.7. Let A ∈ S∗. If X is an ACn-space, then the A-colocalization
CWA(X) is an ACn-space so that the universal map ψX : CWA(X) → X is an
ACn-map.

Let f : Z → W be a pointed map for Z ,W ∈ S∗. According to [Farjoun 1996,
p. 39, A.1], f is called an A-equivalence if the induced map

f# : Map∗(A, Z) - Map∗(A,W )

is a homotopy equivalence. From the proof of [Farjoun 1996, p. 53, E.1], the
universal mapψX : CWA(X)→ X is a CWA(X)-equivalence (see also [Chachólski
1996, p. 614]), and so we can prove Theorem 4.7 from the following result:

Proposition 4.8. Let φ : X → Y be an An-map for An-spaces X, Y . If Y is an
ACn-space and φ is an X-equivalence, then X is an ACn-space so that φ is an
ACn-map.

Proposition 4.8 is proved by similar arguments to the proof of Proposition 4.1,
and so we omit the proof. In the proof of Proposition 4.8, we need the next lemma
instead of Lemma 4.2:
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Lemma 4.9. Let φ : X → Y be a map. If φ is an X-equivalence, then we have the
homotopy equivalences

φ# : Map∗(X
n, X)−→ Map∗(X

n, Y ),

φ# : Map∗(X
(n), X)−→ Map∗(X

(n), Y )

for n ≥ 1.

Proof. By [Farjoun 1996, p. 46, D.2.2],

E(φ)= {A ∈ S∗ | φ is an A-equivalence}

is a closed class.
Since φ is an X -equivalence, X ∈ E(φ). If A, B ∈ E(φ), then by [Farjoun 1996,

p. 52, D.16], the product A× B ∈ E(φ). Since the wedge sum A∨ B is represented
by a homotopy colimit, we have A ∨ B ∈ E(φ) by [Farjoun 1996, p. 45, D.1] (see
also [Chachólski 1996, Proposition 4.2]), and so A ∧ B ∈ E(φ) by [Farjoun 1996,
p. 45, D.1, 3,4]. From these properties, we have Xn, X (n)

∈ E(φ) for n ≥ 1, which
implies the required conclusion. This completes the proof. �

Dror Farjoun [1996, p. 39, A.3] proved that the Sm+1-colocalization CWSm+1(X)
of X ∈ S∗ is the same as the m-connected covering X〈m〉 of X for m ≥ 1, and so
by Theorem 4.7, we have:

Corollary 4.10. Let n ≥ 1. If X is an ACn-space, then the m-connected covering
X〈m〉 of X is an ACn-space so that the inclusion ιm : X〈m〉 → X is an ACn-map
for m ≥ 1.

Remark 4.11. In [Hemmi and Kawamoto 2004], we have shown that the uni-
versal covering inherits the property of being an ACn-space. Corollary 4.10 is a
generalization of Lemma 3.9 of that work to the case of any m ≥ 1.

5. Proofs of Theorems B and C

Theorem 5.1 [Castellana et al. 2007, Theorem 7.3]. Let p be a prime. If X is a
connected H-space whose mod p cohomology H∗(X; Z/p) is finitely generated
as an algebra over A∗

p, then there is an H-fibration

(5-1) F(φX ) - X
φX- L BZ/p(X),

where L BZ/p(X) is a connected Z/p-finite H-space and F(φX ) is mod p homotopy
equivalent to a Postnikov H-space.

Remark 5.2. In Theorem 5.1, if H∗(X; Z/p) is finitely generated as an alge-
bra over Z/p, then F(φX ) is mod p homotopy equivalent to a finite product of
(CP∞)∧ps and BZ/pi s for i ≥ 1 by [Broto et al. 2001, Theorem 1.2, Theorem 1.3].
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Proof of Theorem B. By Theorem A and Theorem 5.1, L BZ/p(X) is a connected
Z/p-finite AC p-space so that the universal map φX : X → L BZ/p(X) is an AC p-
map. Then H∗(L BZ/p(X); Z/p) is an exterior algebra generated by odd dimen-
sional generators by [Kane 1988, §12-3, Corollaries A and B]. Let Z be the uni-
versal covering of L BZ/p(X). Then there is an H -fibration

Z - L BZ/p(X) - K (π1(L BZ/p(X)), 1),

where K (π1(L BZ/p(X)), 1) has the mod p homotopy type of a torus. Since Z is a
simply connected Z/p-finite AC p-space by [Hemmi and Kawamoto 2004, Lemma
3.9] and [Kane 1988, §3-1, Theorem B], we have H̃∗(Z; Z/p) = 0 by [Hemmi
and Kawamoto 2004, Theorem A (1)] and [Hemmi 1991, Theorem 1.1]. Then
L BZ/p(X) has the mod p homotopy type of a torus, and so by Theorem 5.1, X is
mod p homotopy equivalent to a Postnikov H -space. This completes the proof of
Theorem B. �

Remark 5.3. From Theorem B, we have the mod p torus theorem stated in [Hemmi
and Kawamoto 2004, Corollary 1.1] since a result of McGibbon and Neisendorfer
[1984] on a conjecture of Serre implies that a connected Postnikov H -space which
is also Z/p-finite has the mod p homotopy type of a torus.

The proof of Corollary 1.3 is given as follows:

Proof of Corollary 1.3. By Theorem B, X is mod p homotopy equivalent to a Post-
nikov H -space. Put Y = X∧

p . Then, by [Bousfield 2001, Theorem 7.2], L K (n)∗(Y )
is homotopy equivalent to the (n + 1)-st stage P̃n+1(Y ) of the modified Postnikov
system of Y given by

(5-2) π j (P̃n+1(Y ))∼=


π j (Y ) for 1 ≤ j ≤ n,

πn+1(Y )/Tn+1(p) for j = n + 1,

0 for j > n + 1,

where Tn+1(p) denotes the p-torsion subgroup of πn+1(Y ). Since �n L K (n)∗(Y ) is
BZ/p-local by (5-2), there is a map f : L6n BZ/p(Y )→ L K (n)∗(Y ) with f φY ' κY ,
where κY : Y → L K (n)∗(Y ) denotes the universal map for the K (n)∗-localization
of Y .

Since �n L6n BZ/p(Y ) is BZ/p-local, there is an H -fibration

F(φL6n BZ/p(Y ))
- L6n BZ/p(Y )

φL6n BZ/p(Y )- L BZ/p(L6n BZ/p(Y )),

by [Castellana et al. 2007, Theorem 3.2], where F(φL6n BZ/p(Y )) is mod p homotopy
equivalent to a Postnikov H -space which satisfies that πn+1(F(φL6n BZ/p(Y ))

∧
p) has

no p-torsion and π j (F(φL6n BZ/p(Y ))
∧
p)= 0 for j > n + 1.
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By [Farjoun 1996, p. 139, B.6], L BZ/p(L6n BZ/p(Y )) ' L BZ/p(Y ), and by the
proof of Theorem B, we have that L BZ/p(Y ) has the mod p homotopy type of a
torus. Then L6n BZ/p(Y )∧p is K (n)∗-local by (5-2), and so there is a map

g : L K (n)∗(Y )→ L6n BZ/p(Y )∧p

with gκY ' (φY )
∧
p . From the universality of the localizations we see that L K (n)∗(Y )

is mod p homotopy equivalent to L6n BZ/p(Y ). This completes the proof. �

To prove Theorem C, we need a lemma:

Lemma 5.4. Let p be an odd prime. Assume that X is a connected H-space whose
mod p cohomology H∗(X; Z/p) is finitely generated as an algebra over Z/p. If
x ∈ Q H 2pt

(X; Z/p) is a generator of infinite height with t ≥ 2, then P1β(x) 6= 0
in Q H 2pt

+2p−1(X; Z/p) or there is a generator y ∈ Q H 2pt−1
+1(X; Z/p) with

Ppt−1
(y)= β(x) 6= 0 in Q H 2pt

+1(X; Z/p).

Proof. Let X̃ be the universal covering of X . Then there is an H -fibration

X̃
ι - X

ρ - K (π1(X), 1),

where K (π1(X), 1) has the mod p homotopy type of a finite product of (S1)∧ps
and BZ/pi s for i ≥ 1. According to [Browder 1959], the mod p cohomology
H∗(X̃; Z/p) is finitely generated as an algebra over Z/p and

(5-3) ι∗ : Q H s(X; Z/p)→ Q H s(X̃; Z/p)

is an isomorphism if s 6= 2, 2p j
− 1 for j ≥ 1.

Recall that the mod p cohomology of B2Z/p is given by

H∗(B2Z/p; Z/p)∼= Z/p[u, βP1β(u), . . . , βP1tβ(u), . . . ]

⊗3(β(u),P1β(u), . . . ,P1tβ(u), . . . ),

where u ∈ Q H 2(B2Z/p; Z/p) denotes the generator and P1t = Ppt
· · · P1 for t ≥

0. Let x̃ = ι∗(x) ∈ Q H 2pt
(X̃; Z/p). By [Crespo 2001, Theorem 2.10, Proposition

5.7], there is an H -space Y and an H -fibration

(5-4) X̃ - Y - B2Z/p

such that τ(x̃)= P1t−1β(u)∈ H 2pt
+1(B2Z/p; Z/p) and τ(β(x̃))= βP1t−1β(u)∈

H 2pt
+2(B2Z/p; Z/p) in the spectral sequence associated to the H -fibration (5-4),

where τ : Q H s(X̃; Z/p) → H s+1(B2Z/p; Z/p) denotes the transgression of the
spectral sequence for s ≥ 2. Then by [Crespo 2001, Theorem 1.5], there is a
generator ỹ ∈ Q H 2pt−1

+1(X̃; Z/p) with

(5-5) τ(ỹ)= βP1t−2β(u) ∈ H 2pt−1
+2(B2Z/p; Z/p)
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or there is a generator z̃ ∈ Q H 2pt
+2p−1(X̃; Z/p) with

(5-6) τ(z̃)= (βP1t−2β(u))p
∈ H 2pt

+2p(B2Z/p; Z/p).

If we have (5-5), then it follows that Ppt−1
(ỹ)= β(x̃) in Q H 2pt

+1(X̃; Z/p) by
the choice of the generators in [Crespo 2001, p. 126] since Ppt−1

(βP1t−2β(u)) =

βP1t−1β(u) by Lemma 3.2 of the same reference. Choose y ∈ Q H 2pt−1
+1(X; Z/p)

with ι∗(y)= ỹ. Then Ppt−1
(y)= β(x) in Q H 2pt

+1(X; Z/p) by (5-3).
In the case of (5-6), since P1(βP1t−1β(u))= (βP1t−2β(u))p by [Crespo 2001,

Lemma 3.3], we have P1β(x̃) = z̃ in Q H 2pt
+2p−1(X̃; Z/p). Then by (5-3), we

have P1β(x) 6= 0 in Q H 2pt
+2p−1(X; Z/p). This completes the proof. �

Proof of Theorem C. By Theorem A, [Kawamoto 2002, Theorem 2.1(1)] and The-
orem 5.1, we have that L BZ/p(X) is a connected Z/p-finite Ap-space admitting an
ACn-form with n > (p − 1)/2.

If H∗(X; Z/p) is finitely generated as an algebra over A∗
p and the operations

P j act on Q H∗(X; Z/p) trivially for j ≥ 1, then we see that H∗(X; Z/p) is
finitely generated as an algebra over Z/p, and so by Remark 5.2, F(φX ) is mod p
homotopy equivalent to a finite product of (CP∞)∧ps and BZ/pi s for i ≥ 1.

Consider the spectral sequence associated to the H -fibration (5-1) whose E2-
term is given by

E∗,∗
2

∼= H∗(L BZ/p(X); Z/p)⊗ H∗(F(φX ); Z/p).

Let us show that the spectral sequence collapses. If w ∈ Q H 1(F(φX ); Z/p) is
a generator, then d2(w) ∈ P H 2(L BZ/p(X); Z/p) by [Kane 1988, §1-6], where
P A denotes the primitive module of A. By [Kane 1988, §12-3, Corollary B],
H∗(L BZ/p(X); Z/p) is an exterior algebra generated by odd dimensional genera-
tors. Since P H 2(L BZ/p(X); Z/p) = 0, we have d2(w) = 0. Assume that there is
a generator u ∈ Q H 2(F(φX ); Z/p) with d3(u)= v 6= 0 in Q H 3(L BZ/p(X); Z/p).
Then d3(u p)=P1(v) 6=0 in Q H 2p+1(L BZ/p(X); Z/p) by [Hemmi and Kawamoto
2007, Theorem A (2)], and so by computing the spectral sequence, we have a gener-
ator x ∈ Q H 2pt

(X; Z/p)with t ≥ 2. Since the operations P j act on Q H∗(X; Z/p)
trivially for j ≥ 1, we have a contradiction by Lemma 5.4. Then the spectral
sequence collapses, and so we have

H∗(X; Z/p)∼= H∗(L BZ/p(X); Z/p)⊗ H∗(F(φX ); Z/p).

Since the operations P j act on Q H∗(X; Z/p) trivially for j ≥ 1, they also
act on Q H∗(L BZ/p(X); Z/p) trivially, which implies that L BZ/p(X) has the mod
p homotopy type of a torus by [Hemmi and Kawamoto 2007, Theorem B] and
Remark 5.5. Then there is a map ζ : L BZ/p(X)× F(φX ) → X which induces an
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isomorphism on the mod p cohomology, and so ζ is a mod p homotopy equiva-
lence; compare [Mimura and Toda 1991, p. 157, Corollary 1.6]. This completes
the proof of Theorem C. �

Remark 5.5. In [Hemmi and Kawamoto 2007], all spaces are assumed to be local-
ized at p in the sense of [Bousfield and Kan 1972]. However, the proof of Theorem
B in our paper with Hemmi is also available for Z/p-finite Ap-spaces, even if they
are not localized at p.
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