Vol. 231, No. 2, 2007

Download this article
Download this article For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
The Euclidean rank of Hilbert geometries

Oliver Bletz-Siebert and Thomas Foertsch

Vol. 231 (2007), No. 2, 257–278
Abstract

We prove that the Euclidean rank of any 3-dimensional Hilbert geometry (D,hD) is 1; that is, (D,hD) does not admit an isometric embedding of the Euclidean plane. We show that for higher dimensions this remains true if the boundary D of D is C1.

Keywords
Hilbert geometries, Euclidean rank, asymptotic geometry
Mathematical Subject Classification 2000
Primary: 53C60, 51K99, 51F99
Milestones
Received: 16 March 2006
Revised: 16 November 2006
Accepted: 13 March 2007
Published: 1 June 2007
Authors
Oliver Bletz-Siebert
Mathematisches Institut
Universität Wuerzburg
Am Hubland
97074 Wuerzburg
Germany
Thomas Foertsch
Mathematisches Institut
Rheinische Fridrich-Wilhelms-Universität Bonn
Beringstraße 1
53115 Bonn
Germany
http://www.math.uni-bonn.de/people/foertsch/