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SOME NEW SIMPLE MODULAR LIE SUPERALGEBRAS

ALBERTO ELDUQUE

Two new simple modular Lie superalgebras will be obtained in characteris-
tics 3 and 5, which share the property that their even parts are orthogonal
Lie algebras and the odd parts their spin modules. The characteristic 5
case will be shown to be related, by means of a construction of Tits, to the
exceptional ten-dimensional Jordan superalgebra of Kac.

1. Introduction

There are well-known constructions of the exceptional simple Lie algebras of type
E8 and F4 which go back to Witt [1941], as Z2-graded algebras g = g0̄⊕ g1̄ with
even part the orthogonal Lie algebras so16 and so9 respectively, and odd part given
by their spin representations (see [Adams 1996]).

Brown [1982] found a new simple finite-dimensional Lie algebra over fields of
characteristic 3 which presents the same pattern, but with g0̄ = so7.

Among the simple Lie superalgebras in Kac’s classification [1977b], only the or-
thosymplectic Lie superalgebra osp(1, 4) presents the same pattern, since g0̄= sp4
in this case, and g1̄ is its natural four-dimensional module. But sp4 is isomorphic
to so5, so g1̄ is its spin module.

In [Elduque 2006], we found another instance of this phenomenon. There exists
a simple Lie superalgebra over fields of characteristic 3 with even part isomorphic
to so12 and odd part its spin module.

This paper is devoted to settling the question of which other simple Z2-graded
Lie algebras or Lie superalgebras display this pattern: the even part being an or-
thogonal Lie algebra and the odd part its spin module.

It turns out that, besides the previously mentioned examples and the example
of so9, which is the direct sum of so8 and its natural module, but where, because
of triality, this natural module can be replaced by the spin module, there appear
exactly two other possibilities for Lie superalgebras, one in characteristic 3 with
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even part isomorphic to so13, and the other in characteristic 5, with even part iso-
morphic to so11. These simple Lie superalgebras seem to appear here for the first
time.

The characteristic-5 case will be shown to be strongly related to the ten-dimen-
sional simple exceptional Kac Jordan superalgebra, by means of a construction due
to Tits. As was proved by McCrimmon [2005], and indirectly hinted in [Elduque
and Okubo 2000], the Grassmann envelope of this Jordan superalgebra satisfies
the Cayley–Hamilton equation of degree 3 and hence, as shown in [Benkart and
Zelmanov 1996] and [Benkart and Elduque 2003], this Jordan superalgebra J can
be plugged into the second component of the Tits construction [1966], the first
component being a Cayley algebra. The even part of the resulting Lie superalgebra
is then isomorphic to so11 and the odd part turns out to be its spin module.

The characteristic-3 case is related to the six-dimensional composition super-
algebra B(4, 2) (see [Elduque and Okubo 2002; Shestakov 1997]) and, therefore,
to the exceptional Jordan superalgebra of 3× 3 hermitian matrices H3(B(4, 2)).
This will be further discussed in [Cunha and Elduque 2006], where an extended
Freudenthal magic square in characteristic 3 is considered.

Convention. Throughout the paper, k will always denote an algebraically closed
field of characteristic 6= 2.

Overview. Section 2 reviews the basic properties of the orthogonal Lie algebras,
associated Clifford algebras and spin modules in a way suitable to our purposes.
In Section 3 we determine the simple Z2-graded Lie algebras and the simple Lie
superalgebras whose even part is an orthogonal Lie algebra of type B and its odd
part its spin module. The two new simple Lie superalgebras mentioned above
appear here. Section 4 is devoted to type D, and here the objects that appear
are either classical or a Lie superalgebra in characteristic 3 with even part so12,
which appeared for the first time in [Elduque 2006] related to a Freudenthal triple
system, which in turn is constructed in terms of the Jordan algebra of the hermitian
3×3 matrices over a quaternion algebra. Finally, Section 5 is devoted to study the
relationship of the exceptional Lie superalgebra that has appeared in characteristic
5, with even part isomorphic to so11, to the Lie superalgebra obtained by means
of Tits construction in terms of the Cayley algebra and of the exceptional ten-
dimensional Jordan superalgebra of Kac.

2. Spin modules

Let V be a vector space of dimension l ≥ 1 over the field k, let V ∗ be its dual vector
space, and consider the (2l+1)-dimensional vector space W = ku⊕V ⊕V ∗, with
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the regular quadratic form q given by

(2.1) q(αu+ v+ f )=−α2
+ f (v),

for any α ∈ k, v ∈ V and f ∈ V ∗.
Let Cl(V ⊕V ∗, q) be the Clifford algebra of the restriction of q to V ⊕V ∗, and

let Cl0̄(W, q) be the even Clifford algebra of q . As a general rule, the multiplication
in Clifford algebras will be denoted by a dot: x · y. The linear map

V ⊕ V ∗→ Cl0̄(W, q) : x 7→ u · x = 1
2(u · x − x · u)= 1

2 [u, x]·

extends to an algebra isomorphism

(2.2) 9 : Cl(V ⊕ V ∗, q)→ Cl0̄(W, q).

Let τ be the involution of Cl(W, q) such that τ(w)=w for any w ∈W , and let τ0̄
be its restriction to Cl0̄(W, q). Let τ ′ be the involution of Cl(V ⊕V ∗, q) such that
τ ′(x)=−x for any x ∈ V ⊕ V ∗. Then, for any x ∈ V ⊕ V ∗,

τ0̄
(
9(x)

)
= τ0̄(u · x)= τ(x) · τ(u)= x · u =−u · x = u · τ ′(x)=9

(
τ ′(x)

)
,

so 9 in (2.2) is actually an isomorphism of algebras with involution:

(2.3) 9 :
(
Cl(V ⊕ V ∗, q), τ ′

)
→
(
Cl0̄(W, q), τ0̄

)
.

Now consider the exterior algebra
∧

V . Multiplication here will be denoted by
juxtaposition. This conveys a natural grading over Z2:

∧
V =

∧
0̄V⊕

∧
1̄V . In other

words, like Clifford algebras,
∧

V is an associative superalgebra. For any f ∈ V ∗,
let d f :

∧
V→

∧
V be the unique odd superderivation such that (d f )(v)= f (v) for

any v ∈ V ⊆
∧

V (see, for instance, [Knus et al. 1998, §8]). Note that (d f )2 = 0.
Also, for any v ∈ V , the left multiplication by v gives an odd linear map lv :∧
V →

∧
V : x 7→ vx . Again l2

v = 0, and for any v ∈ V and f ∈ V ∗,

(2.4) (lv + d f )2 = lvd f + d f lv = l(d f )(v) = f (v) id= q(v+ f ) id.

The linear map V ⊕ V ∗→ Endk(
∧

V ) defined by v+ f 7→ lv + d f then induces
an isomorphism

(2.5) 3 : Cl(V ⊕ V ∗, q)→ Endk(
∧

V ).

Let ¯ :
∧

V →
∧

V be the involution such that v̄ = −v for any v ∈ V . Fix a
basis {v1, . . . , vl} of V , and let { f1, . . . , fl} be its dual basis ( fi (v j )= δi j for any
i, j = 1, . . . , l). Let 8 :

∧
V → k be the linear function such that

(2.6)
8(v1 · · · vl)= 1,

8(vi1 · · · vir )= 0 for any r < l and 1≤ i1 < · · ·< ir ≤ l,
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that is, 8 is a determinant, and consider the bilinear form

b :
∧

V ×
∧

V → k

(s, t) 7→8(s̄t).
(2.7)

Since

8(v1 · · · vl)= (−1)l8(vl · · · v1)= (−1)l(−1)(
l
2)8(v1 · · · vl)

= (−1)(
l+1

2 )8(v1 · · · vl)= (−1)(
l+1

2 ),

it follows that, for any s, t ∈
∧

V ,

b(t, s)=8(t̄ s)=8(s̄t)= (−1)(
l+1

2 )8(s̄t)= (−1)(
l+1

2 )b(s, t).

Hence,

b is symmetric if and only if l ≡ 0 or 3 (mod 4),

b is skew-symmetric if and only if l ≡ 1 or 2 (mod 4).
(2.8)

Let τb be the adjoint involution of
∧

V relative to b. Then, for any v ∈ V and
s, t ∈

∧
V ,

b
(
lv(s), t

)
=8(vst)=8(s̄v̄t)=−8(s̄vt)=−b

(
s, lvt

)
,

so τb(lv)=−lv. Also, if f ∈ V ∗ and v ∈ V ,

(d f )(v̄)=−(d f )(v)=− f (v)=− f (v)= (−1)|v|(d f )(v),

where
∧

V = ⊕l
i=0
∧i V is the natural Z-grading of

∧
V and |s| = i for s ∈

∧i V .
Also, assuming (d f )(s̄)= (−1)|s|(d f )(s) and (d f )(t̄)= (−1)|t |(d f )(t) for homo-
geneous s, t ∈

∧
V ,

(d f )(st)= (d f )(t̄ s̄)= (d f )(t̄)s̄+ (−1)|t | t̄(d f )(s̄)

= (−1)|t |(d f )(t)s̄+ (−1)|s|+|t | t̄(d f )(s)

= (−1)|s|+|t |(d f )(s)t + (−1)|s|s(d f )(t)

= (−1)|st |(d f )(st).

Hence (d f )(s̄) = (−1)|s|(d f )(s) for any homogeneous s ∈
∧

V . Thus, for any
f ∈ V ∗ and s, t ∈

∧
V ,

b
(
(d f )(s), t

)
=8

(
(d f )(s)t

)
= (−1)|s|8

(
(d f )(s̄)t

)
=−8

(
s̄(d f )(t)

)
since 8

(
(d f )(

∧
V )
)
= 0

=−b
(
s, (d f )(t)

)
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and, therefore, τb(d f ) = −d f . As a consequence, the isomorphism 3 in (2.5) is
actually an isomorphism of algebras with involution:

(2.9) 3 :
(
Cl(V ⊕ V ∗, q), τ ′

)
→
(
Endk(

∧
V ), τb

)
.

The orthogonal Lie algebra so2l+1 = so(W, q) is spanned by the linear maps

(2.10) σw1,w2 = q(w1, · )w2− q(w2, · )w1

where q(w1, w2)=q(w1+w2)−q(w1)−q(w2) is the associated symmetric bilinear
form.

But for any w1, w2, w3 ∈W , inside Cl(W, q) one has

[[w1, w2]
·, w3]

·
= (w1 ·w2−w2 ·w1) ·w3−w3 · (w1 ·w2−w2 ·w1)

= q(w2, w3)w1−w1 ·w3 ·w2− q(w1, w3)w2+w2 ·w3 ·w1

− q(w1, w3)w2+w1 ·w3 ·w2+ q(w2, w3)w1−w2 ·w3 ·w1

=−2σw1,w2(w3).

Therefore, so2l+1 embeds in Cl0̄(W, q) by means of σw1,w2 7→ −
1
2 [w1, w2]

·, so
so2l+1 can be identified with the subspace [W,W ]· in Cl0̄(W, q).

Under this identification, the action of so2l+1 = so(W, q) on its natural module
W corresponds to the adjoint action of [W,W ]· on W inside Cl(W, q). Note that
for any x, y ∈ V ⊕ V ∗,

9
(
[x, y]·

)
= [u · x, u · y]· = u · x · u · y− u · y · u · x

=−u · u · (x · y− y · x)

= x · y− y · x = [x, y]·,

so 9 acts “identically” on so2l = [V ⊕ V ∗, V ⊕ V ∗]· ⊆ Cl(V ⊕ V ∗, q).
The subspace h=span {[vi , fi ]

·
: i = 1, . . . , l} is a Cartan subalgebra of so2l+1'

[W,W ]·. Besides,

[[vi , fi ]
·, u]· = 0,

[[vi , fi ]
·, v j ]

·
= 2δi jv j ,

[[vi , fi ]
·, f j ]

·
=−2δi j f j .

Hence, if εi : h→ k denotes the linear map with εi
(
[v j , f j ]

·
)
= 2δi j , the weights

of the natural module W relative to h are 0 and ±εi , i = 1, . . . , l, all of them of
multiplicity 1; while there appears a root space decomposition

so2l+1 ' [W,W ]· = h⊕
(
⊕α∈1gα

)
,

where

1= {±(εi + ε j ) : 1≤ i < j ≤ l} ∪ {±εi : 1≤ i ≤ l} ∪ {±(εi − ε j ) : 1≤ i < j ≤ l}.
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Here gεi+ε j = k[vi , v j ]
·, g−(εi+ε j ) = k[ fi , f j ]

·, gεi−ε j = k[vi , f j ]
·, gεi = k[u, vi ]

·,
and g−εi = k[u, fi ]

·, for any i 6= j . This root space decomposition induces a
triangular decomposition

so2l+1 = g−⊕ h⊕ g+,

where g±=⊕α∈1±gα, with1+={εi+ε j : 1≤ i < j ≤ l}∪{εi : 1≤ i ≤ l}∪{εi−ε j :

1≤ i < j ≤ l}, and 1− =−1+.

The spin representation of so2l+1 is given by the composition

so2l+1 ↪→ Cl0̄(W, q)
9−1

−→ Cl(V ⊕ V ∗, q)
3
−→ Endk(

∧
V ).

Denote this composition by

(2.11) ρ =3 ◦9−1
|so2l+1,

and denote by S =
∧

V the spin module. Note that for any 1 ≤ i ≤ l and any
1≤ i1 < · · ·< ir ≤ l

ρ
(
[vi , fi ]

·
)
(vi1 · · · vir )=

{
vi1 · · · vir if i = i j for some j,

−vi1 · · · vir otherwise.

Thus, vi1 · · · vir is a weight vector relative to h, with weight

1
2

( ∑
i∈{i1,...,ir }

εi −
∑

j 6∈{i1,...,ir }

ε j

)
,

and hence all the weights of the spin module have multiplicity 1.

Proposition 2.12. Up to scalars, there is a unique so2l+1-invariant bilinear map
S× S→ so2l+1, (s, t) 7→ [s, t]. This map is given by the formula

(2.13) 1
2 tr
(
σ [s, t]

)
= b

(
ρ(σ)(s), t

)
,

for any σ ∈ so2l+1 and s, t ∈ S, where tr denotes the trace of the natural represen-
tation of so2l+1.

Moreover, this bilinear map [ · , · ] is symmetric if and only if l is congruent to 1
or 2 modulo 4. Otherwise, it is skew-symmetric.

Proof. First note that the trace form tr is so2l+1-invariant, and so is b because9 and
3 in (2.3) and (2.9) are isomorphisms of algebras with involutions. Since both tr
and b are nondegenerate, [ · , · ] is well defined and so2l+1-invariant. Now, the space
of so2l+1-invariant bilinear maps S× S→ so2l+1 is isomorphic to Homso2l+1(S⊗
S, so2l+1) (all the tensor products are considered over the ground field k), or to the
space of those tensors in S⊗S⊗(so2l+1)

∗
' S⊗S⊗so2l+1' so2l+1⊗S⊗S∗ (tr and

b are nondegenerate) annihilated by so2l+1, and hence to Homso2l+1(so2l+1⊗S, S).
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But so2l+1⊗S is generated, as a module for so2l+1, by the tensor product of any
nonzero element (like [v1, v2]

·) in the root space (so2l+1)ε1+ε2 ((so3)ε1 if l=1), and
any nonzero element (like 1) in the weight space S

−
1
2 (ε1+···+εl )

. (Note that ε1+ ε2

is the longest root in the lexicographic order given by ε1 > · · · > εl > 0, while
−

1
2(ε1+· · ·+εl) is the lowest weight in S.) The image of this basic tensor under any

homomorphism of so2l+1-modules lies in the weight space of weight 1
2(ε1+ ε2−

ε3−· · ·−εl), which is one-dimensional. Hence, dimk Homso2l+1(so2l+1⊗S, S)=1,
as required.

The last part of the Proposition follows from (2.8). �

For future use, note that for any w1, w2, w3, w4 ∈W ,

tr
(
σw1,w2σw3,w4

)
= 2

(
q(w1, w4)q(w2, w3)− q(w1, w3)q(w2, w4)

)
,

and hence, under the identification so2l+1 ' [W,W ]· (σw1,w2 7→ −
1
2 [w1, w2]

·),

(2.14) 1
2 tr
(
[w1, w2]

·
[w3, w4]

·
)
=4

(
q(w1, w4)q(w2, w3)−q(w1, w3)q(w2, w4)

)
.

To deal with the Lie algebras so2l (type D), l ≥ 2, consider the involution of
Cl(V ⊕ V ∗, q), which will be denoted by τ too, which is the identity on V ⊕ V ∗.
Also consider the involution ˆ :

∧
V →

∧
V such that v̂ = v for any v ∈ V ⊆

∧
V ,

and the nondegenerate bilinear form

b̂ :
∧

V ×
∧

V → k

(s, t) 7→8(ŝt),
(2.15)

where 8 is as in (2.6). Here, with the same arguments as for (2.8),

b̂ is symmetric if and only if l ≡ 0 or 1 (mod 4),

b̂ is skew-symmetric if and only if l ≡ 2 or 3 (mod 4).
(2.16)

Moreover, if l is even, then b̂
(∧

0̄V,
∧

1̄V
)
=0, so the restrictions of b̂ to S+=

∧
0̄V

and S− =
∧

1̄V are nondegenerate. However, if l is odd, then both S+ and S− are
isotropic subspaces relative to b̂.

The nondegenerate bilinear form b̂ induces the adjoint involution τb̂ on
∧

V and,
as before, the isomorphism 3 in (2.5) becomes an isomorphism of algebras with
involution:

(2.17) 3 :
(
Cl(V ⊕ V ∗, q), τ

)
→
(
Endk(

∧
V ), τb̂

)
.

Under this isomorphism, the even Clifford algebra Cl0̄(V ⊕ V ∗, q) maps onto
Endk(

∧
0̄V )⊕Endk(

∧
1̄V ).

Also, as before, so2l = so(V ⊕ V ∗, q) can be identified with the subspace
[V ⊕V ∗, V ⊕V ∗]· of Cl0̄(V ⊕V ∗, q), h= span {[vi , fi ]

·
: i = 1, . . . , l} is a Cartan
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subalgebra, the roots are {±εi±ε j : 1≤ i < j ≤ l}, the set of weights of the natural
module V ⊕V ∗ are {±εi : 1≤ i ≤ l}, all the weights appear with multiplicity one,
and the composition

so2l ↪→ Cl0̄(V ⊕ V ∗, q)
3
−→ Endk(

∧
0̄V )⊕Endk(

∧
1̄V )

gives two representations

(2.18) ρ+ : so2l→ Endk(
∧

0̄V ) and ρ− : so2l→ Endk(
∧

1̄V ),

called the half-spin representations. The weights in S+=
∧

0̄V (respectively S−=∧
1̄V ) are the weights 1

2(±ε1± · · · ± εl), with an even (respectively odd) number
of + signs.

Proposition 2.19. (i) If l is odd, l ≥ 3, there is no nonzero so2l-invariant bilinear
map S+× S+→ so2l .

(ii) If l is even, there is a unique, up to scalars, such bilinear map, which is given
by the formula

(2.20) 1
2 tr
(
σ [s, t]

)
= b̂

(
ρ+(σ )(s), t

)
,

for any σ ∈ so2l and s, t ∈ S+. Moreover, this bilinear map [ · , · ] is symmetric
if and only if l is congruent to 2 or 3 modulo 4, and it is skew-symmetric
otherwise.

Proof. If l is odd (l ≥ 3), then S+ ⊗ S+ is generated, as a module for so2l , by
v1 · · · vl−1 ⊗ vl−1vl (the tensor product or a nonzero highest weight vector and
a nonzero lowest weight vector), and its image under any nonzero so2l-invariant
linear map S+⊗ S+→ so2l lies in the root space of root 1

2(ε1+· · ·+ εl−1− εl)+
1
2(−ε1 − · · · − εl−2 + εl−1 + εl) = εl−1. But εl−1 is not a root, so its image must
vanish.

For l even b̂ is nondegenerate on S+ and, as in Proposition 2.12, it is enough
to compute dimk Homso2l (so2l ⊗S+, S+), which is proven to be 1 with the same
arguments given there. �

Remark 2.21. In Cl1̄(V ⊕ V ∗, q) there are invertible elements a such that a·2 ∈
k1 and a · (V ⊕ V ∗) · a−1

⊆ V ⊕ V ∗. For instance, one can take the element
a = [v1, f1]

·
· · · [vl−1, fl−1]

·
· (vl + fl), which satisfies a·2 = (−1)l−1. (Note that

[vi , fi ]
·2
= vi · fi ·vi · fi + fi ·vi · fi ·vi = vi · (1−vi · fi ) · fi + fi · (1− fi ·vi ) ·vi =

vi · fi + fi ·vi = fi (vi )= 1 and (vi + fi ) · (vi + fi )= vi · fi + fi ·vi = 1.) Consider
the linear isomorphism φa : S− =

∧
1̄V → S+ =

∧
0̄V , s 7→ ρ(a)(s), and the order

two automorphism Ada : Cl(V ⊕ V ∗, q)→ Cl(V ⊕ V ∗, q), x 7→ a · x · a−1. Ada

preserves V ⊕ V ∗, and hence also so2l ' [V ⊕ V ∗, V ⊕ V ∗]·. Then, for any so2l-
invariant bilinear map [ · , · ] : S+ × S+→ so2l , one gets a so2l-invariant bilinear
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map [ · , · ]− : S−× S−→ so2l at once by

[s, t]− = Ada
(
[φa(s), φa(t)]

)
.

Therefore, it is enough to deal with the half spin representation S+.

3. Type B

Let g= g0̄⊕ g1̄ be either a simple Z2-graded Lie algebra or a simple Lie superal-
gebra with g0̄ = so2l+1 and g1̄ = S (its spin module).

Because of Proposition 2.12, the product of two odd elements can be assumed
to be given by the bilinear map [s, t] in (2.13). Therefore, the possibilities for such
a g are given precisely by the values of l such that the product [s, t] satisfies the
Jacobi identity

J (s1, s2, s3)= ρ([s1, s2])(s3)+ ρ([s2, s3])(s1)+ ρ([s3, s1])(s2)= 0,

for any s1, s2, s3 ∈ S. As in Section 2, ρ denotes the spin representation of so2l+1.
But S⊗S⊗S is generated, as a module for so2l+1, by the elements 1⊗v1 · · · vl⊗

vi1 · · · vir , where 0≤ r ≤ l and 1≤ i1 < · · ·< ir ≤ l. As in Section 2, {v1, . . . , vl}

denotes a fixed basis of V and { f1, . . . , fl} the corresponding dual basis in V ∗.
The trilinear map S× S× S→ S, (s1, s2, s3) 7→ J (s1, s2, s3) is so2l+1-invariant, so
it is enough to check for which values of l the Jacobian

J (1, v1 · · · vl, vi1 · · · vir )

is 0 for any 0≤ r ≤ l and 1≤ i1 < · · ·< ir ≤ l. By symmetry, it is enough to check
the Jacobians

J (1, , v1 · · · vl, v1 · · · vr )

for 0≤ r ≤ l.

Theorem 3.1. Let l ∈ N and let g = g0̄⊕ g1̄ be the Z2-graded algebra with g0̄ =

so2l+1, g1̄ = S (its spin module), and multiplication given by the Lie bracket of
elements in so2l+1, and by

[σ, s] = −[s, σ ] = ρ(σ)(s), ρ as in (2.11),

[s, t] given by (2.13).

for any σ ∈ g0̄ and s, t ∈ g1̄. Then:

(i) g is a Lie algebra if and only if either
• l = 3 and the characteristic of k is 3, and then g is isomorphic to the

29-dimensional simple Lie algebra discovered by Brown [1982], or
• l = 4, and then g is isomorphic to the simple Lie algebra of type F4.

(ii) g is a Lie superalgebra if and only if either
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• l = 1, and then g is isomorphic to the orthosymplectic Lie superalgebra
osp(1, 2), or

• l = 2, and then g is isomorphic to the orthosymplectic Lie superalgebra
osp(1, 4), or

• l = 5 and the characteristic of k is 5, or
• l = 6 and the characteristic of k is 3.

Proof. With the same notations as in Section 2, note that v1 · · · vr is a weight
vector relative to h, of weight 1

2(ε1+ · · ·+ εr − εr+1− · · ·− εl) for any 0≤ r ≤ l.
Hence [1, v1 · · · vr ] ∈ (so2l+1)−(εr+1+···+εl ). In the same vein, [v1 · · · vl, v1 · · · vr ] ∈

(so2l+1)ε1+···εr . In particular,

(3.2) [1, v1 · · · vr ] = 0 if 0≤ r ≤ l − 3; [v1 · · · vl, v1 · · · vr ] = 0 if 3≤ r ≤ l.

Also, [1, v1 · · · vl]∈h, so that [1, v1 · · · vl]=
∑l

i=1 αi [vi , fi ]
· for some α1, . . . , αl ∈

k. By (2.13)

(3.3)
1
2

l∑
i=1

αi tr
(
σ [vi , fi ]

·
)
= b

(
ρ(σ)(1), v1 · · · vl

)
.

Let σ = [v j , f j ]
·, then by (2.14)

1
2

l∑
i=1

αi tr
(
[v j , f j ]

·
[vi , fi ]

·
)
= 4 fi (v j ) f j (vi )= 4δi j ,

while ρ
(
[v j , f j ]

·
)
(1)= [lv j , d f j ](1)=−(d f j )(v j )=−1. Thus, (3.3) gives 4α j =

−1 for any j = 1, . . . , l, so

(3.4) [1, v1 · · · vl] = −
1
4

l∑
i=1

[vi , fi ]
·.

In the same vein, [1, v1 · · · vl−1] ∈ (so2l+1)−εl , so [1, v1 · · · vl−1] = α[u, fl]
· for

some α ∈ k, and by (2.13)

(3.5) 1
2α tr

(
[u, vl]

·
[u, fl]

·
)
= b

(
ρ([u, vl]

·(1), v1 · · · vl−1
)
.

The left-hand side is 4α
(
−q(u, u)q(vl, fl)

)
= 8α, while on the right-hand side

ρ
(
[u, vl]

·
)
= 2ρ

(
9(vl)

)
= 23(vl), so this side becomes

2b(vl, v1 · · · vl−1)= 28(v̄lv1 · · · vl−1)=−28(vlv1 · · · vl−1)

= 2(−1)l8(v1 · · · vl)= 2(−1)l .

Therefore α = 1
4(−1)l and

(3.6) [1, v1 · · · vl−1] =
1
4(−1)l[u, fl]

·.
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Similar arguments, which are left to the reader, give

[1, v1 · · · vl−2] =
1
2 [ fl−1, fl]

·, if l ≥ 2,(3.7)

[v1 · · · vl, v1] = −
1
4(−1)(

l+1
2 )[u, v1]

·,(3.8)

[v1 · · · vl, v1v2] = −
1
2(−1)(

l+1
2 )[v1, v2]

·.(3.9)

Now, if l ≥ 7 and 3≤ r ≤ l − 3,

J (1, v1 · · · vl, v1 · · · vr )= [[1, v1 · · · vl], v1 · · · vr ] (by (3.2))

=−
1
4

l∑
i=1
[[vi , fi ]

·, v1 · · · vr ] (by (3.4))

=−
1
4

l∑
i=1
ρ
(
[vi , fi ]

·
)
(v1 · · · vr )

=−
1
4(r − (l − r))v1 · · · vr =

1
4(l − 2r)v1 · · · vr .

With r = 1
2(l−2) if l is even or 1

2(l−1) if l is odd, l − 2r (= 1 or 2) 6= 0, so the
Jacobi identity is not satisfied.

Assume now that l = 6, so [s, t] is symmetric in s, t ∈ S by Proposition 2.12.
Then

J (1, v1 · · · v6, 1)= 2[[1, v1 · · · v6], 1] (because [1, 1] = 0; see (3.2))

=−
1
2

6∑
i=1
[[vi , fi ]

·, 1] (by (3.4))

=−
1
2

6∑
i=1
(−1)= 3,

so the characteristic of k must be 3. Assuming this is so, it is easily checked that
J (1, v1 · · · v6, v1 · · · vr )= 0 for any 0≤ r ≤ 6.

For l = 5, the product [s, t] is also symmetric (Proposition 2.12) and, as before,

J (1, v1 · · · v5, 1)= 2[[1, v1 · · · v5], 1] = − 1
2

5∑
i=1
(−1)= 5

2 ,

so the characteristic of k must be 5, and then J (1, v1 · · · v5, v1 · · · vr ) = 0 for any
0≤ r ≤ 5.

For l = 4, the product [s, t] is skew-symmetric, by Proposition 2.12. Therefore
J (1, v1 · · · v4, 1) = J (1, v1 · · · v4, v1 · · · v4) = 0 by skew-symmetry. The other
instances of J (1, v1 · · · v4, v1 · · · vr ), 1≤ r ≤ 3, are also checked to be trivial.
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With l = 3, the product [s, t] is skew-symmetric too. Hence, by (3.4), (3.6), and
(3.7),

J (1, v1v2v3, v1)= [[1, v1v2v3], v1] + [[v1v2v3, v1], 1] + [[v1, 1], v1v2v3]

= −
1
4

3∑
i=1
[[vi , fi ]

·, v1] −
1
4 [[u, v1]

·, 1] − 1
2 [[ f2, f3]

·, v1v2v3]

= −
1
4(1− 1− 1)v1−

1
4(2v1)−

1
2(−1− 1)v1 =

3
4v1,

and hence the characteristic must be 3. The other instance of the Jacobi identity to
be checked: J (1, v1v2v3, v1v2)= 0, also holds easily.

For l = 1 or l = 2, the Jacobi identity is satisfied too.

The assertions about which Lie algebras or superalgebras appear follows at once,
since all the algebras and superalgebras mentioned in the statement of the Theorem
satisfy the hypotheses. (For osp(1, 4), the even part is isomorphic to the symplectic
Lie algebra sp4, and the odd part is its natural 4-dimensional module. However sp4
is isomorphic to so5, and viewed like this, the 4-dimensional module is the spin
module. The same happens for osp(1, 2).) �

Remark 3.10. Up to our knowledge, the modular Lie superalgebras that occur
for l = 5 and l = 6 have not appeared previously in the literature. Note that
the simplicity of so2l+1 and the irreducibility of its spin module imply that these
superalgebras are simple.

4. Type D

In this section the situation in which g0̄ = so2l (l ≥ 2), and g1̄ = S+ (half-spin
module) will be considered. First note that it does not matter which half-spin
representation is used (Remark 2.21). By Proposition 2.19, it is enough to deal
with even values of l.

Theorem 4.1. Let l be an even positive integer, and let g = g0̄ ⊕ g1̄ be the Z2-
graded algebra with g0̄= so2l , g1̄= S+, and multiplication given by the Lie bracket
of elements in so2l , and by

[σ, s] = −[s, σ ] = ρ+(σ )(s), ρ+ as in (2.18),

[s, t] given by (2.20).

for any σ ∈ g0̄ and s, t ∈ g1̄. Then:

(i) g is a Lie algebra if and only if either
• l = 8 and then g is isomorphic to the simple Lie algebra of type E8, or
• l = 4, and then g is isomorphic to the simple Lie algebra so9 (of type B4).

(ii) g is a Lie superalgebra if and only if either
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• l = 6, and the characteristic of k is 3, and then g is isomorphic to the Lie
superalgebra in [Elduque 2006, Theorem 3.2(v)], or

• l = 2, and then g is isomorphic to the direct sum osp(1, 2) ⊕ sl2, of
the orthosymplectic Lie superalgebra osp(1, 2) and the three-dimensional
simple Lie algebra.

Proof. The restriction to S+ =
∧

0̄V of the bilinear form b̂ in (2.15) coincides with
the restriction of the bilinear form b in (2.7). Hence, as in the proof of Theorem
3.1, the equations (3.2), (3.4), (3.7), and (3.9) are all valid here.

If l ≥ 10 and 4≤ r ≤ l − 4, r even,

J (1, v1 · · · vl, v1 · · · vr )= [[1, v1 · · · vl], v1 · · · vr ] = −
1
4

l∑
i=1
[[vi , fi ]

·, v1 · · · vr ]

= −
1
4(r − (l − r))v1 · · · vr =

1
4(l − 2r)v1 · · · vr ,

so, with r = 1
2(l−2) if l is congruent to 2 modulo 4, or r = 1

4(l−4) otherwise,
l − 2r equals 2 or 4, and the Jacobi identity is not satisfied.

For l = 8, [s, t] is skew-symmetric and it is enough to check that the Jacobian
J (1, v1 · · · v8, v1 · · · vr ) is 0 for r = 2, 4 or 6, which is straightforward.

For l = 6, [s, t] is symmetric and

J (1, v1 · · · v6, 1)= 2[[1, v1 · · · v6], 1] = − 1
2

6∑
i=1
[[vi , fi ]

·, 1] = − 1
2

6∑
i=1
(−1)= 3,

so the characteristic of k must be 3 and then all the other instances of the Jacobi
identity hold.

For l = 4, [s, t] is skew-symmetric, and thus it is enough to deal with

J (1, v1v2v3v4, v1v2)

= [[1, v1v2v3v4], v1v2] + [[v1v2v3v4, v1v2], 1] + [[v1v2, 1], v1v2v3v4]

= −
1
4

4∑
i=1
[[vi , fi ]

·, v1v2] −
1
2 [[v1, v2]

·, 1] − 1
2 [[ f1, f2]

·, v1v2v3v4]

= −
1
4(1+ 1− 1− 1)v1v2− v1v2+ v1v2 = 0.

It is well-known that g= so9 is Z2-graded with g0̄= so8 and g1̄ the natural module
for so8. But here, the triality automorphism permutes the natural and the two
half-spin modules, so one can replace the natural module by any of its half-spin
modules. Therefore, the Lie algebra that appears is isomorphic to so9.

Finally, for l = 2, [s, t] is symmetric and the Jacobi identity is easily checked
to hold. Since so4 is isomorphic to sl2⊕ sl2 and the two half-spin representa-
tions are the two natural (two-dimensional) modules for each of the two copies
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of sl2. It follows then that g = g1 ⊕ g2, where (g1)0̄ ' sl2 and (g1)1̄ the natu-
ral module for sl2 (and hence g1 ' osp(1, 2)), while g2 = (g2)0̄ = sl2. Alter-
natively, the subspaces span {[v1, v2]

·, [ f1, f2]
·, [v1, f1]

·
+ [v2, f2]

·, 1, v1v2} and
span {[v1, f2]

·, [v2, f1]
·
[v1, f1]

·
− [v2, f2]

·} are ideals of g, the first one being iso-
morphic to osp(1, 2), and the second one to sl2. �

5. The Kac Jordan superalgebra and the Tits construction

The aim of this section is to show that the Lie superalgebra in Theorem 3.1 for
l = 5 (and characteristic 5) is related to a well-known construction by Tits, applied
to the Cayley algebra and the ten-dimensional Kac Jordan superalgebra over k.

This last superalgebra is easily described in terms of the smaller Kaplansky
superalgebra. The tiny Kaplansky superalgebra is the three-dimensional Jordan
superalgebra K = K 0̄⊕ K 1̄, with K 0̄ = ke and K 1̄ =U , a two-dimensional vector
space endowed with a nonzero alternating bilinear form ( · | · ), and multiplication
given by

e2
= e, ex = xe = 1

2 x, xy = (x |y)e,

for any x, y ∈ U . The bilinear form ( · | · ) can be extended to a supersymmetric
bilinear form by means of (e|e)= 1

2 and (K 0̄|K 1̄)= 0.
For any homogeneous u, v ∈ K , we know from [Benkart and Elduque 2002,

(1.61)] that

(5.1) [Lu, Lv] = Lu Lv − (−1)ūv̄LvLu =
1
2

(
u(v| · )− (−1)ūv̄v(u| · )

)
,

where L x denotes the left multiplication by x , x̄ being the degree of the homo-
geneous element x . Moreover, the Lie superalgebra of derivations of K is (see
[Benkart and Elduque 2002])

der K = [L K , L K ] = osp(K )
(
' osp(1, 2)

)
.

The Kac Jordan superalgebra is

J= k1⊕ (K ⊗ K ),

with unit element 1 and product determined by

(5.2) (a⊗ b)(c⊗ d)= (−1)b̄c̄(ac⊗ bd − 3
4(a|c)(b|d)1

)
,

for homogeneous elements a, b, c, d ∈ K (see [Benkart and Elduque 2002, (2.1)]).
By Proposition 2.7 and Theorem 2.8 of the same reference, the superspace spanned
by the associators (x, y, z) = (xy)z − x(yz) = (−1)ȳ z̄

[L x , L z](y) is (J,J,J) =

K ⊗ K , and the Lie superalgebra of derivations of J is der J = [LJ, LJ], which
acts trivially on 1 and leaves invariant (J,J,J) = K ⊗ K . Considered then as
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subspaces of Endk(K ⊗ K )

(5.3) der J = (der K ⊗ id) ⊕ (id⊗ der K )
(
' osp(1, 2)⊕ osp(1, 2)

)
.

More precisely (see [Benkart and Elduque 2002, (2.4)]), for any homogeneous
a, b, c, d ∈ K ,

(5.4) [La⊗b, Lc⊗d ] = (−1)b̄c̄(
[La, Lc]⊗ (b|d) id + (a|c) id⊗[Lb, Ld ]

)
,

as endomorphisms of K ⊗ K . (Note that, with the usual conventions for superal-
gebras, id⊗ ϕ acts on a⊗ b as (−1)ϕ̄āa⊗ ϕ(b) for homogeneous ϕ and a, b.) In
particular,

(der J)0̄ =
(
(der K )0̄⊗ id

)
⊕
(
id⊗ (der K )0̄)

)
,

and (der K )0̄ is isomorphic to sp(U )= sp2= sl2 (acting trivially on the idempotent
e). The restriction of (der J)0̄ to the subspace K 1̄⊗ K 1̄ = U ⊗U of K ⊗ K then
gives an isomorphism

(der J)0̄
∼= so(U ⊗U )

(
= (sp(U )⊗ id) ⊕ (id⊗ sp(U ))

)
,

where U ⊗U is endowed with the symmetric bilinear form given by

(u1⊗ u2|v1⊗ v2)= (u1|v1)(u2|v2),

for any u1, u2, v1, v2 ∈U .

Assume now that the characteristic of k is 6= 2, 3. Let (C, n) be a unital compo-
sition algebra over k with norm n. That is, n is a regular quadratic form satisfying
n(ab)= n(a)n(b) for any a, b∈C . (See [Schafer 1966, Chapter III] for basic facts
about these algebras.)

Since the field k is assumed to be algebraically closed, C is isomorphic to either
k, k× k, Mat2(k) or the Cayley algebra C over k.

The map Da,b : C→ C given by

(5.5) Da,b(c)= [[a, b], c] − 3(a, b, c)

is the inner derivation determined by a, b∈C , and the Lie algebra der C is spanned
by these derivations. The subspace C0

= {a ∈ C : n(1, a) = 0} orthogonal to 1 is
invariant under der C .

For later use, let us state some properties of the inner derivations of Cayley
algebras. For any a, let ada = La − Ra (La and Ra denote, respectively, the left
and right multiplication by the element a), and consider adC = {ada : a ∈ C} =
{ada : a ∈ C0

}.

Lemma 5.6. Let C be the Cayley algebra over k (char k 6= 2, 3). Then:
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(i) C0 is invariant under der C and adC, both of which annihilate k1. Moreover,
as subspaces of Endk(C

0), so(C0, n)= der C⊕ adC.

(ii) [ada, adb] = 2Da,b− ad[a,b] for any a, b ∈ C.

(iii) Da,b+
1
2 ad[a,b] = 3

(
n(a, · )b− n(b, · )a

)
for any a, b ∈ C0.

Proof. First, in [Schafer 1966, Chapter III, §8] it is proved that der C leaves in-
variant C0 and, as a subspace of Endk(C

0), it is contained in the orthogonal Lie
algebra so(C0, n). The same happens for adC = adC0 , and der C∩adC = 0. Hence,
by dimension count, so(C0, n)= der C⊕ adC, which gives (i).

Now, C is an alternative algebra. That is, the associator (a, b, c)= (ab)c−a(bc)
is alternating on its arguments. Hence, for any a, b, c ∈ C,(

Lab− La Lb
)
(c)= (a, b, c)=−(a, c, b)= [La, Rb](c).

Interchange a and b and subtract to get L [a,b]− [La, Lb] = 2[La, Rb]. Similarly,

R[a,b]+ [Ra, Rb] = −2[La, Rb],

ad[a,b] = [La, Lb] + [Ra, Rb] + 4[La, Rb].

Hence

(5.7) Da,b = ad[a,b]−3(a, b, · )= ad[a,b]+3(a, · , b)

= ad[a,b]−3[La, Rb] = [La, Lb] + [Ra, Rb] + [La, Rb]

and [ada, adb] = [La − Ra, Lb − Rb] = [La, Lb] + [Ra, Rb] − 2[La, Rb] =

Da,b− 3[La, Rb] = 2Da,b− ad[a,b], which yields (ii).
Now, for any a ∈ C, we have (see [Schafer 1966, Chapter III, §4])

a2
− n(1, a)a+ n(a)1= 0,

so for any a ∈ C0, a2
=−n(a)1 and hence

(5.8) ab+ ba =−n(a, b)1,

for any a, b ∈ C0. Therefore, for any a, b, c ∈ C0,

2
(
n(a, c)b− n(b, c)a

)
=−(ac+ ca)b− b(ac+ ca)+ (bc+ cb)a− a(bc+ cb)

=−(a, c, b)+ (b, c, a)− (ca)b+ (cb)a− b(ac)+ a(bc)

=
(
2[La, Rb] + [Ra, Rb] + [La, Lb]

)
(c)

=
(
Da,b+ [La, Rb]

)
(c)=

( 2
3 Da,b+

1
3 ad[a,b]

)
(c),

because of (5.7), which gives (iii). �
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Let J = J0̄⊕ J1̄ be now a unital Jordan superalgebra with a normalized trace t :
J→k. That is, t is a linear map such that t (1)=1, and t (J1̄)=0= t

(
(J, J, J )

)
(see

[Benkart and Elduque 2003, §1]). Then J = k1⊕ J 0, where J 0
={x ∈ J : t (x)=0},

which contains J1̄. For x, y ∈ J 0, xy = t (xy)1+ x ∗ y, where x ∗ y = xy− t (xy)1
is a supercommutative multiplication on J 0. Since (J, J, J ) = [L J , L J ](J ) is
contained in J 0, the subspace J 0 is invariant under inder J = [L J , L J ] (the Lie
superalgebra of inner derivations).

Given a unital composition algebra C and a unital Jordan superalgebra with a
normalized trace J , consider the superspace

T(C, J )= der C ⊕ (C0
⊗ J 0)⊕ inder J,

with the superanticommutative product [ · , · ] specified by the following conditions
(see [Benkart and Elduque 2003]):

• der C is a Lie subalgebra and inder J a Lie subsuperalgebra of T(C, J ),

• [der C, inder J ] = 0,

• [D, a⊗ x] = D(a)⊗ x , [d, a⊗ x] = a⊗ d(x),

• [a⊗ x, b⊗ y] = t (xy)Da,b+ [a, b]⊗ x ∗ y− 2n(a, b)[L x , L y],

for all D ∈ der C , d ∈ inder J , a, b ∈ C0 and x, y ∈ J 0.
If the Grassmann envelope G(J ) satisfies the Cayley–Hamilton equation

ch3(x)= 0

for 3× 3-matrices, where

ch3(x)= x3
− 3t (x)x2

+
( 9

2 t (x)2− 3
2 t (x2)

)
x −

(
t (x3)− 9

2 t (x2)t (x)+ 9
2 t (x)3

)
1,

then T(C, J ) is a Lie superalgebra; see [Benkart and Elduque 2003, Sections 3
and 4].

This construction, for algebras, was considered by Tits [1966], who used it to
give a unified construction of the exceptional simple Lie algebras. In the above
terms, it was considered in [Benkart and Zelmanov 1996; Benkart and Elduque
2003].

The Kac Jordan superalgebra J is endowed with a unique normalized trace,
given necessarily by t (1)= 1 and t (K ⊗ K )= 0. Note that if f = f 2 is an idem-
potent linearly independent to 1 in a unital Jordan superalgebra with a normalized
trace t , and if the Grassmann envelope satisfies the Cayley–Hamilton equation
ch3(x)= 0, in particular ch3( f )= 0 so, by linear independence, t ( f )− 9

2 t ( f )2+
9
2 t ( f )3 = 0, and t ( f ) is either 0, 1

3 or 2
3 . But, if t ( f ) were 0, 0 = ch3( f ) would

be equal to f 3, hence to f , a contradiction. Hence t ( f ) = 1
3 or 2

3 . In the Kac
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superalgebra J, the element f = − 1
2 + 2e⊗ e is an idempotent with t ( f ) = − 1

2 .
Hence the Grassmann envelope of J cannot satisfy the Cayley–Hamilton equation
of degree 3 unless, − 1

2 =
1
3 or − 1

2 =
2
3 , that is, unless the characteristic of k be 5

or 7. Actually, McCrimmon [2005] has shown that the Grassmann envelope G(J)
satisfies this Cayley–Hamilton equation if and only if the characteristic is 5. In ret-
rospect, this explains the appearance of the nine-dimensional pseudocomposition
superalgebras over fields of characteristic 5 (and only over these fields) in [Elduque
and Okubo 2000, Example 9, Theorem 14 and concluding notes].

Assume from now on that the characteristic of the ground field k is 5.
Then, if C is a unital composition algebra, then T(C,J) is always a Lie super-

algebra. Obviously T(k,J)= inder J= der J, which is isomorphic to

osp(1, 2)⊕ osp(1, 2)

(see (5.3)), and T(k× k,J) is naturally isomorphic to LJ0 ⊕ der J which, in turn,
is isomorphic to osp(K ⊕ K ) ∼= osp(2, 4) (see [Benkart and Elduque 2002, The-
orem 2.13]). Also, it is well-known that T(Mat2(k),J) is isomorphic to the Tits–
Kantor–Koecher Lie superalgebra of J, which is isomorphic to the exceptional Lie
superalgebra of type F(4). (This was used by Kac [1977a] in his classification of
the complex finite-dimensional simple Jordan superalgebras.)

Our final result shows that the Lie superalgebra T(C,J) is, up to isomorphism,
the simple Lie superalgebra in Theorem 3.1 for l = 5.

Theorem 5.9. Let C be the Cayley algebra and let J be the Kac Jordan superalge-
bra over an algebraically closed field k of characteristic 5. Then:

(i) T(C,J)0̄ is isomorphic to the orthogonal Lie algebra so11.

(ii) T(C,J)1̄ is isomorphic to the spin module for T(C,J)0̄.

Proof. For (i) consider the vector space

M = C0
⊕ (U ⊗U )

(recall that U = K 1̄), endowed with the symmetric bilinear form Q such that

Q(C0,U ⊗U )= 0,

Q(x)=−n(x),

Q(u1⊗ u2, v1⊗ v2)=−(u1|v1)(u2|v2),

for x ∈ C0 and u1, u2, v1, v2 ∈U . It will be shown that T(C,J)0̄ is isomorphic to
the orthogonal Lie algebra so(M, Q).

This last orthogonal Lie algebra is spanned by the maps

σ Q
x,y = Q(x, · )y− Q(y, · )x
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for x, y ∈ M , and for any σ ∈ so(M, Q),

[σ, σ Q
x,y] = σ

Q
σ(x),y + σ

Q
x,σ (y).

Moreover, since C0 and U ⊗U are orthogonal relative to Q,

(5.10) so(M, Q)=
(
so
(
C0, Q|C0

)
⊕ so

(
U ⊗U, Q|U⊗U

))
⊕ σ

Q
C0,U⊗U

(which gives a Z2-grading of so(M,Q)), where so(C0,Q|C0) and so(U⊗U,Q|U⊗U )

are embedded in so(M, Q) in a natural way, and so(M, Q) is generated, as a Lie
algebra, by σ Q

C0,U⊗U . Besides, for any a, b ∈ C0, and u1, u2, v1, v2 ∈U ,

[σ
Q

a,u1⊗u2
, σ

Q
b,v1⊗v2

] = Q(u1⊗ u2, v1⊗ v2)σ
Q

a,b+ Q(a, b)σ Q
u1⊗u2,v1⊗v2

.

Also, by Lemma 5.6(iii), for any a, b ∈ C0,

(5.11) σ
Q

a,b =−2Da,b− ad[a,b] .

Now, the multiplication in T(C,J) gives, for any a, b ∈ C0, u, u1, u2, v, v1,

v2 ∈U , D ∈ der C and d ∈ (der J)0̄:

[D, a⊗ (u⊗ v)] = D(a)⊗ (u⊗ v),(5.12a)

[a⊗ (e⊗ e), b⊗ (u⊗ v)] = 1
4 [a, b]⊗ (u⊗ v)=− ada(b)⊗ (u⊗ v),(5.12b)

[d, a⊗ (u⊗ v)] = a⊗ d(u⊗ v),(5.12c)

[D, d] = 0= [d, a⊗ (e⊗ e)],(5.12d)

[Lu1⊗u2, Lv1⊗v2]|U⊗U =
1
2σ

Q
u1⊗u2,v1⊗v2

|U⊗U ,(5.12e)

since

(u1⊗ u2)
(
(v1⊗ v2)(w1⊗w2)

)
= Q(v1⊗ v2, w1⊗w2)(u1⊗ u2)(e⊗ e− 3

4 1)

=−
1
2 Q(v1⊗ v2, w1⊗w2)(u1⊗ u2),

for any u1, u2, v1, v2, w1, w2 ∈U .
Moreover, for any a, b ∈ C0 and u1, u2, v1, v2 ∈U ,

[a⊗(u1⊗ u2), b⊗ (v1⊗ v2)]

= t
(
u1⊗ u2)(v1⊗ v2)

)
Da,b+ [a, b]⊗

(
(u1⊗ u2) ∗ (v1⊗ v2)

)
− 2n(a, b)[Lu1⊗u2, Lv1⊗v2]

= −2Q(u1⊗ u2, v1⊗ v2)Da,b+ [a, b]⊗
(
Q(u1⊗ u2, v1⊗ v2)(e⊗ e)

)
− n(a, b)

(
2[Lu1⊗u2, Lv1⊗v2]

)
= Q(u1⊗ u2, v1⊗ v2)

(
−2Da,b+ [a, b]⊗ (e⊗ e)

+ Q(a, b)
(
2[Lu1⊗u2, Lv1⊗v2]

)
.
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Now, the equations in Lemma 5.6 and equations (5.11) and (5.12) prove that the
linear map

80̄ : T(C,J)0̄ = der C ⊕
(
C0
⊗ (k(e⊗ e)⊕U ⊗U )

)
⊕ (der J)0̄→ so(M, Q),

such that

• 80̄(D)= D for any D ∈ der C
(
⊆ so(C0, n)= so(C0,−n)⊆ so(M, Q)

)
, for

any D ∈ der C,

• 80̄(d)= d|U⊗U
(
∈ so(U ⊗U, Q)⊆ so(M, Q)

)
, for any d ∈ (der J)0̄,

• 80̄
(
a⊗ (e⊗ e)

)
=− ada

(
∈ so(C0,−n)⊆ so(M, Q)

)
, for any a ∈ C0,

• 80̄
(
a⊗ (u⊗ v)

)
= σ

Q
a,u⊗v, for any a ∈ C0 and u, v ∈U ,

is an isomorphism of Lie algebras. This proves the first part of the Theorem.

Now, let us consider the linear map

9 : M −→ Endk
(
C⊗ (U ⊕U )

)
a ∈ C0

7→ La ⊗

(
−id 0

0 id

)
,

u1⊗ u2 7→ id⊗
(

0 (u2| · )u1

(u1| · )u2 0

)
.

(The elements in U ⊕U are written as
(u1

u2

)
, and then Endk(U ⊕U ) is identified

with Mat2
(
Endk(U )

)
.) For any a ∈ C0 and u1, u2, v1, v2 ∈U ,

9(a)9(u1⊗ u2)+9(u1⊗ u2)9(a)= 0,

9(a)2 =−n(a) id= Q(a) id (as a(ab)= a2b =−n(a)b since C is alternative),

9(u1⊗ u2)9(v1⊗ v2)+9(v1⊗ v2)9(u1⊗ u2)

= id⊗

(
(u2|v2)(v1|· )u1+(v2|u2)(u1| · )v1 0

0 (u1|v1)(v2| · )u2+(v1|u1)(u2| · )v2

)

= id⊗

(
−(u1|v1)(u2|v2) id 0

0 −(u1|v1)(u2|v2) id

)

= Q(u1⊗ u2, v1⊗ v2) id,

since (u2|v2)
(
(v1|w1)u1+ (w1|u1)v1

)
=−(u2|v2)(u1|v1)w1, because (u1|v1)w1+

(v1|w1)u1+ (w1|u1)v1 = 0, as this is an alternating trilinear map on a two-dimen-
sional vector space.
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Therefore, 9 induces an algebra homomorphism

Cl(M, Q)→ Endk
(
C⊗ (U ⊕U )

)
,

whose restriction 9 : Cl0̄(M, Q)→ Endk
(
C⊗ (U ⊕U )

)
is an isomorphism, by

dimension count. Therefore, C⊗ (U ⊕U ) is the spin module for so(M, Q). Re-
call that so(M, Q) embeds in Cl0̄(M.Q) by means of σ Q

x,y 7→ −
1
2 [x, y]·. Since

so(M, Q) is generated by the elements σ Q
a,u1⊗u2

(a ∈ C0, u1, u2 ∈ U ), the spin
representation is determined by

ρ
(
σ

Q
a,u1⊗u2

)
=−

1
29
(
[a, u1⊗ u2]

·
)
=−

1
2 [9(a),9(u1⊗ u2)]

= −9(a)9(u1⊗ u2)= La ⊗

(
0 (u2| · )u1

−(u1| · )u2 0

)
.

Now identify T(C,J)0̄ with so(M, Q) through 80̄, and identify T(C,J)1̄ =

C0
⊗
(
(U ⊗ e)⊕ (e⊗U )

)
⊕ (der J)1̄ with C⊗ (U ⊕U ) by means of

81̄ : T(C,J)1̄ −→ C⊗ (U ⊕U )

a⊗ (u1⊗ e+ e⊗ u2) 7→ a⊗
(u1

u2

)
,

[Le, Lu1]⊗ id+ id⊗[Le, Lu2] 7→ −
1
2

(
1⊗

(u1
u2

))
,

for a ∈ C0 and u1, u2 ∈U .
In T(C,J), for any a, b ∈ C0, u1, u2, v1, v2 ∈U , using (5.4) we get

[a⊗ (u1⊗ u2), b⊗ (v1⊗ e+ e⊗ v2)]

= [a, b]⊗ 1
2

(
u1⊗ (u2|v2)e− (u1|v1)e⊗ u2

)
− 2n(a, b)[Lu1⊗u2, Lv1⊗e+e⊗v2]

=
1
2 [a, b]⊗

(
(u2|v2)u1⊗ e− e⊗ (u1|v1)u2

)
− 2n(a, b)

(
−

1
2(u1|v1) id⊗[Lu2, Le] +

1
2 [Lu1, Le]⊗ (u2|v2) id

)
=

1
2 [a, b]⊗

(
(u2|v2)u1⊗ e− e⊗ (u1|v1)u2

)
−

1
2 n(a, b)

(
−2
(
[Le, L(u2|v2)u1]⊗ id − id⊗[Le, L(u1|v1)v2]

))
.

That is,[
a⊗ (u1⊗ u2),8

−1
1̄

(
b⊗

(
v1
v2

))]
=8−1

1̄

(
ab⊗

(
0 (u2| · )u1

−(u1| · )u2 0

)(
v1
v2

))
,

or [
8−1

0̄

(
σ

Q
a,u1⊗u2

)
,8−1

1̄

(
b⊗

(
v1
v2

))]
=8−1

1̄

(
ρ
(
σ

Q
a,u1⊗u2

)(
b⊗

(
v1
v2

)))
,
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because ab =− 1
2 n(a, b)+ 1

2 [a, b] for any a, b ∈ C0 by (5.8). But also,[
a⊗ (u1⊗ u2),[Le, Lv1]⊗ id+ id⊗[Le, Lv2]

]
= a⊗

(
−[Le, Lv1](u1)⊗ u2+ u1⊗[Le, Lv2](u2)

)
= a⊗

( 1
2(u1|v1)e⊗ u2−

1
2 u1⊗ (u2|v2)e

)
,

or[
a⊗ (u1⊗ u2),8

−1
1̄

(
1⊗

(
v1
v2

))]
=8−1

1̄

(
a⊗

(
0 (u2| · )u1

−(u1| · )u2 0

)(
v1
v2

))
,

that is,[
8−1

0̄

(
σ

Q
a,u1⊗u2

)
,8−1

1̄

(
1⊗

(
v1
v2

))]
=8−1

1̄

(
ρ
(
σ

Q
a,u1⊗u2

)(
1⊗

(
v1
v2

)))
,

and this shows that, if T(C,J)0̄ is identified with so(M, Q) by means of 80̄ and
T(C,J)1̄ with C⊗ (U ⊕U ) by means of 81̄, the action of T(C,J)0̄ on T(C,J)1̄
is given, precisely, by the spin representation. �

The Lie superalgebra in Theorem 3.1 for l = 6 and characteristic 3, appears in
the extended Freudenthal magic square in this characteristic [Cunha and Elduque
2006], as the Lie superalgebra g

(
B(4, 2), B(4, 2)

)
, associated to two copies of

the unique six-dimensional symmetric composition superalgebra. This is related
to the six-dimensional simple alternative superalgebra B(4, 2) [Shestakov 1997],
and hence to the exceptional Jordan superalgebra of 3×3 hermitian matrices over
B(4, 2), which is exclusive of characteristic 3.
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