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For discrete groups G, we introduce equivariant Nielsen invariants. They
are equivariant analogs of the Nielsen number and give lower bounds for
the number of fixed point orbits in the G-homotopy class of an equivariant
endomorphism f : X → X . Under mild hypotheses, these lower bounds are
sharp.

We use the equivariant Nielsen invariants to show that a G-equivariant
endomorphism f is G-homotopic to a fixed point free G-map if the gener-
alized equivariant Lefschetz invariant λG( f ) is zero. Finally, we prove a
converse of the equivariant Lefschetz fixed point theorem.

1. Introduction

The Lefschetz number is a classical invariant in algebraic topology. If the Lefschetz
number L( f ) of an endomorphism f : X → X of a compact CW-complex is
nonzero, then f has a fixed point. This is the famous Lefschetz fixed point theorem.
The converse does not hold: If the Lefschetz number of f is zero, we cannot
conclude f to be fixed point free.

A more refined invariant which allows to state the converse is the Nielsen num-
ber: The Nielsen number N ( f ) is zero if and only if f is homotopic to a fixed
point free map. More generally, the Nielsen number is used to give precise minimal
bounds for the number of fixed points of maps homotopic to f . Its development
was started by Nielsen [1920]; a comprehensive treatment can be found in [Jiang
1983].

We are interested in the equivariant generalization of these results. Given a
discrete group G and a G-equivariant endomorphism f : X → X of a finite proper
G-CW-complex, we introduce equivariant Nielsen invariants called NG( f ) and
N G( f ). They are equivariant analogs of the Nielsen number and are derived
from the generalized equivariant Lefschetz invariant λG( f ) [Weber 2005, Defi-
nition 5.13].
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We proceed to show that these Nielsen invariants give minimal bounds for the
number of orbits of fixed points in the G-homotopy class of f . One even obtains
results concerning the type and “location” (connected component of the relevant
fixed point set) of these fixed point orbits. These lower bounds are sharp if X is a
cocompact proper smooth G-manifold satisfying the standard gap hypotheses.

Finally, we prove a converse of the equivariant Lefschetz fixed point theorem: If
X is a G-Jiang space as defined in Definition 5.2, then LG( f ) = 0 implies that f is
G-homotopic to a fixed point free map. Here, LG( f ) is the equivariant Lefschetz
class [Lück and Rosenberg 2003a, Definition 3.6], the equivariant analog of the
Lefschetz number.

These results were motivated by work of Lück and Rosenberg [2003a; 2003b].
For G a discrete group and an endomorphism f of a cocompact proper smooth
G-manifold M , they prove an equivariant Lefschetz fixed point theorem [2003a,
Theorem 0.2]. The converse of that theorem is proven here.

Another motivation for the present article is the fact that the algebraic approach
to the equivariant Reidemeister trace provides a good framework for computation.
The connection to the machinery used in the study of transformation groups [Lück
1989; tom Dieck 1987] allows results to translate more readily from transformation
groups to geometric equivariant topology and vice-versa.

When G is a compact Lie group, Wong [1993] obtains results on equivariant
Nielsen numbers which strongly influenced us. The main difference between our
work and Wong’s is that we treat possibly infinite discrete groups. Another dif-
ference is that our approach is more structural. We can read off the equivariant
Nielsen invariants from the generalized equivariant Lefschetz invariant λG( f ).

In case G is a finite group, Ferrario [2003] studies a collection of generalized
Lefschetz numbers which can be thought of as an equivariant generalized Lefschetz
number. In contrast to the generalized equivariant Lefschetz invariant λG( f ) these
do not incorporate the W H -action on the fixed point set X H . A generalized Lef-
schetz trace for equivariant maps has also been defined by Wong, as mentioned in
[Hart 1999].

For compact Lie groups, earlier definitions of generalized Lefschetz numbers
for equivariant maps were made in [Wilczyński 1984; Fadell and Wong 1988].
These authors used the collection of generalized Lefschetz numbers of the maps
f H , for H < G. In general, these numbers are not sufficient since they do not take
the equivariance into account adequately. For further reading on equivariant fixed
point theory, see [Ferrario 2005], where an extensive list of references is given.

Organization of paper. In Section 2, we introduce the generalized equivariant Lef-
schetz invariant. We briefly assemble the concepts and definitions which are needed
for the definition of equivariant Nielsen invariants in Section 3.
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The equivariant Nielsen invariants give lower bounds for the number of fixed
point orbits of f . This is shown in Section 4. The standard gap hypotheses are
introduced, and it is shown that under these hypotheses these lower bounds are
sharp.

In the nonequivariant case, we know that the generalized Lefschetz invariant is
the right element when looking for a precise count of fixed points. We read off the
Nielsen number from this invariant. In general, the Lefschetz number contains too
little information.

But under certain conditions, we can conclude facts about the Nielsen number
from the Lefschetz number directly. These are called the Jiang conditions [1983,
Definition II.4.1] (see also [Brown 1971, Chapter VII]). In Section 5, we introduce
the equivariant version of these conditions. We also give examples of G-Jiang
spaces.

In Section 6, we derive equivariant analogs of statements about Nielsen numbers
found in [Jiang 1983], generalizing results from [Wong 1993] to infinite discrete
groups. In particular, if X is a G-Jiang space, the converse of the equivariant
Lefschetz fixed point theorem holds.

2. The generalized equivariant Lefschetz invariant

Classically, the Nielsen number is defined geometrically by counting essential fixed
point classes [Brown 1971, Chapter VI; Jiang 1983, Definition I.4.1]. Alternatively
one defines it using the generalized Lefschetz invariant.

Let X be a finite CW-complex, let f : X → X be an endomorphism, let x be a
basepoint of X , and let

λ( f ) =

∑
α∈π1(X,x)φ

nα · α ∈ Zπ1(X, x)φ

be the generalized Lefschetz invariant associated to f [Reidemeister 1936; Wecken
1941], where

Zπ1(X, x)φ := Zπ1(X, x)/φ(γ )αγ −1
∼ α, with γ, α ∈ π1(X, x).

Here φ is the map induced by f on the fundamental group π1(X, x). We have
φ(γ ) = w f (γ )w−1, where w is a path from x to f (x). The generalized Lefschetz
invariant is also called Reidemeister trace in the literature, which goes back to the
original name “Reidemeistersche Spureninvariante” used by Wecken.

The set π1(X, x)φ is often denoted by R( f ) and called set of Reidemeister
classes of f . Since we will introduce a variation of this set in Definition 2.3, we
prefer to stick with the notation used in [Weber 2005].
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Definition 2.1. The Nielsen number of f is defined by

N ( f ) := #
{
α

∣∣ nα 6= 0
}
.

The Nielsen number is the number of classes in π1(X, x)φ with nonzero coeffi-
cients. A class α with nonzero coefficient corresponds to an essential fixed point
class in the geometric sense.

In the equivariant setting, the fundamental category replaces the fundamental
group. The fundamental category of a topological space X with an action of a
discrete group G is defined as follows [Lück 1989, Definition 8.15].

Definition 2.2. Let G be a discrete group, and let X be a G-space. Then the
fundamental category 5(G, X) is the following category:

• The objects Ob
(
5(G, X)

)
are G-maps x : G/H → X , where the H ≤ G are

subgroups.

• The morphisms Mor
(
x(H), y(K )

)
are pairs (σ, [w]), where

– σ is a G-map σ : G/H → G/K
– [w] is a homotopy class of G-maps w : G/H × I → X relative G/H ×∂ I

such that w1 = x and w0 = y ◦ σ .

The fundamental category is a combination of the orbit category of G and the
fundamental groupoid of X . If X is a point, then the fundamental category is just
the orbit category of G, whereas when G is the trivial group, the definition reduces
to the definition of the fundamental groupoid of X .

We often view x as the point x(1H) in the fixed point set X H . We call X H (x)

the connected component of X H containing x(1H). We also consider the relative
fixed point set, the pair

(
X H (x), X>H (x)

)
. Here X>H (x) = {z ∈ X H (x) | Gz 6=

H} is the singular set, where Gz denotes the isotropy group of z. In order to
simplify notation, we use f H (x) to denote f |X H (x), and we use fH (x) instead of
f |(

X H (x),X>H (x)
).

Fixed points of f can only exist in X H (x) when X H ( f (x)) = X H (x), i.e, when
the points f (x) and x lie in the same connected component of X H .

Definition 2.3. For x ∈ Ob 5(G, X) with X H ( f (x)) = X H (x) and a morphism
v = (id, [w]) ∈ Mor( f (x), x), set

Zπ1
(
X H (x), x

)
φ′ := Zπ1

(
X H (x), x

)
/φ(γ )αγ −1

∼ α,

where α ∈ π1(X H (x), x), γ ∈ Aut(x) and φ(γ ) = vφ(γ )v−1
∈ Aut(x).

The automorphism group Aut(x) of the object x in the category 5(G, X) is a
group extension lying in the short exact sequence

1 → π1(X H (x), x) → Aut(x) → W Hx → 1.
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Here W H := NG H/H is the Weyl group of H , it acts on X H . We call W Hx the
subgroup of W H which fixes the connected component X H (x).

Groups obtained from different choices of the path w and of the point x in its
isomorphism class x̄ are canonically isomorphic, so those choices do not play a
role. The group Zπ1

(
X H (x), x

)
φ′ generalizes the group Zπ1(X, x)φ defined above.

So it can be seen as the free abelian group generated by equivariant Reidemeister
classes of f H (x) with respect to the action of W Hx on X H (x).

A map (σ, [w]) ∈ Mor(x, y) induces a group homomorphism

(σ, [w])∗ : Zπ1
(
X K (y), y

)
φ′ → Zπ1

(
X H (x), x

)
φ′

by twisted conjugation, and we know that the induced group homomorphism is the
same for every map in Mor(x, y) [Weber 2005, Lemma 5.2].

The generalized equivariant Lefschetz invariant [Weber 2005, Definition 5.13],
λG( f ), is an element in the group

3G(X, f ) :=

⊕
x̄∈Is 5(G,X),

X H ( f (x))=X H (x)

Zπ1(X H (x), x)φ′ .

Here Is 5(G, X) denotes the set of isomorphism classes of the category 5(G, X).
Geometrically, it corresponds to the set of W H -orbits of connected components
X H (x) of the fixed point sets X H , for (H) ∈ consub(G), i.e., for a set of represen-
tatives of conjugacy classes of subgroups of G. There is a bijection Is 5(G, X)

'
−→

q(H)∈consub(G)W H \ π0(X H ) which sends x : G/H → X to the orbit under the
WH-action on π0(X H ) of the component X H (x) of X H which contains the point
x(1H) [Lück and Rosenberg 2003a, Equation 3.3].

Let f̃ H (x) and ˜f >H (x) denote the lift of f H (x) to the universal covering space

X̃ H (x) and to the subset X̃>H (x) ⊆ X̃ H (x) that projects to X>H (x) under the
covering map.

At the summand indexed by x̄ , the generalized equivariant Lefschetz invariant
is given by

λG( f )x̄ := LZ Aut(x)
(

f̃ H (x), ˜f >H (x)
)
∈ Zπ1(X H (x), x)φ′,

where the refined equivariant Lefschetz number [Weber 2005, Definition 5.7] ap-
pears on the right hand side. It is defined by

LZ Aut(x)
(

f̃ H (x), ˜f >H (x)
)
:=

∑
p≥0

(−1)p trZ Aut(x)(Cc
p( f̃ H (x), ˜f >H (x))),

where the trace map trZ Aut(x) [Weber 2005, Definition 5.4] is induced by the pro-
jection Z Aut(x) → Zπ1(X H (x), x)φ′,

∑
g∈Aut(x) rg · g 7→

∑
g∈π1(X H (x),x) rg · ḡ.

Instead of Z, other rings can be used.
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This trace map generalizes the trace map used in [Lück and Rosenberg 2003a],
and the refined equivariant Lefschetz number is a generalization of the orbifold
Lefschetz number (Definition 1.4 of that reference).

The refined equivariant Lefschetz number LQ Aut(x)
(

f̃ H (x)
)

will be particularly
important to us, so we give some formulas describing it. For a finite proper G-
CW-complex X we have [Weber 2005, Lemma 5.9]

LQ Aut(x)
(

f̃ H (x)
)
=

∑
p≥0

(−1)p
∑

G·e∈G\Ip(X)

|Ge|
−1

· incφ( f, e) ∈ Qπ1(X H (x), x)φ′ .

Here Ip(X) denotes the set of p-cells of X , e runs through the equivariant cells
of X , and Ge is its isotropy group. The refined incidence number [Weber 2005,
Definition 5.8] incφ( f, e) ∈ Zπ1(X H (x), x)φ′ for a p-cell e ∈ Ip(X) is defined to
be the “degree” of the composition

ē/∂e
ie
−→

∨
e′∈Ip(X)

e′/∂e′ h∼
−→ X p/X p−1

f
−→ X p/X p−1

h−1
∼

−−−→

∨
e′∈Ip(X)

e′/∂e′

prπ ·ē/∂e
−−−−→ π · ē/∂e

·
−→ πφ′ · ē/∂e.

Here ē is the closure of the open p-cell e and ∂e = ē\e. The map ie is the inclusion,
h is a homeomorphism and prπ ·ē/∂e is the projection.

If X = M is a cocompact proper G-manifold, we have [Weber 2005, Theo-
rem 6.6]

LQ Aut(x)
(

f̃ H (x)
)
=

∑
W Hx ·z∈

W Hx \Fix( f H (x))

∣∣(W Hx)z
∣∣−1 deg

((
idTz M H (x) −Tz( f H (x))

)c)
· αz.

Here the map on the tangent space is extended to the one-point compactification(
Tz M H (x)

)c. The relative versions of these formulas also hold.

We have LQ Aut(x)
(

f̃ H (x)
)

= chG(X, f )
(
λG( f )

)
x̄ [Weber 2005, Lemma 6.4],

where chG(X, f ) : 3G(X, f ) →
⊕

ȳ∈Is 5(G,X) Qπ1(X K (y), y)φ′ is the character

map [Weber 2005, Definition 6.2]. So we can derive LQ Aut(x)
(

f̃ H (x)
)

from λG( f ).
The equivariant analog of the Lefschetz number is the equivariant Lefschetz

class LG( f ) ∈
⊕

x̄∈Is 5(G,X),X H ( f (x))=X H (x) Z, whose value at x̄ is

LG( f )x̄ = LZW Hx
(

f H (x), f >H (x)
)

[Lück and Rosenberg 2003a, Definition 3.6]. The projection of π1(X H (x), x)φ′ to
the trivial group {1} induces an augmentation map sending λG( f ) to LG( f ):

s :

⊕
x̄∈Is 5(G,X),

X H ( f (x))=X H (x)

Zπ1(X H (x), x)φ′ →

⊕
x̄∈Is 5(G,X),

X H ( f (x))=X H (x)

Z.



EQUIVARIANT NIELSEN INVARIANTS FOR DISCRETE GROUPS 245

3. Equivariant Nielsen invariants

Given an element
∑

α nα ·α ∈ Zπ1(X H (x), x)φ′ , we call a class α ∈π1(X H (x), x)φ′

essential if the coefficient nα is nonzero.
Let G be a discrete group and let X be a cocompact proper smooth G-manifold.

Let f : X → X be a smooth G-equivariant map such that Fix( f )∩∂ X =∅ and such
that for every z ∈ Fix( f ) the determinant of the map (idTz X −Tz f ) is different from
zero. One can always find a representative in the G-homotopy class of f which
satisfies this assumption. Since the generalized equivariant Lefschetz invariant is
G-homotopy invariant, we can replace f by this representative if necessary.

Definition 3.1. The equivariant Nielsen class of f is

νG( f ) =

∑
Gz∈G\Fix( f )

det
(
idTz X −Tz( f )

)∣∣det
(
idTz X −Tz( f )

)∣∣ · αz.

Here αz ∈ π1(X Gz (z), x) is the loop given by [t ∗ f (t)−1
∗ w], where x is a

basepoint in X Gz (z), t is a path from x to z and w is a path from f (x) to x . The
basepoint x may differ from z, e.g., if we have more than one fixed point in a
connected component of X Gz . If x = z, we may choose t and w to be constant.
The equivalence relation assures that this definition is independent of the choices
involved.

We can also derive the equivariant Nielsen class νG( f ) from the generalized
equivariant Lefschetz invariant λG( f ).

Lemma 3.2. The invariant ν( f ) is the image of the generalized equivariant Lef-
schetz invariant λ( f ) under the quotient map where we divide out the images of
nonisomorphisms:

νG( f ) = λG( f ) ∈

⊕
x̄∈Is 5(G,X),

X H ( f (x))=X H (x)

Zπ1(X H (x), x)φ′/{Im(σ, [w])∗ | σ nonisom.}

Proof. We consider the equation obtained in the refined equivariant Lefschetz fixed
point theorem [Weber 2005, Theorem 0.2]. We have

λG( f ) =

∑
Gz∈G\Fix( f )

3G(z, f ) ◦ indGz⊆G(DegGz
0 ((idTz X −Tz f )c)).

Here DegGz
0 is the equivariant degree [Lück and Rosenberg 2003a], it has values in

the Burnside ring A(Gz). On basis elements [Gz/L] ∈ A(Gz), the map 3G(z, f )◦

indGz⊆G is given by

3G(z, f ) ◦ indGz⊆G([Gz/L]) = (pr, [cst])∗αz,
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where cst denotes the constant map and

(pr, [cst])∗ : Zπ1(X Gz (z), x)φ′ → Zπ1(X L(z ◦ pr), x ◦ pr)φ′

is the map induced by the projection pr : Gz/L → Gz/Gz .
We know that DegGz

0 ((idTz X −Tz f )c) is a unit of the Burnside ring A(Gz) since(
DegGz

0 ((idTz X −Tz f )c)
)2

= 1 [Lück and Rosenberg 2003a, Example 4.7]. In gen-
eral a unit of the Burnside ring A(Gz) may consist of more than one summand
[tom Dieck 1979]. The summand [Gz/Gz] is always included with a coefficient
+1 or −1, but there might be summands [Gz/L] for L < Gz appearing. So one
fixed point might give more than one class with nonzero coefficients.

If we divide out the images of nonisomorphisms, then we divide out the im-
age of (pr, [cst])∗ for all L 6= Gz . We are left with the summand ±αz coming
from ±1[Gz/Gz]. This cannot lie in the image of any nonisomorphism. So each
fixed point leads to exactly one summand. The sign is the sign of the determinant
det

(
idTz X −Tz( f )

)
, so the claim follows. �

We set

Zπ1(X H (x), x)φ′′ := Zπ1(X H (x), x)φ′/{Im(σ, [w])∗ | σ nonisom.}.

We use the equation established in Lemma 3.2 to define νG( f ) directly for all
endomorphisms of finite proper G-CW-complexes.

Definition 3.3. Let X be a finite proper G-CW-complex, and let f : X → X be an
equivariant endomorphism. Then the equivariant Nielsen class of f is

νG( f ) := λG( f ) ∈

⊕
x̄∈Is 5(G,X),

X H ( f (x))=X H (x)

Zπ1(X H (x), x)φ′′ .

We define equivariant Nielsen invariants by counting the essential classes α of

νG( f )x̄ in Zπ1(X H (x), x)φ′′ and of LQ Aut(x)
(

f̃ H (x)
)

in Qπ1(X H (x), x)φ′ .

Definition 3.4. Let G be a discrete group, let X be a finite proper G-CW-complex,
and let f : X → X be a G-equivariant map.

Then the equivariant Nielsen invariants of f are elements

NG( f ), N G( f ) ∈

⊕
x̄∈Is 5(G,X)

Z

defined for x̄ with X H ( f (x)) = X H (x) by

NG( f )x̄ := #
{
essential classes of νG( f )x̄

}
,
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N G( f )x̄ := min
{

#C
∣∣∣ C ⊆

⋃
y≥x

π1(X K (y), y)φ′ such that for all z̄ ≥ x̄ and

for all essential classes α of LQ Aut(z)( f̃ Gz (z)
)

there are

β ∈ C and (σ, [t]) ∈ Mor(z, yβ) such that (σ, [t])∗(β) = α
}
.

We continue them by 0 to x̄ ∈ Is 5(G, X) with X H ( f (x)) 6= X H (x).

Note that NG( f )x̄ = NG( fH (x)) and N G( f )x̄ = N OG( f H (x)) in the notation
of [Wong 1993]. Thus the invariants defined here using the algebraic approach are
equivalent to the invariants defined using the classical covering space approach of
Wong.

An essential class α of LQ Aut(x)
(

f̃ H (x)
)

corresponds to an essential fixed point
class of f H (x), a W Hx -orbit of fixed points which one cannot get rid of under
any G-homotopy, as can be seen from the refined orbifold Lefschetz fixed point
theorem [Weber 2005, Theorem 6.6]. An essential class α of νG( f )x̄ corresponds
to an essential fixed point class of fH (x), an orbit of fixed points on X H (x) \

X>H (x) that cannot be moved into X>H (x). Counting the essential classes will
give us information on the number of fixed points and fixed point orbits.

The equivariant Nielsen invariants are G-homotopy invariant since they are de-
rived from λG( f ), which is itself G-homotopy invariant.

Proposition 3.5. Given a G-homotopy f 'G f ′, we have

NG( f ) = NG( f ′), N G( f ) = N G( f ′).

Proof. If f 'G f ′, with a homotopy H : X × I → X such that H0 = f and H1 = f ′,
then by invariance under homotopy equivalence [Weber 2005, Theorem 5.14] we
have an isomorphism 3G(i1)

−13G(i0) : 3G(X, f )
∼
−→ 3G(X, f ′) which sends

λG( f ) to λG( f ′). The isomorphisms 3G(i1) and 3G(i0) are given by composition
of maps, so they do not change the number of essential classes. They also do not
change the property of a class to lie in the image of a nonisomorphism. So we have
NG( f ) = NG( f ′).

An isomorphism i0∗ : Q5(G, X)φ,ȳ → Q5(G, X × I )8,i0(y) is induced by the
inclusion i0, and analogously i1 induces an isomorphism. These isomorphisms
do not change the number of essential classes. We have chG(X, f )(λG( f )) =

(i0∗)
−1i1∗ chG(X, f ′)(λG( f ′)), so N G( f ) = N G( f ′). �

4. Lower bound property

The equivariant Nielsen invariants give a lower bound for the number of fixed point
orbits on X H (x)\ X>H (x) and on X H (x), for maps lying in the G-homotopy class
of f . Under mild hypotheses, this is even a sharp lower bound.
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Definition 4.1. Let G be a discrete group, let X be a finite proper G-CW-complex,
and let f : X → X be a G-equivariant map. For every x̄ ∈ Is 5(G, X), with
x : G/H → X , we set

MG( f )x̄ := min
{
# fixed point orbits of ϕH (x)

∣∣ ϕ 'G f
}
,

MG( f )x̄ := min
{
# fixed point orbits of ϕH (x)

∣∣ ϕ 'G f
}
.

When speaking of fixed point orbits of f H (x), we can either look at the W Hx -
orbits W Hx · z ⊆ X H (x) or at the G-orbits G · z ⊆ X (H)(x), for a fixed point z in
X H (x). These two notions are of course equivalent.

We now proceed to show the first important property of the equivariant Nielsen
invariants, the lower bound property.

Proposition 4.2. For every x̄ ∈ Is 5(G, X) we have

NG( f )x̄ ≤ MG( f )x̄ , N G( f )x̄ ≤ MG( f )x̄ .

Proof. (1) If α ∈ π1(X H (x), x)φ′′ is an essential class of νG( f )x̄ , there has to be
at least one fixed point orbit in X H (x) \ X>H (x) that corresponds to α and that
cannot be moved into X>H (x). So, for any ϕ 'G f , the restriction ϕH must have
at least NG( f )x̄ fixed point orbits in X H (x) \ X>H (x). We arrive at NG( f )x̄ ≤

{#fixed point orbits of ϕH } for all ϕ 'G f , so NG( f )x̄ ≤ MG( f )x̄ .

(2) Let x̄ ∈ Is 5(G, X). Suppose that ϕ 'G f such that ϕH (x) has MG( f )x̄

fixed point orbits in X H (x). Let C ⊆
⋃

x̄≤ȳ π1(X K (y), y)φ′ such that N G(ϕ)x̄ =

N G( f )x̄ = #C. If there were less than #C fixed point orbits in X H (x), there would
be less that #C essential classes and we could have chosen a smaller C. So there are
at least #C essential classes, and thus ϕH (x) has at least #C fixed point orbits. �

To prove the sharpness of this lower bound, we need certain hypotheses, which
are usually introduced when dealing with these problems. Such conditions were
first used in [Fadell and Wong 1988]. Some authors treat slightly weakened as-
sumptions [Ferrario 1999; Ferrario 2003; Jezierski 1995; Wilczyński 1984]. We
do not weaken the standard gap hypotheses in the context of functorial equivariant
Lefschetz invariants since the standard gap hypotheses are not homotopy invariant.
So an analog of Theorem 6.3 would not hold.

Definition 4.3. Let G be a discrete group and let X be a cocompact smooth G-
manifold. We say that X satisfies the standard gap hypotheses if for each x̄ ∈

Is 5(G, X), with x : G/H → X , the inequalities dim X H (x) ≥ 3 and dim X H (x)−

dim X>H (x) ≥ 2 hold.

Under these hypotheses, we can use an equivariant analog of Wecken’s classical
method [1941] to coalesce fixed points.
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Lemma 4.4. Let G be a discrete group and let X be a cocompact proper smooth G-
manifold satisfying the standard gap hypotheses. Let f : X → X be a G-equivariant
map. Let O1 = Gx1 and O2 = Gx2 be two distinct isolated G-fixed point orbits,
where x1 : G/H → X and x2 : G/K → X with x1 ≤ x2. Suppose that there are
paths (σ1, [t1]) ∈ Mor(x, x1) and (σ2, [t2]) ∈ Mor(x, x2) for an x̄ ∈ 5(G, X), with
x : G/H → X , such that (σ1, [t1])∗1x1 = α = (σ2, [t2])∗1x2 , i.e., that the fixed point
orbits induce the same α ∈ π1(X H (x), x)φ′ . Then there exists a G-homotopy { ft }

relative to X>(H) such that f0 = f and Fix f1 = Fix f0 − GO1.

Proof. Suppose first that x1 < x2. Then Mor(x1, x2) 6= ∅. By replacing x1 and
x2 with other points in the orbit if necessary, we can suppose that there exists a
morphism (τ, [v]) ∈ Mor(x1, x2), where v is a path in X H (x) with v1 = x1 and
v0 = x2 ◦ τ and τ : G/H → G/K is a projection. We know that v ' f H

◦ v

(relative endpoints). (This is an equivalent characterization of x1 and x2 belonging
to the same fixed point class [Jiang 1983, I.1.10].) Since x1 ∈ X H (x)\ X>H (x) and
x2 ∈ X>H (x) and dim X H (x) − dim X>H (x) ≥ 2, we may assume that v can be
chosen such that v((0, 1]) ⊆ X H (x) \ X>H (x). We coalesce x1 and x2 along v as
in [Wong 1991b, 1.1] and [Schirmer 1986, 6.1]. We can do this by only changing
f in a (cone-shaped) neighborhood U (v) of v. Because of the proper action of G
on X and the free action of W H on X H

\ X>H , this neighborhood U (v) can be
chosen such that in X H

\ X>H it does not intersect its g-translates for g 6∈ H ≤ G.
Taking the G-translates of U (v), we move O1 to O2 along the paths Gv in GU (v),
not changing the map f outside GU (v).

Now suppose x1 = x2. In this case, the result follows from [Wong 1991a, 5.4],
since X H (x) \ X>H (x) is a free and proper W Hx -space, where again the proper
action of G on X ensures that we can find a neighborhood of a path from x1 to x2

such that the G/H -translates do not intersect. �

From Lemma 4.4, we can conclude the sharpness of the lower bound given by
the equivariant Nielsen invariants.

Theorem 4.5. Let G be a discrete group. Let X be a cocompact proper smooth G-
manifold satisfying the standard gap hypotheses. Let f : X → X be a G-equivariant
endomorphism. Then

MG( f )x̄ = NG( f )x̄ , MG( f )x̄ = N G( f )x̄

for all x̄ ∈ Is 5(G, X).

Proof. (1) Since X is a cocompact smooth G-manifold, there is a G-map f ′ which
is G-homotopic to f and which has only finitely many fixed point orbits. We apply
Lemma 4.4 to f ′ to coalesce fixed point orbits in X H (x)\X>H (x) with others of the
same class α ∈ Zπ1(X H (x), x)φ′ . We move them into X>H (x) whenever possible.
(We might need to create a fixed point orbit in the inessential fixed point class
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beforehand; see [Wong 1991b, 1.1].) We remove the inessential fixed point orbits.
We arrive at a map h 'G f such that NG( f )x̄ = #{fixed point orbits of hH (x)} ≥

MG( f )x̄ . Using Proposition 4.2, we obtain equality.

(2) Since X is a cocompact smooth G-manifold, there is a map f ′ which is G-
homotopic to f and which only has finitely many fixed point orbits. We have a
partial ordering on the ȳ ≥ x̄ given by ȳ ≥ z̄ ⇔ Mor(z, y) 6= ∅. We apply Lemma
4.4 to f ′ to coalesce fixed point orbits of the same class, starting from the top.
Note that when we remove fixed point orbits, we can only move them up in this
partial ordering. That is why the definition has to be so complicated. We remove
the inessential fixed point orbits. We are left with one fixed point orbit for every
essential class.

We now look at a class C such that N G( f )x̄ = #C, and we coalesce the es-
sential fixed point orbits with the corresponding classes appearing in C. (If the
corresponding class in C is inessential, we might need to create a fixed point orbit
in this inessential fixed point class beforehand.) We obtain a map h 'G f which
has exactly #C fixed point orbits. Hence

N G( f )x̄ = #{fixed point orbits of hH (x)} ≥ MG( f )x̄ .

Using Proposition 4.2, we obtain equality. �

In general, it is not possible to find a map h 'G f realizing all minima simulta-
neously. As an example, one can take G = Z/2 acting on X = S4 as an involution
so that XZ/2

= S3. One obtains MG(idS4)x̄ = 0 for all x̄ ∈ Is 5(Z/2, S4), but the
minimal number of fixed points in the G-homotopy class of the identity idS4 is
equal to 1 [Wong 1993, Remark 3.4]. In this example, the standard gap hypotheses
are not satisfied. Other examples where the standard gap hypotheses do not hold
and where the converse of the equivariant Lefschetz theorem is false are given in
[Ferrario 1999, Section 5].

5. The G-Jiang condition

In the nonequivariant case, we know that the generalized Lefschetz invariant is
the right element when looking for a precise count of fixed points. We read off the
Nielsen numbers from this invariant. In general, the Lefschetz number contains too
little information. But under certain conditions, we can conclude facts about the
Nielsen numbers from the Lefschetz numbers directly, and thus obtain a converse
of the Lefschetz fixed point theorem.

These conditions are called Jiang conditions. See [Jiang 1983, Definition II.4.1],
where one can find a thorough treatment, and [Brown 1971, Chapter VII]. The Jiang
group is a subgroup of π1(X, f (x)) [Jiang 1983, Definition II.3.5]. We generalize
its definition to the equivariant case.
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Definition 5.1. Let G be a discrete group, let X be a finite proper G-CW-complex,
and let f : X → X be a G-equivariant endomorphism. Then a G-equivariant self-
homotopy h : f 'G f of f determines a path h(x, −)∈π1(X H (x), f (x)) for every
x̄ ∈ Is 5(G, X), with x : G/H → X . Define the G-Jiang group of (X, f ) to be

JG(X, f ) :=

{ ∑
x̄∈5(G,X)

[
h(x, −)

] ∣∣∣∣ h : f 'G f G-equivariant self-homotopy
}

≤

⊕
x̄∈5(G,X)

π1
(
X H (x), f (x)

)
,

and define the G-Jiang group of X to be

JG(X) :=

{ ∑
x̄∈5(G,X)

[
h(x, −)

] ∣∣∣∣ h : id 'G id G-equivariant self-homotopy
}

≤

⊕
x̄∈5(G,X)

π1
(
X H (x), x

)
.

In the nonequivariant case, we know that the Jiang group J (X, f, x) is a sub-
group of the centralizer of π1( f, x)

(
π1(X, x)

)
in π1

(
X, f (x)

)
. In particular,

J (X) ≤ Z
(
π1(X, x)

)
,

where Z
(
π1(X, x)

)
denotes the center of π1(X, x) [Jiang 1983, Lemma II.3.7].

Furthermore, the isomorphism ( f ◦w)∗ :π1
(
X, f (x1)

)
→π1

(
X, f (x0)

)
induced by

a path w from x0 to x1 induces an isomorphism ( f ◦w)∗ : J (X, f, x1)→ J (X, f, x0)

which does not depend on the choice of w. So the definition does not depend on
the choice of the basepoint [Jiang 1983, Lemma II.3.9]. It is also known that
J (X) ≤ J (X, f ) ≤ π1(X) for all f [Jiang 1983, Lemma II.3.8]. This leads to
the consideration of spaces with J (X) = π1(X) in the definition of a Jiang space.
All these lemmata also make sense in the equivariant case. Thus we make the
following definition.

Definition 5.2. Let G be a discrete group and let X be a cocompact G-CW-
complex. Then X is called a G-Jiang space if for all x̄ ∈ Is 5(G, X) we have

JG(X)x̄ = π1
(
X H (x), x

)
.

The group JG(X, f ) acts on 3G(X, f ) as follows: If X H ( f (x)) = X H (x) and
X H ( f (x)) = X H (x), then JG(X, f )x̄ acts on Zπ1(X H (x), x). The element u =

[h(x, −)] ∈ JG(X, f )x̄ acts as composition with [wuw−1
], where v = (id, [w]) ∈

Mor( f (x), x).
Since JG(X, f )x̄ is contained in the centralizer of π1( f H (x), x)

(
π1(X H (x), x)

)
in π1

(
X H (x), f (x)

)
, this action induces an action on Zπ1(X H (x), x)φ′ by compo-

sition, whence on 3G(X, f )x̄ . Thus JG(X, f ) acts on 3G(X, f ), and by invariance
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of λG( f ) under homotopy equivalence, we see that

λG( f ) ∈
(
3G(X, f )

)JG(X, f )
.

Examples of G-Jiang spaces can be obtained from Jiang spaces. It is known
[Jiang 1983, Theorem II.3.11] that the class of Jiang spaces is closed under homo-
topy equivalence and the topological product operation and contains

• simply connected spaces,

• generalized lens spaces,

• H-spaces,

• homogeneous spaces of the form A/A0 where A is a topological group and
A0 is a subgroup which is a connected compact Lie group.

Hence we obtain many examples of G-Jiang spaces using the following propo-
sition, analogous to [Wong 1993, Proposition 4.9].

Proposition 5.3. Let G be a discrete group, and let X be a free cocompact con-
nected proper G-space. If X/G is a Jiang space, then X is a G-Jiang space.

Proof. Since X is connected and free, the set Is 5(G, X) consists of one element.
Let x be a basepoint of X . We need to check that JG(X)x̄ = π1(X, x). Let X

p
−→

X/G be the projection. The Jiang subgroup of X/G is given by

J (X/G) :=

{[
h(p(x), −)

] ∣∣∣ h : idX/G ' idX/G self-homotopy
}

≤ π1
(
X/G, p(x)

)
.

Let α ∈ π1(X, x). Since X
p

−→ X/G is a discrete cover, X̃ = X̃/G. There is a map
p# : π1(X, x) → π1(X/G, p(x)) induced by the projection. Since X/G is a Jiang
space, J (X/G) = π1(X/G, p(x)), so there is a homotopy h : idX/G ' idX/G such
that p#(α) = [h(p(x), −)]. Because of the free and proper action of G on X , this
homotopy h can be lifted to a G-equivariant homotopy h′

: idX 'G idX such that
α = [h′(x, −)]. Thereby α ∈ JG(X). �

6. The converse of the equivariant Lefschetz Fixed Point Theorem

One can derive equivariant analogs of statements about Nielsen numbers found in
[Jiang 1983], generalizing results from [Wong 1993] to infinite discrete groups.
In particular, if X is a G-Jiang space, the converse of the equivariant Lefschetz
fixed point theorem holds. The next theorem can be compared with [Jiang 1983,
Theorem II.4.1].
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Theorem 6.1. Let G be a discrete group, and let X be a finite proper G-CW-
complex which is a G-Jiang space. Then for any G-map f : X → X and x̄ ∈

Is 5(G, X) with x : G/H → X we have:

LG( f )x̄ = 0 H⇒ λG( f )x̄ = 0 and NG( f )x̄ = 0,

LG( f )x̄ 6= 0 H⇒ λG( f )x̄ 6= 0 and NG( f )x̄ = #
{
π1(X H (x), x)φ′′

}
.

Here LG( f ) is the equivariant Lefschetz class [Lück and Rosenberg 2003a, Defi-
nition 3.6], the equivariant analog of the Lefschetz number.

Proof. Since X is a G-Jiang space, the G-Jiang group JG(X) acts transitively on
π1(X H (x), x) for all x̄ ∈ Is 5(G, X). This implies that

λG( f )x̄ =

∑
α

nα · α = n ·

∑
α

α

for some n ∈ Z. This leads to LG( f )x̄ =n ·#
{
π1(X H (x), x)φ′

}
by the augmentation

map. We see that

LG( f )x̄ = 0 H⇒ n = 0

H⇒ λG( f )x̄ = 0

H⇒ νG( f )x̄ = 0

H⇒ NG( f )x̄ = 0,

LG( f )x̄ 6= 0 H⇒ n 6= 0

H⇒ λG( f )x̄,α 6= 0 for all α ∈ Z(π1(X H (x), x))φ′

H⇒ νG( f )x̄,α 6= 0 for all α ∈ Z(π1(X H (x), x))φ′′

H⇒ NG( f )x̄ = #
{
π1(X H (x), x)φ′′

}
. �

The proof of Theorem 6.1 already works if JG(X, f ) acts transitively on every
summand of 3G(X, f ). We could have called X a G-Jiang space if the condition
that JG(X, f ) acts transitively on every summand of 3G(X, f ) is satisfied. But
this condition is less tractable. It is implied by JG(X, f )x̄ = π1(X H (x), f (x)) for
all x̄ , which is implied by JG(X)x̄ = π1(X H (x), x) for all x̄ .

We now show that f is G-homotopic to a fixed point free G-map if the gener-
alized equivariant Lefschetz invariant λG( f ) is zero.

Theorem 6.2. Let G be a discrete group. Let X be a cocompact proper smooth G-
manifold satisfying the standard gap hypotheses. Let f : X → X be a G-equivariant
endomorphism. If λG( f ) = 0, then f is G-homotopic to a fixed point free G-map.
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Proof. If λG( f )=0, then chG(X, f )(λG( f ))=0, and therefore we have N G( f )x̄ =

0 for all x̄ ∈ Is 5(G, X). We know from Theorem 4.5 that N G( f )x̄ = MG( f )x̄ =

min{# fixed point orbits of ϕH (x) | ϕ 'G f }. In particular, for x : G/{1} → X we
obtain a map ϕ such that ϕ{1}(x) is fixed point free and ϕ 'G f . Thus we obtain
our result on every connected component of X , and combining these we arrive at
a map h 'G f which is fixed point free. �

These two theorems, Theorem 6.1 and Theorem 6.2, combine to give the main
theorem of this paper, the converse of the equivariant Lefschetz fixed point theorem.

Theorem 6.3. Let G be a discrete group. Let X be a cocompact proper smooth
G-manifold satisfying the standard gap hypotheses which is a G-Jiang space. Let
f : X → X be a G-equivariant endomorphism. Then the following holds:

If LG( f ) = 0, then f is G-homotopic to a fixed point free G-map.

Proof. We know that LG( f ) = 0 means that LG( f )x̄ = 0 for all x̄ ∈ Is 5(G, X).
Since X is a G-Jiang space, by Theorem 6.1 this implies that λG( f )x̄ = 0 for all
x̄ ∈ Is 5(G, X), so we have λG( f ) = 0. We apply Theorem 6.2 to arrive at the
desired result. �

Remark 6.4. As another corollary of Theorem 6.2, we obtain: If G is a discrete
group and X is a cocompact proper smooth G-manifold satisfying the standard
gap hypotheses, then χG(X) = 0 implies that the identity idX is G-homotopic
to a fixed point free G-map. This was already stated in [Lück and Rosenberg
2003a, Remark 6.8]. Here χG(X) is the universal equivariant Euler characteristic
of X [Lück and Rosenberg 2003a, Definition 6.1] defined by χG(X)x̄ = χ

(
W Hx \

X H (x), W Hx \ X>H (x)
)
∈ Z, we have χG(X) = LG(idX ). We calculate that

λG(idX )x̄ =

∑
p≥0

(−1)p
∑

Aut(x)·e∈

Aut(x)\I p (X̃ H (x),X̃>H (x))

incφ

(
id

X̃ H (x)
, e

)
= χ

(
W Hx \ X H (x), W Hx \ X>H (x)

)
· 1 ∈ Zπ1

(
X H (x), x

)
φ′ .

So we have χG(X) = 0 if and only if λG(idX ) = 0, and with Theorem 6.2 we
conclude that there is an endomorphism G-homotopic to the identity which is fixed
point free.
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