Vol. 232, No. 1, 2007

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Transverse Poisson structures to adjoint orbits in semisimple Lie algebras

Pantelis A. Damianou, Hervé Sabourin and Pol Vanhaecke

Vol. 232 (2007), No. 1, 111–138
Abstract

We study the transverse Poisson structure to adjoint orbits in a complex semisimple Lie algebra. The problem is first reduced to the case of nilpotent orbits. We prove then that in suitably chosen quasihomogeneous coordinates, the quasidegree of the transverse Poisson structure is 2. For subregular nilpotent orbits, we show that the structure may be computed using a simple determinantal formula that involves the restriction of the Chevalley invariants on the slice. In addition, using results of Brieskorn and Slodowy, the Poisson structure is reduced to a three dimensional Poisson bracket, which is intimately related to the simple rational singularity that corresponds to the subregular orbit.

Keywords
transverse Poisson structure, nilpotent orbits, Kleinian singularities
Mathematical Subject Classification 2000
Primary: 53D17
Secondary: 17B10, 14J17
Milestones
Received: 27 May 2006
Revised: 27 September 2006
Accepted: 28 September 2006
Published: 1 September 2007
Authors
Pantelis A. Damianou
Department of Mathematics and Statistics
University of Cyprus
P.O. Box 20537
1678 Nicosia
Cyprus
Hervé Sabourin
Laboratoire de Mathématiques
UMR 6086 du CNRS
Université de Poitiers
86962 Futuroscope Chasseneuil Cedex
France
Pol Vanhaecke
Laboratoire de Mathématiques
UMR 6086 du CNRS
Université de Poitiers
86962 Futuroscope Chasseneuil Cedex
France
http://www-math.sp2mi.univ-poitiers.fr/~vanhaeck/