
Pacific
Journal of
Mathematics

AN ABSOLUTE ESTIMATE OF THE HOMOGENEOUS
EXPANSIONS OF HOLOMORPHIC MAPPINGS

TAISHUN LIU AND JIANFEI WANG

Volume 231 No. 1 May 2007



PACIFIC JOURNAL OF MATHEMATICS
Vol. 231, No. 1, 2007

AN ABSOLUTE ESTIMATE OF THE HOMOGENEOUS
EXPANSIONS OF HOLOMORPHIC MAPPINGS

TAISHUN LIU AND JIANFEI WANG

Let f : � → � be a holomorphic mapping, where � is one of the four
classical domains in Cm×n. We show that, if P = f (0), we have

∞∑
k=0

∥∥DϕP (P)[Dk f (0)(Zk)]
∥∥

�

k!
∥∥DϕP (P)

∥∥ < 1

for ‖Z‖� < 1
3 and ϕP ∈ Aut � such that ϕP (P) = 0. This generalizes to

higher dimensions a classical result of Bohr, which corresponds to the case
� = {z : |z| < 1} ⊂ C. The constant 1

3 is the best possible.

Let f be a holomorphic function from the unit disc D ⊂ C to itself, with Taylor
expansion

f (z) =

∞∑
k=0

akzk .

Then

(0)
∞∑

k=0

|akzk
| < 1 for |z| < 1

3 .

This result, known as Bohr’s theorem, was originally obtained in [Bohr 1914] for
|z| < 1

6 . That 1
6 can be improved to 1

3 and that this is the best possible constant
was quickly realized independently by M. Riesz, I. Schur, and N. Wiener. New
proofs were given in [Sidon 1927; Tomić 1962]. More recently, attention has been
paid to multidimensional generalizations of Bohr’s theorem [Boas and Khavinson
1997; Boas 2000; Defant et al. 2003; Dineen and Timoney 1989; 1991]. Such gen-
eralizations were obtained by studying the power series of a holomorphic function
defined in

B`n
p
:=

{
z ∈ Cn

: ‖z‖p =

( n∑
k=1

|zk |
p
)1/p

< 1
}
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with modulus less than 1. They can be summarized as follows:

1
3 3
√

e
1

n1−1/p ≤ K < 3
( log n

n

)1−1/p
if 1 ≤ p ≤ 2,

1
3

1
√

n
≤ K < 2

√
log n

n
if 2 ≤ p ≤ ∞,

where K is the supremum of r ∈ [0, 1] such that
∑

α≥0 |cαzα
| < 1 for z ∈ r B`n

p

whenever
∣∣∑

α≥0 cαzα
∣∣ < 1 for z ∈ B`n

p
. Here the sum is taken over multi-indices

α = (α1, α2, . . . , αn), where the α j are nonnegative integers. Aizenberg [2000,
Theorem 9] established these inequalities for p = 1. Dineen and Timoney [1989]
investigated the case p = ∞ and their result was clarified in [Boas and Khavinson
1997]. Boas [2000, Theorem 3] then generalized to 1 < p < ∞.

The result of Aizenberg and Boas does not, strictly speaking, reduce to Bohr’s
classical theorem, as consideration of the case n = 1 shows. In this article, we
give a new generalization of Bohr’s theorem to higher dimensions. We investigate
holomorphic mappings from � to �, where � is one of the four classical domains
in Cn (see below), and demonstrate a result analogous to Bohr’s, which reduces to it
when n =1. We also prove that the constant 1

3 is best possible in higher dimensions.
In the proof we use homogeneous expansions of holomorphic mappings, which
replace multiple power series. The Minkowski norm in each of the four classical
domains replaces the Euclidean norm, and certain properties of the automorphisms
of these domains play an important role.

We first recall the definition of the four classical domains in the sense of Hua
[1963]. Let Cm×n denote the set of m × n matrices Z =

(
zi j
)

1≤i≤m, 1≤ j≤n , with
zi j ∈ C and 1 ≤ m ≤ n; denote by Z ′ and Z , respectively, the transpose and the
complex conjugate of Z .

The first classical domain, RI (m, n) ⊂ Cm×n , consists of matrices Z such that
Im − Z Z ′ > 0, where Im is the identity matrix of rank m and the inequality sign
means that the left-hand side is positive definite.

The second classical domain, RII (n) ⊂ Cn×n , consists of Z such that Z = Z ′

and In − Z Z ′ > 0.
The third classical domain, RIII (n) ⊂ Cn×n , consists of Z such that Z = −Z ′

and In − Z Z ′ > 0.
The fourth classical domain, RIV (n) ⊂ Cn , is the set of Z = (z1, z2, . . . , zn)

satisfying
|Z Z ′

|
2
+ 1 − 2|Z |

2 > 0, |Z Z ′
| < 1.

Let � denote one of the four classical domains or the unit polydisc Dn
⊂ Cn .

The span of � in the ambient space (Cm×n , Cn×n or Cn , as the case may be) is
provided with a Minkowski functional ‖ · ‖� arising from � [Liu and Ren 1998].
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By results in [Liu 1989] and [Gong 1998], we know that

‖Z‖� = sup
{
|αZβ ′

| : α ∈ ∂ Bm, β ∈ ∂ Bn}
if � = RI (m, n), RII (n), or RIII (n) (with m = n in the latter two cases), and
this supremum equals the square root of the largest characteristic root of Z Z ′; if
� = Dn , then ‖Z‖� = max{|zk | : 1 ≤ k ≤ n}; and if � = RIV (n), then

‖Z‖� =

√
|Z |2 +

√
|Z |4 − |Z Z ′|2,

where |Z | is the Euclidean norm in Cn . Hence � = RI (m, n) is the unit ball of
the complex Banach space Cm×n with respect to the norm ‖ · ‖�. The subspaces
{Z ∈ Cn×n

: Z = Z ′
} and {Z ∈ Cn×n

: Z = −Z ′
} are complex Banach spaces

with respect to the norm ‖ · ‖�, for � = RII (n) and RIII (n) respectively, and �

is the unit ball for that norm. Cn is a complex Banach space whose unit ball is
� = RIV (n) for the norm ‖ · ‖�.

Let ∂� and ∂0� denote the topological boundary and distinguished boundary of
�. Denote by H(�, �) the space of holomorphic mappings from � to �, and by
Aut � the group of holomorphic automorphisms of �. Let � denote the closure
of �. If T is a linear operator between normed linear spaces, we denote by ‖T ‖

its norm. Finally, Dk f (Z) will mean the k-th Fréchet derivative of f at Z , where
f ∈ H(�, �) and k is a nonnegative integer.

Theorem. Let f :�→� be holomorphic, where � is one of the classical domains,
and set P = f (0). Then

(1)
∞∑

k=0

∥∥DϕP(P)[Dk f (0)(Z k)]
∥∥

�

k!
∥∥DϕP(P)

∥∥ < 1

for ‖Z‖� < 1
3 and ϕP ∈ Aut � such that ϕP(P) = 0.

If ‖Z‖� > 1
3 , there exists a holomorphic map f : � → � such that (1) is not

valid.

As already mentioned, if � = D ⊂ C, inequality (1) reduces to the relation (0)
of page 155, recovering Bohr’s classical theorem in one complex variable.

The proof of the theorem requires some lemmas, the first two of which are well
known.

Lemma 1 [Liu 1989]. Let P ∈ RI (m, n). There is an m ×m unitary matrix U and
an n × n unitary matrix V for which P has the polar decomposition

P = U

λ1 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...

0 · · · λm 0 · · · 0

 V,
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where 1 > λ1 ≥ λ2 ≥ · · · ≥ λm ≥ 0 and ‖P‖� = λ1. Set

Q = U


1√

1−λ2
1

0

. . .

0 1√
1−λ2

m

U ′, R = V ′



1√
1−λ2

1
0

. . .

1√
1−λ2

m
0 In−m


V .

Then

ϕP (Z) = Q−1(Im − Z P ′)−1(P − Z) R ∈ Aut RI (m, n)

for Z ∈ RI (m, n), and hence

DϕP(P)(W ) = −QW R

for W ∈ Cm×n .

Lemma 2 [Liu 1989]. Given any A ∈ RIV (n), there exist a real orthogonal n × n
matrix T and 1 > λ1 ≥ λ2 ≥ 0 such that

(2) A = e iθ
(
λ1+λ2

2
, i λ1−λ2

2
, 0, . . . , 0

)
T ∈ RIV (n)

and ‖A‖� = λ1, where i =
√

−1 and θ ∈ R. Let

(3) Q = T ′

1 + λ1λ2 0 0

0 1 − λ1λ2 0

0 0
√

(1 − λ2
1)(1 − λ2

2)In−2

 T .

Then

ϕA(Z) =
A + Z Z ′ A − Z Q

1 − 2Z A′ + Z Z ′ AA′
∈ Aut RIV (n)

for any Z ∈ RIV (n), and hence

DϕA(A)(X) = X
2A′ A − Q

1 − 2|A|2 + |AA′|2

for X ∈ Cn .

Lemma 3. Let � be one of the four classical domains. Then

‖DϕP(P)‖ =
1

1 − ‖P‖
2
�

for any P ∈ �.
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Proof. Case 1: � is one of RI (m, n), RII (n), RIII (n). We assume without loss of
generality that � = RI (m, n). From Lemma 1 and the definition of ‖ · ‖�, we get

‖DϕP(P)(W )‖� = sup
{
|αQW Rβ ′

| : α ∈ ∂ Bm, β ∈ ∂ Bn}
≤ sup

{
|αWβ ′

|

1 − λ2
1

: α ∈ ∂ Bm, β ∈ ∂ Bn
}

=
‖W‖�

1 − λ2
1

for W ∈ Cm×n . This implies that

‖DϕP(P)‖� ≤
1

1 − λ2
1

=
1

1 − ‖P‖
2
�

.

If we take Z0 ∈ RI (m, n) with ‖Z0‖� = 1 such that

U ′Z0V ′
=


1 0 0
0 0 0

. . .

0 0 0

 ,

we obtain

‖DϕP(P)(Z0)‖� = sup


∥∥∥∥∥∥∥∥∥αU


(1−λ2

1)
−1 0 0

0 0 0
. . .

0 0 0

Vβ ′

∥∥∥∥∥∥∥∥∥
�

: α ∈ ∂ Bm, β ∈ ∂ Bn


=

1
1 − λ2

1
.

This shows that ‖DϕP(P)‖� ≥
1

1 − λ2
1

=
1

1 − ‖P‖
2
�

, which leads to the desired
conclusion.

Case 2: � = RIV (n). Taking A = P ∈ � in Lemma 2 and expressing it as in (2),
we see from the lemma that

(4) DϕA(A)(Z) =
W

1 − 2|A|2 + |AA′|2
,

where W = Z(2A′ A − Q), with Q as in (3). It is clear that

(5) 1 − 2|A|
2
+ |AA′

| = (1 − λ2
1)(1 − λ2

2),

where 1 > λ1 ≥ λ2 ≥ 0, and that

W = Z T ′


1
2(λ2

1+λ2
2−2) −

i
2(λ2

1−λ2
2) 0

i
2(λ2

1−λ2
2)

1
2(λ2

1+λ2
2−2) 0

0 0 −
√

(1−λ2
1)(1−λ2

2)In−2

T .
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If Z ∈ ∂0�, that is, Z = e iθ (x1, x2, . . . , xn) with xk ∈ R for k = 1, 2, . . . , n, it is
clear that

|Z |
2
= |Z Z ′

| = x2
1 + · · · + x2

n = 1.

A simple computation then shows that

W W ′
=

Z T ′


1
2

(
(1−λ2

1)
2
+(1−λ2

2)
2
)

0 0

0 1
2

(
(1−λ2

1)
2
+(1−λ2

2)
2
)

0

0 0 (1−λ2
1)(1−λ2

2)In−2

T Z ′.

Since T is a real orthogonal matrix we obtain

|W |
2
= W W ′

≤
(1 − λ2

1)
2
+ (1 − λ2

2)
2

2
|Z Z ′

| =
(1 − λ2

1)
2
+ (1 − λ2

2)
2

2
,

where we have used the Schwarz inequality on the coefficient of In−2. Clearly,

W W ′
= (1 − λ2

1)(1 − λ2
2)Z Z ′.

Hence

‖W‖� =

√
|W |2 +

√
|W |4 − |W W ′|2 ≤ 1 − λ2

2,

which together with (4) and (5) yields

‖DϕA(A)(Z)‖� ≤
1

1 − λ2
1

for Z ∈ ∂0�.

If Z ∈ ∂�, there exists a linear functional f satisfying

f (Z) = ‖DϕA(A)(Z)‖�, ‖ f ‖ = 1.

The function g defined by g(ξ) = f (DϕA(A)(ξ)) is holomorphic on �, so we
obtain from the preceding inequality

|g(ξ)| ≤ ‖DϕA(A)(ξ)‖� ≤
1

1 − λ2
1

for ξ ∈ ∂0�.

On the other hand, the maximum principle gives

|g(Z)| = ‖DϕA(A)(Z)‖� ≤ ‖DϕA(A)(ξ)‖� ≤
1

1 − λ2
1

for ξ ∈ ∂0�.

Therefore

(6) ‖DϕA(A)‖ ≤
1

1 − λ2
1

=
1

1 − ‖A‖
2
�

.
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There remains to show the reverse inequality,

(7) ‖DϕA(A)‖ ≥
1

1 − ‖A‖
2
�

.

Take Z0 = (1, 0, 0, . . . , 0) ∈ ∂0�. Then ‖Z0‖� = 1, and

‖DϕA(A)(Z0)‖� =
1

1 − λ2
1

=
1

1 − ‖A‖
2
�

.

But this immediately implies (7), completing the proof. �

Proof of the Theorem. Case 1: � = Dn . For ‖Z‖� < 1
3 it is easy to show that

∞∑
k=0

‖DϕP(P)[Dk f (0)(Z k)]‖�

k! ‖DϕP(P)‖
< 1.

On the other hand, when ‖Z‖� > 1
3 , we let ‖Z0‖� = |z0

j | = maxk{|z0
k |} > 1

3 and
define

f (Z) =
p j − z j

1 − p j z j
,

where 1 > p j > 1
2(|z0

j |
−1

− 1). Then

∞∑
k=0

‖DϕP(P)[Dk f (0)(Z k
0)]‖�

k! ‖DϕP(P)‖
> 1.

Case 2: � is one of RI (m, n), RII (n), RIII (n). We assume without loss of gen-
erality that � = RI (m, n). Take P = f (0) ∈ � and express it as in Lemma 1,
defining Q and R accordingly. The lemma then says that

ϕP (Z) = Q−1(Im − Z P ′)−1(P − Z)R

for any Z ∈ RI (m, n). From Lemma 3, we get

‖DϕP(P)‖� =
1

1 − ‖P‖
2
�

.

Since � is a convex domain, for a fixed k we can define

fk(Z) =

k∑
j=1

f (e i 2π j/k Z)

k
.

Then fk ∈ H(�, �). It is clear that

1
k

k∑
j=1

e i 2π jl/k
=

{
1 if l ≡ 0 (mod k),

0 otherwise.
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From the homogeneous expansion of the holomorphic mapping f , we get

fk(Z) =
1
k

( k∑
j=1

(
f (0) +

∞∑
l=1

e i 2π jl/k Dl f (0)(Z l)

l!

))
.

This implies that

ϕP ◦ fk(Z) = ϕP

(
P +

∞∑
l=1

Dlk f (0)(Z lk)

(lk)!

)
= ϕP(P) + DϕP(P)

( ∞∑
l=1

Dlk f (0)(Z lk)

(lk)!

)
+ · · ·

=
DϕP(P)[Dk f (0)(Z k)]

k!
+

DϕP(P)[D2k f (0)(Z2k)]

(2k)!
+ · · · ,

and hence

DϕP(P)[Dk f (0)(Z k)]

k!
=

1
2π

∫ 2π

0
ϕP ◦ fk(Ze iθ )e−ikθdθ

since ϕP ◦ fk is holomorphic and maps 0 to 0. Again because ϕP ◦ fk ∈ H(�, �),
we have

‖DϕP(P)[Dk f (0)(Z k)]‖�

k!
< 1

for any Z ∈ �. Thus

‖DϕP(P)[Dk f (0)(Z k)]‖�

k!
≤ 1

for any Z ∈ �. This shows that

‖DϕP(P)[Dk f (0)(Z k)]‖�

k!
= ‖Z‖

k
�

‖DϕP(P)[Dk f (0)(Z k/‖Z‖
k)]‖�

k!
≤ ‖Z‖

k
�.

Using the equality ‖DϕP(P)‖ =
1

1−‖P‖
2
�

from Lemma 3, we then get

∞∑
k=0

‖DϕP(P)[Dk f (0)(Z k)]‖�

k! ‖DϕP(P)‖
≤ ‖P‖� + (1 − ‖P‖

2
�)

∞∑
k=1

‖Z‖
k
�

< ‖P‖� + (1 − ‖P‖
2
�)

∞∑
k=1

(1
3

)k

= ‖P‖� +
1 − ‖P‖

2
�

2
= 1 −

(1 − ‖P‖�)

2

2

< 1

for ‖Z‖� < 1
3 .
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There remains to show that 1
3 is the best possible constant. In fact, if Z ∈ � with

‖Z‖� > 1
3 , we take

Z0 =

µ1 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...

0 · · · µm 0 · · · 0

 ∈ RI (m, n),

where 1 > µ1 ≥ µ2 ≥ · · · ≥ µm ≥ 0 and ‖Z0‖� = µ1 > 1
3 . Take p11 ∈ R such that

(8) 1
2

( 1
µ1

− 1
)

< p11 < 1.

If we define f ∈ H(�, �) by

f (Z) =


p11−z11

1− p11z11
0 0

0 0 0
. . .

0 0 0

 ,

we obtain successively

P = f (0) =


p11 0 0

0 0 0
. . .

0 0 0

 ,

Q =

(
(1 − p2

11)
−1/2 0

0 Im−1

)
, R =

(
(1 − p2

11)
−1/2 0

0 In−1

)
,

‖DϕP(P)P‖� =
p11

1 − p2
11

,
Dk f (0)(Z k)

k!
= (p2

11 − 1)pk−1
11 zk

11


1 0 0
0 0 0

. . .

0 0 0


for k ≥ 1. This implies that

‖DϕP(P)[Dk f (0)(Z k
0)]‖�

k!
= pk−1

11 |z11|
k
= pk−1

11 µk
1

when k ≥ 1. In view of the definition of Z0, we get

‖DϕP(P)‖ =
1

1 − p2
11

.
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Therefore
∞∑

k=0

‖DϕP(P)[Dk f (0)(Z k
0)]‖�

k! ‖DϕP(P)‖
= p11 + (1 − p2

11)

∞∑
k=1

pk−1
11 µk

1

= p11 + (1 − p2
11)

µ1

1 − p11µ1
.

Then we immediately get from (8) the desired inequality

∞∑
k=0

‖DϕP(P)[Dk f (0)(Z k
0)]‖�

k! ‖DϕP(P)‖
> 1.

Case 3: � = RIV . The proof of (1) for ‖Z‖� < 1
3 changes little from Case 2. To

show that 1
3 is best possible, let Z0 = (µ1, 0, . . . , 0) ∈ RIV (n), with 1 > µ1 > 1

3 .
We have ‖Z0‖� = µ1, by [Liu 1989]. Therefore

Q =

1 + µ2
1 0 0

0 1 − µ2
1 0

0 0 (1 − µ2
1)In−2

 .

Take p11 ∈ R with 1
2

( 1
µ1

− 1
)

< p11 < 1 and define

f (Z) =

(
p11 − z1

1 − p11z1
, 0, . . . , 0

)
∈ H(�, �).

Then P = f (0) = (p11, 0, . . . , 0). From Lemma 2 we obtain

‖DϕP(P)[Dk f (0)(Z k
0)]‖�

k!
= pk−1

11 |µ1|
k

when k ≥ 1. Hence, as required,

∞∑
k=0

‖DϕP(P)[Dk f (0)(Z k
0)]‖�

k! ‖DϕP(P)‖
= p11 + (1 − p2

11)

∞∑
k=1

pk−1
11 µk

1

= p11 + (1 − p2
11)

µ1

1 − p11µ1
> 1. �

From the proof of the theorem, we have obtained in addition:

Corollary. Let P ∈ � be given, where � is one of the four classical domains, and
define

γ1 =
1

2 + ‖P‖�

, γ2 =
1

1 + 2‖P‖�

.
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If f : � → � is a holomorphic mapping taking 0 to P , the inequality
∞∑

k=0

‖DϕP (P)[Dk f (0)(Z k)]‖�

k! ‖DϕP (P)‖
< 1

holds for all Z such that ‖Z‖� < γ1. If ‖Z‖� > γ2, there exists f ∈ H(�, �) with
f (0) = P such that the inequality fails.

This leads naturally to the following problem:

Question. What is the best constant γP , depending on ‖P‖�, such that
∞∑

k=0

‖DϕP(P)[Dk f (0)(Z k)]‖�

k! ‖DϕP(P)‖
< 1

whenever ‖Z‖� <γP? According to the Corollary, γP ∈

[ 1
2+‖P‖�

,
1

1+2‖P‖�

]
.
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