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SYMPLECTIC ENERGY AND LAGRANGIAN INTERSECTION
UNDER LEGENDRIAN DEFORMATIONS

HAI-LONG HER

Let M be a compact symplectic manifold, and L ⊂ M be a closed La-
grangian submanifold which can be lifted to a Legendrian submanifold in
the contactization of M. For any Legendrian deformation of L satisfying
some given conditions, we get a new Lagrangian submanifold L′. We prove
that the number of intersection L ∩ L′ can be estimated from below by the
sum of Z2-Betti numbers of L, provided they intersect transversally.

1. Introduction

V. I. Arnold formulated in [1965; 1978, Appendix 9] his famous conjectures on the
number of fixed points of Hamiltonian diffeomorphisms of any compact symplectic
manifold and the number of intersection points of any Lagrangian submanifold
with its Hamiltonian deformations in a symplectic manifold. If M is a symplectic
manifold, L ⊂ M is a Lagrangian submanifold, and ψM is a Hamiltonian diffeo-
morphism, his conjectures can be written in topological terms as

#Fix(ψM)≥ sum of Betti numbers of M,with all fixed points nondegenerate;
#Fix(ψM)≥ cuplength of M,fixed points possibly degenerate;

#(L∩ψM(L))≥ sum of Betti numbers of L ,with intersection points transverse;
#(L∩ψM(L))≥ cuplength of L ,with intersection points possibly nontransverse.

Much effort has gone into proving these two conjectures. The pioneering works
are [Conley and Zehnder 1983; Gromov 1985; Floer 1988a; 1988b; 1989a; 1989b].
Floer originally developed the seminal method, motivated by the variational method
used by Conley and Zehnder and the elliptic PDE techniques introduced by Gro-
mov, which is now called Floer homology theory, and solved many special cases
of Arnold’s conjectures. Fukaya and Ono [1999] and Liu and Tian [1998] inde-
pendently proved the first conjecture for general compact symplectic manifolds in
the nondegenerate case. The conjecture for general symplectic manifolds in the
degenerate case is still open.
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For the second conjecture, Floer [1988a; 1989b] gave the proof under the addi-
tional assumption π2(M, L)= 0. We write his result for the case that all intersec-
tions are transverse.

Theorem 1.1 (Floer). Let L be a closed Lagrangian submanifold of a compact (or
tame) symplectic manifold (M, ω) satisfying π2(M, L) = 0, and ψM be a Hamil-
tonian diffeomorphism, then #(L ∩ ψM(L)) ≥ dim H∗(L ,Z2), if all intersections
are transverse.

In general, the condition π2(M, L)= 0 can not be removed. For instance, let L
be a circle in R2, then π2(R

2, L) 6= 0, however, there always exists a Hamiltonian
diffeomorphism which can translate L arbitrarily far from its original position.

To prove his theorem, Floer introduced the so-called Floer homology group for
Lagrangian pairs and showed that it is isomorphic to the homology of L under
the condition above. The definition of Floer homology for Lagrangian pairs was
generalized by Oh [1993a; 1993b; 1995] in the class of monotone Lagragian sub-
manifolds with minimal Maslov number being at least 3. However, for general
Lagrangian pairs, the Floer homology is hard to define due to the bubbling off
phenomenon and some essentially topological obstructions [Fukaya et al. 2000],
which is much different from the Hamiltonian fixed point case.

Therefore, if we want to throw away the additional assumption, we have to
restrict the class of Hamiltonian diffeomorphisms. For the simplest case that ψM

is C0-small perturbation of the identity, the Lagrangian intersection problem is
equivalent to the one for zero sections of cotangent bundles, which is proved by
Hofer [1985] and Laudenbach and Sikorav [1985]. Yu. V. Chekanov [1996; 1998]
also gave a version of Lagrangian intersection theorem which used the notion of
symplectic energy introduced by Hofer [1990] (for (R2n, ω0)) and Lalonde and
McDuff [1995] (for general symplectic manifolds). Following their notations, we
denote by H(M) the space of compactly supported smooth functions on [0, 1]×M .
Any H ∈ H(M) defines a time dependent Hamiltonian flow φt

H on M . All such
time-1 maps {φ1

H , H ∈H(M)} form a group, denoted by Ham(M). Now we define
a norm on H(M):

‖H‖ =
∫ 1

0

(
max
x∈M

H(t, x)−min
x∈M

H(t, x)
)

dt,

and we can define the energy of a ψ ∈ Ham(M) by

E(ψ)= inf
H

{
‖H‖ | ψ = φ1

H , H ∈H(M)
}
.

For a compact symplectic manifold (M, ω), there always exists an almost com-
plex structure J compatible with ω, so (M, ω, J ) is a compact almost complex
manifold, and we denote by J the set of all such J . Let σS(M, J ) and σD(M, L , J )
denote the minimal area of a J -holomorphic sphere in M and of a J -holomorphic
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disc in M with boundary in L , respectively. If there is no such J -holomorphic
curve, these values will be infinity. Otherwise, minimums are obtained by the
Gromov compactness theorem [1985], and they are always positive. We write
σ(M, L , J )=min(σS(M, J ), σD(M, L , J )), and σ(M, L)= supJ∈J σ(M, L , J ).

Theorem 1.2 [Chekanov 1998]. If E(ψ) < σ(M, L), then

#(L ∩ψ(L))≥ dim H∗(L ,Z2),

provided all intersections are transverse.

Remark. For the nontransverse case, under similar assumptions, C.-G. Liu [2005]
also found an estimate for Lagrangian intersections by cup-length of L .

In this paper, we give an analogous Lagrangian intersection theorem, but the
Hamiltonian deformation ψ will be replaced by a “Legendrian deformation” ψ̃
(which will be explained in the sequel). In fact, K. Ono has shown such a result,
still under the assumption π2(M, L)= 0, as we now discuss.

Suppose the symplectic structure ω is in an integral cohomology class and there
exists a principal circle bundle π : N→ M with a connection so that the curvature
form is ω. This means for a connection form α, one has dα = π∗ω. We see that
the horizontal distribution ξ = Kerα is a cooriented contact structure on N . We
say L satisfies the Bohr–Sommerfeld condition if α|L is flat, or, in other words, it
can be lifted to a Legendrian submanifold 3 in N .

Theorem 1.3 [Ono 1996]. Let a contact isotopy {ψ̃t | 0≤ t ≤1} be given on N. If L
is a Lagrangian submanifold of M that can be lifted to a Legendrian submanifold
3 in N, and π2(M, L)= 0, then

#(L ∩π ◦ ψ̃1(3))≥ dim H∗(L ,Z2),

provided L and π ◦ ψ̃1(3) intersect transversally.

Remark. Since a Hamiltonian isotopy of M can be lifted to a contact isotopy of
N , Ono’s theorem is a generalization of the theorem of Floer already stated.

Eliashberg, Hofer, and Salamon [Eliashberg et al. 1995] independently obtained
a result similar to Ono’s. They overcame some difficulties due to the noncompact-
ness of the symplectization manifold, and their arguments involve some compli-
cated conditions for avoiding bubbling off.

In the present paper, we discard Ono’s assumption that π2(M, L) = 0, while
adding a restrictive condition on the class of Legendrian deformation ψ̃ . Let L̃ be
the image of 3 under the principal S1-action on N . We denote by (SN , ωξ ) the
symplectization of the contact manifold (N , ξ) with cooriented contact structure ξ ,
where the symplectic structure ωξ is induced from the standard 1-form of cotangent
bundle T ∗N . Then L̃ is a compact Lagrangian submanifold in SN . There is a
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natural projection p : SN → N , and each section corresponds to a splitting SN =
N × R+ = N × (e−∞,+∞]. The contactomorphism ψ̃ can be lifted to a R+-
equivariant Hamiltonian symplectomorphism 9 on SN . We denote L= p−1(3),
which is also a Lagrangian submanifold in SN . Then we can see that there is a
one-to-one correspondence between L̃ ∩9(L) and L ∩ π ◦ ψ̃1(3). However, the
symplectization SN is not compact. So, the ordinary method of Floer Lagrangian
intersection needs to be modified.

Following [Ono 1996], we can replace the symplectization (SN , ωξ ) manifold
by another symplectic manifold (Q, �), which may be considered as a symplectic
filling in the negative end, so Q coincides with SN in the part N×[e−C ,+∞]⊃ L̃ ,
where C > 0 is a sufficiently large number. We note that Q is a 2-plane bundle
over M and is diffeomorphic to the associated complex line bundle N ×S1 C. We
define the compatible almost complex structure by J ′ on Q in the following way.
Since Q is the associated complex line bundle, the connection α on N gives the de-
composition of T Q=Ver(Q)⊕Hor(Q). We have a ω-compatible almost complex
structure J on M , and then we lift J to an almost complex structure on Hor(Q).
Also we define the almost complex structure on each fiber by choosing the standard
complex structure J0 on complex plane C. Then we let J ′= J⊕J0, so J ′ is uniquely
determined by the choice of J on M and a connection on N . Furthermore, Ono
[1996, Section 6] showed that if we choose a generic J on M in the sense of the
construction of Floer homology for (M, L), then J ′ is also a regular or generic
almost complex structure on Q. If we write 5 : Q→ M for the natural projection,
then it is a (J ′, J )-holomorphic map. Therefore, a map u = 5 ◦ ũ : 6 → M is
J -holomorphic if and only if ũ : 6→ M is J ′-holomorphic. We can see that, for
r > 1, the image of the positive end N × {r} ⊂ SN in Q is J ′-convex. Hence we
can choose the �-compatible almost complex structure so that it coincides with J ′

outside of a compact set. For simplicity, we denote using J this almost complex
structure on Q, if we can do so without danger of confusion.

Ono also proved that there is an a priori C0-bound for connecting orbits in
Q (note that all J -holomorphic curves we are concerned with are contained in a
compact subset K ⊂Q, while K depends on the choice of the contact isotopy {ψt }),
and the bubbling off argument can go through as in the case of compact symplectic
manifold. So the minimal area of J -holomorphic spheres and J -holomorphic discs
bounding Lagrangian submanifolds L̃ and L can be achieved. We denote it by

σ(Q, L̃,L, J )

=min
(
σS(Q, J )|K , σD(Q, L̃, J )|K , σD(Q,L, J )|K , σD(Q,L, L̃, J )|K

)
and we set

σ(Q, L̃,L)= sup
JM∈J

σ(Q, L̃,L, JM ⊕ J0).
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We will show that we can find a compactly supported Hamiltonian diffeomor-
phism 9 ′ ∈ Ham(Q) such that for a compact set K , the two images of 9 and 9 ′

coincide. For detailed explanation, we refer to [Ono 1996], or to Section 2. We
denote a contactomorphism by ψ , so our main result is:

Theorem 1.4. Let M be a compact symplectic manifold and N be the principal
S1-bundle π : N → M defined above. Given a contact isotopy {ψt | 0 ≤ t ≤ 1} on
N, suppose L is a closed Lagrangian submanifold of M which can be lifted to a
Legendrian submanifold 3 in N, and E(9 ′) < σ(Q, L̃,L), then

#(L ∩π ◦ψ1(3))≥ dim H∗(L ,Z2),

provided L and π ◦ψ1(3) intersect transversally.

2. Preliminaries on symplectic and contact geometry

We say that a given (2n+1)-dimensional manifold N is a contact manifold if there
exists a contact structure ξ which is a completely nonintegrable tangent hyperplane
distribution. It is obvious that ξ can locally be defined as the kernel of a 1-form
α satisfying α ∧ (dα)n 6= 0. If the contact structure is coorientable, then α can be
globally defined. We only consider the cooriented contact structure in this paper.
The contact manifold is denoted by (N , ξ), and α is called a contact form. A
diffeomorphism ψ of N is called a contactomorphism if it preserves the cooriented
contact structure ξ . We call {ψt , 0≤ t ≤ 1} a contact isotopy if ψ0 = id and every
ψt is a contactomorphism, and X t = dψt/dt is the contact vector field on N .

For any symplectic manifold (M, ω) there exists an almost complex structure J
on M . We say the almost complex is compatible with the symplectic manifold if
ω(J · , J · ) = ω( · , · ) and ω( · , J · ) > 0, which can give the Riemannian metric
on M .

Let N be an oriented codimension 1 submanifold in an almost complex manifold
(Q, J ), and ξx be the maximal J -invariant subspace of the tangent space Tx N , then
ξx has codimension 1. N is said to be J -convex if for any defining 1-form α for ξ ,
we have dα(v, Jv) > 0 for all nonzero v ∈ ξx . This implies ξ is a contact structure
on N . It is a fact that if N is J -convex then no J -holomorphic curve in Q can
touch (or be tangent to) N from the inside (from the negative side) [Gromov 1985;
McDuff 1991].

Symplectization. We denote by SN = Sξ (N ) the R+-subbundle of the cotangent
bundle T ∗N whose fibers at q ∈ N are all nonzero linear forms in T ∗q N , which
is compatible with the contact hyperplane ξq ⊂ Tq N . There is a canonical 1-form
pdq on T ∗N , and if we let αξ = pdq|SN , thenωξ =dαξ is a symplectic structure on
SN . Thus, we call (SN , ωξ ) the symplectization of the contact manifold (N , ξ).
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We see that a contact form α : N→ SN is a section of this R+-bundle p : SN→ N .
Hence we have a splitting SN = N ×R+.

An n-dimensional submanifold3⊂ (N , ξ) is called Legendrian if it is tangent to
the distribution ξ , that is to say,3 is Legendrian if and only if α|3= 0. The preim-
age L= p−1(3) is an R+-invariant Lagrangian cone in (SN , ωξ ). Conversely, any
Lagrangian cone in the symplectization projects onto a Legendrian submanifold in
(N , ξ).

SN carries a canonical conformal symplectic R+-action. Every contactomor-
phism ϕ uniquely lifts to a R+-equivariant symplectomorphism ϕ̃ of SN , which
is also a Hamiltonian diffeomorphism of SN . Conversely, each R+-equivariant
symplectomorphism of SN projects to a contactomorphism of (N , ξ). A function
F on SN is called a contact Hamiltonian if it is homogeneous of degree 1. that is,
if F(cx)= cF(x) for all c ∈ R+, x ∈ SN .

The Hamiltonian flow generated by a contact Hamiltonian function is R+-equi-
variant; it defines a contact isotopy on (N , ξ). Therefore, any contact isotopy {ϕt } is
generated in this sense by a uniquely defined time-dependant contact Hamiltonian
Ft : SN→R. There is a one-to-one correspondence between a contact vector field
X t and a function on N : ft = α(X t), also called a contact Hamiltonian function.

Contactization. If a symplectic manifold (M, ω) is exact (ω= dα), it can be con-
tactized. The contactization C(M, ω) is the manifold N = M × S1 (or M × R)
endowed with the contact form dz−α. Here we denote by z the projection to the
second factor and still denote by α its pull-back under the projection N → M .

However, the contactization can sometimes be defined even when ω is not exact.
Suppose that the form ω represents an integral cohomology class [ω] ∈ H 2(M).
The contactization C(M, ω) of (M, ω) can be constructed as follows. Let

π : N → M

be a principal S1-bundle with the Euler class equal to [ω]. This bundle admits a
connection whose curvature form just is ω. This connection can be viewed as a
S1-invariant 1-form α on N . The nondegeneracy of ω implies that α is a contact
form and, therefore, ξ = {α= 0} is a contact structure on N . The contact manifold
(N , ξ) is, by definition, the contactization C(M, ω) of the symplectic manifold
(M, ω). A change of the connection α leads to a contactomorphic manifold.

We note that a Hamiltonian vector field on (M, ω) can be lifted to a contact
vector field on N . In fact, a Hamiltonian function H on M and its Hamiltonian
vector field X H satisfy d H = ι(X H )ω. We know there exists a one-to-one corre-
spondence between contact vector fields and functions on N , so we obtain a contact
vector field X̃ H on N by α(X̃ H ) = π

∗H . Also, we have π∗ X̃ H = X H . Thus, any
Hamiltonian isotopy on M is lifted to a contact isotopy on N .
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If L ⊂ M is a Lagrangian submanifold then the connection α over it is flat. The
pull-back π−1(L) ⊂ N under the projection, which is also the image of the S1-
action of a Legendrian lift 3, denoted by L̃ , is a Lagrangian submanifold in SN
and is foliated by Legendrian leaves obtained by integrating the flat connection
over L . If the holonomy defined by the connection α is integrable over L then the
Lagrangian submanifold L̃ is foliated by closed Legendrian submanifolds in N . In
this case, the connection over L is trivial. If this condition is satisfied then L is
called exact (Bohr–Sommerfeld condition), and the Lagrangian submanifold L̃ is
foliated by closed Legendrian lifts of L .

A Legendrian submanifold 3⊂ (N , ξ) has a neighborhood U contactomorphic
to the 1-jet space J 1(3). Then L̃∩U can be identified under the contactomorphism
with the so-called “0-wall”: W = 3×R ⊂ J 1(3), which is just the set of 1-jets
of function with 0 differential.

Modifying (SN, ωξ ). Now, given a contact isotopy {ψt |0≤ t≤1} of (N , ξ), it can
be lifted to a Hamiltonian isotopy {9t | 0≤ t ≤ 1} of SN . Then, from the definition
and properties listed above, we have a one-to-one correspondence between L ∩
π ◦ ψ1(3) and L̃ ∩ 91(p−1(3)). They also coincide with L̃ ∩ ψ1(3), and all
intersections are transversal. Therefore, it is natural to define Floer homology for
such a pair of Lagrangian submanifolds L̃ and L = p−1(3). However, as we
all know, symplectization SN is not compact, so the ordinary method can not be
applied directly. We adopt Ono’s argument [1996] to overcome this difficulty.

We see that N is compact, thus there exists large C > 0 such that the trace of N
under the isotopy {9t |0≤ t ≤ 1} is contained in a compact set N ×[e−C , eC

], and
N × [e−C , eC

] is disjoint from 9t(SN \ [e−D, eD
]), t ∈ [0, 1], for some number

D>C . The domain we are concerned with is N×[e−D,+∞). The isotopy {9t } is
generated by a Hamiltonian H : [0, 1]×SN→R. We can find another function H ′,
so that H ′ equals H on N × [e−C , eC

] and equals zero outside of N × [e−D, eD
].

Then we get a new Hamiltonian isotopy {9 ′t |0≤ t ≤ 1} with compact support.
Since the boundary of the bundle N×[e−D−ε,+∞) is of contact type, by sym-

plectic filling techniques the symplectization (SN = N ×R+, ωξ ) can be replaced
by a new symplectic manifold (Q, �) which is diffeomorphic to the associated
complex line bundle N×S1 C→ M . In fact, Ono showed there exists a symplectic
embedding F from N × (e−D−ε,+∞) into (Q, �) (F is a symplectomorphism
between N × (e−D−ε,+∞) and N ×S1 C− {0-section}, see [Ono 1996, Appen-
dix] for details). Therefore, we study the Lagrangian intersection problem for
Q,FL̃,F(L∩ N × (e−D−ε,+∞)) under Hamiltonian isotopy 8t generated by a
Hamiltonian defined on Q, which equals H ′ ◦F−1 on N ×S1 C−{0-section}, and
equals zero on the 0-section. For simplicity, we still denote them by L̃,L, H .
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The positive end of Q is J -convex; that is, for a given E > 1, the product
N × {E} ⊂ Q is a J -convex codimension-1 submanifold. So no J-holomorphic
curves can touch it, and, especially, there exists a C0 bound for every J-holomorphic
disc u :D2

→Q with boundary in Lagrangian submanifolds L̃ and8t(L) (compare
also [Ono 1996]). For the general case, we consider u : 5 = R × [0, 1] → Q
with u(τ, 0) ⊂ L and u(τ, 1) ⊂ L̃ , τ ∈ R, which is regarded as the connecting
orbit between x−(t)= limτ→−∞ u(τ, t) and x+(t)= limτ→+∞ u(τ, t), solving the
perturbed Cauchy–Riemann equation

∂u
∂τ
=−J

∂u
∂t
+∇H(t, u(τ, t)).

In this situation, Gromov [1985] showed how to define an almost complex structure
J̃H on the product Q̃ = 5× Q, such that the J̃H -holomorphic sections of Q̃ are
precisely the graph ũ of solutions of the equation above. We can see that Q̃ is
J̃H -convex, so there is a C0-bound for J̃H -holomorphic curves in Q̃. The same
then thing happens to the connecting orbits in Q.

3. Variation and functional

From the discussion above, we know that we have got a symplectic manifold
(Q, �), and two Lagrangian submanifolds L̃ and L. Then we will establish a
homology theory for the pair (L̃,L) in Q, and study critical points of the sym-
plectic action functional defined on (some covering of) the space of paths in Q,
starting from L with ends on L̃ .

Let H ∈H(Q) satisfy ‖H‖< σ(Q, L̃,L, J ), and 9 t
(s), s ∈ [0, 1], be the time-t

flow generated by Hamiltonian s H (note that 91
(s) is the lift of the contactomor-

phism ψ1
(s)). And set

Ls =9
1
(s)(L), 3s = ψ

1
(s)(3)⊂ N .

We suppose that L̃ intersects L1 transversally.
Let 6 be the connected component of constant paths in the path space

{γ ∈ C∞([0, 1], Q)|γ (0) ∈ L, γ (1) ∈ L̃}.

We define the closed 1-form α on 6 by

〈α(γ ), v〉 =

∫ 1

0
�(γ̇ (t), v(t)) dt, v(t) ∈ T Q|γ (t), for t ∈ [0, 1].

We also write the function θ :6→ R as

θ(γ )=−

∫ 1

0
H(t, γ (t)) dt.
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Note that the zeroes of αs = α+ sdθ are just time-1 trajectories generated by the
flow 9 t

(s) that start from L and end on L̃ . If γ is the zero of αs , then the ends
of all γ (1) are just the intersection points of L̃ with Ls , which are one-to-one
correspondent to the zeroes of αs . The purpose of this paper is to estimate from
below the number of zeroes of α1 .

Since Ht is compactly supported on Q, let b+ =
∫ 1

0 maxx∈Q H(t, x) dt , and
b− =

∫ 1
0 minx∈Q H(t, x) dt . Then ‖H‖ = b+ − b−, −b+ ≤ θ(γ ) ≤ −b−, for all

γ ∈6. We introduce the Riemannian structure on 6 through the metric

(v1, v2)=

∫ 1

0
�(v1(t), Jv2(t)) dt.

Since

(gradα(γ ), v)= 〈α(γ ), v〉

=

∫ 1

0
�(γ̇ (t), v(t)) dt =

∫ 1

0
�(J γ̇ (t), Jv(t)) dt = (J γ̇ , v),

so the gradient of the closed 1-form α is given by J γ̇ , similarly, the gradient of
the closed 1-form αs is gradαs

= J γ̇ − s∇H .
Now, we consider the minimal covering π : 6̃ → 6 such that the form π∗α

is exact (meaning that there is a functional F on 6̃ such that π∗α = d F), and
its structure group 0 is free abelian. Denote Fs = F + s(θ ◦ π), so d Fs = π

∗αs .
The gradient ∇Fs of the functional Fs , with respect to the lift of the Riemannian
structure on 6, is a 0-invariant vector field on 6̃, and π∗∇Fs = gradαs

. Then we
consider the moduli space of thus gradient flows connecting a pair of critical points
(x−, x+) of Fs

Ms(x−, x+)

=

{
u : R→ 6̃

∣∣∣∣ du(τ )
dτ
=−∇Fs(u(τ )), u is not constant, lim

τ→±∞
u(τ )= x±

}
.

Denote by Ms =
⋃

x± Ms(x−, x+) the collection, and the nonparameterized
space by M̂s(x−, x+)=Ms(x−, x+)/R, and the natural quotient map q :Ms→ M̂s .
Choosing a regular�-compatible almost complex structure J on Q [Ono 1996], we
can assume that there is a dense set T ⊂[0, 1] such that for all s∈T , Ms(x−, x+) are
finite dimensional smooth manifolds, consequently, L̃ intersects Ls transversally.1

1Recall that the J used here is just the J ′ = J ⊕ J0 given in the introduction; by choosing a
generic ω-compatible almost complex structure J on M we can obtain the regular or generic �-
compatible structure J ′ on Q. The arguments in [Ono 1996] for J ′-holomorphic maps can apply to
our H -perturbed J ′-holomorphic map by similar statements as those in [Floer et al. 1995]. We can
overcome the similar problem which appears in the continuation argument of Section 6.
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We define the length of a gradient trajectory u∈Ms(x−, x+) by ls(u)= Fs(x−)−
Fs(x+). If û ∈ M̂s , then we define its length naturally by ls(û) = ls(u), where
û = q ◦ u. Denote 5= R× [0, 1], then the map ū :5→ Q, defined by ū(τ, t)=
π(u(τ ))(t), satisfies the following perturbed Cauchy–Riemann equation

∂ ū(τ, t)
∂τ

=−J (ū(τ, t))
∂ ū(τ, t)
∂t

+ s∇H(t, ū(τ, t)),

with limits
lim

τ→±∞
ū(τ, t)= π(x±)= x̄±(t).

It is easy to see that l0(u)=
∫
+∞

−∞
u∗d F =

∫
5

ū∗�.
If u ∈ M0, then ū is a J-holomorphic map from 5 to Q. From Oh’s removing

of boundary singularities theorem [1992], ū can be extended to a J-holomorphic
curve ū′ : (D2, ∂+D2, ∂−D2)→ (Q, L̃,L), where D2

= 5̄ is the two-point com-
pactification of 5. Since l0(u) =

∫
5

ū∗� =
∫

D2(ū′)∗�, we know that l0(u) ≥
σD(Q, L̃,L, J ).

4. Defining and computing homology for C0
ε

We denote by Ys the set of critical points of Fs , and by Cs the vector space spanned
by Ys over Z2.

Since Ys is 0-invariant, Cs has a structure of free K -module with rank= #(L̃ ∩
Ls), s∈T , where K =Z2[0]. Our aim in this section is to establish some homology
for the complex Cε, where ε is small enough. We write the following definition
similar as the one given by Chekanov [1998].

Definition 4.1. Fix δ > 0, satisfying 1 := ‖H‖+ δ < σ(Q, L̃,L, J ). A gradient
trajectory u ∈ Ms is said to be short if ls(u)≤1, and be very short if ls(u)≤ δ.

Now we denote the area by A(u)=
∫
5

ū∗�, and h(u)= s
∫
+∞

−∞
u∗d(θ ◦π), then

still write l(u)= ls(u)= A(u)+ h(u), we have

Lemma 4.2. If u is very short, in the sense that l(u)≤ δ, then the area A(u)≤1.

Proof. Since θ =−
∫ 1

0 H(t, γ (t)) dt ∈ [−b+,−b−], then

h(u)= s
∫
+∞

−∞

u∗d(θ ◦π)= sθ(π(u(τ )))
∣∣+∞
−∞
≥ s(b−− b+),

so
A(u)= l(u)− h(u)≤ δ− (b−− b+)= ‖H‖+ δ =1. �

The next lemma was essentially proved by Chekanov [1998, Lemma 6]; we
adapt it here for our setting, with some modifications.
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Lemma 4.3. . For a small neighborhood U of L̃ in Q, there exists a ε0 > 0, such
that for any positive ε < ε0, every short gradient trajectory u ∈ Mε is very short,
and for every short u we have ū(5)⊂U.

Proof. We work it by contradiction. For the first claim, we suppose there is a
sequence un ∈ Msn and a positive number c with δ ≤ c ≤ 1 so that when sn → 0
then lsn (un)→ c. By Gromov’s compactness theorem, there are some subsequence
of ūn = π(un) convergent to ū∞ which is a collection of J -holomorphic spheres
and J -holomorphic discs bounding L̃ and/or L. Then the total symplectic area of
this limit collection is just l0(u∞) = c which by the assumptions of Theorem 1.4
is larger than σ(Q, L̃,L), but c ≤ 1 < σ(Q, L̃,L), so the claim holds. For the
second claim, the argument is similar. Note that if the image ū∞(5) of the limit
collection is not contained in U , then at least one of the J -curve is not contained
in U which is nonconstant and its area will be larger than σ(Q, L̃,L, J ) >1, this
contradicts the (very) shortness condition. �

Then, we denote by M ′ε ⊂ Mε the set of all short gradient trajectories (nonpa-
rameterized short gradient trajectories), and likewise for M̂ ′ε ⊂ M̂ε . And we can
define the Z2-linear map ∂ : Cε→ Cε by

∂(x)=
∑
y∈Yε

#{isolated points of M̂ ′ε(x, y)}y for all x ∈ Yε.

Let ε ∈ T be sufficiently small and satisfy the conditions of Lemma 4.3. Choose
an element x0 ∈ Yε, then we can define a subclass Y 0

ε ⊂ Yε by

Y 0
ε = {x ∈ Yε | |Fε(x)− Fε(x0)| ≤ δ}.

Then we see that the projection π bijectively maps Y 0
ε onto the set of zeroes of the

form αε, and we get the bijection Y 0
ε × 0 → Yε given by (y, a) 7→ a(y), which

induces the isomorphism C0
ε ⊗K→Cε, where C0

ε ⊂Cε is spanned over Z2 by Y 0
ε .

Now, for sufficiently small ε ∈ T , we can establish the homology for (Cε, ∂)

Lemma 4.4. (1) The map ∂ is K -linear, well defined, and ∂(C0
ε )⊂ C0

ε .

(2) If ε ∈ T is sufficiently small, then ∂2
= 0.

(3) The homology H(C0
ε , ∂)
∼= H∗(3,Z2).

Proof. Step 1. Since the gradient flow is 0-invariant, ∂ is naturally K -linear. We
know that the bubbling off can not occur. Indeed, since ε is sufficiently small, then
u ∈Mε is very short, lε(u)≤ δ, by Lemma 4.2, the area A(u)≤1<σ(Q, L̃,L, J ),
and from the assumption in our theorem, the area of any J-holomorphic sphere or J-
holomorphic disc bounding L̃ and L is larger than σ(Q, L̃,L, J ). Thus, M̂ ′ε(x, y)
is compact and the number of its isolated points is finite.
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Step 2. Suppose ε ∈ T satisfy the conditions in Lemma 4.3. If ‖H‖ = 0, 1 = δ,
then H ≡ const. and ψH ≡ id, it is a trivial case. If ‖H‖>0, we can always choose
a fixed δ < 1

2‖H‖ <
1
21. Consider a pair of isolated trajectories u1 ∈ M̂ ′ε(x, y),

u2 ∈ M̂ ′ε(y, z). Then there exists a unique 1-dimensional connected component
C ⊂ M̂ε(x, z) such that (u1, u2) is one of the two ends of compactification of C

[Floer 1988a]. Since the length is additive under gluing, we have lε(u)= lε(u1)+

lε(u2) < 2δ <1, for all u ∈ C. By Lemma 4.3, u is also very short. From Lemma
4.2, we know the bubbling off doesn’t occur, too. Then the other end of C can be
compactified by a pair of isolated trajectories u′1 ∈ M̂ε(x, y), u′2 ∈ M̂ε(y, z). Also
lε(u′1)+lε(u′2)= lε(u1)+lε(u2)<1, thus u′1, u′2 are short trajectories. So we know
that, for x, z∈Yε, the number of isolated trajectories (u1, u2)∈ M̂ ′ε(x, y)×M̂ ′ε(y, z)
is even, that is, ∂2(x)= 0.

Step 3. From Lemma 4.3, we know that for any u ∈ M̂ ′ε(x, y), ū(5̄) ⊂ U . That
is to say, if ε is small enough, then 3ε = ψ1

(ε)(3) is always contained in a small
neighborhood U ′ =U ∩ N of the Legendrian submanifold 3 in N . By Darboux’s
theorem, U ′ is contactomorphic to a neighborhood of the 0-section in the 1-jet
space J 1(3). This contactomorphism moves L̃ ∩U ′ onto the 0-wall W , which is
defined as the space of 1-jets of functions with 0 differential. Thus a Legendrian
submanifold 3′, which is C1-close to 3 and transverse to W , corresponds to a
Morse function β : 3→ R so that the intersection points of L̃ and 3′ are in one-
to-one correspondence with the critical points of the function β. We can explicitly
choose a metric on3 and a generic almost complex structure J (recall the footnote
in Section 3) on the symplectization SN in such a way that the gradient trajectories
in Mε would be in one-to-one correspondence with the gradient trajectories of the
function β connecting the corresponding critical points of this function. Thus we
can identify our complex C0

ε with the Morse chain complex for the function β (here
we may also reduce the problem to Lagrangian intersections in M by applying
continuation argument and projecting the manifold to M , the method of equating
Floer and Morse complex is standard, we refer the reader to [Schwarz 1993]), so
we have an isomorphism H(C0

ε , ∂)
∼= H∗(3,Z2). �

5. Homology algebra

Under the condition π2(Q, · ) = 0 or the monotonicity assumption [Floer 1988a;
Oh 1993a; 1993b; 1995], the Floer homology H F∗(Cs, ∂) of the complex Cs, s ∈
T ⊂ [0, 1], can be defined. Then we can use the classical continuation method
(see [Floer 1989b; McDuff 1990] or the papers by Oh just cited) to prove the
isomorphism between H F∗(Cε, ∂) and H F∗(C1, ∂), that means to construct chain
homotopy8′8∼ idε (and88′∼ id1), where8 : (Cε, ∂)→ (C1, ∂),8′ : (C1, ∂)→

(Cε, ∂) are chain homomorphisms defined similarly as the definition of ∂ , except
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for considering the moduli space of continuation trajectories. That is to say, in
order to prove 8′8 ∼ idε, we should show there exists a chain homomorphism
h : (Cε, ∂)→ (Cε, ∂), so that

8′8− id= h∂ − ∂h.

However, in general case, we can not define appropriately any homology for Cs

unless s is small enough. Then we may only prove a weaker “homotopy”, which
was called λ-homotopy by Chekanov. In fact, for the aim of estimating from below
the number of critical points of the functional Fs , this λ-homotopy is enough.

We shall use the following homology algebraic result, introduced and proved by
Chekanov [1998].

Let 0 be a free abelian group equipped with a monomorphism λ :0→R, which
we call a weight function. Set

0+ = {a ∈ 0|λ(a) > 0}, 0− = {a ∈ 0|λ(a) < 0}.

Let k be a commutative ring. Consider the group ring K =k[0]. For a k-module M ,
we have the natural decomposition M⊗K =M+⊕M0

⊕M−. where M+=0+(M),
M0
= M , M− = 0−(M). Consider the projections

p+ : M ⊗ K → M+⊕M0, p− : M ⊗ K → M0
⊕M−.

Assume that (M, ∂) is a differential k-module, then ∂ naturally extends to a K -
linear differential on M ⊗ K .

Definition 5.1. We say two linear maps φ0, φ1 :M⊗K→M⊗K are λ-homotopic
if there exists a K -linear map h : M ⊗ K → M ⊗ K such that

p+(φ0−φ1+ h∂ + ∂h)p− = 0.

Lemma 5.2 [Chekanov 1998]. Let λ be a weight function on a free abelian group
0. Assume (M, ∂) to be a differential k-module and N to be a K -module, where
K = k[0]. If the maps8+ : M⊗K → N and8− : N→ M⊗K are K -linear and
8−8+ is λ-homotopic to the identity, then rankK N ≥ rankk H(M, ∂).

6. Proofs of the main results

Given a (s−, s+) continuation function ρ : R→ [0, 1] satisfying

ρ(τ)=

{
s− if τ <−r,
s+ if τ > r,

where r ∈ R, we can define the moduli space of continuation trajectories

Mρ(x−, x+)=
{

u : R→ 6̃

∣∣∣∣ du(τ )
dτ
=−∇Fρ(τ)(u(τ )), lim

τ→±∞
u(τ )= x±

}
,
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where x± ∈ Ys± . And we denote the collection by Mρ =
⋃

x−,x+ Mρ(x−, x+). The
length of a continuation trajectory is defined by lρ(u)= Fs−(x−)− Fs+(x+).

Choose a monotone (ε, 1) continuation function ρ+ and a monotone (1, ε) con-
tinuation function ρ−. For generic H , Mρ±(x−, x+) are smooth manifolds. We
will say a continuation trajectory u ∈ Mρ+(x−, x+) (or u ∈ Mρ−(x−, x+)) is short
if lρ+(u)≤ δ+ (1− ε)b+ (resp. lρ−(u)≤ δ+ (ε−1)b−). The subspace of all short
trajectories is denoted by M ′ρ±(x−, x+)⊂Mρ± .

In the best possible situation, that is, if no sequence of continuation trajectories
reaches the negative end (the zero section of Q→ M),2 we can simply construct
the Z2-linear continuation map 8+ : Cε→ C1,8

−
: C1→ Cε as

8+(x)=
∑
y∈Y1

#{isolated points of M ′ρ+(x, y)}y,

8−(y)=
∑
z∈Yε

#{isolated points of M ′ρ−(x, z)}z,

where x ∈ Yε. The next lemma implies that this definition of 8± is sound.

Lemma 6.1. If u ∈ Mρ+(x−, x+), then lρ+(u) ≥ (1− ε)b−. If u ∈ Mρ−(x−, x+),
then lρ−(u)≥ (ε− 1)b+. And the sum in the definition of 8± is finite.

Proof. Recall Fs = F + sθ ◦ π , s ∈ [0, 1]. For a (s−, s+) continuation function
ρ : R→ [0, 1], we have Fρ(τ) = F + ρ(τ)θ ◦ π . So the length of a continuation
trajectory is

lρ(u)= Fs−(x−)− Fs+(x+)

=−

∫
+∞

−∞

u∗d Fρ(τ) =−
∫
+∞

−∞

u∗d F −
∫
+∞

−∞

u∗d(ρ(τ )θ ◦π)

= A(u)+ h(u),

where we set

A(u)=−
∫
+∞

−∞

u∗d F =
∫
5

ū∗�=
∫
+∞

−∞

(
du(τ )

dτ
,

du(τ )
dτ

)
dτ

=

∫
+∞

−∞

‖∇Fρ(τ)‖2dτ ≥ 0,

h(u)=−
∫
+∞

−∞

u∗d(ρ(τ )θ ◦π)=−
∫
+∞

−∞

d%(τ)
dτ

θ(π(u(τ ))) dτ.

Recall that

θ =−

∫ 1

0
H dt ∈ [−b+,−b−],

2The possibility that there is such a sequence was pointed out to the author by one of referees. In
this case, we have to modify the continuation map.
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if u ∈ Mρ+(x−, x+),
l(u)≥ h(u)≥ (1− ε)b−;

if u ∈ Mρ−(x−, x+),
l(u)≥ h(u)≥ (ε− 1)b+.

Thus, For a short trajectory u ∈ M ′ρ±(x−, x+),

A(u)= l(u)− h(u)≤ δ+ (1− ε)(b+− b−)= ‖H‖+ δ =1.

Since A(u) =
∫
5

ū∗� ≤ 1 < σ(Q, L̃, J ), by Gromov’s arguments, no bubbling
can occur, then spaces M ′ρ±(x−, x+) are compact, and the finiteness of the set of
isolated points of M ′ρ±(x, y) is verified. �

However, in the general case, the ideal assumption is not always satisfied. If a
sequence of continuation trajectories converges to a curve reaching the negative end
of L, the boundary of moduli space of continuation trajectories will contain such
curve. So we need modify the definition of 8± to get a well-defined continuation
map. In fact, Ono [1996, p. 218] had dealt with a similar problem by considering
the algebraic intersection number of the continuation trajectories with the zero
section OM of Q→ M . Under Ono’s assumption π2(M, L) = 0, bubbling off of
holomorphic discs contained in the zero section of Q with boundary on L never
occurs. In our case, since we have the bound for energy, such kind of bubbling
off of discs is also avoided. Thus, we can define homomorphisms 8+k : Cε→ C1,
8−k : C1→ Cε as

8+k (x)=
∑
y∈Y1

Int+2,k(x, y)y, 8−k (y)=
∑
z∈Yε

Int−2,k(y, z)z,

where Int+2,k(x, y) (Int−2,k(y, z)) is the mod-2 number of isolated points u in the con-
tinuational moduli spaces M ′ρ+(x, y) and M ′ρ−(y, z), respectively, having algebraic
intersection number u · OM = k/2.

With the restriction of bound of energy, we can make similar discussions as in
[Ono 1996] to get the finiteness of Int±2,0. So 8±0 are just our favorite continuation
maps. We will not list the detailed arguments here and refer the reader to [Ono
1996] for original discussion. In the following, we will still denote the continuation
maps by 8± for simplicity.

Then we can use the homology algebraic result given in Section 5 to prove
Theorem 1.4, provided there exists a λ-homotopy between8−8+ and the identity.

Proof of Theorem 1.4. Take k=Z2, K =Z2[0], M=C0
ε , M⊗K =Cε, N =C1, and

let 0 be the structure group of the covering. The weight function λ :0→R can be
defined as λ(a)= F(a(x))−F(x). We also have decompositions Yε=Y+ε ∪Y 0

ε ∪Y−ε ,
Cε = C+ε ⊕C0

ε ⊕C−ε , where Y±ε = 0
±(Y 0

ε ).
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Assume that we have got a λ-homotopy h : Cε→ Cε. By Lemmas 5.2 and 6.1
we have

#(L ∩π ◦ψ1(3))= #(L̃ ∩ψ1(3))= #(L̃ ∩91(L))= rankK C1

≥ rankk H(C0
ε , ∂)= dim H∗(3,Z2)= dim H∗(L ,Z2). �

In the rest of this section, we show a sketchy proof of the existence of λ-
homotopy.

Lemma 6.2. There exists a λ-homotopy h : Cε → Cε between 8−8+ and the
identity.

Proof. We follow the arguments of Chekanov and state his main thought. For
constructing the homomorphism h, we use a family of (ε, ε) continuation functions
µc, c ∈ [0,+∞) satisfying these conditions:

(1) µ0(τ )≡ ε.

(2) duc(τ )/dτ ≥ 0 if τ < 0 and duc(τ )/dτ ≤ 0 if τ > 0.

(3) c 7→ µc(0) is a monotone map from [0,+∞) onto [ε, 1].

(4) when c is large enough µc(τ )=

{
ρ+(τ + c), if τ ≤ 0;
ρ−(τ − c), if τ ≥ 0.

We denote the moduli space by

Mµ(x−, x+)= {(c, u) | u ∈ Mµc(x−, x+)}, x± ∈ Yε.

For generic H , Mµ(x−, x+) are smooth manifolds.
As for the (ε, 1) or (1, ε) continuation trajectories earlier in this section, un-

der the assumption that any sequence of µc-continuation trajectories reaches the
negative end of L,3 we can define the Z2-linear map for C0

ε as

h(x)=
∑
y∈Y 0

ε

#{isolated points of M ′µ(x, y)}y, x ∈ Y 0
ε ,

where M ′µ(x, y) is the subset of the moduli space Mµ(x, y) which contains only
short µc-continuation trajectories, a µc-continuation trajectory u ∈Mµc(x−, x+) is
called short if its length l(u)= lµc(u)≤ δ. Moreover, For any u ∈Mµc(x−, x+), we
have lµc(u)= A(u)+ h(u)≥ h(u)≥ (µc(0)− ε)b−+ (ε−µc(0))b+ ≥ b−−b+ =
−‖H‖, and if l(u)≤ δ, then A(u)= l(u)− h(u)≤ δ+‖H‖ ≤1.

The map h can be extended naturally to a K -linear map on Cε. Since for u ∈
M ′µ(x, y), lµc(u) ≤ δ, A(u) ≤ 1, the bubbling off does not occur, M ′µ(x, y) is
compact and the sum is finite, thus the map h is well defined.

3Otherwise, we will again adopt Ono’s argument to take into consideration the algebraic intersec-
tion number. The way to modify the definition of the map h is similar to the previously mentioned
way to modify 8±.
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To prove h is a λ-homotopy, we have to verify

p+(x +8−8+x + h∂x + ∂hx)= 0,

for all x ∈ Y 0
ε ∪Y−ε . This will follow from the standard gluing argument involving

the ends of the 1-dimensional part ℵ of Mµ(x, z), z ∈ Y+ε ∪Y 0
ε . Since x ∈ Y 0

ε ∪Y−ε ,
z ∈ Y+ε ∪ Y 0

ε , and ε is small enough, we know l(u) ≤ δ for u ∈ ℵ. Indeed, l(u) =
Fε(x)−Fε(z), and there exist x ′ and z′ in Y 0

ε and a∈0+∪00, b∈00
∪0− such that

z = a(z′), x = b(x ′), and Fε(x)− Fε(x ′)= λ(b)≤ 0, Fε(z′)− Fε(z)=−λ(a)≤ 0,
also we know that Fε(x ′)− Fε(z′) ≤ δ since x ′, z′ ∈ Y 0

ε , this implies l(u) ≤ δ, so
A(u)≤1.4 This gets rid of the bubbling off. Then the compactification of ℵ shows
that the left-hand side of the formula above equals∑

z∈Y+ε ∪Y 0
ε

#{S(x, z)}z,

and the number #{S(x, z)} is even.5 This ends the proof of the lemma and of
Theorem 1.4. For more details, see [Chekanov 1998; Floer 1989b; McDuff 1990].

�
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