Vol. 232, No. 1, 2007

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Uniqueness of the Cheeger set of a convex body

Vicent Caselles, Antonin Chambolle and Matteo Novaga

Vol. 232 (2007), No. 1, 77–90
Abstract

We prove that if C N is of class C2 and uniformly convex, the Cheeger set of C is unique. The Cheeger set of C is the set that minimizes, inside C, the ratio of perimeter over volume.

Keywords
convex bodies, variational problems
Mathematical Subject Classification 2000
Primary: 35J70
Secondary: 49J40, 52A20
Milestones
Received: 6 April 2006
Revised: 21 July 2006
Accepted: 3 August 2006
Published: 1 September 2007
Authors
Vicent Caselles
Departament de Tecnologia
Universitat Pompeu Fabra
Passeig Circumvallació, 8
08003 Barcelona
Spain
Antonin Chambolle
CMAP, École Polytechnique
CNRS
91128 Palaiseau
France
Matteo Novaga
Dipartimento di Matematica
Università di Pisa
Largo Bruno Pontecorvo 5
56127 Pisa
Italy