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SYSTEMS OF BANDS IN HYPERBOLIC 3-MANIFOLDS

BRIAN H. BOWDITCH

Let M be a hyperbolic 3-manifold admitting a homotopy equivalence to a
compact surface 6, where the cusps of M correspond exactly to the bound-
ary components of 6. We construct a nested system of bands in M, where
each band is homeomorphic to a subsurface of 6 times an interval. This
band system is shown to have various geometrical properties, notably that
the boundary of any Margulis tube is mostly contained in the union of the
bands. As a consequence, one can deduce the result (conjectured by Mc-
Mullen and proven by Brock, Canary and Minsky) that the thick part of
the convex core of M has at most polynomial growth. Moreover the degree
is at most minus the Euler characteristic of 6. Other applications of this
construction to the curve complex of 6 will be discussed elsewhere. The
complex is related to the block decomposition of M described by Minsky, in
his work towards Thurston’s Ending Lamination Conjecture.

Introduction

This paper is primarily concerned with the geometry of hyperbolic 3-manifolds that
are topologically products of a surface with the real line. More precisely, let M
be a complete hyperbolic orientable 3-manifold admitting a homotopy equivalence
χ : M → 6 to a compact surface 6. We assume that χ is “type preserving” in
the sense that each boundary curve in 6 corresponds to a parabolic cusp in M .
(We can allow for “accidental parabolics”; that is, parabolics in M need not be
peripheral in 6.) It follows from [Bonahon 1986] that M is homeomorphic to
int6 × R. Manifolds of this sort have been intensively studied, for example in
relation to Thurston’s Ending Lamination Conjecture. (By lifting to an appropriate
cover one can effectively reduce, at least in the indecomposable case, to manifolds
of this type.)

The purpose of this paper is to describe a “band decomposition” of M , which
captures much of its geometry. It gives a means of cutting the manifolds into
simpler pieces, which can be understood intrinsically according to some inductive
principle, and then fitted back together. One specific application is to give another

MSC2000: 57M50.
Keywords: 3-manifolds, hyperbolic geometry.

1



2 BRIAN H. BOWDITCH

proof of the conjecture of McMullen that the thick part of such a manifold grows at
most polynomially (see [Brock et al. 2004]), and give sharp bounds on the degree.
Our polynomials are, in principle, algorithmically computable. Another applica-
tion is to the geometry of the curve complex. One can show, for example, that
the action of the mapping class group on the curve complex is acylindrical, and
that stable lengths are uniformly rational. This is described in [Bowditch 2003].
Other applications of this work in turn show that the curve complex has finite
asymptotic dimension [Bell and Fujiwara 2005] and has Yu’s “property A” [Kida
2005]. It thus provides an example of hyperbolic 3-manifolds techniques being
used to solve essentially combinatorial problems.

The decompositions described here have close links with Thurston’s Ending
Lamination Conjecture. As observed earlier, the indecomposable case can be
essentially reduced to studying such manifolds: see [Minsky 2002; Brock et al.
2004; Bowditch 2005b]. (For adaptations of these ideas to the decomposable case
see [Brock et al. ≥ 2007] and [Bowditch 2005a].) The key to this is to relate the
geometry of M to the geometry of a “model” manifold constructed combinatorially.
In principle a similar band decomposition could be constructed in the combinatorial
model and then transferred to M . (Some discussion on how this may be achieved
is given in [Bowditch 2005b].) However, such an approach is very indirect, and
does not give a-priori computable constants. (At present, all known approaches
to the Ending Lamination Conjecture involve limiting arguments, or equivalent, at
some point.) Here we work directly from the 3-manifold, by a method that is, in
principle, effective. This work is logically independent of the work on the Ending
Lamination Conjecture cited above. We remark that another decomposition of M ,
which appears to be related, is discussed in [Soma 2003], and used there to study
geometric limits of manifolds of this type.

1. Overview and examples

We start with an informal overview of what we mean by a “band system” and the
properties we expect of it. These will be expressed more formally in Section 2.

We begin with the case of a compact surface, 6, and a hyperbolic 3-manifold,
M , without cusps, which admits a homotopy equivalence to 6. To simplify the
exposition we assume everything to be orientable. Thus, by [Bonahon 1986], M
is homeomorphic to 6 × R. Its convex core, core(M), is homeomorphic to 6 ×

I , where I ⊆ R is connected. In the geometrically finite case, core(M) and I
are compact. We refer to the first and second coordinates as the horizontal and
vertical directions respectively. There is no canonical homeomorphism, and so
most statements in this section should be qualified with the phrase “after choosing
suitable coordinates”. In Section 2, we give a topological, coordinate-free means



SYSTEMS OF BANDS IN HYPERBOLIC 3-MANIFOLDS 3

of expressing these ideas. In particular, we will define a “fibre” as an embedded
closed surface whose inclusion in M is a homotopy equivalence. It is shown in
[Brown 1966] that this has the form 6× {t} in a suitable coordinate system.

A simple case is that of bounded geometry, i.e. where the injectivity radius is
bounded below. If that happens, then the horizontal fibres 6× {t} (in suitable co-
ordinates), will have bounded diameter for all t ∈ I . In other words, we can foliate
the convex hull with bounded diameter surfaces. In the general case, however, we
get a set of disjoint short closed curves. These are unlinked, i.e. each has the form
α× {t} for a closed curve α in 6 [Otal 1995; 2003]. Any such curve will be the
core of a Margulis tube. This time, the fibres can be taken to intersect the tubes in
annuli, and such that the diameter of each component, after removing the tubes, is
bounded. This controls the geometry in the horizontal direction. However there is
no natural way of choosing vertical coordinates. For example, two fibres 6× {t}
and 6×{u} may be close together on one side of a Margulis tube, but far apart on
the other; and there might be no choice of coordinate system that will remedy this
consistently. This is the kind of phenomenon the band system is designed to come
to grips with.

We can also bring rank-one cusps into the picture. In this case, we allow 6

to be a closed surface with boundary. By hypothesis, each boundary component
corresponds to a cusp of M . On removing these cusps, we get a manifold home-
omorphic to 6 × R, and a similar discussion applies to this space. We may also
get “accidental” cusps — homotopic to nonperipheral simple closed curves of 6.
These accidental cusps play a similar role to Margulis tubes. For the purposes of
exposition, we will ignore accidental cusps in the discussion in this section.

It may happen that the boundary of each Margulis tube has bounded area. (This
is necessarily the case if 6 is a one-holed torus or four-holed sphere; see [Minsky
1999].) In such a case, our band system will be empty. In general, however, one
would expect these areas to be unbounded. Such tubes will form the anchors of
a system of bands. A “band” is a subset of M of the form 8 × J where 8 is
a proper subsurface of 6, and J is a compact subinterval of I . Each vertical
boundary component, ∂8 × J , is assumed to lie in the boundary of a Margulis
tube. The band may intersect other tubes in solid tori. We should think of bands
being long in the vertical direction, and narrow in the horizontal direction — that
is narrow modulo the intersections with tubes (which are deemed not to contribute
to the width). Qualitatively, a band, B, has similar geometry to that of the convex
core of a geometrically finite manifold, N , with base surface 8. Here, the tubes
which meet the vertical boundary components of B should be thought of has having
been “opened out” to rank-one cusps on N . This idea forms the basis of various
inductive procedures, where we carry out induction on the complexity of the base
surface. The induction starts with one-holed tori and four-holed spheres — there
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are no three-holed sphere bands.
Our goal will be to construct a system, A, of disjoint bands with a number of

geometric properties. Notably, we want the boundary of each Margulis tube to lie
mostly inside the bands. More precisely, for each tube, the area lying outside the
union of the bands is uniformly bounded in term of the complexity of 6.

We can go on to construct a similar system inside each individual band, and then
proceed inductively all the way down to one-holed tori and four-holed spheres, so
as to give us a nested system, B, of bands. In practice, it is this system we construct
first. We can recover A, if we want, as the set of outermost bands of B.

The basic idea behind the construction of B is fairly simple. If there exists a
sufficiently long band, 8× J , with any given base surface, 8, we include in B

such a band which is almost as long as possible. By “long” we mean long in the
vertical direction, in an appropriate sense, and the qualification “almost” means
that we need the band to have collars attached at each end, in order to prevent
neighbouring bands from bumping into each other. Some slight modification may
necessary in some situations to ensure that the bands are nested, but that is mainly
a technical issue. Most of the work of the proof will be in verifying that the bound-
aries of Margulis tubes are mostly taken up by the bands, so that, in some sense,
the combinatorics of the band system does indeed capture most of the large scale
geometry of M .

For most of the paper, we will simplify the exposition by assuming that 6 is
closed, that M has no cusps, and that M is doubly degenerate, i.e. core(M)= M ,
so that I = R. The adaptation to the general case is discussed in Section 8.

We finish this section by giving a couple of simple examples. Suppose that
there is just one Margulis tube, T , homotopic to a curve, γ , in 6. Suppose γ
separates 6. Let 81 and 82 be the components of the complement of a small
open annular neighbourhood of γ . There are four combinatorial possibilities for
A, namely: ∅, {81 × J1}, {82 × J2} and {81 × J1,82 × J2}, where J1, J2 are
intervals (Figure 1). Each of the bands meets ∂T in a single annulus. If γ is
nonseparating, the possibilities are ∅ or {8× J }, where 8 is the complement of
an open neighbourhood of γ in 6. In the last case, the band meets ∂T in two
annuli. This last possibility adds some complications to the formal description of
bands, but has no particular geometric significance.

In the above, we will have B = A. More generally it is possible that the bands of
A may themselves contain tubes and smaller bands of B. Moreover, there may be
many bands meeting any given tube. The general picture can get very complicated
combinatorially (Figure 2). (This figure should elongated in the vertical direction
to give a more accurate geometrical impression.)

It follows from the work on the Ending Lamination Conjecture that, in the
generic case, the band system will be nonempty. However, explicit examples are
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not so easy to construct and verify. Examples of product manifolds with no lower
bound on injectivity radius were given in [Bonahon and Otal 1988]. Examples
where the boundaries of Margulis tubes have arbitrarily large area (so that the
band system is nonempty) were constructed in [Brock 2001].

2. Outline of results

In this section, we outline of the construction of the band decomposition, and
summarise its main properties. We begin by recalling some standard facts.

For most of the paper, we will assume for simplicity that6 is a closed orientable
surface, and that M is orientable and has no cusps. Dealing with the general case
will be mostly a matter of reinterpreting some of the definitions and constructions,
as described in Section 8.
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We know by tameness [Bonahon 1986] that M is homeomorphic to 6 × R. A
fibre of M is an embedded surface homotopic (hence isotopic) to 6×{0}. A curve
or subsurface is unknotted if it can be embedded in a fibre. More generally, a
disjoint locally finite collection of embedded surfaces is unlinked if they can be
simultaneously embedded in a collection of disjoint fibres.

Our discussion depends on certain “Margulis constants”, η0, η1 etc. The Mar-
gulis Lemma tells us that there is some η0 > 0 such that any closed geodesic, γ ,
of length at most η0 in M is embedded, or finitely covers an embedded geodesic.
Indeed, assuming it is primitive, it is the core of a “Margulis tube”. Such a tube, T ,
is a solid torus, whose boundary, ∂T , is intrinsically euclidean. It comes equipped
with a homotopically well defined meridian (bounding a disc in T ). Otal [1995;
2003] shows that (provided η0 is chosen small enough in relation to genus(6)),
then γ is unknotted in M . Thus, ∂T also comes with a longitude (which can
be homotoped to infinity in the complement of T ). Such a longitude can also
be described in terms of the framing of γ obtained by embedding it in a fibre.
We can think of ∂T as foliated by euclidean geodesic longitudes of equal length.
It turns out that this length is bounded above and below in terms of genus(6)
(and the Margulis constant). This gives us a convenient normalisation: we fix a
suitable η > 0 and write T (γ ) = T (γ, η) for the unique Margulis tube about γ
whose longitudes all have length η. Provided η is small enough such tubes will
be embedded and disjoint. We choose some other η1 > 0 and let T be the set of
all Margulis tubes, T (γ, η) for which the core curve γ has length at most η1. If
T ∈ T, we write L(∂T ) for the “vertical length” of ∂T , i.e. the length of the circle
obtained by collapsing each longitude to a point. (In other words, ∂T has area
ηL(∂T ).) It turns out that L(∂T ) is bounded away from 0, but there is no upper
bound in general. The point of the band decomposition is that most of the vertical
length of such a torus lies inside the union of the bands.

We write 2(M) for the closure of M \
⋃

T — the “thick part” of M . We equip
2(M) with the induced path metric, d .

Definition. A horizontal surface in M is an unknotted surface, F , such that F
meets each T ∈ T, if at all, either in a single annulus whose boundary is precisely
F ∩∂T , or else in one or two (euclidean geodesic) longitudes of ∂T , both of which
are boundary curves of F . Moreover, each boundary curve of F is a longitude of
some element of T.

We write TI (F)⊆ T for the set of tubes meeting F in annuli.
Note that, under χ , F determines a homotopy class of subsurface of 6, which

we denote by φ(F).

Definition. We say that two horizontal surfaces F,G are parallel if they are disjoint
and φ(F)= φ(G).
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Definition. A band, A, in M is a subset of M homeomorphic to 8 × [−1, 1],
where 8 is a proper subsurface of 6, whose horizontal boundary, ∂H A = 8 ×

{−1, 1} consists of two horizontal surfaces (necessarily parallel) and whose vertical
boundary, ∂V A = ∂8 × [−1, 1] is a disjoint union of annuli, each lying in the
boundary of some Margulis tube.

We denote the horizontal boundary components of A by ∂− A and ∂+ A. (There is
a canonical choice.) Any two parallel horizontal surfaces determine a band, A, with
{∂− A, ∂+ A} = {F,G}. We write A = 〈F,G〉. Write φ(A)= φ(∂− A)= φ(∂+ A).

Let TI (A) ⊆ T be the set of Margulis tubes completely contained in A. Each
other tube meets A, if at all, in one or two vertical annuli, or else in a subsolid
torus bounded by annuli of the form T ∩∂− A or T ∩∂+ A (either one of which may
be empty).

Definition. The width, W (F), of a horizontal surface, F , is the maximum diameter
of a component of F ∩2(M) as measured in the path-metric, d , on 2(M).

The width, W (A), of a band, A, is defined as W (A)= max{W (∂+ A),W (∂− A)}.

In some ways, it would be more natural to define “width” in terms of intrinsic
diameter in the surface (in the induced path-metric) rather than using the ambient
diameter in M . The problem is that our topological constructions will make it
difficult to control intrinsic diameter, whereas the fact the that ambient diameters
remain bounded is elementary.

Let A be a collection of bands in M . We write
⋃

A for their union. Given a
Margulis tube, T , we write L(∂T,A) for the total vertical length of the union of
annuli ∂T \

⋃
A.

In the discussion that follows, properties (A1), (A2), (A3), (A5), (A6) and (A9)
will be proved later in the paper. Properties (A4), (A7) and (A8) are simple con-
sequences, or can be assumed without loss of generality.

We shall show:

Theorem 0. There are constants, W0, L0, depending on the topological type of 6
(and choice of Margulis constants) such that for any hyperbolic 3-manifold with a
homotopy equivalence to 6, we can find a collection, A, of bands satisfying:

(A1) The elements of A are disjoint.

(A2) For each A ∈ A, W (A)≤ W0.

(A3) For each T ∈ T, L(∂T,A)≤ L0.

We will see later that the bound on width in (A2) means that every point of
A lies in a fibre of bounded width. As we will discuss below, we can strengthen
(A1) to control the minimum distance between distinct bands, but at the cost of
increasing the constant L0 of (A3).
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Note that if two bands, A and B are parallel (i.e. φ(A)=φ(B)) then they bound
a third parallel band C . Thus A and B can be replaced by A ∪ C ∪ B. We see that
there is no loss in assuming, in addition, that:

(A4) No two distinct elements of A are parallel.

We also note that the bands can all be assumed to lie in the convex core of M .
(See the discussion of the “general case” below.)

There are a number of refinements we can make to Theorem 0.
Suppose A is a band. We write T0(A) = TI (A) ∪ TI (∂− A) ∪ TI (∂+ A). The

exterior length, l(π, A) of a path π in A is the total (rectifiable) length of π \⋃
T0(A).

Definition. The height H(A) of a band A is the infimum (in fact minimum) exterior
length of any path in A connecting ∂− A to ∂+ A.

In other words, H(A) is the shortest distance we need to travel to get across A,
where travelling in the Margulis tubes (other than those that contain the vertical
boundaries of A) costs us nothing.

We want a more quantitative way of saying that bands of A are disjoint, in fact
a bounded distance apart. This can be expressed using the notion of a “collar”.

Definition. If A is a band, a top (respectively bottom) collar of A is a band meeting
A precisely in ∂− A (respectively ∂+ A).

In other words, it has the form 〈F, ∂+ A〉 or 〈F, ∂− A〉, where F is a parallel
horizontal surface.

Note that if A+ and A− are top and bottom collars of A, then Â = A+ ∪ A∪ A−

is another band containing A. We refer to A, or more precisely, the pair (A, Â) as
a collared band. Given h ≥ 0, we say that A is h-collared if it admits a collar so
that H(A+)≥ h and H(A−)≥ h.

Addendum to Theorem 0. There is some W0 depending on the topological type of
6 such that given any H0, H1 ≥ 0, we can find L0 (depending on H0, H1 and the
type of 6), so that we can find a system of bands, A, satisfying (A1)–(A4) above,
together with:

(A5) Each band of A is H0-collared.

(A6) If A ∈ A, then H(A)≥ H1.

We can also assume if we want that W ( Â) ≤ W0 for all A ∈ A. By choosing
H1 > 0, we can assume that for each band, A, A ∩2(M) is connected (see the
discussion of “primitive” bands in Section 3).

We shall see (Lemma 4.5) that H(A) is uniformly bounded whenever φ(A) is
a 3-holed sphere. Thus, by choosing H0 or H1 large enough, we can assume in
addition:
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(A7) If A ∈ A, then φ(A) is not a 3-holed sphere.

Putting together (A3) and (A5), we see that there must be a bound on the number
of components of ∂T \

⋃
A for any T ∈ T. This must in turn be at least the number

of bands that meet ∂T . We deduce:

(A8) There is some N0 such that for all T ∈ T, at most N0 elements of A meet
∂T .

Here N0 depends on the topological type of 6.
Finally, by choosing H0 and/or H1 large enough, we can ensure that our bands

satisfy a topological property (defined in Section 2), namely:

(A9) The elements of A are unlinked in M.

As we have stated it, Theorem 0 says nothing about the intrinsic geometry of
the bands. However, one could apply a similar construction to the interior of each
band (compare the discussion of the general case below). Altogether, this would
give us a larger system of bands, say B, which are nested (see (A1′) below), rather
than disjoint (as was required by (A1)), but which in addition satisfies a relative
version of (A3), namely:

(A3′) For each B ∈ B and T ∈ T0(B) we have L(∂T ∩ B,B(B))≤ L0.

Here B(B) ⊆ B is the set of bands strictly contained in B. In practice, we shall
construct such a system B directly, and recover A as the set of outermost bands
of B.

There are some further refinements one can make to the band system B.

Definition. Given k > 0, we say that two bands, A and B, are k-nested if one of
the following three conditions holds: N (A∩2(M), k)⊆ B, N (B ∩2(M), k)⊆ A
or d(A ∩2(M), B ∩2(M)) ≥ k. They are nested if they are k-nested for some
k > 0.

Here d is the path-metric on 2(M), and N (., k) denotes k-neighbourhood in
2(M).

We can replace (A1) by:

(A1′) The elements of B are nested.

There is a final elaboration, alluded to earlier. Given any H2> 0, we can assume
that the elements of B are H2-nested. However, in this case, the constant L0 of
(A3′) will depend also on H2.

The basic construction of the band system B is fairly simple. The constant W0 is
determined by the geometry of M (see Section 4.2). We choose some H4 ≥ 0 large
enough in relation to H0 and H1. If A is a band with W (A)≤ W0 and H(A)≥ H4

then we choose such an A so as to maximise H(A) among such bands with the
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same base surface φ(A). (Here we really mean “minimise” up to a small positive
constant.) We can now find a subband, B ⊆ A, so that by setting B̂ = A, B is
an H0-collared band. By choosing H0 large enough, we can ensure that any two
such bands will be disjoint, at least modulo minor modification if one base surface
should be contained in the other. We let B be the set of bands arising in this way.
Most of the work is in verifying (A3). In fact, we will verify inductively a stronger
version of (A3), starting with bands whose base surfaces have minimal complexity
and working upwards to 6. This procedure is discussed in Section 6.

In this section, we have only dealt explicitly with a special case. In general,
we need to allow for parabolic cusps. One can also, in principle, account for the
nonorientable case. Most of this will be outlined in Section 8. The main differences
will be that in (A3) we should measure only vertical length in the convex core, but
we can also allow for boundaries of accidental Margulis cusps. We may also need
to allow for a finite number of “long bands” where one or more of the horizontal
boundary components is at infinity.

We finally remark on the special case where 6 is a one-holed torus or four-
holed sphere. This case is well analyzed in [Minsky 1999]. We know by (A7) that
B = ∅. Using (A3), we recover the fact that in such a manifold, the boundary of
any Margulis tube has uniformly bounded vertical length, and hence bounded area.

3. The topology of M

First we consider band systems from a purely topological point of view. To simplify
the exposition, we assume that 6 is a closed surface. (For the general case, see
Section 8.)

Let X be the set of simple closed curves in 6, defined up to homotopy. Unless
otherwise stated, a subsurface, 8, of 6 will be assumed to be connected, proper
and essential (i.e. 8 6= ∅, 8 6= 6 and 8 is not homotopic to a point). Indeed we
shall normally assume that8 is not an annulus, and that each boundary component
of 8 is essential. (We allow for the complement of 8 in 6 to contain annular
components.) We regard 8 as defined up to homotopy (or equivalently isotopy) in
6. We write F for the set of (homotopy classes of) such surfaces. Given 8 ∈ F,
we write X (8) ⊆ X for the set of curves that can be homotoped into 8, and
X (∂8)⊆ X (8) for the set of homotopy classes of boundary curves. (Note that two
curves in ∂8 that bound an annular complementary component will get mapped
to the same element of X (∂8).)

Given 8,9 ∈ F, we write 8 ⊆ 9 to mean that 8 can be homotoped into
9. Note that this is equivalent to saying that X (8) ⊆ X (9). A convenient way
to imagine this would be fix any hyperbolic structure and identify the interior,
int8, of 8 with an open subsurface with geodesic boundary. Such a realisation
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is unique. Moreover, 8 ⊆ 9 in the sense above, if and only if their realisations
satisfy int8⊆ int9.

Definition. Given 8,9 ∈ F, we say that � ∈ F is a component of 8∩9 if we
can homotope 8, 9 and � so that � is a connected component of 8 ∩9 in the
usual sense.

The following is easily verified:

Lemma 3.1. Suppose 8,9,� ∈ F. Then � is a component of 8∩9 if and only
if X (�)⊆ X (8)∩ X (9) and X (∂�)⊆ X (∂8)∪ X (∂9). �

Given 8 ∈ F, write |∂8| for the number of boundary components. (This will
be bigger than |X (∂8)| whenever there is a complementary annular component.)

Definition. The complexity, κ(8), of8 is defined by κ(8)=3 genus(6)+|∂8|−3.

Note that if 8⊆9, then κ(8)≤ κ(9), with equality only if 8=9. Moreover,
κ(8)= 0 if and only if 8 is a 3-holed sphere.

Now let M = 6 × R, and let χ : M → 6 be the projection map. We want
to express various topological notions without making explicit reference to any
coordinate system on M .

Definition. A fibre of M is the image of an injective homotopy equivalence of 6
to M .

It turns out (see [Brown 1966]) that any fibre is ambient isotopic to 6 × {0}.
Continuing inductively, we see that if S1, . . . , Sn are disjoint fibres, then S1∪· · ·∪Sn

has the form 6× {1, . . . , n} up to isotopy (and permutation).

Definition. By an unknotted surface in M we mean a subsurface F of a fibre S,
whose projection to 6 lies in F t {6}.

This projection is well defined up to homotopy. We denote it by φ(F)∈ Ft{6}.

Definition. A collection of disjoint (unknotted) surfaces, F1, . . . , Fn is unlinked if
there are disjoint fibres, S1, . . . , Sn with Fi ⊆ Si for each i .

One can generalise this to an infinite locally finite collection. In this case, the
ambient fibres are disjoint, locally finite, and indexed by N or Z.

We can extend these definitions to include closed curves in M (necessarily sim-
ple and essential in 6). A collection of disjoint solid tori in M are said to be
unlinked if their cores are unlinked. We define φ(γ ) ∈ X and φ(T ) ∈ X in the
obvious way for an unknotted curve, γ , or solid torus, T .

As discussed in Section 2, if T ⊆ M is an unknotted torus, then ∂T has a well
defined meridian and longitude up to homotopy. (Together these generate H1(∂T ).)
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Pushing surfaces. We describe a procedure for “pushing” one fibre off another to
make them disjoint. We normally want to do this while fixing some subsurface or
curve in the fibre. The main applications of this process (and its variants discussed
later) will come in Section 7.

Suppose that S, Z ⊆ M are fibres and that F ⊆ Z is an essential surface or curve
not meeting Z . We will produce a fibre, S′, containing F , disjoint from Z , and
contained in an arbitrarily small neighbourhood of S ∪ Z .

We can assume that S and Z meet transversely. Let GS be the closure of the
component of S \ Z containing F .

Step 1: We first arrange that each boundary curve of GS is essential. For if not, start
with a homotopically trivial boundary curve, α⊆ ∂GS ∩Z , which is innermost in Z
among such boundary curves. It bounds a disc, DS , in S and a disc, DZ , in Z . Since
F is essential, we have F ∩ DS = ∅. Now replace DS in S by DZ pushed slightly
off Z , and adjoin DZ to GS to get rid of the boundary curve α. We continue to
perform such disc replacements until we rid ourselves of all such trivial boundary
curves. Our new surface, S, may not be embedded. (It may intersect itself along
certain trivial curves.) However it remains a homotopy equivalence, and GS is
embedded in M and still contains F . Moreover, GS ∩ Z = ∂GS .

Step 2: Since each boundary curve of GS is essential, there is a subsurface G Z ⊆ Z
with ∂G Z = ∂GS ⊆ M and with φ(G Z ) = φ(GS) (allowing for the possibility
that GS and G Z are both annuli). There is thus a natural bijection between the
components of S \ GS (as an immersed surface) and those of Z \ G Z . We can thus
replace each component of S \ GS with the corresponding component of Z \ G Z ,
pushed slightly off Z . (Note that GS is connected, and hence lies to one side of Z .)
Since Z ∩ GS = ∂GS , the resulting surface is embedded. It is clearly a homotopy
equivalence, and hence a fibre containing F , as required.

Here is a simple consequence of the pushing process:

Lemma 3.2. Suppose the S1, . . . , Sn are a set of fibres of M and for each i , Fi ⊆ Si

is an unknotted surface or curve. If Fi ∩ S j = ∅ for all distinct i and j , then the
surfaces, Fi , are unlinked in M.

Proof. Assume inductively that we have disjoint fibres, S′

1, . . . , S′
m with F j ⊆ S′

j
for all j ≤ m, and Fi ∩ S′

j = ∅ for all i >m. Now inductively push Sm+1 off each
of the fibres S′

j to obtain a fibre S′

m+1 containing Fm+1, disjoint from each of the
other S′

j , and contained in a small neighbourhood of Sm+1 ∪
⋃

j≤m S′

j . We see that
Fk ∩ S′

m+1 = ∅ for all k ≥ m + 2. We eventually get the Fi lying in disjoint fibres
as required. �

Thick surfaces. A “thick surface” will give us a topological formulation of band.
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Definition. An (unknotted) thick surface, A, in M is the image of an embedding
of 8× [−1, 1] for some 8 ∈ F, such that 8× {t} is unknotted for some, hence
every, t ∈ [−1, 1].

We can assume that these surfaces map back to 8 under the projection χ . We
write φ(A)=8. We refer to φ(A) as the base surface of A.

We can write ∂A = ∂H A ∪ ∂V A, where ∂H A = 8× {−1, 1} and ∂V A = ∂8×

[−1, 1] are respectively the horizontal and vertical boundaries of A. Indeed we
can write ∂H A = ∂+ At∂− A, where ∂± A lies in a fibre S±, where S+ separates S−

from the positive end of M . One can check this is well-defined. By a fibre of A
we mean the image of an injective homotopy equivalence of 8 into A \∂H A, with
∂8=8∩ ∂V A. As with M , a fibre of A, is isotopic in A to 8× {0}.

Lemma 3.3. Suppose A ⊆ M is a thick surface and F ⊆ M is an unknotted surface
with F ∩∂H A = ∅. Let G be a nonannular component of F ∩ A meeting ∂V A only
in essential (core) curves. Then φ(G) is a component of φ(F)∩φ(A).

Proof. It is easy to see that X (φ(G)) ⊆ X (φ(F)) ∩ X (φ(G)) and X (∂φ(G)) ⊆

X (∂φ(F))∪ X (∂φ(A)), and so the result follows by Lemma 3.1. �

Corollary 3.4. Suppose A ⊆ M is a thick surface and S ⊆ M is a fibre with
S ∩ ∂H A = ∅. Suppose S meets each component of ∂V A if at all in a single core
curve. Then S ∩ A is either empty or a fibre of A.

Proof. If S ∩ A 6= ∅, let G be a component of S ∩ A. This cannot be an annulus.
We apply Lemma 3.3 with F = 6 to see that φ(G) is a component of φ(A), and
hence equal to it. Thus the inclusion of G in A is a homotopy equivalence. Since
∂G ⊆ ∂V A, it follows that G is a fibre. In particular, G meets each component of
∂V A, and so G = S ∩ A. �

Definition. We say that a set of disjoint thick surfaces in unlinked if some (hence
any) set of disjoint fibres thereof is unlinked.

Horizontal surfaces and bands. We now bring our topological Margulis tubes into
play. Suppose that T is a locally finite disjoint collection of unlinked solid tori in
M . There is a map φ : T → X , which we assume to be injective. We also assume
that for each T ∈ T, ∂T comes equipped with a foliation by longitudes (referred
to as horizontal longitudes if we need to clarify). We write 2(M) for the closure
of M \

⋃
T. For surfaces, the use the term “horizontal” to mean that it intersects

the Margulis tubes nicely. More precisely:

Definition. A horizontal surface is an unknotted surface, F ⊆ M , such that there
are two disjoint subsets T∂(F) and TI (F) of T such that:

(1) For all T ∈ T \ (TI (F)∪ T∂(F)), T ∩ F = ∅.

(2) For all T ∈ TI (F), T ∩ F is an annulus whose boundary is precisely ∂T ∩ F .
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TI(F )

T∂(F )

F

Figure 3

(3) For all T ∈T∂(F), T ∩F =T ∩∂F consists of one or two horizontal longitudes.

(4) ∂F ⊆
⋃

T∂(F).

(See Figure 3.)

Definition. A horizontal fibre is a horizontal surface that is also a fibre.

Clearly, if F is a horizontal fibre, then T∂(F)= ∅. Otherwise, F ∈ F.

Definition. Two horizontal surfaces are parallel if φ(F)= φ(G) and F ∩ G = ∅.

This implies that T∂(F)= T∂(G).

Definition. A horizontal surface, F , is primitive if TI (F)= ∅.

Definition. A piece of a horizontal surface, F , is a connected component of F ∩

2(M).

Note that a piece of F is a primitive horizontal surface. (Note also that F∩2(M)
might be connected even if F is not primitive.)

Next we come to the notion of a band. As discussed earlier, this a thick surface
whose vertical boundary lies in the boundary of tubes. All other tubes, meet it, if
at all, in solid tori. We need to allow for the possibility of a tube cutting all the
way through a band, from the top to the bottom surface. If this doesn’t happen, the
band will be called “primitive”. Here is a formal account.

Definition. A band is an unknotted thick surface, B ⊆ M , such that there are
subsets T∂(B), TI (B), T+(B) and T−(B) of T satisfying:

(1) The three sets T∂(B), TI (B) and T+(B)∪ T−(B) are mutually disjoint.

(2) If T ∈ T \ (T∂(B)∪ TI (B)∪ T+(B)∪ T−(B)) then T ∩ B = ∅.

(3) If T ∈ TI (B), then T ⊆ B and T ∩ ∂±B = ∅.

(4) If T ∈ T∂(B), then T ∩ B = ∂T ∩ B has one or two components, (each of)
which is a component of ∂V B and lies between two horizontal longitudes of
∂T .

(5) ∂V B ⊆
⋃

T∂(B).
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T∂(B)

T+(B)

T∂(B) TI(B)

T
−
(B)

Figure 4

(6) If T ∈ T+(B), then T ∩ ∂+B is an annulus whose boundary is ∂T ∩ ∂+B and
consists of two horizontal longitudes of ∂T .

(7) As with (6) with − instead of +.

(See Figure 4.)

Note that ∂±B is a horizontal surface, with T∂(∂±B)= T∂(B) and TI (∂±B)=
T±(B). If T ∈ T+(B)∪T−(B), then T meets B in a subsolid torus. (Note that its
complement in T will have two components if T ∈ T+(B)∩ T−(B).)

We write T0(B)= TI (B)∪ T+(B)∪ T−(B).
Clearly ∂+B and ∂−B are parallel. Conversely, if F and G are parallel horizontal

surfaces, then F and G determine a unique band, B, with {F,G} = {∂+B, ∂−B}.
We write B = 〈F,G〉.

Definition. A band, B, is primitive if T+(B)∩ T−(B)= ∅.

Definition. A piece of a band B is the closure of a connected component of B \⋃
(T+(B)∩ T−(B)) (see Figure 5).

T∂(B) T∂(B)

T
−

(B) ∩ T+(B)

Figure 5
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Note that a piece of a band is a primitive band.

Definition. A horizontal fibre of a band B is a fibre of B that is a horizontal surface.

We note that a fibre, F , of a band, B, divides F into two bands, namely 〈F, ∂−B〉

and 〈F, ∂+B〉. We also note the following consequence of Lemma 3.3 and Corol-
lary 3.4:

Lemma 3.5. Let B be a band.

(1) If F ⊆ M is a horizontal surface with F ∩ ∂±B = ∅ and G is a component of
F ∩ B, then G is a horizontal surface with φ(G)= φ(F)∩φ(B).

(2) If S is a horizontal fibre with S ∩ B 6= ∅ and S ∩ ∂±B = ∅, then S ∩ B is a
horizontal fibre of B. �

Pushing horizontal fibres. We need to elaborate on the pushing procedure de-
scribed earlier, in order to take account of the positions of the tubes.

Suppose that S, Z are horizontal fibres, and that F is an essential surface or
curve lying in some piece of F , with F ∩ Z = ∅. As before, we want to “push” S
off Z to obtain a fibre S′ containing F . We need to refine our previous “pushing”
procedure slightly in order to ensure that the resulting fibre is horizontal.

We can assume that S meets Z transversely. We can also assume that if T ∈

TI (S)∩ TI (Z), then ∂T ∩ S ∩ Z = ∅, and that the annuli S ∩ T and Z ∩ T , meet,
if at all, in single core curve. Let GS be the closure of the component of S \ Z
containing F . Thus, each boundary curve of GS is either a core curve of some
solid torus, or else lies in a piece of Z .

Step 1: First get rid of the homotopically trivial components of ∂GS as before,
noting that each of the discs, DZ , lies in some piece of Z .

Step 2: Let G Z ⊆ Z be the subsurface with ∂G Z = ∂GS and φ(GS) = φ(G Z ).
Let S1 be the surface obtained by replacing the components of S \ GS with the
corresponding components of Z \ G Z . As before, S1 is a fibre containing F .

Step 3: We may need to adjust S so that it becomes horizontal. Suppose that T ∈ T.
Now S1 ∩ T is empty or consists of one or two annuli (each of the form S ∩ T or
Z ∩T pushed slightly, or obtained by surgery on S∩T and Z ∩T in the case where
they intersect in a core curve.) Thus, the only thing that can go wrong is that we
may have a torus, T , with S1 ∩ T = P t Q, where P, Q are annuli. These are
homotopic in S1 and hence bound a third annulus, R ⊆ S1. Now if S1 ∩ F = ∅,
then we can just push R into T so that S1 ∩ T becomes a single annulus. After
doing this a finite number of times, we obtain our horizontal fibre.

It remains to worry about the case where F meets, and hence is contained in R.
Now we cannot have GS ⊆ R (otherwise the process of obtaining S1 would not have
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produced any such double annuli). Nor can we have R ⊆ GS (since GS ⊆ S, and
we are assuming S to be horizontal). It follows that the annulus V = GS ∩ R ⊆ F
has one boundary component, α, in T ∩ S, and the other boundary component, β,
in ∂GS ⊆ Z .

At this point, we forget about Step 2, and instead do:

Step 2′: Recall that we have F ⊆ V ⊆ S with V ∩T =α, V ∩Z =β, ∂V =αtβ and
T ∩ Z 6= ∅. Now T ∩ Z and β bound an annulus, W ⊆ Z . Let γ be the boundary
curve of T ∩ Z on the other side of W ∩ T . We connect γ to α by an annulus
Y ⊆ T , and now replace (T ∩ Z)∪ W in Z by Y ∪ V . Pushing this surface slightly
off Z , we get our desired horizontal fibre, S′.

We finally note that this pushing process can be applied to subsurfaces in the
following sense.

Suppose that S is a fibre, and F ⊆ S ∩2(M) is an essential surface or curve.
Suppose that J ⊆ S is a horizontal surface containing F , and that K is another
horizontal surface with φ(K ) = φ(J ), and with K ∩ S ⊆ J . We can form a fibre
Z with K ⊆ Z and with Z agreeing with S on all complementary horizontal sur-
faces. Now applying the procedure above, we see that S remains unchanged on
the complement of K (modulo modifications in the solid tori containing boundary
components of K ). We have thus effectively pushed S off K , while retaining F
unchanged.

4. Metric properties

So far, we have only considered the topological structure of M . In this section we
summarise its key metric properties. We shall assume that M is (constant curvature)
hyperbolic, though the essential points can be interpreted for more general metrics,
for example, in pinched negative curvature.

Again, we assume that M has no parabolic cusps, and admits a homotopy equiv-
alence χ : M →6 to a closed surface6. By [Bonahon 1986], M is homeomorphic
to 6× R. By [Otal 1995; 2003] the set T of Margulis tubes is unlinked. We write
Y = core(M).

Recall that 2(M) is the thick part of M , with induced path metric d . At least
once the essential properties are derived, only the geometry on 2(M) will be rel-
evant to future discussion.

We note the following four geometric features of M .

4.1. Geometry of tori. We shall assume that the “thick part” of M is defined in
such a way as to simplify the handling of constants. The standard definition of thick
part involves fixing a sufficiently small Margulis constant, ε > 0, and defining it to
be the set of points where the injectivity radius is at least ε. In this way, the thin
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part is a disjoint union of tubes. However, we get a similar qualitative picture if
we allow for different tubes to be defined by different injectivity radii, provided
they range between two fixed positive constants. This allows us to make certain
additional metric assumptions about the tubes that will simplify further discussion.

Suppose T ∈ T. The geodesic core of a Margulis tube lies in the convex core,
Y , of M . The boundary, ∂T , is a euclidean torus, foliated by geodesic longitudes.
It meets ∂Y , if at all, in a collection of geodesic longitudes. In fact, T either lies
in Y or meets Y is a solid torus bounded by one or two annuli.

It is convenient to assume that all geodesic longitudes of all ∂T they all have
the same length, say η. This can be achieved by noting that every longitude in
∂T ∩ Y lies inside some horizontal fibre. (This follows from work of Otal; see the
discussion in Section 4.2 below.) In general, its length will necessarily be bounded
between two positive constants, and so, using the observation of the preceding
paragraph, it can be assumed to be fixed. The constant, η, can be chosen to depend
only on the complexity, κ(6), of 6 (though could also be taken to be arbitrarily
small). These geodesic longitudes are deemed to be horizontal. We can also assume
that there is a lower bound on the distance between two such Margulis tubes, which
we can also take to be η. We will also want to assume that the boundaries of a
Margulis tube T has extrinsic curvature close enough to 1 (the extrinsic curvature
of a horosphere). This can be achieved by assuming the length of the core geodesic
is small in relation to η, so that it lies deep inside T . (Again, using the principle
of the first paragraph.) Note that, by definition, there is some lower bound on the
lengths of closed geodesics in the thick part, 2(M). This depends on the Margulis
constant, η, we have fixed, and the maximal lengths of core curves of tubes that
we are allowing.

4.2. Horizontal fibres. There is some constant, W0, depending on κ(6) (and η)
such that any point of Y ∩2(M) is contained in a horizontal fibre S ⊆ Y of width
W (S)<W0. (Recall that W (S) is defined as the maximal diameter of any piece of S
measured in the path metric d on2(M).) In particular, any horizontal longitude of
any torus is contained in such a surface. Note that by taking strict inequality, we can
push such a surface slightly off itself to give a disjoint surface while maintaining
the same bound.

This can be achieved using various standard arguments. The main ideas of the
construction can be found in [Otal 1995; 2003]. We first need to use the fact that
every point of M lies in the image of a uniformly lipschitz homotopy equivalence,
φ : 6 → M , where 6 carries some hyperbolic metric. The usual argument for
this is based on some form of interpolation of pleated surfaces; see [Thurston
1979]. A technically simpler approach is to use singular hyperbolic surfaces of the
type described in [Bonahon 1986]. In particular, the “filling theorem” of [Canary
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1996], gives us what we need. (The latter gives us a singular hyperbolic metric
on 6, but that works just as well.) Now the intrinsic diameter of each component
of 6 ∩ φ−12(M) is bounded in terms of κ(6) (and η). We can homotope φ a
bounded distance so that the preimage of the set of tubes is a set of nonparallel
essential annuli in 6, whose boundary curves are horizontal. We can now perform
a variant of the construction of [Freedman et al. 1983], as described in [Otal 2003],
to give us an embedded surface, F , in an arbitrarily small neighbourhood of φ(6).
(Some care is needed to ensure that the original longitude remains in F .) Now, the
ambient diameter of each component of F ∩2(M) remains bounded. (In principle,
one can achieve a bound on the intrinsic diameters of such components, but this
would require more work.)

4.3. Bounded geometry. Since the injectivity radius of 2(M) is bounded below,
it has “bounded geometry”. One way of exploiting this, following [Gromov 2007],
is this. Let r > 0 be the lower bound on injectivity radius, as in Section 4.1,
and assume that any pair of distinct tubes are distance at least 2r apart. A subset
V ⊆ Y ∩2(M) is said to be r -separated if d(x, y)≥ r for all distinct x, y ∈ V . We
can form a graph, 1(V ), with vertex set V , and with x, y ∈ V adjacent in 1(V ) if
d(x, y) ≤ 3r . Bounded geometry implies that the degree of any vertex of such a
graph is uniformly bounded. We note that we could choose V so that2(M) lies in
a (2r)-neighbourhood of V . Such a set is called an r -net. In this case, the “nerve”,
1(V ), approximates distance in 2(M) to within linear bounds.

From our choice of r , the r -ball about any point x ∈ 2(M) a distance at least
r from any tube will be isometric to an r -ball in hyperbolic 3-space. If x is close
to a tube T , then it will have a piece of this tube removed, and slightly distorted
geometry. (Since we are defining balls in terms of the metric d .) In any case, it is
a nice contractible set.

4.4. Three-holed spheres. The following (while not really essential to the con-
struction) will tell us that no band in our system has base surface a 3-holed sphere.
(In retrospect, this explains why boundaries of Margulis tubes have bounded area
in the case of a 1-holed torus or 4-holed sphere.)

Lemma 4.5. There is a constant, H3 > 0 such that if B ⊆ M is a band with base
surface, φ(B), a 3-holed sphere and with W (B) ≤ W0, then we can connect ∂+B
to ∂−B by a path in B of length at most H3.

Proof. Let T∂(B)= T0(B)= {T1, T2, T3}, and let γ±

i = Ti ∩∂±B. There is a path,
σ±

i in 2(M) connecting γ±

i to γ±

i+1 of length at most W0 (taking indices mod 3).
Since we are dealing with a 3-holed sphere, we see that each σ+

i is homotopic to σ−

i
rel ∂Ti ∪∂Ti+1. Lifting this picture to H3, we get six paths, σ̃±

i connecting the three
sets T̃i , each of these sets being a uniform neighbourhood of a bi-infinite geodesic.
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Simple hyperbolic geometry now gives us a bound on the distance between σ̃+

i and
σ̃−

i in the boundary of T̃i . Projecting back to M gives the result. �

We shall assume henceforth that we have fixed the constants η and r (depending
on κ(6)). The constants W0 and H3 are thus determined.

We remark that there are other important properties of the geometry of M , for
example the “Uniform Injectivity Theorem” for pleated surfaces (which seems
central to the Ending Lamination Conjecture). However, we make no use of this
here — which means that all our constants are, in principle, computable functions
of κ(6).

5. The band system

We now describe more carefully the construction of a nested band system, B.

Definition. The exterior length, l(π), of a path π in M is the rectifiable length of
π ∩2(M).

Definition. A vertical fibre of a band, A, is a path in A \ ∂V A connecting ∂+ A to
∂− A.

Definition. The height, H(A), of a band, A, is the infimum of the exterior lengths
of vertical fibres.

Note that A is primitive if and only if H(A) > 0. In fact, when this is positive
it is more convenient to take H(A) to be this infimum plus an arbitrarily small
positive constant. Thus we can assume we have a vertical fibre of length at most
H(A).

Definition. Given x ∈ A, the depth of x in A, denoted D(x, A) is the infimum of
l(π) as π varies over all paths in A connecting x to ∂H A in A \ ∂V A.

If Q ⊆ A, we write D(Q, A)= inf{D(x, A) | x ∈ Q} for the depth of Q in A.
Again it is convenient to add a small positive constant, or to pretend that the

infimum is attained.
Let ν = ν(6) be minus the Euler characteristic. This is the number of 3-holed

spheres in any pants decomposition of 6. It thus bounds the number of pieces in
any horizontal surface in M .

Lemma 5.1. Suppose A is a band, F ⊆ M is a horizontal surface, and x ∈ F ∩ A
with D(x, A) > νW (F). Let G be the component of F ∩ A containing x. Then G
is a horizontal surface with φ(G) a component of φ(F)∩ φ(A). In particular, if
F is a horizontal fibre of M , then F ∩ A is a horizontal fibre of A.

Proof. By Lemma 3.5, it’s enough to show that F ∩ ∂H A = ∅.
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If not, we could find a path π in F connecting x to ∂H A never entering twice the
same piece of F . We can straighten this to a path, π ′ in A, with l(π ′) ≤ νW (F),
giving the contradiction that D(x, A)≤ νW (F). �

Indeed continuing the same argument, we see easily that D(G, A)≥ D(x, A)−
νW (F).

Definition. A horizontal surface, F , is said to be narrow if W (F) < W0.

Thus the analysis in Section 4.2 tells us that every point of 2(M) is contained
in a narrow fibre.

Let D0 = νW0.
A particular case of Lemma 3.1 and the subsequent remark is:

Corollary 5.2. If A a band and S is a narrow horizontal fibre and x ∈ S ∩ A with
D(x, A) ≥ D0, then S ∩ A is a horizontal fibre of A. Moreover, D(S ∩ A, A) >
D(x, A)− D0. �

In particular every point of depth at least D0 in A is contained in a narrow
horizontal fibre of A.

Definition. A band B is narrow if W (B) < W0.

Recall, from Section 1, the definition of a “collared band”, B ⊆ B̂, where B̂ =

B− ∪ B ∪ B+ and B− and B+ are the top and bottom collars of B. Note that
D(B, B̂) = min{H(B−), H(B+)}. We say that B is narrow as a collared band if
both B and B̂ are narrow. We say that B is h-collared if D(B, B̂)≥ h.

We will observe that sufficiently long bands will always contain parallel collared
bands of bounded width. This will ultimately reduce us to considering only collared
bands. One advantage of this is that they satisfy a certain nesting property, stated
in Lemma 5.3 below. This nesting property, a priori, only applies to base surfaces.
The bands themselves need not be nested. This is a complicating factor, that will
need to be addressed later (after the proof of Lemma 5.4.)

Lemma 5.3. Suppose h ≥ 0 and A is a band with H(A) ≥ 2h + 4D0. Then
A contains a narrow band B with h ≤ D(B, A) ≤ h + D0 and with H(B) ≥

H(A)− 2h − 4D0.

Proof. Let π be a vertical fibre of A with l(π, A) = H(A). Let x± be points
of π \

⋃
T0(A) at external distance h + D0 away from ∂± A. By Corollary 5.2

there are narrow horizontal fibres, F±, of A containing x±. As in the proof of
Lemma 5.1, we see that H(〈F±, ∂± A〉) ≥ h + D0 − D0 = h and H(〈F−, F+〉) ≥

H(A)− 2(h + D0)− 2D0 = h − 4D0. We set B = 〈F−, F+〉. �

In particular, if we set B̂ = A, we get an h-collared band, (B, B̂).

Lemma 5.4. Suppose that B1, B2 are narrow primitive (2D0)-collared bands. If
B1 ∩ B2 6= ∅, then either φ(B1)⊆ φ(B2) or φ(B2)⊆ φ(B1).
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Proof. Let x ∈ B1 ∩ B2 ∩2(M). By Section 4.2, x lies in a narrow horizontal fibre,
S, of M . Now D(x, B̂i )≥ D0 and so by Corollary 5.2, Fi = S ∩ B̂i is a horizontal
fibre of B̂i containing x . Moreover, D(Fi , B̂i ) ≥ 2D0 − D0 = D0. Let G be the
component of F1 ∩ F2 containing x . Thus, φ(G) is a component of φ(B1)∩φ(B2).

Suppose that φ(B1) is not a subset of φ(B2), or equivalently that F1 6⊆ F2.
There must be a boundary curve, say α, of G contained in the interior of F1.
Thus, α ⊆ ∂F2. Now α is a longitude of some T ∈ T. Since F2 is a fibre of B̂2,
T ∈ T∂(B̂2) = T∂(B2). Since α lies in the interior of F1, T /∈ T∂(B1). Moreover,
from the last paragraph, we see that D(∂T, B̂1)≥ D0.

Now T ∈ T∂(∂±B2). Let γ± ⊆ T ∩ ∂±B2 be longitudes of ∂T on the same
side of T as α, i.e. so that γ+, γ− and α all lie in the same component of ∂V B̂2.
Since D(γ±, B̂1)≥ D0, by Lemma 5.1, it follows that there are horizontal subsur-
faces, G±, of ∂± containing γ±, so that φ(G+) and φ(G−) are both components
of φ(B1)∩ φ(∂±B2) = φ(B1)∩ φ(B2). Since γ+ and γ− are on the same side of
T , with respect to B2, they must map to the same boundary curve of φ(B2). In
particular, φ(G+)∩φ(G−) 6= ∅, and so φ(G+)= φ(G−)= J , say.

Now if φ(B2) 6⊆ φ(B1), there must be some boundary curve, β, of J lying in
the interior of φ(B2). We have β = φ(T ) for some T ∈ T. Since β ⊆ ∂φ(G±)

there must be curves δ± ⊆ ∂G± which are longitudes in T . Since δ± are not
boundary curves of ∂±B2, It follows that T ∈ TI (∂±B2) = T±(B2). In particular,
T+(B2)∩ T−(B2) 6= ∅, contradicting the assumption that B2 is primitive. �

We remark that by the same argument, we can arrive at the same conclusion
assuming, for any k > 0, that B1 and B2 are (2D0 + k)-collared, and that d(B1 ∩

2(M), B2 ∩2(M))≤ k.
It would be nice if we could go on to conclude that collared bands were nested.

However, it is still possible that a horizontal boundary component of the larger
band (the one with larger base surface) may cut through the smaller band. This is
a phenomenon that will need to be described and dealt with. This is the purpose
of the following discussion.

Let B be a band. Note that the horizontal boundary, ∂H B = ∂+B ∪ ∂−B meets
2(M) precisely in the relative boundary of B∩2(M) in2(M). If A is a primitive
band, then A ∩2(M) is connected. We see easily that one of A ⊆ B, A ∩ B = ∅
or A ∩ ∂H B 6= 0 must hold.

Recall that A, B are nested if A ⊆ B, B ⊆ A or A ∩ B = ∅. Suppose that
A, B are nonnested primitive narrow (2D0)-collared bands. Since A ∩ B 6= ∅,
applying Lemma 5.4, we have either φ(A) ⊆ φ(B) or φ(B) ⊆ φ(A). Suppose
that φ(A) ⊆ φ(B). Since A 6⊆ B, we have A ∩ ∂H B 6= ∅, so without loss of
generality, A ∩ ∂+B 6= ∅. Applying Corollary 5.2, we see that F = Â ∩ ∂+B is a
horizontal subsurface of B that is a fibre of Â. In particular, T∂(F) = T∂(A) ⊆

T∂(∂+B)∪ TI (∂+B)= T∂(B)∪ T+(B).
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Before continuing, we remark that the same argument would apply if we assume
that A and B are not k-nested and that A and B are (2D0 + k)-collared. Note that
N (A ∩2(M), k) is connected, so in this case d(A ∩2(M), ∂H B ∩2(M)) ≤ k,
which is sufficient to make the argument work.

Now suppose that φ(A) 6= φ(B), so that F is a proper subsurface of ∂+B. We
see that T∂(A) \ T∂(B) 6= ∅. Note that T∂(A) \ T∂(B) ⊆ T+(B). (We also
remark that it follows that A ∩∂−B = ∅, otherwise a similar argument would give
T∂(A)\T∂(B)⊆ T−(B), showing that T∂(B)∩T−(B) 6= ∅, and contradicting the
assumption that B is primitive.) One can also see easily that A ⊆ B̂ (see Lemma
5.5 below).

Now let B ′ be the band with ∂−B ′
= ∂−B and with ∂+B ′ the horizontal surface

obtained from ∂+B by replacing F ⊆ ∂+B with the parallel surface ∂− A, pushed
downwards slightly so that if becomes disjoint from ∂− A. The remainder of ∂+B
remains unchanged apart from suitable adjustments of the annuli in the tubes of
T∂(A) \ T∂(B). We can assume that B ′ remains narrow. Clearly φ(B ′) = φ(B).
In fact:

Lemma 5.5. We have A ∩ B ′
= ∅ and B ′

⊆ B̂. Moreover, H(B) ≤ H(B ′) and
D(B, B̂)≤ D(B ′, B̂).

Proof. That A ∩ B ′
= ∅ follows easily from the construction. Let h = D(B, B̂).

Choose some T ∈ T∂(A)∩ TI (B). Now D(T, B̂) ≥ h. Moreover T ∈ T∂(∂± Â)
and Â is a assumed to be narrow. Thus

D( Â, B̂)= D(∂H Â, B̂)≥ h − D0 ≥ D0.

In particular, Â ⊆ B̂ and so B ′
⊆ B.

Let π be a path in B̂ \ ∂V B̂ with (close to) minimal external length l(π) that
connects ∂−B = ∂−B ′ to ∂+B ′. Let x be its endpoint in ∂+B ′. Now if x lies
the subsurface we pushed off ∂− A, then π has to cross A− = 〈∂− A, ∂− Â〉. This
contributes at least (almost) 2D0 to l(π), so it would have been quicker simply
to follow ∂+ Â to T (straightening in 2(M)) and then go through T to reach the
unaltered part of ∂+B ′. In other words, we arrive at a point of ∂+B, and so H(B ′)≥

L(π)≥ H(B).
The fact that D(B ′, B̂) ≥ D(B, B̂) is similar, but even simpler. Note that it

would be stupid for a vertical fibre of B ′
+

to go all the way through A+ and A
in order to reach ∂− A, when it could just go directly to T . Moreover, the bottom
collar, B− remains unchanged. �

These results show us how to arrange any pair of (2D0)-collared bands to be
nested, except possibly if φ(A)= φ(B). The construction of the band system will
involve choosing at most one band (of almost maximal height) with a given base
surface, so that the last situation will not arise.
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Recall that we have fixed constants W0, D0 and H3 depending on κ(6) (as
described in Section 4). We fix further constants, H0 ≥ 2D0 and H1 ≥ 0, and let
H4 = H1 + 2H0 + 4D0. We assume that H4 ≥ H3.

The aim is to construct a set, B, of bands satisfying:

(B1) The elements of B are nested.

(B2) No two elements of B have the same base surface.

(B3) Each element of B is a narrow H0-collared band.

(B4) Each B ∈ B has H(B)≥ H1.

(B5) If F is a narrow horizontal surface parallel to B ∈ B, then either

H(〈F, ∂+B〉)≤ H0 + 2D0 or H(〈F, ∂−B〉)≤ H0 + 2D0.

(B6) If A is any narrow band with H(A)≥ H4, then there is some band in B with
the same base surface.

To construct B, let F0 be the set of 8 ∈ F for which there is a narrow band, A,
with φ(A) = 8 and H(A) ≥ H4. For convenience, we assume that the maximal
height is attained, say by A. Lemma 5.3 then gives us a subband B ⊆ A, so that
setting B̂ = A, we get a H0 collared band, with H(B)≥ H(A)−2D0 −4D0 ≥ H1.
Properties (B2)–(B6) are more or less immediate. To obtain nestedness, (B1),
we need to carry out the modification procedure described above. We start with
bands with base surfaces of minimal complexity, and proceed inductively over
complexity. A given band B might meet other bands A with φ(A) strictly contained
in φ(B). Inductively, the set of all such bands A meeting B is nested. We can thus
perform the construction described before Lemma 5.5 to the set of outermost such
bands simultaneously (or in any order) to give us a band, B ′. We now replace B by
B ′. After a finite number of such modifications, we arrange that B is nested with
all other bands. We do this for all bands with the same complexity, and then move
on to bands with the next higher complexity. By the time we reach κ(6)− 1, we
obtain our nested band system B.

Note that the existence of collars (B3) also implies that d(∂+B ∩2(M), ∂−B ∩

2(M))≤ H0; thus a band does not approach itself on the outside.
It is possible to refine the procedure above slightly. As we have stated it, if

A and B are bands with φ(A) ⊆ φ(B), then it is possible for ∂− A to be very
close to ∂+B. There is a slight modification of the process that will ensure that
d(A ∩2(M), B ∩2(M)) ≥ H2 for an arbitrarily chosen constant, H2 > 0. To
achieve this, we construct our initial bands to be doubly collared. In other words,
for each B ∈ B is initially contained in two larger bands, B ⊆ B̄ ⊆ B̂, with H2 ≤

D(B, B̄)≤ H2+D0 and H1 ≤ D(B̄, B̂)≤ H2+D0. If A ∈B with Ā∩∂+B 6=0, then
we can assume there is a horizontal subsurface, F , of ∂+B, with φ(F) = φ(A).
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We modify ∂+B replacing F by ∂− Ā. Similarly, if C ∈ B with C̄ ∩ ∂+ B̄ 6= 0, then
there is a subsurface, G, of ∂+ B̄ with φ(G)= φ(C). We modify ∂+ B̄ by replacing
G with ∂−C̄ . We do this for all such A and C , and proceed inductively for over the
complexity of φ(B). We can do the same thing for the bottom surfaces (swapping
+ and −). Finally we forget about the intermediate bands, B̄, and get a system of
collared bands as before.

Putting this together with the earlier remarks, and by taking our bands to be at
least (2D0 + H2)-collared, we can assume that the set B is H2-nested.

We want to explore properties of B. Most of the work, carried out in Section
6, is to verify property (A3) of Section 1. We begin here with some preliminary
discussion of pushing surfaces off bands. As one consequence of this, we will
deduce that our bands are unlinked in M . For the remaining discussion of this
section, we will not need (B6). We note that properties (B1)–(B5) pass to any
subset of B, in particular to the set of outermost bands of B.

We recall the process of pushing fibres. Suppose that S, Z are horizontal fibres,
and F ⊆ S \ Z an essential subsurface or curve contained in a piece of S. Let S′

be the horizontal surface obtained pushing S off Z as described in Section 3.
Now each piece of S′ is obtained by gluing together subsets of pieces of S and Z .

Some of the subsets of Z may be discs, but there is a combinatorial bound in terms
of κ(6) on the number of nondisc components glued together in this way. Thus,
W (S′) is bounded above by some (linear) function of W (S) and W (Z). The same
discussion applies to pushing S off a horizontal surface K parallel to a horizontal
subsurface of S. In this case, we get a (linear) bound in terms of W (S) and W (K ).

Now, let B be a collection of bands satisfying (B1)–(B5) above. Let A ⊆ B be
the subset of outermost bands. Clearly

⋃
A =

⋃
B.

Suppose that S is a narrow horizontal surface, and F ⊆ S ∩2(M) \
⋃

B is an
essential subsurface or curve. Suppose that B ∈ A and S ∩ B 6= ∅. By Corollary
5.2, G = S ∩ B̂ is a horizontal fibre of B̂. If F ∩ G = ∅, then we can replace G
is S by ∂+B, pushed slightly off B. The fibre S remains narrow. After doing this
for each such B, we can assume that F ∩ G 6= ∅, and so F ⊆ G. In this case we
can apply the pushing construction so as to push S first off K = ∂+B and then off
K = ∂−B. The resulting fibre still contains F , does not meet B, and has width
bounded above in terms (depending on κ(6)) of W (S) ≤ W0 and W (B) ≤ W0.
We now apply this successively to all such B. Since they are each parallel to a
horizontal subsurface of our original fibre, there is a combinatorial bound on the
number of such B in terms of κ(6). We thus finally obtain a fibre, S′

⊇ F with
S′

∩
⋃

B = ∅, and with W (S′) bounded above by some constant W1 depending
only on κ(6).

Putting this together with the property in Section 4.2, we obtain, in particular:
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Lemma 5.6. If T ∈ T and α is a horizontal longitude of ∂T disjoint from
⋃

B,
then α is contained in a horizontal fibre, S, with W (S) < W1 and S ∩

⋃
B = ∅.

�

We can apply this to show that the set, A, of outermost bands of B are unlinked
in M . Given any A ∈ A, let S(A) be any narrow horizontal fibre in M meeting A in
a fibre, F(A), of A. Now the collection of bands A \ {A} also satisfies (B1)–(B5)
above, so applying the construction above, we can push S(A) off each element of
A \ {A} while keeping F(A) unchanged. We thus obtain fibres (S′(A))A∈A with
F(A)⊆ A and F(A)∩ S′(B)= ∅ for all distinct A, B ∈ A. Now Lemma 3.2 tells
us that the surfaces, F(A), and hence, by definition, the bands A are unlinked. In
other words, we have shown:

Lemma 5.7. A set of outermost bands satisfying (B1)–(B5) is unlinked in M.

6. Bounding vertical lengths

The main purpose of this section is show that a set of bands satisfying (B1)–(B6)
of Section 5 will also satisfy (A3) of Section 2. Having constructed such a set of
bands in Section 5, this will prove the main result, namely Theorem 0.

Given T ∈ T, recall that L(∂T,B) is defined as the total vertical length of
∂T \

⋃
B. We aim to show:

Proposition 6.1. There is some L0 such that for all T ∈ T, L(∂T,B)≤ L0.

Here, L0 depends on κ(6) and the choice of H0 and H1.

Convention. Throughout this section, we will use the term “band” only to refer to
elements of B. Other bands (as we have defined them) will be termed “strips”. Un-
less otherwise stated, each “horizontal surface” will be assumed disjoint from

⋃
B,

and any strip will be assumed nested with the elements of B, and not contained in
any element of B.

A horizontal surface, F , will be said to be “narrow” if its width, W (F), is less
than W1.

We have thus strengthened the notion of “horizontal surface”, but weakened the
definition of “narrow” (as given in Sections 2 and 5 respectively). By Lemma 5.6,
it remains the case that every point of M lies in a narrow horizontal surface.

To exploit bounded geometry, we will use the following variation of the nerve of
a covering. The construction will also be used in Section 7. Recall, from Section
4, the definition of an “r -net”, V ⊆2(M). It will be convenient to construct V as
follows. Given T ∈ T, let V (∂T ) be an r -net in ∂T . The condition on r ensures
that

⋃
T ∈T V (∂T ) is r -separated in 2(M). We now extend

⋃
T ∈T V (∂T ) to an

r -net, V , for 2(M).
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Let1 be the graph with vertex set V (1)= V and x, y ∈ V adjacent if d(x, y)≤
3r in2(M). The vertices of1 have bounded degree. Note that if R ⊆2(M), then
R ⊆ N (P, r), where P = V ∩ N (R, r).

Given T ∈ T, let ϒ(∂T ) be the complete graph on V (∂T ) = V ∩ ∂T . Let
ϒ =1∪

⋃
T ∈Tϒ(∂T ). In other words, ϒ has the same vertex set, V , but we have

added more edges across the Margulis tubes.
The idea behind this construction is that ϒ approximates the geometry of M

after each Margulis tube has been shrunk to bounded diameter. Lengths in ϒ thus
correspond to exterior lengths in M to within linear bounds. Here is a more precise
formulation.

If p is a path in ϒ , then we obtain a path π = π(p) in M as follows. Suppose
x, y are adjacent vertices of p. If the edge between them lies in1, then we connect
x to y by a path of length at most 3r in 2(M). If it lies in ϒ(∂T ) for some T ∈ T,
then we connect x to y by any path in the interior of T . (Its homotopy class in T
will not be important.)

Conversely, given any path in M , recall that l(π) is its exterior length, i.e. the
length of π ∩2(M). We can find a path p = p(π) in ϒ , whose combinatorial
length is at most l(π)/r and for which π(p(π)) remains within a distance 3r of π
in 2(M).

We also recall the straightening process used in Section 5, for example in the
proof of Lemma 5.1. If π is a path in M , then we can replace any segment of
π ∩2(M) by a shortest path with the same endpoints, give us another path π ′

(not assumed to be homotopic to π ). Thus, l(π ′) will be at most the sum of the
diameters of the components of π∩2(M). This straightening is necessary because
the bounds on width refer only to the ambient diameters in 2(M) rather than
intrinsic diameters. However, it is a technical point that can be ignored for the
purposes of following the overall logic.

Here is a key step in the proof of Proposition 6.1:

Lemma 6.2. Given L ,W ≥ 0, there is some E = E(L ,W ) with the following
property. Suppose that A is a strip in M with φ(A) 6=6 and W (A)≤ W . Suppose
that L(∂T ∩ A,B)≤ L for all T ∈ T0(A). If T ′

∈ T∂(A), then L(∂T ′
∩ A,B)≤ E.

(Recall that T0(A)= TI (A)∪ T+(A)∪ T−(A).)
Recall that our eventual aim is to prove (A3), namely that the vertical length of

the boundary of each Margulis tube in the exterior of the bands is bounded. This
lemma will deal with the inductive step in the argument. It says that if we know
this for the intersections of tubes in T0(A), then we know it also for the tubes in
T∂(A).

Lemma 6.2 would follow fairly easily if we could bound the total volume of
A\

⋃
B, in other words, the number of components of A\

⋃
B, and the volume of
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each such component. For the latter, by general principles of bounded geometry,
it would be enough to bound the diameter of each component. We can deal with
these two issues simultaneously by making a combinatorial approximation to the
geometry. This uses the graph, ϒ , defined above. We can reinterpret the volume in
terms of the number of vertices. To bound this, in turn, it is sufficient to bound the
diameter of ϒ and the degree of its vertices. In the case where the height, H(A),
is bounded, the diameter bound follows from the fact that every fibre of M must
meet A− ∪ π ∪ A+, where π is any vertical fibre of A. For the degree bound, we
use the bounded geometry of 2(M), together with the hypothesis on the Margulis
tubes in T0(A). If H(A) is very large, on the other hand, by construction of the
band system, there will be a band, B ∈ B, with the same base surface as A. We
can then apply the above to the components of A \ B.

We now give a formal proof.

Proof of Lemma 6.2. First suppose that H(A) is less than some constant H , and
give a bound in terms of L , W and H . (Note that we allow the possibility for A
be nonprimitive, i.e. H(A)= 0.)

Let π be a vertical fibre of A \ ∂V A with l(π) ≤ H . Let a± be its endpoint in
∂± A. We can assume that π meets the boundary of each Margulis tube in at most
two points.

If x ∈ ∂± A, then we can connect x to a± by a path, π , in ∂± A which only enters
Margulis tubes in T0(A), and then at most once. We can thus straighten to π to a
path π ′ in 2(M), with l(π ′) ≤ νW (A) ≤ νW , and which only meets boundaries
of Margulis tubes in points of A \

⋃
B.

Suppose y ∈ A ∩ 2(M) \
⋃

B. By Lemma 5.6, y is contained in a narrow
horizontal fibre of M (in the sense above). This fibre must intersect π ∪ ∂H A at
some point x . As above, y can be connected by a path of exterior length at most
νW1, and entering and leaving Margulis tubes only in points of A \

⋃
B.

We see that any two points, v,w ∈ A \
⋃

B can be connected by a path τ in
M with l(τ ) ≤ H + 2νW + 2νW1, and if τ meets T ∈ T, then T ∈ T0(A) and
τ ∩ ∂T ⊆ R(∂T ), where R(∂T ) = (∂T ∩ π) ∪ (∂T ∩ A \

⋃
B). If v,w ∈ V ,

then we can connect v and w by a path p = p(π) in ϒ of combinatorial length at
most l(τ )/r . Moreover, if x, y are adjacent vertices of p connected by an edge in
ϒ(∂T ) for some T ∈ T, then T ∈ T0(A) and x and y lie in N (R(∂T ), 2r). But
now π ∩ ∂T consists of at most two points, and by assumption, the vertical length
of A∩∂T \

⋃
B is at most L . It follows that there is a universal bound, in terms of

L , for the number of possible x and y, and hence on the number of possible edges
along which p can cross ϒ(∂T ).

Given the bound on the degrees of vertices in 1 and on the length of p, we see
that there is a bound on the number of possibilities for such a path p, in terms of
L , W and H . This bounds the cardinality of V in terms of L ,W, H . Indeed (given
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the bound on the degrees of vertices in 1), we get a bound on the cardinality of
P = V ∩ N (A \

⋃
B, 2r).

But now, since V is an r -net in 2(M), we have A ∩ 2(M) ⊆ N (P, r). In
particular, if T ∈ T∂(A), then ∂T ∩ A \

⋃
B ⊆ N (P, r). But the intersection of

∂T with N (P, r) has bounded area for all x ∈2(M). This places a bound on the
area, and hence vertical length of ∂T ∩ A \ B in terms of L , W and H as claimed.

We finally need to remove the dependence on the height of A.
First, suppose there is no band of B with base surface φ(A). By property (B6),

this means that any strip, B, with φ(B) = φ(A) and with W (B) ≤ W0 must have
H(B) ≤ H4 = H1 + 2H0 + 4D0. Applying Lemma 5.3 (with h = 0) we see that
H(A)≤ H4 + 4D0. Thus, we can apply the preceding result with H = H4 + 4D0.

Secondly, suppose there is some B ∈ B with φ(A) = φ(B). There are two
subcases. Either B ⊆ A or A ∩ B = ∅.

Suppose first that B ⊆ A. Now, B has two collars in A, namely A+ =〈∂+B, ∂+ A〉

and A− = 〈∂+B, ∂− A〉. Consider A+. By hypothesis, W (∂+ A+)= W (∂+ A)≤ W ,
and W (∂− A+) = W (∂+B) ≤ W0. We can assume that W ≥ W0, so W (A+) ≤

W . We also have H(A+) ≤ H0 + 4D0, otherwise, as in Lemma 5.3, we could
find a horizontal fibre, F , in A+ with D(F, ∂+B) ≥ H0 + 3D0 and W (F) ≤ W0.
In particular, 〈F, A+〉 would be narrow and of height greater than H0 + 2D0, in
contradiction to (B5). (Note that we cannot apply (B5) directly to F = ∂+ A,
since the bound on its width might not be sufficient — W may be bigger than W0.)
We can now see that the hypotheses of the lemma are satisfied by the band A+,
since if T ∈ T0(A+) ⊆ T0(A), then L(∂T ∩ A+,B) ≤ L(∂T ∩ A,B) ≤ L . The
bounded height case of the lemma now shows that if T ′

∈ T∂(A)= T∂(A+), then
L(∂T ′

∩ A+,B) is bounded. Similarly we see that L(∂T ′
∩ A−,B) is bounded.

But L(∂T ′
∩ A,B) = L(∂T ′

∩ A+,B)+ L(∂T ′
∩ A−,B), and the result follows

in this case.
The remaining case is when A ∩ B = ∅. But now a similar argument, using

Lemma 5.3 and (B5) shows that H(A) is bounded, and we are reduced to the
earlier case. �

We return to the pushing process. We say that a strip, C , is full if φ(C) = 6.
Suppose that C is a full strip, that S ⊆ M is a fibre, and that F ⊆ S ∩2(M) is
an essential curve or surface. Pushing S successively off ∂+C and ∂−C , we obtain
another fibre, S′

⊇ F , with W (S′) bounded above in terms of W (S) and W (C).
(As usual, S, ∂H C and S′ are all assumed disjoint from

⋃
B.)

Applying Lemma 5.6, we obtain:

Lemma 6.3. There is a nondecreasing function, f : [0,∞)→[0,∞) such that if C
is a horizontal strip, T ∈ T and α is a horizontal fibre of ∂T contained in A\

⋃
B,

then α is contained in a horizontal fibre, S of C with W (S)≤ f (W (C)). �
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Note that S divides C to two full substrips, each of width at most f (W (C)).
Given n ≥ 1, define Wn inductively by Wn+1 = f (Wn), starting with W1, the

constant of Lemma 5.6.
The following lemma represents the core of the argument. We deal inductively

with tubes lying in bigger and bigger strips. To give the idea, suppose, for example,
we have some T ∈ TI (A), lying in the interior of a strip, A, with L(∂T,B) very
large. We can find two fibres, S and S′ cutting through T , so that on one side, they
bound an annulus, � ⊆ ∂T , with L(�,B) also very large. Now � is the vertical
boundary component of a piece, A′, the full strip, 〈S, S′

〉, so that A′
⊆ A has smaller

complexity. Using induction and Lemma 6.2, we then bound L(�,B), which
would give a contradiction. This argument therefore bounds L(∂T,B). Of course,
there are also other cases to be considered. To make the induction hypothesis work
smoothly, we shall phrase everything in terms of pieces of full strips. Here is a
precise statement:

Lemma 6.4. Suppose κ ∈ {1, . . . , κ(6)}. Suppose that C is a full strip with
W (C) ≤ W2κ(6)−2κ , and suppose that A is a piece of C with κ(φ(A)) ≤ κ . Then
there is some Lκ such that for all T ∈ T0(A) we have L(∂T ∩ A,B)≤ Lκ .

Here Lκ depends only on κ and κ(6). In the case where κ = κ(6), we interpret
the statement by setting A = C = M , and the conclusion means that L(∂T,B) ≤

Lκ(6) for all T ∈T. This will therefore imply Proposition 6.1 on setting L0 = Lκ(6).

Proof of Lemma 6.4. The proof will be by induction on κ . First note that the case
κ = 0 is vacuously true, since φ(A) is then a 3-holed sphere and so T0(A)= ∅.

Now suppose that we have verified the statement for some κ < κ(6). If κ <
κ(6)−1, let A,C be as in the hypotheses, with κ(φ(A))= κ+1, so that W (C)≤
W2κ(6)−2κ−2. (The case where κ = κ(6)−1 will be commented upon at the end.)
Let T ∈ T0(A). We want to bound l = L(∂T ∩ A,B).

Suppose first that T ∈ TI (A). Choose any horizontal longitude, α, of ∂T .
By Lemma 6.3, there is a horizontal fibre S ⊆ C , containing α with W (S) ≤

f (W (C)) ≤ f (W2κ(6)−2κ−2) = W2κ(6)−2κ−1. Let β be the other intersection of
S with ∂T . This is another horizontal longitude of ∂T . Thus, α and β together
bound an annulus, �⊆ ∂T , with L(�,B)≥ l/2.

Let α′
⊆ ∂T \

⋃
B be the horizontal longitude that cuts � into two annuli, each

having equal vertical length in the complement of
⋃

B (Figure 6). This vertical
length must be at least l/4. As before, α′ lies in some fibre, S′

⊆ C , disjoint from
S, with W (S′)≤ f (W (S))≤ W2κ(6)−2κ . Let β ′ be the other intersection of S′ with
∂T . Since S∩S′

= ∅, we see that β ′
⊆�. Swapping α with β if necessary, we can

assume that β ′ does not lie in the annulus, �′
⊆ �, bounded by α and α′. Now S

and S′ bound a strip, C ′
⊆C , with W (C ′)≤ W2κ(6)−2κ . Also T ∈ T+(C ′)∩T−(C ′)

and 6 ⊆ ∂T ∩ C ′. Thus, �′ is a vertical boundary component of some piece, A′,
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of C ′. Thus, W (A′) ≤ W (C ′) ≤ W2κ(6)−2κ . Since ∂H A′
∩ ∂H C = ∅, we see that

A′
⊆ A, and so φ(A′) ⊆ φ(A). Moreover, since T /∈ TI (A′), φ(A′) 6= φ(A) and

so κ(φ(A′)) < κ(φ(A)). Thus κ(φ(A′)) ≤ κ . Now the induction hypothesis tells
us that L(∂T ′

∩ A′,B) ≤ Lκ for all T ′
∈ T0(A′). Thus, Lemma 6.2 tells us that

L(�′,B)≤ E(Lκ ,W2κ(6)−2κ), and so l ≤ 4L(�′,B) is bounded as required.
We next consider the case where T ∈ T±(A). Without loss of generality, T ∈

T+(A). The discussion only differs from the above in the choice of α and β.
Let l = L(∂T ∩ A,B) as before. Let α′ divide ∂T ∩ A into two annuli, each of

vertical length l/2 in the exterior of
⋃

B. Let S ⊆C be a horizontal fibre containing
α with W (S)≤ W2κ(6)−2κ−1, and let β be the other intersection of S with ∂T . Let
�⊆ ∂T ∩A be the annulus bounded by α and ∂T ∩∂+ A not containing β. Let C ′ be
the strip bounded by S and ∂+ A, and let A′ be the piece of C ′ containing �. Thus
� is a vertical boundary component of A′ (Figure 7). As before, κ(φ(A′))≤ κ and
we get a bound on L(�,B) and hence on l as required.

This proves the induction step when κ <κ(6)−1. We can define Lκ+1 in terms
of the bounds we have obtained for l.

Finally, we should comment briefly on the final step of the induction, namely
when κ = κ(6)−1. In this case, we deal with an arbitrary T ∈ T in the same way
as we did with T ∈ TI (A) above. We obtain two disjoint fibres, S and S′, with
W (S)≤ W1 (by Lemma 5.6) and with W (S′)≤ f (W1)≤ W2. Thus, W (C)≤ W2 =

W2κ(6)−2κ , and we proceed as before. �

Proof of Proposition 6.1. This is just Lemma 6.4, interpreted for κ = κ(6) and
setting L0 = Lκ(6). �

Proof of Theorem 0. Let B be the band system constructed in Section 5, and
let A ⊆ B be the set of outermost bands. Properties (A1), (A2), (A4), (A5) and
(A6) are immediate from the construction, and property (A8) follows directly from
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these. Property (A7) follows by Lemma 4.5, and (A9) by Lemma 5.7. Finally (A3)
is Proposition 6.1. �

We note that we also have the following relative version, (A3′), for the intrinsic
geometry of the band. Again, we suppose that B satisfies (B1)–(B6). Given B ∈ B,
let B(B) be the set of bands of B strictly contained in B. Given T ∈ T0(B), write
L(∂T ∩ B,B(B)) for the total vertical length of ∂T ∩ B \

⋃
B(B).

Proposition 6.5. There is some L0 such that if B ∈ B and T ∈ T0(B), then
L(∂T ∩ B,B(B))≤ L0.

Proof. The proof is essentially the same as that of Proposition 6.1. In this case a
“horizontal surface” is assumed to be disjoint from ∂H B and

⋃
B(B). Only tori

in T0(B) and bands in B(B) are relevant to the discussion. �

As mentioned in Section 5, we can also assume (A1′), namely that the bands in
B are H2-nested.

7. Volume growth

The aim of this section is to prove:

Theorem 7.1. There is a sequence, ( fν)ν∈N of polynomials, with fν of degree ν,
with the following property. Suppose that M is a complete hyperbolic 3-manifold
admitting a type-preserving homotopy equivalence to a compact orientable surface
6, with ν(6)=ν. Let2(M) be the thick part of M and core(M) the convex core of
M. Suppose that x ∈ core(M)∩2(M) and that N (x, t) is the ball of radius t about
x in 2(M) for any t ≥ 0. Then the volume of core(M)∩ N (x, t) is at most fν(t).

Recall that ν(6) is minus the Euler characteristic of 6. The sequence ( fν)ν
depends only on the choice of Margulis constant. The “type-preserving” condition
means that each boundary curve of 6 corresponds to a parabolic cusp of M . The
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“thick part”,2(M), of M consists of M with the interior of the Margulis tubes and
Margulis cusps removed. The t-ball, N (x, t), is taken with respect to the induced
path metric.

The existence of such a polynomial bound was conjectured by McMullen and
proven in [Brock et al. 2004].

The idea of the argument is as follows. Given B ∈ B, we write ν(B)= ν(φ(B)).
If ν(B) = 1, the boundaries of the Margulis tubes it contains all have bounded
vertical length by (A7) (see [Minsky 1999]) and we see that B has linear growth.
We then proceed inductively. For a general band, B, (or M itself) only linearly
many outermost subbands C ⊆ B with ν(C) < ν(B) are reached in a given time,
and by induction, each of these has growth at most polynomial of degree less than
ν(B). Thus the growth rate of B is at most polynomial of degree ν(B).

There is a subtle issue involved in obtaining the degree, ν(6). If one proceeded
simply by induction on complexity as previously defined, we would end up with a
polynomial of degree κ(6). The refinement arises from the observation that a band,
A, may contain a subband, B, whose base surface, φ(B) is obtained from φ(A) by
removing some set of annuli, so that ν(B)= ν(A) (whereas κ(B)< κ(A)). In such
a case, B ∩2(M) disconnects A∩2(M)— a fact that allows us to discount bands
of this sort from the discussion. This will be the purpose of Lemma 7.7 below.

To make the argument more precise, it will be convenient to reformulate it in
combinatorial terms. We will construct a graph, 5, and a uniform quasi-isometry,
θ : 5 → 2(M), where 5 has growth bounded by a uniform polynomial of de-
gree at most ν(6). Here, and in what follows, “uniform” is interpreted to mean
dependence only on ν(6) and on the Margulis constant defining 2(M).

First, we make some general remarks.
Let 5 be a graph (not necessarily connected) and let P ⊆5 be a full subgraph

(that is, a maximal subgraph with given vertex set). We write5/P for the quotient
graph obtained by collapsing each component of P to a single vertex. (Thus,5\ P
injects into 5/P .) If Q ⊆ P is full, then

5/P = (5/Q)/(P/Q).

Also, if 5′
⊆5 is any subgraph, then 5′

∩ P is full in 5′, and we write 5′/P for
5′/(5′

∩ P) viewed as a subgraph of 5/P .

Definition. If 5 is a graph and f is a nondecreasing function, we say that 5 is
O( f ) if for all x ∈ V (5) and all n ≥ 0, the number of edges in the combinatorial
n-ball about x is at most f (n)/2. (Note that the degree of 5 is bounded above by
f (1)/2.)

For us, this a convenient way of bounding volume growth in view of the follow-
ing easily verified lemma.
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Lemma 7.2. Suppose 5 is a graph and P ⊆ 5 is a full subgraph. If P is O( f )
and 5/P is O(g), then 5 is O( f g). �

Thus if ∅=50 ⊆51 ⊆· · ·⊆5n =5 is an increasing sequence of full subgraphs
and 5i/5i−1 is O( fi ), then 5 is O( f1 f2 · · · fn).

A subset, Q, of a graph 5 is said to be k-quasidense in 5 if 5 is the k-
neighbourhood of Q. The degree of a graph 5 the maximal degree of its vertices.
The following is a simple observation.

Lemma 7.3. Given k1, k2 ∈ N there is a linear function f such that if5 is a graph
of degree at most k1 containing k2-quasidense geodesic, then 5 is O( f ). �

Now let M be a manifold as in the hypotheses of Theorem 7.1. It will be
convenient to assume that 6 is closed and that M is doubly degenerate so that
core(M) = M . The general case will follow by simple reinterpretation of the
arguments.

We will use various graphs that approximate the geometry of M . As before, 1
approximates the thick part,2(M), andϒ approximates the thick part (or M itself)
after each Margulis tube has been collapsed to bounded diameter. (These graphs
have already been described in Section 6.) These constructions make no reference
to our band system B (other than assuming their vertex sets to be in general position
with respect to B). For purely technical reasons, we will introduce another graph,
5, obtained by adding some extra edges to 1, depending on B. The graphs, 5,
and5∪ϒ , can also be viewed as approximating2(M), and2(M) with collapsed
tubes, respectively. To each band, B ∈ B, we will associate full subgraphs, 1(B)
and 5(B) of 1 and 5. The purpose of introducing 5 is that 5(B) will be nicely
embedded in 5, whereas it is difficult to ensure that 1(B) is nicely embedded
in 1 (since our control over the local geometry of ∂H B is rather weak). For the
purposes of understanding the overall logic, one could simply imagine each band
of B to be nicely embedded locally, and just pretend that 1 and 5 are identical.
We now proceed to a more formal argument.

Let B be a nested system of bands satisfying (A2)–(A9) and (A1′) and (A3′) of
Section 2.

As in Section 4 we fix some uniform r > 0 suitably small in relation to the
Margulis constant, as well as the constants featuring in the properties of B. We
construct an r -net, V , for 2(M) as in Section 6, as follows. First we choose an
r -net for ∂T for each T ∈ T, and then extend

⋃
T ∈T V (∂T ) to an r -net, V , for

2(M). We can assume that V ∩ ∂H B = ∅ for all B ∈ B.
Let 1 be the graph with vertex set V (1) = V and with x, y ∈ V adjacent

if d(x, y) ≤ 3r . We construct a map θ : 1 → 2(M) as the identity on V and
mapping each edge to a (in fact, the) shortest path between its endpoints in 2(M).
Thus θ is a uniform quasi-isometry.
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Given Q ⊆ M , write 1(Q) for the full subgraph of 1 with vertex set V ∩ Q.
Note that

⋃
T ∈T1(∂T ) is a full subgraph of 1, and that θ(1(∂T ))⊆ ∂T .

Given B ∈ B, let EH (B) be the set of edges of 1 with exactly one endpoint in
B. Write VH (B) for those vertices of

⋃
EH (B) which lie in B. If e ∈ EH (B),

then θ(e) crosses ∂H B (an odd number of times). We can thus partition EH (B)
as E+(B)t E−(B) depending on whether θ(e) crosses ∂+B or ∂−B. We similarly
partition VH (B) as V+(B)∪ V−(B).

Given A ∈ B, let B(A)= {B ∈ B | B ⊆ A, B 6= A}, and write U =
⋃

B(A)⊆ B.
Thus 1(U )=

⊔
B∈B(A)1(B).

Suppose T ∈ T0(A). By (A8) at most N0 elements of B(A) meet ∂T , and by
(A3′), ∂T \ U has vertical length at most L0. It follows easily that:

Lemma 7.4. The quotient graph, 1(∂T ∩ A)/1(∂T ∩ U ) had uniformly bounded
diameter. �

Now VH (A)∩U = ∅ and so we can regard VH (A) as a subset of 1(A)/1(U ).
Moreover, we can connect V+(A) to V−(A) by a path q in 1(A) (obtained by
approximating any vertical fibre of A by a path in the image of θ ). This gives a
path q/1(U ) from V+(A) to V−(A) in 1(A)/1(U ). Indeed any such path p ⊆

1(A)/1(U ) has this form: if p passes through the vertex obtained by collapsing
some 1(B)⊆1(A) we can lift this vertex to a path in 1(B)⊆1(A) connecting
the two incident edges of q.

Recall, from Section 6, that ϒ(∂T ) is the complete graph on V ∩ ∂T , and ϒ =

1∪
⋃

T ∈Tϒ(∂T ). Given Q ⊆ M , writeϒ(Q) for the full subgraph ofϒ on V ∩Q.
Now let q be a path in 1(A) connecting V+(A) to V−(A). The endpoints of

θ(q)⊆2(M) lie within distance 3r of ∂± A ∩2(M). It is possible that θ(q) may
cross ∂H A, but by taking a subpath and/or adding short paths to the endpoints, we
get a path π ⊆ B ∩2(M) connecting ∂+B to ∂−B.

Any point x ∈ V ∩ B lies in a horizontal fibre, S, of M with W (S)≤ W0. Clearly
S ∩ (π ∪ ∂H A) 6= ∅, and so we get a path, s, of bounded length connecting x to
q ∪ VH (A) in ϒ(A). This path may cross certain graphs ϒ(∂T ). However, we can
apply Lemma 7.4 to get around these in 1(A ∩ ∂T )/1(U ∩ ∂T ) ⊆ 1(A)/1(U ),
adding a bounded amount to the length of s/1(U ). Thus x lies a bounded distance
from (q/1(U )) ∪ VH (A) in 1(A)/1(U ). As observed above, any path p from
V+(A) to V−(A) in 1(A)/1(U ) has the form q/5(U ). We conclude:

Lemma 7.5. If p is any path from V+(A) to V−(A) in1(A)/1(U ), then p∪VH (A)
is uniformly quasidense in 1(A)/1(U ). �

We would like to say that p is itself quasidense. However there is the technical
irritation that the boundary of A may be rather wriggly. We can get around this by
adding some extra edges to 1 so as to reduce the diameter of V±(A). This will
give us our graph, 5, referred to earlier.
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Suppose B ⊆ B, and that F is a piece of ∂±B. Let E(F) ⊆ E±(B) be the set
of e ∈ E±(B) such that θ(e) crosses F . Since W (∂±B) = W (B) is bounded, so
is the diameter of F in 2(M), and it follows that E(F) is of bounded diameter in
1. We extend E(F) to a complete bipartite graph by connecting each vertex of
V ∩ B ∩

⋃
E(F) to each vertex of V ∩ E(F) \ B. Note that EH (B) is a disjoint

union of such sets E(F). We perform this construction for all such F and all B ∈B.
This gives us a graph5⊇1 with the same vertex set V . Moreover (since W (B) is
bounded), we can extend θ to a uniform quasi-isometry θ :5→2(M). Bounded
geometry tells us that 5 has uniformly bounded degree. The earlier discussion
of 1 applies equally well to 5. In particular, given Q ⊆ M , we write 5(Q) for
the full subgraph of 5 on V ∩ Q. Also we have a graph 5 ∪ ϒ on the vertex
set V . This time, we see that if A ∈ B, then V±(A) has bounded diameter in
5∪ϒ , and so applying Lemma 7.4 as before, we see that it has bounded diameter
in 5(A)/5(U ). Now 1(A)/1(U ) is a subgraph of 5(A)/5(U ) with the same
vertex set, so putting this together with Lemma 7.5, we deduce:

Lemma 7.6. Any path connecting V+(A) to V−(A) in 5(A)/5(U ) is uniformly
quasidense in 5(A)/5(U ). �

This observation is sufficient to tell us that5(A)/5(U ) has linear growth (com-
pare Lemma 7.8 below). This, in turn, is enough to give us polynomial growth of
5 and hence of 2(M) (compare Lemma 7.9). However, to obtain a polynomial of
degree ν(6), we need to refine this as follows.

Suppose B ∈B(A)with ν(B)= ν(A). Now ∂±B can be extended to a horizontal
fibre of A by adding a number of annuli in Margulis tubes (in T∂(B) \ T∂(A)).
This follows from the condition that ν(B) = ν(A). (Indeed we can extend B to
a nonprimitive band C ⊆ A with φ(C) = φ(A) by adding some subsolid tori in
Margulis tubes.) It follows that ∂+B ∩ 2(M) and ∂−B ∩ 2(M) both separate
∂+ A ∩2(M) from ∂− A ∩2(M) in A ∩2(M). In other words, any path from
∂+ A to ∂− A in A ∩2(M) must pass through B. Interpreting this in terms of the
graph 5, we see that any path from V+(A) to V−(A) in 5(A) contains a subpath
connecting V+(B) to V−(B) in5(B). It is possible that B may itself contain other
subbands of this type, so we will need to give an inductive argument.

Now let B0(A)= {B ∈ B(A) | ν(B) < ν(A)} and write U0 =
⋃

B0. We refine
Lemma 7.6 as follows: (If one does not care about the degree of the polynomial,
one can go straight to Lemma 7.8, replacing B0 by B, U0 by U and ν by κ .)

Lemma 7.7. Any path connecting V+(A) to V−(A) in 5(A)/5(U0) is uniformly
quasidense in 5(A)/5(U0).

Proof. There is a uniform combinatorial bound on the length of a strictly increasing
sequence of bands, B1 ⊂ B2 ⊂ · · · ⊂ Bn = A with Bi ∈ B and ν(B1)= ν(A). We
prove Lemma 7.7 by induction in the maximal such length, n = n(A).
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If n = 1, then B0(A)= B(A), so Lemma 7.7 reduces to Lemma 7.6.
Suppose n(A) = n, and we have verified the lemma for n − 1. Let p be any

path in 5(A)/5(U0) from V+(A) to V−(A). This has the form q/5(U0), where
q connects V+(A) to V−(A) in 5(A). Let B1(A) be the set of bands C ∈ B(A)
that are outermost in B(A) and satisfy ν(C)= ν(A). Thus

U =

⋃
B(A)=

⋃
(B0(A)∪ B1(A))= U0 ∪ U1,

where U1 =
⋃

B1(A).
Suppose C ∈ B1(A). Then n(C) = n − 1 and B0(C) = B0(A)∩ B(C). Thus

5(C)/5(U0) =5(C)/5(
⋃

B0(C)). Now q contains a subpath, qC , connecting
V+(C) to V−(C) in5(C). By the induction hypothesis, qC is uniformly quasidense
in 5(C)/5(U0).

By Lemma 7.6, q/5(U ) is uniformly quasidense in 5(A)/5(U ). Thus, if
x ∈ V ∩ A, then x can be connected to q by a path s in 5(A) with s/5(U )
of bounded length. If q ∩ 5(U1) = ∅. then s/5(U ) = s/5(U0) and we are
happy. If not, then s enters some C ∈ B1(A) for the first time at some y ∈5(C).
From the previous paragraph, we see that there is a path, t , from y to q in 5(C)
with t/5(U0) of bounded length. By joining together s/5(U0) and t/5(U0) we
see that x is a bounded distance from q/5(U0) in 5(A)/5(U0), and the lemma
follows by induction. �

Another point to note is that since W (B) is bounded for all B ∈ B, there is a
bound on the number of edges e of 5 such that θ(e) crosses ∂H B. Thus there is a
bound on the number of edges of5 with exactly one endpoint in5(B), and hence
on the degree of 5/5(

⋃
B′) for any subset B′ of B. In particular, the degree of

5(A)/5(U0) is uniformly bounded.
Putting this observation together with Lemma 7.3 and Lemma 7.7, taking any

shortest path from V+(A) to V−(A) in 5(A)/5(U ), we conclude:

Lemma 7.8. There is a uniform linear function, f , such that for all A ∈ B, the
quotient 5(A)/5(U0) is O( f ), where U0 =

⋃
B0(A). �

(Here f , may depend on ν(6).)
Now exactly the same argument applies to M itself, taking a bi-infinite geodesic

in5/5(U0), where U0 =
⋃

B0, and B0 ={B ∈B |ν(B)<ν(6)}. Thus,5/5(U0)

is also O( f ).
Now, given n ∈{1, 2, . . . , ν(6)−1}, let Bn ={B ∈B |ν(B)=n}. Let Cn ⊆Bn be

the set of bands of Bn that are outermost, and let C=
⋃ν(6)−1

n=1 Cn . Thus if A, B ∈C

with B strictly included in A, then ν(B)< ν(A). If A ∈ C then B0(A)= B(A)∩C.
Given n, let Un =

⋃
Cn =

⋃
Bn , and let 5n =5(Un). Each component of 5n

has the form 5(A) for some A ∈ Cn . Each component of 5n−1 inside 5n has the
form5(B) for some B ∈ B(A)∩C = B0(A). Thus5n−1∩5(A)=5(

⋃
(B0(A)),
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and so 5(A)/5n−1 ∼= 5(A)/5(
⋃

B0(A)) is O( f ) by Lemma 7.8. Since this
applies to each component of 5n , we see that 5n/5n−1 is O( f ).

Now setting 5ν = 5 and using the remark following Lemma 7.8, we see that
5ν/5ν−1 is O( f ). Also, 50 = ∅, and so we have an increasing sequence of full
subgraphs, ∅ = 50 ⊆ 51 ⊆ · · · ⊆ 5ν = 5, where 5n/5n−1 is O( f ) for all n.
Applying Lemma 7.2, we see that 5 is O( f ν). But gν = f ν is a polynomial of
degree ν. We have shown:

Lemma 7.9. There is a sequence, (gν)ν of polynomials, gν of degree ν, such that
any graph 5 constructed in this way is O(gν). �

Since θ : 5 → 2(M) is a uniform quasi-isometry, and since 5 has uniformly
bounded degree, it follows easily that the volume growth of2(M) about any point
is bounded by some uniform polynomial, fν , of degree ν = ν(6).

We have assumed that M is doubly degenerate, and pretended that 6 is a closed
surface, but the general case proceeds in essentially the same way (see Section 8).

This proves Theorem 7.1.

8. The general case

In most of this paper, we have only dealt explicitly with the special case where 6
is a closed orientable surface, and M is orientable and without cusps. Moreover,
we have mostly supposed that M is doubly degenerate. This has been mainly to
simplify the exposition. The general case of a manifold admitting a type-preserving
homotopy equivalence to a compact surface can be dealt with by fairly routine
reinterpretations of various definitions and constructions as outlined below. In
particular, Theorem 7.1 remains valid as stated in the general case.

Let M be a complete orientable hyperbolic 3-manifold admitting a homotopy
equivalence to a compact surface 6. We assume that this is type-preserving, that
is, each boundary curve of 6 corresponds to a cusp of M . We write X (6) for the
set of homotopy classes of nonperipheral closed curves in 6. We shall assume for
the moment that 6 and M are orientable.

After fixing some Margulis constant, we have, as before, a set, T, of Margulis
tubes. In addition, we have a set, P, of Margulis cusps. If P ∈ P, then ∂P is
a euclidean cylinder foliated by euclidean geodesic “longitudes” of fixed length.
We write N (M) = M \

⋃
P∈P int P for the noncuspidal part of M , and 2(M) =

N (M) \
⋃

T ∈T int T for the thick part of M .
Let P∂(M) be the set of Margulis cusps that correspond to boundary components

of 6, and let Q(M)= M \
⋃

P∈P∂ (M) int P . (Thus 2(M)⊆ N (M)⊆ Q(M).) By
tameness [Bonahon 1986], Q(M) is homeomorphic to 6×R. We refer to the ends
6×[0,∞) and6×(−∞, 0] as the positive and negative ends of Q(M). Note that
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∂Q(M)=
⋃

P∈P∂ (M) ∂P ≡ ∂6× R. A fibre of Q(M) is the image of a homotopy
equivalence from 6 to Q(M) where the preimage of ∂Q(M) in 6 is precisely ∂6.

Let PA(M) = P \ P∂(M). These are the accidental parabolic cusps of M . We
can write PA(M) = P+(M) t P−(M) depending on whether the cusp lies in the
positive or negative end of Q(M). Each P ∈ PA(M) is homotopic to a curve
α(P) ∈ X (6). The set {α(P) | P ∈ P±(M)} a multicurve in 6, i.e. the elements
are mutually disjoint. In particular, P±(M) and hence P are finite.

A surface 8∈ F is assumed to have the property that each boundary curve in 8
that is peripheral in 6 is equal to this boundary curve, and that all other boundary
curves of 8 lie in int6. As before, we can define an unknotted surface, F ⊆ M ,
where we assume that F ∩∂Q(M) are precisely the boundary curves of F that are
peripheral in Q(M). Again, we have φ(F) ∈ F \ {6}. We can similarly define a
thick surface.

We need to modify the definitions of “horizontal surface” and “band”.
A horizontal surface is now an unknotted surface, F ⊆ Q(M), such that there

are two disjoint subsets, T∂(F) and TI (F) of T, satisfying (1)–(3) as before, and
in addition, two disjoint subsets, P∂(F) and PI (F) of P which satisfy (1′)–(3′),
where T, T∂(F) and TI (F) are replaced by P, P∂(F) and PI (F). Condition (4)
gets replaced by

(4′) ∂F ⊆
⋃

T∂(F)∪
⋃

P∂(F).

Necessarily, PI (F)⊆ PA(M).
We similarly modify the definition of a band. It is now a thick surface, B, in

Q(M), with subsets T∂(B),TI (B),T+(B),T−(B)⊆T satisfying (1)–(4), (6) and
(7), as before, together with subsets P∂(B),P+(B),PI (B)∈P satisfying (1′), (2′),
(4′), (6′) and (7′) where T gets replaced by P etc., and PI (B)= ∅. Condition (5)
gets replaced by

(5′) ∂V B ⊆
⋃

T∂(B)∪
⋃

P∂(B).

As before, we assume that φ(B) 6=6.
We necessarily have P±(B) ⊆ PA(B) and P−(B) ∩ P+(M) ⊆ P+(B) and

P+(B) ∩ P−(M) ⊆ P−(B). We say that B is primitive if T+(B) ∩ T−(B) =

P+(B)∩ P−(B)= ∅. In this case, P+(B)∩ P−(M)= P−(B)∩ P+(M)= ∅.
Let Y = core(M) be the convex core of M , and let ∂Y denote the boundary of

Y in M . The inclusion of ∂Y ∩2(M) into ∂Y is a homotopy equivalence. Each
component, F , of ∂Y ∩ N (M) is a horizontal surface with PI (F) = T∂(F) = ∅.
Moreover, F cuts N (M) into two components, one of which, C(F), homeomorphic
to F ×[0,∞). We can refer to F , and hence the corresponding component of ∂Y ,
as positive or negative depending on whether C(F) lies in the positive or negative
end of Q(M). We write ∂−Y (respectively ∂+Y ) for the union of positive (negative)
components, so that ∂Y = ∂+Y t ∂−Y .
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Now each Margulis tube, T ∈ T, meets Y . Indeed, we can write

T = TI (Y )∪ T−(Y )∪ T+(Y )

with TI (Y )∩ (TI (Y )∪T+(Y ))= ∅, so that for all T ∈ TI (Y ), T ⊆ Y , and for all
T ∈ T±(T ), ∂±Y meets T in an annulus.

Let’s first consider the case where M is geometrically finite. This means that
Y ∩2(M) is compact, so that T is finite, and Y ∩ N (M) is compact. Indeed we
can find disjoint horizontal fibres S+ and S− of Q(M) such that

S± ∩ N (M)= ∂±Y ∩ N (M).

Now S+ and S− bound a compact region, K , in Q(M). In fact, K , is like a band
in Q(M), with TI (K )= TI (Y ), T±(K )= T±(Y ), T∂(K )= ∅, P±(K )= P±(Y )
and P∂(K )= P∂(M), except that φ(K )=6, which we have disallowed.

The statement of Theorem 0 is similar to that given in Section 2. We construct
a nested set, B, of bands satisfying (B1)–(B6) of Section 5. This time, we assume
that each band lies in the interior of Y . We let A ⊆ B be the set of outermost bands.
These bands satisfy (A1), (A2) and (A4)–(A9) of Section 2. Property (A3) should
now say that L(∂T ∩ Y,A) ≤ L0 for all T ∈ T, and L(∂P ∩ Y,A) ≤ L0 for all
P ∈ PA(M). To the statement of (A3′), we should add that L(∂P ∩ B,B(B))≤ L0

for all P ∈ PA(M).
The case where there are no accidental parabolics — PA(M) = ∅ — is similar.

In this case, each of ∂+Y and ∂−Y is either empty or a horizontal fibre, and so we
have a division into geometrically finite, singly degenerate and doubly degenerate
cases. The statement of Theorem 0 is as for the geometrically finite case above.

For a manifold with accidental parabolics that is not geometrically finite, the
situation a bit more complicated. One way of dealing with it is to allow for “long
bands” where one of the horizontal boundary components may be at infinity.

More precisely, a semi-infinite thick surface, B, is the image of a proper em-
bedding of 8×[0,∞) into Q(M), where 8 ∈ F. We write ∂H B for the image of
8×{0} and ∂V B for the image of ∂8×[0,∞). A long band is now a semi-infinite
thick surface B, with ∂V B ⊆

⋃
P and with ∂H B a horizontal surface.

We now allow B to contain (a necessarily finite number of) long bands. We can
assume that B satisfies (B1)–(B6). For a long band, B, (B4) is redundant and (B5)
means that if F is parallel to B, then H(〈F, ∂H B〉) ≤ H0 + 2D0. If A is the set
of outermost bands, then conditions (A1)–(A9) are satisfied, with (A3) and (A3′)
modified as above. Indeed, if P ∈ PA(M), then ∂P ∩ Y \

⋃
A is compact.

Let C ⊆ B be the set of innermost long bands. These are disjoint. If C ∈ C, and
P ∈ P, then P ∩ C ⊆ ∂P , otherwise we could find smaller long bands contained
in C. Thus C ⊆ N (M). Let F+ be the union of ∂H C as C varies over positive
bands in C. We can find a horizontal fibre, S+, of Q(M) such that S+ ∩ N (M) =
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(F+ ∪ ∂+Y ) ∩ N (M). We can similarly find a disjoint fibre, S−. Let K be the
compact region of S+ and S−.

We see that K behaves like the compact region K constructed in the geometri-
cally finite case. (Note K ∩ N (M) need not be connected.) Similarly, each band of
C behaves like the convex core of a singly degenerate manifold with smaller base
surface. Thus, in some sense, the general case is a union of geometrically finite
and singly degenerate cases.

Finally, we remark that the nonorientable case can also be similarly accounted
for. In this case, Margulis tubes may be solid tori, and boundaries of Margulis
cusps may be Möbius bands. Also, there may be no canonical choice of “positive”
or “negative” boundaries of bands.
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CLASSIFICATION OF FIBER SURFACES OF GENUS 2 WITH
AUTOMORPHISMS ACTING TRIVIALLY IN COHOMOLOGY

JIN-XING CAI

Let S be a complex nonsingular projective surface of general type with a
fibration of genus 2, and let G ⊂ Aut S be a nontrivial subgroup of automor-
phisms of S, inducing trivial actions on H2(S, Q). We give a classification
for pairs (S, G) from the point of view of moduli. Consequently, we show
that there exist surfaces S of general type (with pg arbitrary large) with an
involution acting trivially on H i (S, Z) for all i .

1. Introduction

Let S be a complex minimal nonsingular projective surface of general type, and let
G ⊂ Aut S be a nontrivial subgroup of automorphisms of S inducing trivial actions
on H 2(S,Q). Peters [1979] proved that, if the canonical linear system |KS| is
basepoint free, then either K 2

S = 8χ(OS) or K 2
S = 9χ(OS). Recently, we showed

that |G| ≤ 4 if χ(OS) > 188 [Cai 2004]. When S has a fibration of genus 2, we
have a numerical classification for pairs (S,G):

Theorem 1.1 [Cai 2006a; 2006b]. Let S, G be as above. Assume that S has a
relatively minimal fibration of genus 2 and χ(OS)≥ 5. Then |G| = 2, and either

(i) K 2
S = 4χ(OS)− 4a (a = 0, 1), or

(ii) K 2
S = 8χ(OS)− 6b (b = 0, 1, 2).

There are some examples in [Cai 2006a; 2006b] to show that such pairs (S,G)
exist, besides the well known ones (products of two hyperelliptic curves). An
interesting question is whether it could be possible to classify all possible pairs
(S,G) in Theorem 1.1.

In this note we give a classification for pairs (S,G) in Theorem 1.1 from the
more general point of view of moduli. Roughly speaking, our main result is this
(see Theorems 2.5 and 4.7 for precise statements):

Theorem 1.2. Let S, G be as in Theorem 1.1.

MSC2000: primary 14J50; secondary 14J29.
Keywords: surfaces of general type, automorphism groups, fibrations.
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(i) If S is as in Theorem 1.1(i), then S is birationally equivalent to a double cover
of certain elliptic fiber bundle. The configuration of the ramification divisor
of this covering is determined.

(ii) If S is as in Theorem 1.1(ii) with b = 0, then S ' (F × C̃)/G̃, where F and C̃
are curves of genus g(F)= 2, g(C̃)≥ 2, and G̃ is one of the following groups:
Z/mZ (m ≤ 10, m 6= 7, 9), (Z/2Z)2, Z/6Z⊕Z/2Z, D8 (the dihedral group of
order 8); a complete description for the action of G̃ on F × C̃ is given.

We note that, for K3 and Enriques surfaces S, Aut S acts faithfully on H 2(S,Z)

(see [Burns and Rapoport 1975; Ueno 1976]). As an interesting consequence of
Theorem 2.5, we show that the analogous question for surfaces of general type has
a negative answer:

Theorem 1.3 (Corollary 2.11). Let n ≥3 be an integer. There exist an infinite series
of surfaces Sn of general type with K 2

Sn
= 4n, pg(Sn)= n, q(Sn)= 1 admitting an

involution acting trivially on H i (Sn,Z) for all i .

We work over the complex number field and use standard notation as exemplified
by [Barth et al. 1984]. We also use freely the notation from [Cai 2006a; 2006b].

2. Surfaces whose canonical map being composite with a pencil

2.1. Let S be a complex nonsingular projective surface of general type with pg(S)
at least 3 and let f : S → C be a relatively minimal fibration of genus 2. Consider
a nontrivial subgroup G ⊂ Aut S of automorphisms of S inducing trivial actions on
H 2(S,Q). In this section, we assume that the canonical map 8S of S is composite
with a pencil. By [Cai 2006a, Theorem 3.2], we have |G| = 2, the generator σ of
G is a bielliptic involution of f (that is, f ◦σ = f , and for a general fiber F of f ,
σ |F is a bielliptic involution of F), and S has numerical invariants

(2.1.1) K 2
S = 4χ(OS) and q(S)= g(C)= 1, or

(2.1.2) K 2
S = 4χ(OS)− 4, q(S)= 1 and g(C)= 0.

The hyperelliptic involutions of smooth fibers of f glue together to give a bi-
rational C-involution τ of S, which is everywhere defined by the uniqueness of
the minimal model of f . We call τ the hyperelliptic involution of f : S → C . Let
λ=σ ◦τ . Clearly λ is a bielliptic involution of f . We have a commutative diagram

S̃
π̃- S̃/λ̃

α - T

S

ρ

? f - C
?�

p
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where ρ is the blowup of all isolated fixed points of λ, λ̃ is the induced involution
on S̃, α is the blowdown of all −1-curves contained in fibers of S̃/λ̃→ C , and p
is the induced relatively minimal elliptic fibration.

We can describe p : T → C explicitly:

Proposition 2.2. Let E2 be an elliptic curve, and set E4 = C/(Z + iZ) and E3 =

E6 = C/(Z + ξZ), for ξ a primitive third root of unit.

(i) If S is as in (2.1.1), then C is an elliptic curve, and

(p : T → C)' (Td := (C ′
× Ed)/Zd → C ′/Zd)

for some d ∈ {2, 3, 4, 6}, where C ′ is an elliptic curve and Zd acts on C ′
× Ed

via a product action: Zd acts on C ′ as a translation of order d such that
C ′/Zd ' C , and Zd acts on Ed by (1) e 7→ −e if d = 2; (2) e 7→ ξe if d = 3;
(3) e 7→ ie if d = 4; (4) e 7→ −ξe if d = 6.

Moreover, KT = p∗η, where η ∈ Pic0 C , which determines the étale cover
C ′

→ C.

(ii) If S is as in (2.1.2), then C = P1, T = C × E and p is the projection to the
first factor, where E is an elliptic curve.

Proof. By [Cai 2006a, Proposition 4.12] and its proof, p : T → C is an elliptic
fiber bundle with a section. By the proof of Theorem 3.2 of the same reference,
we have q(T )= g(C)= 1 if S is as in (2.1.1), and q(T )= 1, g(C)= 0 if S is as in
(2.1.2). Note that pg(T ) = 0. Now the proposition follows from the well-known
result of Bagnera and de Franchis on the classification of bielliptic surfaces (see
[Beauville 1983, VI, 20], for example). �

Proposition 2.3. Let Td be as in Proposition 2.2. Then H1(Td ,Z)tor ' Z2 × Z2,
Z3, Z2, 0 if d = 2, 3, 4, 6, respectively.

See [Iitaka 1971; Suwa 1969; Serrano 1991] for proofs.

Notation 2.4. Let p : T → C be a fiber surface and 1 ⊂ T a bisection of T , that
is, an irreducible curve with 1P = 2, where P is a fiber of p. We say that a point
t ∈ 1 is a ramification point of p|1 : 1 → C if t is in the image of the set of
ramification points of p|1 ◦ φ : 1̃ → 1 → C under φ, where φ : 1̃ → 1 is the
normalization of 1.

For any point t ∈1, let l(t;1) be the number of times we must blow up t ∈ T
and its infinitely near points to get the strict transform of 1 being nonsingular at
the inverse image of t .

For any two curves D, D′ and t ∈ D ∩ D′, we denote by I (D, D′
; t) the inter-

section number of D and D′ at the point t .
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Theorem 2.5. Let f : S → C , p : T → C , π̃ , and α be as in 2.1. Let π : S′
→ T

be the Stein factorization of α ◦ π̃ , and let (B, θ) be the singular double cover data
corresponding to π . Then (B, θ) has the following properties:

(i) θ = C1 + p∗D, where C1 is a section of p and D is a divisor on C of degree
n := pg(S)≥ 3,

(ii) B = 1+
∑m

i=1 p∗ci , where 1 ∈ |2C1 + p∗(2D −
∑m

i=1 ci )| is a bisection of
p and ci (i = 1, . . . ,m) are different points of C ,

(iii) 1∩C1 is contained in the set of ramification points of p|1 . As a set,1∩C1 =

{t1, · · · , tm}, where ti = p∗ci ∩C1. For any i , I (1,C1; ti )= 2l(ti ;1)+1. So∑m
i=1 l(ti ;1)= n − m.

Conversely, let p : T → C be as in Proposition 2.2, and let (B, θ) be the sin-
gular double covers data satisfying conditions (i)–(iii) above. Let π : S′

→ T be
the double cover corresponding to (B, θ). Let S′′ be the desingularization of S′,
and f ′

: S′′
→ C the induced fibration. Let f : S → C be the relatively minimal

fibration of f ′. Denote by τ the hyperelliptic involution of f , and λ the involution
corresponding to the double cover π . Let σ = τ ◦ λ. Then S is as in (2.1.1) (resp.
(2.1.2)) with pg(S) = n if T is as in (i) (resp. (ii)) of Proposition 2.2 and σ acts
trivially on H 2(S,Q).

Proof. We assume that T is as in Proposition 2.2(i). The proof of the other case
is similar and is left to the reader. Since B has no essential singularities, by the
formula for double covers, we have h0(KT ⊗ θ) = n. Note that p : T → C is a
fiber bundle, and (KT ⊗θ)P = 1 for a fiber P of p. We have KT ⊗θ ≡ C1 + p∗D′,
where C1 is a section of p and D′ is an effective divisor on C . Clearly C1 is the
fixed part of |C1 + p∗D′

|. So deg D′
= h0(D′) = h0(C1 + p∗D′) = n. Note that

KT = p∗η, where η is as in Proposition 2.2. So θ = C1 + p∗D, where D = D′
⊗η

is a divisor on C of degree n.
Since B is a reduced divisor, we may write B = 1+

∑m
i=1 p∗ci , where 1 is

a reduced horizontal divisor with respect to p, m ≥ 0, and ci (i = 1, . . . ,m) are
different points of C .

2.6. We show that 1 is irreducible. Otherwise, 1 = 11 + 12, where 1 j are
sections of p. Clearly 1112 = 0. So m > 0. Then locally around p∗c1 the branch
locus B of π has the configuration

p∗a1
12

11

So (p ◦π)∗c1 is a multiple fiber and S′ has two rational double points on it, and
hence f ∗c1 is a fiber of type (b0). This contradicts [Cai 2006a, Lemma 4.7(ii)].
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Lemma 2.7. If t ∈1∩ C1, then t is a ramification point of p|1 , and

I (1,C1; t))= 2l(t;1)+ 1,

where l(t;1) is as in Notation 2.4.

Proof. let c = p(t) and l = l(t;1). First we assume that t is a smooth point of 1.
If t is not a ramification point of p|1 , then p∗c∩1 consists of two different points,
t and t ′. We have t + t ′

−2t ≡1|p∗c −2C1|p∗c ≡ p∗(2D −
∑m

i=1 ci )|p∗c ≡ 0. This
implies t ≡ t ′ on p∗c, which is a contradiction since p∗c is not rational.

Now we may assume that t is a singular point of 1. If c 6= ci for any i , then
multt B = 2. Let ρ̂ : T̂ → T be the blowing up at t , and E the exceptional curve.
For any irreducible curve Z in T , we denote Ẑ the strict transform of Z in T̂ . Set

B̂ = ρ̂∗B − 2E, θ̂ = ρ̂∗θ − E = Ĉ1 + ρ̂∗ p∗D.

Let π̂ : Ŝ → T̂ be the double cover corresponding to (B̂, θ̂ ). Clearly α◦π̃ (notation
as in 2.1) factors through π̂ . Since C1 and p∗c meet transversally only in one
point t , we have Ĉ1 ∩ p̂∗c = ∅. This implies θ̂ | p̂∗c is trivial. So π̂∗ p̂∗c has two
disconnected components, and hence f ∗c is of type (ak). This contradicts [Cai
2006a, Lemma 4.6].

So we can assume c = ci for some i . If t ∈1 is not a ramification point of p|1 ,
then (p ◦α)∗c has the following configuration:

1̃

D(−1)1
l+2

D(−1)1
l+1�

���
���

��
���

���E (−4)1
l�

@
@

@
@@

�
E (−4)1

l−1

D(−1)2
l

�
�

�
��

· · ·
@

@
@

@@

E (−4)1
2

D(−1)2
2

�
�

�
��

E (−4)1
1

D(−1)2
1

&̃p∗ci

where 1̃ and p̃∗ci are the strict transforms of 1 and p∗ci , thick lines mean branch
locus of π̃ , and superscript numbers without brackets are multiplicities and super-
script numbers within brackets denote self-intersections. This implies f ∗ci is of
type (b2l), which is a contradiction by [Cai 2006a, Lemma 4.7(ii)].

Now t ∈ 1 is a ramification point of p|1 . Let H = (α ◦ π̃)∗C1. By [Cai
2006a, 4.8, 4.11 and 4.12], we have ( f ◦ ρ)|H : H → C is étale. So the strict
transform C̃1 of C1 in S̃/λ̃ does not meet the branch locus of π̃ . This implies
I (1,C1; t)= 2l +1 by a standard calculation; see, for instance, [Hartshorne 1977,
Chapter V, Propositions 3.2 and 3.6]. �

By the proof of Lemma 2.7, the image of 1 ∩ C1 under p is contained in the
set {c1, . . . , cm}. Now suppose there is a point ci ∈ {c1, . . . , cm} \ p(1 ∩ C1). If
p∗ci ∩1 consists of two points, then p|1 is étale at ci and we get a contradiction
as in 2.6. Hence p∗ci ∩1 is a single point. By the choice of ci , p∗ci ∩1 6∈ C1.
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So p∗ci ∩C1 6= p∗ci ∩1, and hence p∗ci ∩C1 must be a smooth point of B. This
implies the strict transform C̃1 of C1 does meet the branch locus of π̃ . This is
impossible since H → C is étale.

Now we prove the converse of the theorem. Let T be as in (i) of Proposition
2.2, and let (B, θ) be the singular double cover data satisfying conditions (i)–(iii) in
Theorem 2.5. Let π : S′

→ T be the double cover corresponding to (B, θ). Then S′

has only canonical singularities. Let ε : S → S′ be the minimal desingularization.
We have

KS = (π ◦ ε)∗(p∗(η+ D)+ C1).

So S has the following numerical invariants:

K 2
S = 4n, pg(S)= n, q(S)= 1.

Now f := p◦π ◦ε : S → C is a fibration of genus 2. Denote by τ the hyperelliptic
involution of f , and by λ the involution of S corresponding to π . Then 〈λ, τ 〉 ∼=

Z2 ⊕ Z2. Take σ = τ ◦ λ. Now the result follows by the following lemma. �

Lemma 2.8. The involution σ acts trivially on H i (S,Q) for all i .

The idea of the proof of Lemma 2.8 is to analyze the action of σ around the
singular fibers of f , and to apply the topological Lefschetz formula to σ . The
proof is longer and is postponed until the next section; see also [Cai 2006a, 3.3]
for a proof in the special case when the bisection 1< B is smooth.

Remark 2.9. Let1 be as in Theorem 2.5. If1 is smooth, then l(ti ;1)= 0 for all i
and hence m = n. In this case, by the proof of Lemma 2.7, the points in 1∩C1 are
necessarily ramification points of p|1 . So the only condition for (S, σ ) being as
in 2.1 is that the n fibers p∗ci contained in B pass through the n points of 1∩C1.

Corollary 2.10. (i) The moduli space M of surfaces (S, σ ) as in (2.1.1) with
pg(S) = n has four irreducible connected components. Among them one has
dimension 2n + 1 and the others have dimensions 2n.

(ii) The moduli space M′ of surfaces (S, σ ) as in (2.1.2) with pg(S) = n is irre-
ducible and of dimension 2n − 1.

Proof. We prove (i); the proof of (ii) is similar and is left to the reader. By Theorem
2.5, M is a disjoint union M2 ∪ M3 ∪ M4 ∪ M6, where Md = {S ∈ M | T ' Td}, for
Td is as in Proposition 2.2. Let Bz ∈ |2θ | be a flat family of curves such that B0

is the branch locus B of π : S′
→ T and B1 is smooth. Let Sz be the flat family

of surfaces corresponding to the double cover data (Bz, θ). Since the branch locus
B1 of S1 → T is ample, we have π1(S1) ' π1(T ) by [Cornalba 1981]. Since
B0 = B has no essential singularities, S′

= S0 has only rational double points.
By [Atiyah 1958], the minimal desingularization S of S0 is diffeomorphic to S1.
Hence we have π1(S) ' π1(T ). By Proposition 2.3, the sets Md are open. Given
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Td , for generic [S] ∈ Md , S is determined by (B, θ), where θ = C1 + p∗D, D is
a divisor of degree n on C , B = 1+

∑n
i=1 p∗ci , 1 ∈ |2C1 + p∗D| (cf. Remark

2.9). Up to automorphisms of Td , C1 is uniquely determined. Given a smooth
curve 1 ∈ |2C1 + p∗D|, the choice of θ is unique up to a torsion element of order
2 of Pic0 Td . Clearly 1 depends on h0(2C1 + p∗D)− 1 = 2n − 1 (by Riemann–
Roch) parameters. Note that Td depends on two parameters if d = 2, and on one if
d = 3, 4, 6. So the dimension of Md is 2n + 1 if d = 2, and 2n if d = 3, 4, 6. �

Corollary 2.11. Let (S, σ ) be as in (2.1.1). If S ∈ M6, where M6 is as in the proof
of Corollary 2.10, then the involution σ acts trivially on H i (S,Z) for all i .

Proof. If S ∈ M6 we have π1(S)'π1(T ) by the proof of Corollary 2.10, and hence
H1(S,Z)tor = 0 by Proposition 2.3. By the Poincaré duality for the torsion part
of homology, we have H 2(S,Z)tor = 0. Hence H∗(S,Z) is torsion-free, and the
result follows from Lemma 2.8. �

3. Proof of Lemma 2.8

We keep the notation of Theorem 2.5. Since q(S)= g(C), by Hodge theory, σ acts
trivially on H 1(S,Q). To check that the involution σ acts trivially on H 2(S,Q),
we analyze the action of σ around the singular fibers of f . Let t j ( j = 1, . . . , u)
be the ramification points of p|1 . After suitable reindexing, we may assume that
{t1, . . . , tm} = 1∩ C1 as a set. Let tu+k (k = 1, . . . , v) be the singular points of
1\{t j |1 ≤ j ≤ u}. Set l j = l(t j ;1), where l(t j ;1) is as in Notation 2.4. We have
l j ≥ 0 for j = 1, . . . , u, and l j ≥ 1 for j = u + 1, . . . , u + v. By the definition of
l j , we have

pa(1)= g(1̃)+
u+v∑
j=1

l j ,

where φ : 1̃ → 1 is the normalization of 1. Applying the Hurwitz formula to
p|1 ◦φ, we get

2g(1̃)− 2 = u.

By the adjunction formula,

2pa(1)− 2 =

(
2C1 + p∗

(
2D −

m∑
j=1

c j

))2
= 4(2n − m).

Combining these three equalities, we have

(3.0.1) 4m + u + 2
u+v∑
j=1

l j = 8n.

Let % : T ′
→ T be the morphism composed of l j times blow-ups of t j and its

infinitely near points ( j = 1, . . . , u + v). The exceptional divisor %∗(t j ) equals
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l=1 E ′

jl , where E ′

jl is the exceptional curve corresponding to the (l − 1)-th near
points of t j . Then the strict transform 1′ of 1 is smooth, and for j = 1, . . . , u, 1′

meets E ′

jl j
in one point t ′

j and is tangent to it there. Let %′
: T ′′

→ T ′ be the blow-
up of t ′

j ( j = 1, . . . , u) and s jl := E ′

j,l−1 ∩ E ′

jl ( j = 1, . . . , m, l = 1, . . . , l j ) (for
convenience, here we set E ′

j0 = (p∗c j )
′). Let E ′′

j,l j +1 = %′∗(t ′

j ) and D′′

jl = %′∗(s jl)

be the exceptional curves. Then E ′′

j,l j +1 and the strict transform 1′′ of 1′ meet
transversely at point t ′′

j . Let

µ : T̃ → T ′′

be the blow-up of t ′′

j ( j = 1, . . . , u). Let Ẽ j,l j +2 = µ∗(t ′′

j ) ( j = 1, . . . , u) be the
exceptional curves. For any irreducible curve Y in T , we denote by Y ′, Y ′′ and Ỹ
the strict transform of Y in T ′, T ′′ and T̃ , respectively. Set

B̃ :=µ∗

(
%′∗
(
%∗B −2

u+v∑
j=1

l j∑
l=1

l E ′

jl

)
−2

m∑
j=1

E ′′

j,l j +1 −2
m∑

j=1

l j∑
l=1

D′′

jl

)
−2

u∑
j=1

Ẽ j,l j +2

= 1̃+

m∑
j=1

p̃∗c j +

m∑
j=1

l j∑
l=1

Ẽ ′

jl +

u∑
j=m+1

Ẽ ′′

j,l j +1

θ̃ := µ∗

(
%′∗
(
%∗θ −

u+v∑
j=1

l j∑
l=1

l E ′

jl

)
−

m∑
j=1

E ′′

j,l j +1 −

m∑
j=1

l j∑
l=1

D′′

jl

)
−

u∑
j=1

Ẽ j,l j +2

= (% ◦ %′
◦µ)∗D + C̃1 −

u+v∑
j=m+1

l j∑
l=1

l Ẽ ′

jl −

m∑
j=1

l j∑
l=1

D̃′′

jl

−

u∑
j=m+1

l j Ẽ ′′

j,l j +1 −

m∑
j=1

Ẽ j,l j +2 −

u∑
j=m+1

(2l j + 1)Ẽ j,l j +2.

We have B̃ is a smooth divisor on T̃ , and B̃ ≡ 2δ̃. Let π̃ : S̃ → T̃ be the morphism
associated with the double cover data (B̃, δ̃). By the canonical resolution [Persson
1978], we have a commutative diagram

S̃
π̃ - T̃

S
ε -

�

ε

S′

β

?
π - T,

γ := % ◦ %′
◦µ

?

where β is a desingularization of S′, and ε is the contraction of −1-curves on S̃.
Clearly f has only u + v singular fibers f ∗c j ( j = 1, . . . , u + v). For j =

1, . . . , m, locally around a singular fiber, π̃ : ( f ◦ ε)∗c j → (p ◦ γ )∗c j has the
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following configurations:

1̄

2
′(−2)2
j,l j +2

@
@

@
@

@
@

2
′′(−2)1
j,l j +1

2
′(−2)1
j,l j +1

��
���

��
2
(−2)2
j,l j�

@
@

@
@@

2
(−2)2
j,l j −1

2
′(−2)2
j,l j

�
�

�
��

· · ·
@

@
@

@@

2
(−2)2
j2

2
′(−2)2
j2

�
�

�
��

2
(−2)2
j1

2
′(−2)2
j1

&0 j

π̃
−→

1̃

Ẽ(−1)2
j,l j +2

@
@

@
Ẽ ′′(−2)1

j,l j +1

���
����Ẽ ′(−4)1

j,l j�
@

@
@

@@

Ẽ ′(−4)1
j,l j −1

D̃′′(−1)2
jl j

�
�

�
��

· · ·
@

@
@

@@

Ẽ ′(−4)1
j2

D̃′′(−1)2
j2

�
�

�
��

Ẽ ′(−4)1
j1

D̃′′(−1)2
j1

&p̃∗c j

where 1̄ is the inverse image of 1̃, thick lines mean ramification or branch locus
of π̃ , and superscript numbers without brackets are multiplicities and superscript
numbers within brackets denote self-intersections. Hence

f ∗c j =2′

j,l j +1 +2′′

j,l j +1 + 22′

j,l j +2 + 2
l j∑

l=1
2 jl + 2

l j∑
l=1
2′

jl + 20 j

is as in (b2l j +1) of [Cai 2006a, 2.6]. 2 jl (l = 1, . . . , l j ) are λ-fixed −2-curves and
0 j is an λ-fixed elliptic curve.

For j = m + 1, . . . , u, π̃ : ( f ◦ ε)∗c j → (p ◦ γ )∗c j has the configurations

1̄ 2
(−2)2
j,l j +2

A
A
A
A
A2

(−1)2
j,l j +1

�

2
(−3)1
jl j

2
′(−3)1
jl j

��
���

���
��

HH
HHHHHHH

HHH

2
(−2)1
j,l j −1

2
′(−2)1
j,l j −1

�
���

��

�
���

��
· · ·

HH
HHHHHHH

HHH

2
(−2)1
j2

2
′(−2)1
j2

�
���

����

�
���

��

2
(−2)1
j1

2
′(−2)1
j1 ��0 j

π̃
−→

1̃
Ẽ(−1)2

j,l j +2

A
A
A
A
AẼ ′′(−2)1

j,l j +1

�
Ẽ ′(−3)1

jl j

�
���

���
��H
HHH

HH

Ẽ ′(−2)1
j,l j −1

���
���

· · ·

H
HHH

HH
Ẽ ′(−2)1

j2
���

���Ẽ ′(−2)1
j1

&p̃∗c j

Since δ̃| p̃∗c j
= C̃1| p̃∗c j

− Ẽ ′

j1| p̃∗c j
(= C̃1| p̃∗c j

− Ẽ j,l j +2| p̃∗c j
when l j = 0) is

nontrivial, the inverse image 0 j of p̃∗c j is connected. Hence

f ∗c j =

l j∑
l=1
2 jl +

l j∑
l=1
2′

jl +0 j

(here we also denote by 2 jl j and 2′

jl j
the image of 2 jl j and 2′

jl j
in S) is as in (v)

of [Cai 2006a, Lemma 4.9]. The chain of −2-curves in f ∗c j is of type A2l j and
2 jl j ∩2

′

jl j
is a nonisolated λ-fixed point. ( When l j =0 f ∗c j is an irreducible curve
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with exactly one node p j , which is a nonisolated λ-fixed point. The normalization
of f ∗a j is an elliptic curve.)

For j = u + 1, . . . , u + v, π̃ : ( f ◦ ε)∗c j → (p ◦ γ )∗c j has the configurations

1̄
�� 2

(−2)1
jl j�

2
(−2)1
j,l j −1

2
′(−2)1
j,l j −1

��
���

���
��

HH
HHHHHHH

HHH

2
(−2)1
j,l j −2

2
′(−2)1
j,l j −2

�
���

��

�
���

��
· · ·

HHH
HHHHHH
HHH

2
(−2)1
j2

2
′(−2)1
j2

�
���

����

�
���

��

2
(−2)1
j1

2
′(−2)1
j1 ��0 j

π̃
−→

1̃ Ẽ ′(−1)1
jl j�

�� Ẽ ′(−2)1
j,l j −1

��
���

���
��

HHH
HHH

Ẽ ′(−2)1
j,l j −2

��
����

· · ·

HH
HHHH

Ẽ ′(−2)1
j2

��
����Ẽ ′(−2)1

j1

&p̃∗c j

Since δ̃| p̃∗c j
= C̃1| p̃∗c j

− Ẽ ′

j1| p̃∗c j
is nontrivial, the inverse image 0 j of p̃∗c j is

connected. Hence

f ∗c j =

l j∑
l=1
2 jl +

l j −1∑
l=1

2′

jl +0 j

is as in (v) of [Cai 2006a, Lemma 4.9]. The chain of −2-curves in f ∗c j is of type
A2l j −1.

For j = 1, . . . , m, λ∣∣∣2′

j,l j +2
is an involution with fixed points

q j =2 j,l j ∩2′

j,l j +2, q ′

j = 1̄∩2 j,l j +2

(the former equals 0 j ∩2′

j,l j +2 when l j = 0). See the picture above. Since 1̄ is
τ -invariant, q ′

j is τ -fixed. From

(3.0.2) ε∗KS = (γ ◦ π̃)∗(p∗(η+ D)+ C1),

we see that

(l j + 1)(2′

j,l j +1 +2′′

j,l j +1)+ (2l j + 1)2′

j,l j +2 +

l j∑
l=1

2l2 jl +

l j∑
l=1
(2l − 1)2′

jl

is contained in the fixed part of |KS|. By [Cai 2006a, 2.9], f ∗c j is not of type
V in the sense of Horikawa. So by [Cai 2006a, 2.8], q j , q ′

j are isolated τ -fixed
points and there are three nonisolated τ -fixed points r1 j , r2 j , r3 j on 0 j . So 2′

j,l j +2
is σ -fixed (otherwise, 〈λ, τ 〉 ↪→ Aut2′

j,l j +2, which is a contradiction since 〈λ, τ 〉

is not cyclic) and r1 j , r2 j , r3 j are σ -fixed points. Similarly we see easily that 2′

jl
(l = 1, . . . , l j ) are σ -fixed. Hence

e(( f ∗c j )
σ )= 2(l j + 1)+ 3 = 2l j + 5 for j = 1, . . . , m.
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For j = m + 1, . . . , u + v, since f ∗c j is reduced, by [Cai 2006a, 2.4], σ has
no fixed curves on f ∗c j . Since each component of f ∗c j is σ -invariant, each node
point of f ∗c j is σ -fixed. We show that they are isolated σ -fixed points. If there
is a σ -fixed point x ∈ f ∗c j which is not isolated, then there is a σ -fixed curve
D (necessarily being horizontal with respective to f ) passing through x . Since
D is contained in the fixed part of |KS|, D f ∗c j = 2. This implies there are three
σ -invariant curves meeting in x with distinct tangent directions, and hence the
induced linear action of σ on the tangent space at x must be ς id for some ς ∈ C,
a contradiction. (When m +1 ≤ j ≤ u and l j = 0, then p j is a nonisolated τ -fixed
point by [Cai 2001, Lemma 2.4], both τ and λ exchange the local branches at p j .
So σ fixes the local branches at p j , implying that p j is an isolated fixed point of
σ .) Hence

e(( f ∗c j )
σ )=

{
2l j + 1, j = m+1, . . . , u;

2l j , j = u+1, . . . , u+v.

Let H ⊂ S be the inverse image of C1. Both τ |H and λ|H are involution of H .
(Clearly by (3.0.2), H is contained in the fixed part of |KS|. So H is τ -invariant
and H |F is a g1

2 on F , where F is a general fiber of f . If τ |H = identity, let
H ∩F ={s, s ′

}, then s+s ′
= H |F ≡2s, which implies s ′

≡ s on F , a contradiction.)
So H is a σ -fixed curve. Clearly H is the only σ -fixed curve which is horizontal
with respective to f . we show that f |H : H → C is étale. In particular, this implies
r1 j , r2 j , r3 j are isolated σ -fixed points. Suppose x ∈ H is a ramification point of
f |H . Let F ′

= f ∗( f (x)). Since HF ′
= 2, we have H ∩ F ′

= {x}. Since H is
λ-invariant, we have x is 〈τ, λ〉 -fixed. Since 〈τ, λ〉 is not cyclic, x is a singular
point of F ′. If F ′

= f ∗c j for some j , m +1 ≤ j ≤ u +v, then x is one of the node
points of f ∗c j , which is a contradiction since these points are isolated fixed points
of σ . Now we suppose F ′

= f ∗c j for some j , 1 ≤ j ≤ m. Since2′

j,l j +2 is σ -fixed,
2′

j,l j +1 is not σ -fixed. So there is a σ -fixed point o j on 2′

j,l j +1 \2′

j,l j +1 ∩2′

j,l j +2.
By [Cai 2001, Lemma 2.4], H passes through o j , which is a contradiction. Since
H is étale over C , e(H)= 0. Summing-up, we have

e(Sσ )=

u+v∑
j=1

e(( f ∗c j )
σ )+ e(H)=

m∑
j=1
(2l j + 5)+

u∑
j=m+1

(2l j + 1)+
u+v∑

j=u+1
2l j

= 2
u+v∑
j=1

l j + 4m + u.

By the Noether formula, e(S) = 8n. Applying the topological Lefschetz formula
to σ [Atiyah and Singer 1968, p. 566], namely

e(S)+ 8(q(S)− dim H 0(S, �1
S)
σ )− 2(H 2(S,Q)− dim H 2(S,Q)σ )= e(Sσ ),
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we get

2(dim H 2(S,Q)− dim H 2(S,Q)σ )= 8n −

(
2

u+v∑
j=1

l j + 4m + u
)

= 0

by (3.0.1). Thus σ acts trivially on H 2(S,Q), and Lemma 2.8 is proved. �

Remark 3.1. Here is a sketch of an alternative proof of Lemma 2.8 suggested
by the referee if T is as in Proposition 2.2(i). In this case q(S) = g(C), and we
can use Theorem 3 of [Shioda 1999] to compute the rank of the Néron–Severi
group NS(S)Q = NS(S) ⊗ Q of S. Consequently, NS(S)Q is generated by H ,
F and all irreducible components of singular fibers of f . By the construction of
S, we can check that H , F and each such component are σ -invariant. Hence σ
acts trivially on NS(S)Q. Let T(S) be the orthogonal complement of NS(S)Q in
H 2(S,Q). Note that T(S) is the smallest rational subspace of H 2(S,Q) such that
the complexification of T(S) contains H 2,0(S). Since the involution σ acts trivially
on H 0(ωS), we have T(S)σ = T(S). Hence σ acts trivially on H 2(S,Q).

4. Surfaces with K 2
S = 8χ(OS)

In this section, we describe explicitly families of pairs (S, σ ), where S is a fiber
surface of genus 2 with K 2

S = 8χ(OS), and σ is an involution of S inducing trivial
action on H 2(S,Q).

Throughout the section, we denote by τD the hyperelliptic involution of a hyper-
elliptic curve D; for a point e in an elliptic curve E , we denote by te the translation
by e.

Example 4.1. Let (S, σ ) = (F × C, τF × τC), where F and C are hyperelliptic
curves with g(F)= 2 and g(C)≥ 2. This example is well known.

Example 4.2. Let F be a curve of genus 2 with a bielliptic involution λF . Let
B̃ = P1 and γB̃ an involution of B̃. Let π : C → B := B̃/〈γB̃〉 be a double cover
with g(C) ≥ 2, such that the branch points of B̃ → B̃/〈γB̃〉 = B are contained in
that of π . Let C̃ be the normalization of C ×B B̃ and γC̃ ∈ AutC̃ the lift of γB̃ .
(Note that C̃ is hyperelliptic since the involution corresponding to C̃ → B̃ is the
hyperelliptic one.)

Let (S, σ )= ((F × C̃)/〈λF ×γC̃〉, τF × τC̃), where τF × τC̃ is the involution of
(F × C̃)/〈λF × γC̃〉 induced by τF × τC̃ .

Example 4.3. Let G be one of the groups Za (a = 2, 3, 4, 5, 6, 8, 10) or Zb ⊕ Z2

(b = 2, 6). Let F be a curve of genus 2 on which G acts faithfully and g(F/G)= 0.
Let B̃ be an elliptic curve and G a subgroup of translations of B̃. Let C → B :=

B̃/G be a double cover with g(C) ≥ 2. Let C̃ = C ×B B̃. Then G induces a
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faithful action on C̃ . Let λC̃ be the involution of C̃ corresponding to the double
cover C̃ → B̃.

Let (S, σ ) = ((F × C̃)/G, τF × λC̃), where G acts on F × C̃ via a product
action.

Example 4.4. Let F be a curve of genus 2 with a bielliptic involution λF . Let B̃
be an elliptic curve, and e ∈ B̃ a nontrivial 2-torsion point. Let π : C → B :=

B̃/
〈
te,−1B̃

〉
be a double cover such that the branch locus of B̃ → B is contained

in that of π . Let C̃ be the normalization of C ×B B̃, and −̃1B̃, t̃e ∈ Aut C̃ the lifts
of −1B̃, te ∈ Aut B̃ respectively. Let λC̃ be the involution of C̃ corresponding to
the double cover C̃ → B̃.

Let (S, σ )= ((F × C̃)/
〈
τF × t̃e, λF × (−̃1B̃)

〉
, τF × λC̃).

Example 4.5. Let B̃ be an elliptic curve, and e ∈ B̃ a nontrivial 4-torsion point.
Let G :=

〈
te,−1B̃

〉
' D8 (the dihedral group of order 8). Let F be a curve of genus

2 on which G acts faithfully. Let π : C → B := B̃/G be a double cover such that
the branch locus of B̃ → B is contained in that of π . Let C̃ be the normalization
of C ×B B̃. Then G induces a faithful action on C̃ . Let λC̃ be the involution of C̃
corresponding to the double cover C̃ → B̃.

Let (S, σ )= ((F × C̃)/G, τF × λC̃).

Remark 4.6. Let (S, σ ) be as in one of Examples 4.1–4.5. Clearly S has a fibration
of genus 2 with K 2

S =8χ(OS). Applying the topological and holomorphic Lefschetz
formula to σ (see [Atiyah and Singer 1968, p. 566]) or by [Cai 2006b, 3.1], we
can check easily that σ induces trivial actions on H 2(S,Q).

Theorem 4.7. Let S be a complex nonsingular projective surface of general type
with χ(OS) ≥ 5, and f : S → C be a relatively minimal fibration of genus 2. Let
G ⊂Aut S be a nontrivial subgroup of automorphisms of S, inducing trivial actions
on H 2(S,Q). Assume that the canonical map φS of S is generically finite. Then
|G| = 2, g(C) ≥ 2, the generator σ of G induces a hyperelliptic involution or a
bielliptic involution σ̄ of C such that σ̄ ◦ f = f ◦ σ , and either

(4.7.1) K 2
S = 8χ(OS) and g(C)≤ q(S)≤ g(C)+ 2,

(4.7.2) K 2
S = 8χ(OS)− 6 and g(C)≤ q(S)≤ g(C)+ 1, or

(4.7.3) K 2
S = 8χ(OS)− 12 and q(S)= g(C).

Moreover, if S is as in (4.7.1), then (S, σ ) belongs to one of Examples 4.1–4.5.

Proof. The first part of this theorem follows from [Cai 2006b, Theorem 1.1]. Now
we let f : S → C, σ be as in (4.7.1). Let τ be the hyperelliptic involution of
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f : S → C , and λ= σ ◦ τ . We have a commutative diagram

S �
ρ

S̃
π̃

- S̃/λ̃
η

- T

C
?

π-

f
-

B := C/σ̄
?�

h

where ρ is the blowup of all isolated fixed points of λ, λ̃ the induced involution
on S̃, and η is the blowdown of all −1-curves contained in fibers of S̃/λ̃ → B.
Then pg(T )= 0, and h : T → B is a relatively minimal fibration of genus 2. The
configurations of reducible fibers of h is as in Table 1 (see [Cai 2006b, 2.9]), where
q f = q(S)− g(C), and 4(b0), etc (column 5) means h having 4 reducible fibers of
type (b0) and no other reducible fibers.

q f g(B) q(T ) K 2
T configurations of reducible singular fibers of h

1 0 0 0 0 4(b0)
2 0 1 1 0 a nontrivially analytic fiber bundle
3 1 0 1 −4 2(b0)

4 2 0 2 −8 a trivial fiber bundle

Table 1

Since f is a fiber bundle by [Xiao 1985, p. 18], h has constant moduli. Let F
be a general fiber of h. There exists a finite group G acting on F and on some
smooth curve B̃ such that h is birationally isomorphic to (F × B̃)/G → B̃/G.

If h is as in line 4 of Table 1, then clearly (S, σ ) is as in Example 4.1.
Case 1: h is as in line 3 of Table 1. In this case g(F/G)= q(T )−g(B̃/G)= 1.

So |G| = 2 by the Hurwitz formula. Since pg(T ) = 0, we have B̃ ' P1. So T is
birationally isomorphic to (F × B̃)/

〈
λF × γB̃

〉
, where λF is a bielliptic involution

of F , and γB̃ is an involution of B̃. We have a commutative diagram

C̃
µ- C ×B B̃ - B̃

C
?

π -

-

B
?

where π is as in the beginning of the proof and µ is the normalization. Let λC̃ be
the involution of C̃ corresponding to the double cover C̃ → B̃, and γC̃ ∈ Aut C̃ is
the lift of γB̃ . Since the image of reducible fibers of h is contained in the set of
branch points of π , the branch points of B̃ → B are contained in that of π . This
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implies C̃ → C ' C̃/
〈
γC̃

〉
is étale. We have a commutative diagram

F × (C ×B B̃) ' C ×B (F × B̃) - F × B̃

C ×B (F × B̃)/ 〈λF × γ 〉

?
- (F × B̃)/ 〈λF × γ 〉

?

Hence S = (F ×C̃)/
〈
λF × γC̃

〉
and σ = (τF × idC̃)(idF × τC̃)= τF × τC̃ . So (S, σ )

is as in Example 4.2.
Case 2: h is as in line 2 of Table 1. In this case, T ' (F × B̃)/G, where F , B̃

and G are as in Example 4.3. (Since G is an abelian subgroup of AutF , we have
|G| ≤ 4g(F)+4 = 12 (≤ 4g(F)+2 = 10 if G is cyclic). Moreover, when τF 6∈ G,
since 〈τF ,G〉 is also abelian, we have |G| =

1
2 | 〈τF ,G〉 | ≤ 2g(F)+2 = 6. Finally

G 6' Z2 ⊕ Z4 by the Riemann’s existence theorem (see, for instance, [Broughton
1991, Proposition 2.1 or Theorem 4.1]). By the same argument as in Case 1, we
get (S, σ ) is as in Example 4.3.

Case 3: h is as in line 1 of Table 1. Let B ′
→ B be the double cover branched

at four points, which are the image of four singular fibers of type (b0) of h. Let
T ′′

→ T ×B B ′ be the normalization, and h′
: T ′

→ B ′ the relatively minimal
fibration induced by contracting −1-curves contained in the fibers of T ′′

→ B ′.
Since h has only 4 reducible fibers of type (b0(I0)), (b0(I1)) or (b0(I I )) (see [Cai
2006b, Table 1]) and no other reducible fibers, by the construction, each singular
fiber (if any) of h′ is irreducible and reduced. Since h′ has constant moduli, this
implies h′ is a fiber bundle. By [Cai 2006b, Lemma 2.5], q(T ′) = 1. So (h′

:

T ′
→ B ′) ' ((F × B̃)/G → B̃/G), where F , B̃ and G are as in Example 4.3.

This implies h has only 4 reducible fibers of type (b0(I0)) and no other singular
fibers. Hence, for any z ∈ B̃, the order of the stabilizer Gz of z in G is at most
2, and if Gz is not trivial for some z ∈ B̃, then |G|/|Gz| ≤ 4 and the generator of
Gz acts on F as a bielliptic involution. So |G| = 4 or 8. If |G| = 4, then G ' Z2

2
and T is birationally isomorphic to (F × B̃)/

〈
τF × te, λF × (−1B̃)

〉
, where e ∈ B̃

is a nontrivial 2-torsion point, and λF is the involution of F corresponding to the
generator of Gz . If |G| = 8, then G ' Z8, Q8 or D8 by [Broughton 1991, Theorem
4.1]. Since G ↪→ AutB̃, G ' G1 oG2 (a semidirect product), where G1 is a group
of translations and G2 ⊂ AutB̃ is a subgroup preserving the group structure. Since
B̃/G = P1, G2 6= 0, thus G2 ' Zm ( m = 2 or 4). This implies G 6' Z8 or Q8.
Hence G '

〈
te, −1B̃

〉
' D8, where e ∈ B̃ is a nontrivial 4-torsion point. Now by

the similar argument as in Case 1, we get (S, σ ) is as in Examples 4.4 and 4.5. �

Remark 4.8. Let S be a surface isogenous to a product of curves of genus at least 2
(see [Catanese 2000; 2003] for properties of these surfaces), and G ⊂ Aut S be a
nontrivial subgroup of automorphisms of S, inducing trivial actions on H 2(S,Q).
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It is interesting to classify pairs (S,G). Note that fiber surfaces of genus 2 with
K 2

S = 8χ(OS) are isogenous to products of curves. Theorem 4.7 gives a classifica-
tion for such pairs under the condition that one curve of the products has genus 2.
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VECTOR FIELDS, TORUS ACTIONS AND EQUIVARIANT
COHOMOLOGY

JIM CARRELL, KIUMARS KAVEH AND VOLKER PUPPE

We give an explicit connection between the holomorphic equivariant co-
homology as defined by Carrell and Lieberman and the usual equivariant
cohomology of Borel and Cartan.

Let X be a smooth complex projective variety equipped with a C∗-action
with fixed point set Z. By results of Carrell and Lieberman, there exists a
filtration F0 ⊂ F1 ⊂ · · · of H∗(Z, C) such that GrH∗(Z, C) ∼= H∗(X, C) as
graded algebras. We give here an explicit connection between this filtration
and the C∗-equivariant cohomology of X .

1. Introduction

Let X denote a compact Kähler manifold, and suppose V denotes a holomorphic
vector field on X whose zero set Z is nonempty. Let �p

X denote the sheaf of
holomorphic p-forms on X . The contraction operator iV defines a complex of
sheaves

0 →�n
X →�n−1

X → · · · →�1
X →�0

X → 0,

where n = dim X , and an old result of the first author and David Lieberman [1973;
1977] states that the spectral sequence associated to this complex degenerates at its
E1 term, namely H∗(X, �∗) (see Section 2 for a review of this result). This fact,
which uses the Deligne Degeneracy Criterion, implies the vanishing statement

H p(X, �q)= 0 if |p − q|< dim Z ,

and yields a description of the Dolbeault cohomology algebra H∗(X, �∗

X ) of X as
the graded C-algebra associated to the filtration of the hypercohomology H∗(K X ),
which is a ring since iV is a derivation. Although this result has enabled descrip-
tions of cohomology in a number of special cases, for example, algebraic homo-
geneous spaces [Akyıldız 1982; Carrell 1992], Schubert varieties [Carrell 1992]
and toric varieties [Kaveh 2005], the proof itself in [Carrell and Lieberman 1977]
doesn’t give any insight into how the filtration can be described. This problem is the
motivation of the present paper. In fact, we will show that equivariant cohomology

MSC2000: primary 14F43; secondary 57R91.
Keywords: equivariant cohomology, holomorphic vector field, equivariant vector field, torus action.
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and localization give a more transparent way of approaching the theory, provided
that V is generated by a C∗-action, which also solves the filtration question.

Throughout the paper, V will denote a holomorphic vector field generated by
a C∗-action. The only assumption on the fixed point set Z of this action is that
it be nonempty. It is well known that Z is also a smooth Kähler subvariety. Let
H p,q(X) = Hq(X, �p), and recall the Hodge decomposition of the cohomology
algebra of X :

H∗(X,C)=

⊕
p+q=∗

H p,q(X).

Also, for each s ∈ Z, put

Hs(X)=

⊕
q−p=s

H p,q(X).

Then H∗(X) is a graded C-algebra. Note that H∗(X,C) =
⊕

s Hs(X) (but not as
graded algebras). The following result summarizes what is known in this setting.

Theorem 1.1. Let X be compact Kähler and admit a C∗-action with a nonempty
fixed point set Z. Let V be the holomorphic vector field on X determined by this ac-
tion and K ∗

X the hypercohomology determined by the spectral sequence associated
to V . Then, for all s ∈ Z:

(i) dim H s(K ∗

X )= dim Hs(X);

(ii) there exists a C-algebra isomorphism

H s(K ∗

X )
∼= Hs(Z);

(iii) we have ∑
q−p=s

dim H p,q(X)=

∑
q−p=s

dim H p,q(Z);

(iv) there exists a filtration of H∗(Z) that yields an isomorphism of graded rings⊕
s

Hs(X) ∼= Gr H∗(Z).

In the above, (i) follows from the degeneracy of the spectral sequence of V . The
isomorphism (ii) is proven in [Carrell and Sommese 1979], and (iii) follows from
the first two parts. The last is in fact treated in several papers, for example, [Carrell
and Sommese 1979; Fujiki 1979; Ginzburg 1987]. Also see [Feng 2003] for a proof
that doesn’t use C∗-actions but assumes V vanishes transversely along Z .

Spaces admitting a C∗-action often have the property that H p,q(X) = 0 if
p 6= q (for example, algebraic homogeneous spaces, projective toric varieties
and, more generally, spherical varieties). For such X , H 2p(X,C) = H p(X, �p)

and H 2p+1(X,C) = 0 for all p ≥ 0. By (iii), the same is true for Z . Thus,
Hs(X) = H 2s(X,C) and similarly H∗(Z) = H∗(Z ,C). Hence the map in (iv)
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reduces to the graded C-algebra isomorphism

H∗(X,C) ∼= Gr H∗(Z ,C).

We note, however, that the filtration on H∗(Z ,C) has nothing to do with the natural
filtration arising from the usual grading of cohomology.

The plan of the paper is as follows. We will use Section 2 to review the spectral
sequence of a holomorphic vector field and Section 3 to recall some basic facts
about equivariant cohomology and the Cartan complex. Our main results, The-
orems 4.2 and 4.4, are proved in Section 4. Theorem 1.1 follows readily from
these two results. In Section 5, we give a simple proof of a result in [Carrell 1995]
on regular actions, namely, actions of the 2 × 2 upper triangular matrices over
C of determinant one such that the unipotent subgroup has a unique fixed point.
The equivariant cohomology of these varieties was described in [Brion and Carrell
2004]. In Section 6 we consider some examples.

A few comments about the proofs in Section 4 are in order. Let T denote the
compact torus in C∗, and suppose H∗

T (X,C) denotes the T -equivariant cohomology
of X over C. One knows H∗

T (X,C) is a free C[t]-module of rank H∗(X,C), so,
as a C[t]-module, H∗

T (X,C) ∼= C[t] ⊗ H∗(X,C). Recently, Teleman [2000] and
Lillywhite [2003] have defined Dolbeault equivariant cohomology groups H p,q

T,∂
(X)

for X and showed that H∗

T (X,C) admits the usual Hodge decomposition provided
X is compact Kähler. This allows us to define the groups Hs

T (X) analogous to the
groups Hs(X) defined above. We will show that evaluating polynomials at t = 1
gives a map (of C-algebras) H∗

T (X,C) → H∗(K ∗

X ). (This idea is suggested by a
paper of the third author [Puppe 1979/80].) The key result Theorem 1.1(ii) follows
from localization in equivariant cohomology. The filtration of H∗(K ∗

X ) essentially
turns out to be the image of a canonical filtration of H∗

T (Z ,C)→ H∗(K ∗

Z )=H∗(Z)
via the above “strange” map.

2. Zeros of holomorphic vector fields and cohomology

The purpose of this section is to review the spectral sequence associated to a
holomorphic vector field [Carrell and Lieberman 1973; 1977]. Let X denote a
connected compact Kähler manifold of dimension n with sheaf of holomorphic
functions OX and sheaves �p

X of holomorphic p-forms for p > 0. The contraction
operator iV :�

p
X →�

p−1
X defines the Koszul complex

0 →�n
X →�n−1

X → · · · →�1
X → OX → 0.

In addition, for all φ, ω ∈�∗

X ,

iV (φ ∧ω)= iVφ ∧ω+ (−1)pφ ∧ iVω
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if φ ∈ �
p
X . Let Ap,q(X) denote the smooth forms on X of type (p, q). The ∂

operator Ap,q
→ Ap,q+1 anticommutes with iV , so (∂ − iV )

2
= 0. Put

(1) K s
X =

⊕
q−p=s

Ap,q ,

and define D : K s
X → K s+1

X to be ∂ − iV . Then because D2
= 0, we obtain

cohomology groups H s(K ∗

X ). Moreover, K ∗

X is a differential graded algebra under
the exterior product, so the cohomology groups form a graded C-algebra H∗(K ∗

X ).
Let F• = F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fn be the filtration of the double complex A∗,∗(X),
with Fi =

⊕
r≤i Ar,∗(X). Since iV is a derivation, we obtain filtrations F•H s(K ∗

X )

for all s such that

Fi H s(K ∗

X )F j H t(K ∗

X )⊂ Fi+ j H s+t(K ∗

X ).

Now consider the spectral sequence

(2) E−p,q
1 = Hq(X, �p

X )⇒ Hq−p(K ∗

X ).

The main result is:

Theorem 2.1 [Carrell and Lieberman 1973; 1977]. If V has zeros, then all differ-
entials in (2) are trivial. Consequently E1 = E∞, and there are C-linear isomor-
phisms

(3) H p+s(X, �p
X

)
∼= Fp H s(K ∗

X )/Fp−1 H s(K ∗

X ),

for every p ≥ 0 and s which give an isomorphism of bigraded C-algebras

(4)
⊕
p,s

H p+s(X, �p
X )

∼=

⊕
p,s

Fp H s(K ∗

X )/Fp−1 H s(K ∗

X ).

3. Remarks on equivariant cohomology

In this section, we will briefly recall the two basic definitions of equivariant co-
homology due to Borel and Cartan, and state a recent result of Teleman [2000,
Theorem 7.3] and Lillywhite [2003, §5.1] on equivariant Dolbeault cohomology.
Suppose G is a compact topological group acting on a space M . It is well known
that there exists a contractible space EG with a free G-action. The quotient
BG = EG/G is called the classifying space of G. Put

MG = (M × EG)/G.

The equivariant cohomology of M over C is defined to be

H∗

G(M)= H∗(MG,C).
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If G is a compact torus, say T , then H∗

T (point) = H∗(BT ) is identified with the
polynomial ring S = C[Lie(T )], which is graded by assigning degree two to linear
forms on Lie(T ). Thus, H∗

T (M) is an S-module (via the natural map π : MT →

BT ), and one has the following fundamental fact:

Theorem 3.1 (Localization Theorem). Suppose the compact torus T acts on a
space M which admits an equivariant imbedding into a representation of T . Then
the kernel as well as the cokernel of the canonical map

i∗
: H∗

T (M)→ H∗

T (M
T )

induced by the inclusion i : MT ↪→ M are torsion modules over S. Thus if H∗

T (M)
is a free module over S, then i∗ is injective. Moreover, i∗ becomes an isomor-
phism after inverting elements of a finitely generated multiplicative subset of the
polynomial algebra S.

If H∗

T (M) is a free S-module, then the action of T on M is said to be equivariantly
formal. Equivalently, M is equivariantly formal if the spectral sequence of the
fibration MT → BT collapses.

Remark 3.2. By a result of Frankel [1959], a C∗-action with fixed points on a com-
pact Kähler manifold is equivariantly formal for the compact torus T = S1

⊂ C∗.
More generally, by a theorem of Kirwan, every Hamiltonian T -action on a compact
symplectic manifold is equivariantly formal [1984, Proposition 5.8]. Moreover, the
hypotheses of Theorem 3.1 hold in the compact symplectic (in particular, compact
Kähler) case. For further examples of equivariantly formal spaces, see [Goresky
et al. 1998, §14.1].

To recall Cartan’s construction of equivariant cohomology [1951], we will assume
the space M is a smooth manifold on which T acts smoothly. Let�∗(M) be the De
Rham complex of C-valued forms on M . Define �∗

T (M) to be the complex con-
sisting of all the polynomial maps f : Lie(T )→ (�∗(M))T . Here the superscript
denotes the T -invariants. This is equivalent to defining�∗

T (M)= (�
∗(M)⊗C S)T .

In particular
�∗

T :=�∗

T (point)= ST
= S.

The grading on �∗

T (M) is defined by deg( f ) = n + 2p, if x 7→ f (x) is of degree
p in x and f (x) ∈�n(M). The differential

dT :�∗

T (M)→�∗

T (M)

of this complex is defined by

(dT f )(x)= d( f (x))− iVx f (x),

where iVx is the contraction with the vector field Vx on M generated by x ∈ Lie(T ).
Then dT ◦ dT = 0 and dT increases the degree in �∗(M) by 1.
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Theorem 3.3 [Cartan 1951]. H∗

T (M) and H∗(�∗

T (M), dT ) are isomorphic graded
C-algebras.

If M is a complex manifold and T acts via holomorphic transformations, a Dol-
beault version of T -equivariant cohomology is constructed in a similar way. For
x ∈Lie(T ), let Vx = Wx +Wx be the splitting of the generating vector field of x into
holomorphic and antiholomorphic components. Imitating the Cartan construction,
let Ap,∗

T (M) be the complex of all polynomial maps f from Lie(T ) to (Ap,∗(M))T .
(Note again that this is the same as defining AT

p,∗(M) = (Ap,∗(M) ⊗C S)T ).
Giving bidegree (1, 1) to the generators of S defines a bigrading on the algebra
A∗,∗

T (M)=
⊕

p,q Ap,q
T (M). Define the differential ∂T on Ap,∗

T (M) by

(∂T f )(x)= ∂( f (x))− iWx f (x).

The q-th cohomology of the complex (Ap,∗
T (M), ∂T ) is called the (p, q)-th equi-

variant Dolbeault cohomology of M . It is denoted by H p,q
T (M). Finally, put

H m
T,∂
(M)=

⊕
p+q=m

H p,q
T (M).

We now state a recent result of Lillywhite [2003] and Teleman [2000].

Theorem 3.4 (Equivariant Hodge Decomposition). If X is a compact Kähler man-
ifold with an equivariantly formal T -action by holomorphic transformations, then
H∗

T,∂
(X) is a free S-module, and there exists an isomorphism

H∗

T (X)∼= H∗

T,∂(X)

of graded C-algebras.

Finally, we recall the definition of the equivariant Chern classes of a vector bundle.
Let E be a complex vector bundle over the a space M on which T acts, and suppose
E has a linear action of T lifting the action of T . The projection map p : E → M
defines a map from ET = E ×T ET to MT = X ×T ET . This makes ET a vector
bundle over MT . The r -th equivariant Chern class of E , denoted by cT

r (E), is
defined to be the r -th Chern class of ET . It is clear that cT

r (E) ∈ H 2r
T (M).

Remark 3.5. We will need the following fact in Section 5: suppose M is connected
and the action of T on M is trivial. Let E be a line bundle with a T -action as above.
Let the weight of action of T on each fibre of E be ω. Then

(5) cT
1 (E)= −ω+ c1(E)

in H 2
T (X)= (S ⊗ H∗(X))2.
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4. The main results

Now let X denote a connected compact Kähler manifold of dimension n having a
C∗ action with nonempty fixed point set Z , and let T be the compact torus in C∗.
Let V be the generating vector field of 1 ∈ C = Lie(C∗), and, as before, let K ∗

X
denote the total complex of the Koszul complex of the vector field V . It is well
known that X T

= Z . From now on, S = C[t].
The purpose of this section is to derive the results about the spectral sequence of

V (in particular, to prove Theorem 1.1) using Dolbeault T -equivariant cohomology
and to obtain a new picture of the filtration F• = F0 ⊂ F1 ⊂ · · · ⊂ Fn of H∗(K ∗

X ).
We first define a chain map 8̃X : A∗,∗

T (X) → K ∗

X . Recall that an element of
A∗,∗

T (X) is a polynomial map f : t → (A∗,∗(X))T . By Definition (1), if f ∈

Ap,q
T (X), then f (1) ∈ K q−p

X . Therefore, put

8̃( f )= f (1).

Proposition 4.1. 8̃ is a cochain map. That is, for f ∈ A∗,∗
T (X), we have

8̃(∂T f )= D(8̃( f )).

Proof. 8̃(∂T f )= 8̃(∂ f (x)− iVx f (x))= ∂ f (1)− iV f (1)= D( f (1))= D(8̃( f )).
Here Vx and V are the generating vector fields of x ∈ Lie(T ) and 1 ∈ Lie(T ). �

It is now convenient to put Hs
T (X) =

⊕
i H i,i+s

T (X). Note that by Theorem
3.4, H∗

T (X)=
⊕

s Hs
T (X). This gives a new grading on H∗

T (X) by S-submodules.
We will denote H∗

T (X) with this grading by H∗

T (X). By the above proposition, 8̃
induces a map

(6) 8X,s : Hs
T (X)→ H s(K ∗

X ).

It is not hard to check that the 8X,s give a C-algebra homomorphism.
Let π denote the natural map π : H p,p+s

T (X) → H p,p+s(X) induced by the
inclusion X ↪→ XT . By equivariant formality, the ordinary cohomology sequence

(7) 0 → S+H∗

T (X)→ H∗

T (X)→ H∗(X)→ 0

is exact (compare [Brion 1998, Section 1]), so by the equivariant Hodge decom-
position, π is surjective for all p, s.

Let H∗(X) denote H∗(X,C) and grade it with the decomposition H∗(X) =⊕
s Hs(X), as defined in Section 2. For any C-vector space V and a ∈ C, let V [a]

denote the S-module structure on V where t acts via multiplication by a. Note
that dim V [a] is the same for all a. By (7), we have another exact sequence of
S-modules

0 → S+Hs
T (X)→ Hs

T (X)→ Hs(X)[0] → 0,
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where S+ denotes the ideal generated by t . Hence

Hs(X)[0] ∼= Hs
T (X)/S+Hs

T (X)∼= Hs
T (X)⊗S C[0],

and therefore

dim(Hs
T (X)⊗S C[0])= dim Hs(X)=

∑
i

dim H i,i+s(X),

We now prove the first three assertions of Theorem 1.1. First, notice that the
chain map 8X,s in (6) induces a map 8̂X,s : Hs

T (X) ⊗S C[1] → H s(K ∗

X )[1] =

H s(K ∗

X ).

Theorem 4.2. The following statements hold for each integer s.

(i) 8̂X,s : Hs
T (X)⊗S C[1] → H s(K ∗

X ) is a C-linear isomorphism.

(ii) The inclusion mapping iZ : Z → X induces a C-algebra isomorphism

i∗

Z : H s(K ∗

X )
∼= H s(K ∗

Z )= Hs(Z).

(iii) In particular,
∑

i dim H i,i+s(X)=
∑

i dim H i,i+s(Z).

Proof. The Localization Theorem 3.1 implies the map i∗

Z induces an isomorphism

Hs
T (X)⊗S C[1] ∼= Hs

T (Z)⊗S C[1].

Since Hs
T (Z)⊗S C[0] ∼= Hs(Z)= H s(K ∗

Z ), and since dim(Hs
T (X)⊗S C[a]) is the

rank of Hs
T (X) as a free S-module for any a, we get an isomorphism Hs

T (X)⊗S

C[1] ∼= H s(K ∗

Z ), which is nothing more than i∗

Z 8̂X,s . It follows that 8̂X,s is injec-
tive.

To prove part (i), it remains to show 8̂X,s is surjective. It suffices to show that
8X,s is. By standard reasoning about the spectral sequence of a double complex,
we have an edge map ep,s : Fp H s(K ∗

X ) → H p,p+s(X) whose kernel contains
Fp−1 H s(K ∗

X ). Let f (t) =
∑

i wi t i , where each wi ∈ Ap−i,p+s−i (X) represents
a class in H p,p+s

T (X). By definition, 8X,s( f )=
∑

i wi . Moreover,

π( f )= w0 = ep,s
(∑

i

wi
)
.

In other words, we get the following commutative diagram.

H p,p+s
T (X)

π

��

8X,s // Fp H s(K ∗

X )

ep,sxxppppppppppp

H p,p+s(X)

Since π is surjective, it follows from this that 8X,s is surjective. This concludes
the proof of (i). The statements (ii) and (iii) follow immediately. �



VECTOR FIELDS, TORUS ACTIONS AND EQUIVARIANT COHOMOLOGY 69

Remark 4.3. Theorem 4.2(i) is analogous to the corollary in [Puppe 1974, p. 13].
The proof of Theorem 4.2 implies that the subcomplex of the Koszul complex
consisting of T -invariant forms is quasi-isomorphic to the Koszul complex itself.
By first proving this result directly (which is similar to the well-known result that
invariant forms in the deRham complex determine the deRham cohomology) and
then using that the equivariant Dolbeault evaluated at t = 1 is just the invariant
Koszul complex, one gets an alternative proof of Theorem 4.2. In this context,
the evaluation at t = 1 is exact, and hence commutes with homology, whereas the
evaluation at t = 0 is not.

Theorem 4.2 realizes two of the goals of the paper: a simple proof that i∗

Z is a quasi-
isomorphism, and a proof of the isomorphism (3) of Theorem 2.1 that doesn’t use
the Deligne Degeneracy Criterion. We note that the isomorphism (4) is a formal
consequence of the fact that iV is a derivation.

Let us now comment further on the filtrations. Let 8̂X : H∗

T (X)⊗S C[1] →

H∗(K ∗

X ) be the morphism obtained by combining the 8̂X,s . Note that 8̂X is a
C-algebra isomorphism, but not an isomorphism of graded algebras. However,
H∗

T (X)⊗S C[1] and H∗(K ∗

X ) are both canonically filtered, the former being the
filtration induced from the grading on H∗

T (X) and the latter being the filtration in-
troduced in Section 2. More explicitly, if p ≥ 0, put FpHs

T (X)=
⊕

i≤p H i,i+s
T (X).

If 8X,s is the map defined in (6), then, by definition,

(8) 8X,s
(
FpHs

T (X)
)
⊂ Fp H s(K ∗

X ).

Note that 8X,s can be described as the map obtained by composing 8̂X,s and the
natural map from H∗

T (X) to H∗

T (X)⊗S C[1] sending α to α⊗S 1.
We can now give a geometric description of the filtration of H∗(K ∗

X ). Let RX

denote the algebra H∗

T (X)/S+H∗

T (X). Since the ideal S+H∗

T (X) is homogeneous
with respect to the grading of H∗

T (X), RX inherits a grading from H∗

T (X).

Theorem 4.4. The mapping 8X is a surjection of filtered rings. That is, for all s,

8X,s
(
FpHs

T (X)
)
= Fp H∗(K ∗

X ),

and RX is isomorphic to both H∗(X) and Gr H∗(K ∗

X ) as graded algebras.

Proof. This follows from (8) and Theorem 4.2(i). �

Since the inclusion map iZ : Z → X induces a quasi-isomorphism, we immedi-
ately obtain a description of the filtration of H∗(K ∗

Z ) whose associated graded is
H∗(X).

Corollary 4.5. For each p ≥ 0,

8Z ◦ i∗

Z

( ⊕
0≤i≤p

H i,i+s
T (X)

)
= Fp H s(K ∗

Z ).
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We will give an example of how to use this result in the next section. Note also
that the natural map

1p : H p,p+s
T (X)→ Fp H s(K ∗

X )→ H p(X, �p+s
X )

can be described as the p-th derivative map

1p( f )=
1
p!

f (p)(1).

We now use Theorem 4.2 to prove a vanishing theorem which extends the van-
ishing result H p,q(X)= 0 if |p − q|> dim Z .

Theorem 4.6. If |p − q|> dim Z , then H p,q
T (X)= 0.

Proof. Since H∗

T (Z)= S ⊗C H∗(Z), it follows that

H p,q
T (Z)=

⊕
i≤min(p,q)

Si
⊗C H p−i,q−i (Z).

But |p − q| = |(p − i)− (q − i)| > dim Z , so H p,q
T (Z) = 0 as well. By Theorem

3.4, H p,q
T (X) ⊂ H p+q

T (X), so the result follows from the Localization Theorem
3.1 since i∗

(
H p,q

T (X)
)
⊂ H p,q

T (Z)⊂ H p+q
T (Z). �

5. An application

The purpose of this section is to apply our main result to give a simple proof of
a fact about the cohomology ring of a regular variety originally proved in [Carrell
1995]. A smooth projective variety X over C that admits an action of the upper
triangular subgroup B of SL2(C) whose unipotent radical U has a unique fixed
point o is said to be regular. Let T denote the diagonal torus in B, and let T be the
maximal compact torus in T. One knows [Carrell 1995] that XT

= X T is finite,
and, moreover, o ∈ X T . In fact, let λ : C∗

→ T be the isomorphism

t →

(
t 0
0 t−1

)
.

Then the Bialynicki–Birula cell Xo = {x ∈ X | limt→∞ λ(t) ·x = o} is a T-invariant
open set in X isomorphic with Cn for n = dim X , and there exist affine coordinates
u1, . . . , un on Xo that are quasihomogeneous of positive degree with respect to the
Gm-action on X induced by λ. This grading on C[Xo] = C[u1, . . . , un] is called
the principal grading. The principal filtration P• of C[Xo] is given by

Pi C[Xo] =

∑
j≤i

C[Xo]
j ,
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where C[Xo]
j denotes the subspace generated by the homogeneous elements of

degree j . Finally, let

µ(a)=

(
1 a
0 1

)
,

and let Ta (a ∈ C∗) be the torus µ(a)Tµ(a)−1. We will now prove the following
result.

Theorem 5.1. Suppose X is regular. Then X Ta ⊂ Xo, so H 0(X Ta ) is a quotient
of C[Xo] for any a ∈ C∗. Hence it inherits a natural filtration from the principal
filtration of C[Xo], so let GrP H 0(X Ta ) denote the associated graded ring. Then

H∗(X)∼= GrP H 0(X Ta ).

Proof. We will only prove the theorem for a = 1. The proof for other values of a
is similar, after the map 8X has been modified. Put X T

= {x1, . . . , xr }. Now the
diagonal action of B on X × P1 is also regular, with fixed point (o, 0), where 0
represents [1, 0] in P1. Let

Z =

r⋃
i=1

{(µ(u) · xi , u−1) | u 6= 0}.

Let Z be the reduced intersection Z ∩ (Xo × C). Clearly, Z is T-stable, hence its
coordinate ring C[Z] has a natural (principal) grading. In addition, the projection
p2 induces a C[v]-module structure on the coordinate ring C[Z], where v denotes
a coordinate function on C.

By a result of Brion and the first author [2004, Theorem 1], the coordinate ring
C[Z] is isomorphic as a graded C-algebra to the equivariant cohomology algebra
H∗

T (X). In fact, an isomorphism

ρ : H∗

T (X)→ C[Z]

is defined as follows. Since the odd cohomology of X is trivial (because X T is
finite), the action T : X is equivariantly formal, so the restriction map i : H∗

T (X)→
H∗

T (X
T ) is injective. Note that

H∗

T (X
T )=

r⊕
i=1

C[v]i ,

where v is an indeterminate and C[v]i = H∗

T ({xi }). Thus each α ∈ H∗

T (X) is
determined by an r -tuple of polynomials (A1, . . . ,Ar ) in C[v]. Now if (x, a) ∈

Z−(o, 0), then x =µ(a−1)·x j for a unique index j , where a 6=0. The restriction of
α at x j is a polynomial function A j (v). The isomorphism ρ is defined by making
ρ(α) the unique function on Z defined by ρ(α)(x, v)= A j (v), if x = µ(a−1) · x j .
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Now note that H∗

T (X) = H0
T (X). Furthermore, µ(1) : X → X defines an iso-

morphism H∗

T (X) ∼= H∗

T1
(X). Thus, we obtain a sequence of maps

C[Z]
ρ−1

−→ H∗

T (X)
µ(1)∗
−→ H∗

T1
(X)

8X
−→ H 0(K ∗

X )=

⊕
X T1

C,

where K ∗

X denotes the complex associated to the holomorphic vector field gener-
ated by the torus T1. The composition 9X of these maps sends F ∈ C[Z] to the
r -tuple ρ−1(F)(1)=8Xρ

−1(F), which, by Theorem 4.4, gives us the result. �

6. Examples

The first example deals with a Gm-action on Pn having two components of different
dimensions.

Example 6.1. Let X = Pn , and let C∗ act on X via

t · [a0, a1, . . . , an] = [a0, a1, . . . , tan].

Then X T
= X1 ∪ X2, where X1 = {[0, 0, . . . , 0, 1]}, and X2 = V (an) ∼= Pn−1.

Because H p,q
T (X) = 0 for p 6= q , we have H p,p

T (X) = H 2p
T (X), Hs

T (X) = 0
for s 6= 0, and H0

T (X) = H∗

T (X). Similarly, H∗

T (X
T ) = H0

T (X
T ). The image of

H∗

T (X) in H∗

T (X
T ) consists of all triples (α, β, γ ) satisfying α ∈ H∗

T (X1)∼= C[t];
β ∈ H∗

T (X2) ∼= C[t] ⊗ H∗(X2) with α(0) = β0(0), where β0 is the component of
β in C[t] ⊗ H 0(X2); and γ =

∑
cT

1 (Ei ), where the Ei are vector bundles on X T
2 .

Recall from (5) that cT
1 (E)= mt +c1(Ei ), where tm is the weight of the Gm-action

on the bundle on X that restricts to Ei . The cochain map 8X sends t → 1.

Example 6.2 (Toric varieties [Kaveh 2005]). Let M = (C∗)n , and let X be a
smooth projective M-toric variety. Let t = Lie(M) and tR ⊂ t be the real vector
space generated by the lattice of characters of M . Let γ be a 1-parameter subgroup
of M in general position in the sense that the fixed point set Z of the C∗-action
defined by γ coincides with X M . Hence H p,q(X)= 0 if p 6= q , so it follows that
H0(X)= H∗(X,C). Now let

F0 ⊂ F1 ⊂ · · · ⊂ Fn = H 0(Z ,C)

be the associated filtration. Finally, let 6 be the fan of X in tR. Each z ∈ Z
corresponds to a cone of maximal dimension σz in 6.

The equivariant cohomology H∗

T (X,C), where T = (S1)n ⊂ (C∗)n , can be
described as the algebra A of all continuous functions on tR whose restriction
to each cone of 6 is given by a polynomial (conewise polynomial). Under this
identification, H 2i

T (X,C) corresponds to the subspace Ai of A consisting of those
functions whose restriction to each cone of maximal dimension is homogeneous
of degree i .
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Let Q denote the compact torus γ (S1). Then one can verify that the map8Z ◦i∗

Z :

H∗

Q(X) → H 0(Z ,C) in Corollary 4.5 sends the restriction to Q of a continuous
conewise polynomial function g to an element g̃ : Z → C defined by

g̃(z)= g|σz (γ ).

It follows from Corollary 4.5 that g ∈ Ai if and only if g̃ ∈ Fi . The fact that
Fi/Fi−1 ∼= H 2i (X,C) was verified in [Kaveh 2005] using [Carrell and Lieberman
1977].

Example 6.3 (The flag variety G/B). Let G be a connected semisimple group
over C, B a Borel subgroup and X = G/B the flag variety of G. Let H be a
maximal (algebraic) torus in B and h = Lie(H). Recall that the fixed point set X H

under left multiplication by H is in one-to-one correspondence with the Weyl group
W = NG(H)/H under the map w = nH → nB. Since H p,q(X) = 0 for p 6= q,
it follows that H s(K ∗

X ) = 0 if s 6= 0 for the holomorphic vector field induced by
any one parameter subgroup of H . Now, H∗

H (X,C) is isomorphic as a C-algebra
to S ⊗SW S where SW denotes the subalgebra of W -invariants (see [Brion 1998, §2
Examples]).

We will first consider the regular case, which is well known but will be used in
treating the general case.

(a) Suppose h ∈ h induces a regular one parameter subgroup. That is, Z = X H .
Equivalently, the isotropy group Wh of h is trivial. Thus H 0(K ∗

X ) = H 0(Z ,C) =

CW under the identification Z = W . The map H∗

H (G/B,C)→ H 0(Z ,C) obtained
by localizing and setting t = 1 is described as follows. Let S = C[h]. Now,
H∗

H (X,C) is isomorphic as a C-algebra to S ⊗SW S where SW denotes the sub-
algebra of W -invariants (see [Brion 1998, §2 Examples]). Since H∗(G/B,C) is
generated by the Chern classes of line bundles, and such line bundles are always
H -equivariant, we need only consider the image of an equivariant Chern class
cH

1 (Lλ), where Lλ denotes the line bundle corresponding to a weight λ ∈ h∗. But
it can be shown that cH

1 (Lλ) = −
∑

w∈W 1 ⊗ (w · λ), and so cH
1 (Lλ) is sent to the

element fλ ∈ H 0(Z ,C) defined by the condition

(9) fλ(w)= −〈w · λ, h〉.

This coincides with the representative of c1(Lλ) on H 0(Z ,C) calculated, for ex-
ample, in [Carrell 1992]. The upshot is that F1 is the image of h∗ under the quotient
map S → C[W · h]. This reproves the result that H∗(X,C) = Gr C[W · h], where
the grading is taken with respect to the filtration obtained as the image of the
filtration of S associated to its natural grading. Note that C[W ·h] is the algebra of
polynomials on the Weyl group orbit W · h.
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(b) Suppose the element h is nonregular. Let 8 be the root system of (G, H) and
8h = {α ∈8 | α(h)= 0}. Put

h0 =

⋂
α∈8h

kerα,

and let H0 ⊂ H be the corresponding torus. Finally, let L denote the Levi subgroup
L = ZG(H0). For example, if G = GL(n,C), and H is the diagonal torus, put h =

diag(a1 In1, a2 In2, . . . , anr Inr ), where Il is the l×l identity matrix, n1+· · ·+nr = n
and ai 6= a j when i 6= j . Then L = GL(n1,C)×· · ·× GL(nr ,C). Then the Weyl
group WL of L is the isotropy subgroup of h in W . Now Z = X H0 is a union of the
flag varieties of L . More precisely, for w ∈ W , let Zw be the connected component
of Z containing wB ∈ X H . One sees that each Zw is isomorphic to L/L ∩ B and
Zw = Zw′ for w,w′ in the same right coset of WL . Thus

Z =

⋃
w∈WL\W

Zw.

Hence H∗(Z ,C)=
⊕

w∈WL\W H∗(L/L ∩ B). To obtain the filtration of H∗(Z ,C),
take an element t ∈ h that determines a regular 1-parameter subgroup of H . Let
Z ⊂ h ⊕ h be the W -orbit of (h, t), where W acts diagonally on h ⊕ h. One can
write

Z =

⋃
w∈WL\W

Zw,

where Zw = {(w−1
· s, w−1u−1

· t) | u ∈ WL}. The elements of Z are in one-to-one
correspondence with X H , and each Zw corresponds to the H -fixed points in Zw.
Let C[Z] and C[Zw] denote the coordinate rings of Z and Zw, respectively. From
part (a), H∗(Zw) ∼= Gr C[Zw] for any w ∈ WL\W , where the filtration on C[Zw]

is induced by the degree. Hence

H∗(Z ,C)∼=

⊕
w∈WL\W

Gr C[Zw].

Put A =
⊕

w∈WL\W Gr C[Zw]. The following shows that the filtration on A is
induced by the natural filtration on C[Z] given by the degree.

Proposition 6.4. An element ( fw) ∈ A lies in Fi if and only if there exists an
element f ∈ C[Z] with degree ≤ i and whose restriction to Zw is a representative
for fw in Gr C[Zw].

Proof. Note that the result of part (a) implies that H∗(X,C) is generated by
H 2(X,C). Hence the filtration is generated by F1, that is, Fi consists of all poly-
nomials in the elements of F1 of degree ≤ i . Hence it is enough to verify the claim
for F1. Consider the line bundle Lλ on X corresponding to a dominant weight λ,
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and let Lλ,w be the restriction of Lλ to the small flag variety Zw. Then, for each
w ∈ WL\W , the weight of the action of s on Lλ,w is 〈λ,w−1

· s〉. From (5),

(10) cs
1(Lλ,w)= −〈λ,w−1

· s〉 + c1(Lλ,w),

where cs
1 denotes the equivariant Chern class for the C∗-action induced by s. Then,

from Theorem 4.4, (9) and (10) it follows that c1(Lλ,w) corresponds to the element
( fλ,w) represented by the function

(11) (w−1
· s, w−1u−1

· t) 7→ −〈λ,w−1
· s〉 − 〈λ,w−1u−1

· t〉.

Now let fλ be the linear function on h⊕h given by f (x, y)= −λ(x)−λ(y). From
(11), the restriction of fλ to Zw gives a representative for fw ∈ Gr C[Zw]. The
Proposition now follows because the c1(Lλ) span H 2(X,C). �
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UNIQUENESS OF THE CHEEGER SET OF A CONVEX BODY

VICENT CASELLES, ANTONIN CHAMBOLLE AND MATTEO NOVAGA

We prove that if C ⊂ RN is of class C2 and uniformly convex, the Cheeger
set of C is unique. The Cheeger set of C is the set that minimizes, inside C,
the ratio of perimeter over volume.

1. Introduction

For a nonempty open bounded subset � of RN , the Cheeger constant of � is the
quantity

(1) h� = min
K⊆�

P(K )
|K |

.

Here |K | denotes the N -dimensional volume of K and P(K ) denotes the perimeter
of K . The minimum in (1) is taken over all nonempty sets of finite perimeter
contained in �. A Cheeger set of � is any set G ⊆ � which minimizes (1). If �
minimizes (1), we say that it is Cheeger in itself. We observe that the minimum in
(1) is attained at a subset G of � such that ∂G intersects ∂�: otherwise we could
diminish the quotient P(G)/|G| by dilating G.

For any set K of finite perimeter in RN , define

λK :=
P(K )
|K |

.

Thus λG = hG for any Cheeger set G of �. Moreover, G is a Cheeger set of � if
and only if G minimizes

(2) min
K⊆�

P(K )− λG |K |.

We say that a set �⊂ RN is calibrable if � minimizes the problem

(3) min
K⊆�

P(K )− λ�|K |.
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Keywords: convex bodies, variational problems.
Caselles was partially support by the Departament d’Universitats, Recerca i Societat de la Informació
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Any Cheeger set G of � is clearly calibrable. Thus, � is a Cheeger set of itself if
and only if it is calibrable.

Finding the Cheeger sets of a given � is a difficult task. The task is simplified
if � is a convex set and N = 2. In that case, the Cheeger set of � is unique and
equals the set �R

⊕ B(0, R), where �R
:= {x ∈� : dist(x, ∂�) > R} is such that

|�R
| = πR2 and A ⊕ B := {a + b : a ∈ A, b ∈ B}, for A, B ⊂ R2 [Alter et al.

2005b; Kawohl and Lachand-Robert 2006]. In particular, in this case the Cheeger
set is convex.

A convex set �⊆ R2 is Cheeger in itself if and only if ess supx∈∂�κ�(x)≤ λ�,
where κ�(x) denotes the curvature of ∂� at the point x . This has been proved in
[Giusti 1978; Bellettini et al. 2002; Kawohl and Lachand-Robert 2006; Alter et al.
2005b; Kawohl and Novaga 2006], though it was stated in terms of calibrability
in the second and fourth of these references. The proof in [Giusti 1978] had a
complementary result: if � is Cheeger in itself then � is strictly calibrable, that is,
for any set K (�, we have

0 = P(�)− λ�|�|< P(K )− λ�|K |.

(This implies that the gravity-less capillary problem with vertical contact angle at
the boundary, given by

(4)

−div
Du√

1 + |Du|2
= λ� in �,

−
Du√

1 + |Du|2
· ν� = 1 in ∂�,

has a solution. Indeed, the two problems are equivalent [Giusti 1978; Kawohl and
Kutev 1995].)

Our purpose in this paper is to extend the preceding result to RN , that is, to
prove the uniqueness and convexity of the Cheeger set contained in a convex set
�⊂ RN . We have to assume, in addition, that � is uniformly convex and of class
C2. This regularity assumption is probably too strong, and its removal is the subject
of current research [Alter and Caselles 2007]. The characterization of a convex set
�⊂ RN of class C1,1 which is Cheeger in itself (also called calibrable) in terms of
the mean curvature of its boundary was proved in [Alter et al. 2005a]. The precise
result states that such a set � is Cheeger in itself if and only if κ�(x) ≤ λ� for
almost any x ∈ ∂�, where κ�(x) denotes the sum of the principal curvatures of
the boundary of �, which is to say, N−1 times the mean curvature of ∂� at x .
In [Alter et al. 2005a] it was also proved that for any convex set � ⊂ RN there
exists a maximal Cheeger set contained in � which is convex. These results were
extended to convex sets � satisfying a regularity condition and anisotropic norms
in RN (including the crystalline case) in [Caselles et al. 2005].
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In particular, we obtain that�⊂RN is the unique Cheeger set of itself, whenever
� is a C2, uniformly convex calibrable set. We point out that, by Theorems 1.1
and 4.2 in [Giusti 1978], this uniqueness result is equivalent to the existence of a
solution u ∈ W 1,∞

loc (�) of the capillary problem (4).
In Section 2 we collect some definitions and recall results about the mean cur-

vature operator in (4) and the subdifferential of the total variation. In Section 3 we
state and prove our uniqueness result.

2. Preliminaries

2.1. BV functions. Let � be an open subset of RN . A function u ∈ L1(�) whose
gradient Du in the sense of distributions is a (vector valued) Radon measure with
finite total variation in � is called a function of bounded variation. The class of
such functions will be denoted by BV (�). The total variation of Du on � turns
out to be

(5) sup
{∫

�

u div z dx : z ∈ C∞

0 (�; RN ), ‖z‖L∞(�) := ess supx∈�|z(x)| ≤ 1
}
,

(where for a vector v = (v1, . . . , vN ) ∈ RN we set |v|2 :=
∑N

i=1 v
2
i ) and will be

denoted by |Du|(�) or by
∫
�

|Du|. The map u 7→ |Du|(�) is L1
loc(�)-lower semi-

continuous. BV (�) is a Banach space when endowed with the norm
∫
�

|u| dx +

|Du|(�). We recall that BV (RN )⊆ L N/(N−1)(RN ).
A measurable set E ⊆ RN is said to be of finite perimeter in RN if (5) is fi-

nite when we substitute for u the characteristic function χE of E and � = RN .
The perimeter of E is defined as P(E) := |DχE |(RN ). For more information on
functions of bounded variation we refer to [Ambrosio et al. 2000].

Finally, we denote by HN−1 the (N−1)-dimensional Hausdorff measure. We
recall that when E is a finite-perimeter set with regular boundary (for instance,
Lipschitz), its perimeter P(E) also coincides with the more standard definition
HN−1(∂E).

2.2. A generalized Green’s formula. Let � be an open subset of RN . Following
[Anzellotti 1983a], let

X2(�) := {z ∈ L∞(�; RN ) : div z ∈ L2(�)}.

If z ∈ X2(�) and w ∈ L2(�)∩ BV (�) we define the functional

(z · Dw) : C∞

0 (�)→ R

by the formula

〈(z · Dw), ϕ〉 := −

∫
�

w ϕ div z dx −

∫
�

w z · ∇ϕ dx .
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Then (z · Dw) is a Radon measure in �,∫
�

(z · Dw)=

∫
�

z · ∇w dx for w ∈ L2(�)∩ W 1,1(�).

Recall that the outer unit normal to a point x ∈ ∂� is denoted by ν�(x). We
recall the following result proved in [Anzellotti 1983a].

Theorem 1. Let � ⊂ RN be a bounded open set with Lipschitz boundary. Let z ∈

X2(�). Then there exists a function [z ·ν�] ∈ L∞(∂�) satisfying ‖[z ·ν�]‖L∞(∂�)≤

‖z‖L∞(�;RN ), and such that for any u ∈ BV (�)∩ L2(�) we have∫
�

u div z dx +

∫
�

(z · Du)=

∫
∂�

[z · ν�]u dHN−1.

Moreover, if ϕ ∈ C1(�) then [(ϕz) · ν�] = ϕ[z · ν�].

This result is complemented with the following.

Theorem 2 [Anzellotti 1983b]. Let�⊂RN be a bounded open set with a boundary
of class C1. Let z ∈ C(�; RN ) with div z ∈ L2(�). Then

[z · ν�](x)= z(x) · ν�(x) HN−1-a.e. on ∂�.

2.3. Some auxiliary results. Let � be an open bounded subset of RN with Lips-
chitz boundary, and let ϕ ∈ L1(�). For all ε > 0, we let 9ε

ϕ : L2(�)→ (−∞,+∞]

be the functional defined by

(6) 9ε
ϕ(u) :=


∫
�

√
ε2 + |Du|2 +

∫
∂�

|u −ϕ| if u ∈ L2(�)∩ BV (�),

+∞ if u ∈ L2(�) \ BV (�).

As it is proved in [Giusti 1976], if f ∈ W 1,∞(�), then the minimum u ∈ BV (�)
of the functional

(7) 9ε
ϕ(u)+

∫
�

|u(x)− f (x)|2 dx

belongs to u ∈ C2+α(�), for every α < 1. The minimum u of (7) is a solution of

(8)

u −
1
λ

div
Du√

ε2 + |Du|2
= f (x) in �,

u = ϕ on ∂�,

where the boundary condition is taken in a generalized sense [Lichnewsky and
Temam 1978], i.e.,[

Du√
ε2 + |Du|2

· ν�

]
∈ sign(ϕ− u) HN−1-a.e. on ∂�.
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Observe that (8) can be written as

(9) u +
1
λ
∂9ε

ϕ(u) 3 f.

We are particularly interested in the case where ϕ = 0. As we shall show below
(see also [Alter et al. 2005a]) in the case of interest to us we have u > 0 on ∂� and
thus, [

Du√
ε2 + |Du|2

· ν�

]
= −1 HN−1-a.e. on ∂�.

It follows that u is a solution of the first equation in (8) with vertical contact angle
at the boundary.

As ε → 0+, the solution of (8) converges to the solution of

(10)

u +
1
λ
∂9ϕ(u)= f (x) in �,

u = ϕ on ∂�.

where 9 : L2(�)→ (−∞,+∞] is given by

(11) 9ϕ(u) :=


∫

RN
|Du| +

∫
∂�

|u −ϕ| if u ∈ L2(�)∩ BV (�),

+∞ if u ∈ L2(�) \ BV (�).

In this case ∂9ϕ represents the operator −div Du
|Du|

with the boundary condition
u = ϕ in ∂�, as shown by:

Lemma 2.1 [Andreu et al. 2001]. The following assertions are equivalent:

(a) v ∈ ∂9ϕ(u).

(b) u ∈ L2(�)∩ BV (�), v ∈ L2(�), and there exists z ∈ X2(�) with ‖z‖∞ ≤ 1,
such that v = −div z in D′(�), z · Du = |Du|, and

[z · ν�] ∈ sign(ϕ− u) HN−1-a.e. on ∂�.

Notice that the solution u ∈ L2(�) of (10) minimizes the problem

(12) min
u∈BV (�)

∫
�

|Du| +

∫
∂�

|u(x)−ϕ(x)| dHN−1(x) +
λ

2

∫
�

|u(x)− f (x)|2 dx,

and the two problems are equivalent.

3. The uniqueness theorem

We now state our main result.

Theorem 3. Let C be a convex body in RN . Assume that C is uniformly convex,
with boundary of class C2. Then the Cheeger set of C is convex and unique.
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We do not believe that the regularity and the uniform convexity of C is essential
for this result (see [Alter and Caselles 2007]).

Theorem 4 [Alter et al. 2005a, Theorems 6 and 8, Proposition 4]. Let C be a
convex body in RN with boundary of class C1,1. For any λ, ε > 0, there is a unique
solution uε of the equation

(13)

uε −
1
λ

div
Duε√

ε2 + |Duε|2
= 1 in C,

uε = 0 on ∂C

such that 0 ≤ uε ≤ 1. Moreover, there exist λ0 and ε0, depending only on ∂C , such
that if λ ≥ λ0 and ε ≤ ε0, then uε is a concave function such that uε ≥ α > 0 on
∂C for some α > 0. Hence, uε satisfies

(14)

[
Duε√

ε2 + |Duε |2
· νC

]
= sign(0 − uε)= −1 on ∂C .

As ε → 0, the functions uε converge to the concave function u minimizing the
problem

(15) min
u∈BV (C)

∫
C

|Du| +

∫
∂C

|u(x)| dHN−1(x) +
λ

2

∫
C

|u(x)− 1|
2 dx;

equivalently, if u is extended with zero out of C , the extension minimizes∫
RN

|Du| +
λ

2

∫
RN

|u −χC |
2 dx .

The function u satisfies 0 ≤ u < 1. The superlevel set {u ≥ t}, for t ∈ (0, 1], is
contained in C and minimizes the problem

(16) min
F⊂C

P(F)− λ(1 − t)|F |.

It was proved in [Alter et al. 2005a] (see also [Caselles et al. 2005]) that the set
C∗

={u = maxC u} is the maximal Cheeger set contained in C , that is, the maximal
set that solves (1). Moreover, one has u = 1 − hC/λ > 0 in C∗ and hC = λC∗ .

If we want to consider what happens inside C∗, and in particular whether there
are other Cheeger sets, we have to analyze the level sets of uε before passing to
the limit as ε → 0+. To do this, we introduce the following rescaling of uε:

vε =
uε − mε

ε
≤ 0,
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where mε = maxC uε → 1 − hC/λ as ε → 0. The function vε is a generalized
solution of the equation:

(17)


εvε −

1
λ

div Dvε√
1+|Dvε|2

= 1 − mε in C,

vε = −
mε

ε
on ∂C.

We define the vector field

zε = Duε/
√
ε2 + |Duε|2 = Dvε/

√
1 + |Dvε|2;

it lies in L∞(C), has uniformly bounded divergence, and satisfies |zε| ≤ 1 a.e. in
C and, by (14), [zε · νC ] = −1 on ∂C .

We now study the limit of vε and zε as ε→ 0. By the concavity of vε, for each
ε > 0 small enough and each s ∈ (0, |C |), there exists a (convex) superlevel set
Cε

s of vε such that |Cε
s | = s. Moreover, {vε = 0} is a null set: otherwise, since

vε is concave, it would be a convex set of positive measure, hence with nonempty
interior. We would then have vε = div zε = 0, hence 1 − mε = 0 in the interior of
{vε = 0}. This is a contradiction with Theorem 4 for ε > 0 small enough.

Hence we may take Cε
0 := {vε = 0} and Cε

|C |
:= C . The boundaries ∂Cε

s ∩ C
define a foliation in C , in the sense that for all x ∈ C , there exists a unique value
of s ∈ [0, |C |] such that x ∈ ∂Cε

s .
A sequence of uniformly bounded convex sets is compact both for the L1 and

Hausdorff topologies. Hence, up to a subsequence, we may assume that the Cε
s

converge to convex sets Cs , each of volume s, first for any s ∈ Q ∩ (0, |C |) and
then by continuity for any s. Possibly extracting a further subsequence, we may
assume that there exists s∗ ∈ [0, |C |] such that vε goes to a concave function v in
Cs for any s < s∗, and to −∞ outside C∗ := Cs∗

. We may also assume that zε⇀ z
weakly∗ in L∞(C), for some vector field z satisfying |z| ≤ 1 a.e. in C . From (13)
we have in the limit

(18) −div z = λ(1 − u) in D′(C).

Moreover, −div z ∈ ∂90(u) by the results recalled in Section 2. We then see from
(18) that

(19) −div z = hC in C∗,

while −div z > hC a.e. on C \ C∗.
Set s∗

:= |C∗
|, so C∗

= Cs∗ . By Theorem 4, for s ≥ s∗, the set Cs is a minimizer
of the variational problem

(20) min
E⊆C

P(E)−µs |E |,
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for someµs ≥hC (µs is equal to the constant value of −div z =λ(1−u) on ∂Cs∩C ;
see (16)). Notice that µs is bounded from above by P(C)/(|C | − s): indeed,

−

∫
C\Cε

s

div zε(x) dx = HN−1(∂C \ ∂Cε
s )−

∫
∂Cε

s ∩C

|Duε|√
1 + |Duε|2

≤ P(C)

for ε > 0, since the inner normal to Cε
s at x ∈ ∂Cε

s ∩ C is Duε(x)/|Duε(x)|. On
the other hand,

−

∫
C\Cε

s

div zε(x) dx =

∫
C\Cε

s

λ(1 − uε(x)) dx ≥ µεs (|C | − s),

where µεs is the constant value of λ(1 − uε) on the level set ∂Cε
s ∩ C , and goes to

µs as ε→ 0. A more careful analysis would show, in fact, that

µs ≤
P(C)− P(Cs)

|C | − s
.

For s > s∗, we have µs > hC and the set Cs is the unique minimizer of the
variational problem (20). As a consequence (see [Alter et al. 2005a; Caselles et al.
2005]) for any s > s∗ the set Cs is also the unique minimizer of P(E) among all
E ⊆ C of volume s.

Lemma 3.1. We have s∗ > 0 and the sets Cs are Cheeger sets in C for any s ∈

[s∗, s∗
].

Proof. Let s∗ < s ≤ |C |. If x ∈ ∂Cε
s \ ∂C , then

0 − vε(x) ≤ Dvε(x) · (x̄ε − x)

where vε(x̄ε)= maxC vε. Hence, limε→0 inf∂Cε
s \∂C |Dvε| = +∞. Since [zε ·νC

] =

−1 on ∂C and P(Cε
s )→ P(Cs), we deduce

−

∫
∂Cε

s

[zε(x) · νCε
s (x)] dHN−1(x)

=

∫
∂Cε

s \∂C

|Dvε(x)|√
1 + |Dvε(x)|2

dHN−1(x) + HN−1(∂Cε
s ∩ ∂C) → P(Cs)

as ε→ 0+. Hence,∫
∂Cs

[
z · νCs

]
dHN−1

=

∫
Cs

div z = lim
ε→0

∫
Cε

s

div zε

= lim
ε→0

∫
∂Cε

s

[zε · νCε
s
] dHN−1

= − P(Cs).
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Since |z| ≤ 1 a.e. in C , we deduce that [z · νCs ] = −1 on ∂Cs for any s > s∗ (in
particular, |z| = 1 a.e. in C \ C∗). Using this and (19), we have for all s∗ < s ≤ s∗

(21)
P(Cs)

|Cs |
= hC .

This has two consequences. First, from the isoperimetric inequality, we obtain

hC =
P(Cs)

|Cs |
≥

P(B1)(
|B1|N−1s

)
1/N

,

if s ∈ (s∗, s∗
], so that s∗ > 0. Moreover, Cs is a Cheeger set for any s ∈ (s∗, s∗

],
and by continuity C∗ is also a Cheeger set. �

Since the sets Cs are convex minimizers of P(E)−µs |E | among all E ⊆ C , for
s ≥ s∗, their boundary is of class C1,1 [Brézis and Kinderlehrer 1974; Stredulinsky
and Ziemer 1997], with curvature at most µs , and equal to µs in the interior of C
(note that µs = hC for s ∈ [s∗, s∗

]).

Remark 3.2. Either s∗ = s∗, and so C∗ = C∗, or s∗< s∗, and so C∗
=
⋃

s∈(s∗,s∗) Cs .
In the latter case, the supremum of the sum κC∗ of the principal curvatures on ∂C∗

is equal to hC . Indeed, if this were not the case, by considering C ′
⊂ int(C∗) with

curvature strictly below hC , together with the smallest set Cs with s> s∗ containing
C ′, we would get κC ′(x) ≥ κCs (x) = hC at all x ∈ ∂C ′

∩ ∂Cs , a contradiction. In
particular, C = C∗ if the supremum of κC on ∂C is strictly less than P(C)/|C |;
this condition also implies C = C∗ by [Alter et al. 2005a].

From the strong convergence of Dvε to Dv (in L2(Cs) for any s < s∗), we
deduce that z = Dv/

√
1 + |Dv|2 in C∗. It follows that v satisfies the equation

(22) − div
Dv√

1 + |Dv|2
= hC in C∗.

Integrating both sides of (22) in C∗, we deduce that[
Dv√

1 + |Dv|2
· νC∗

]
= −1 on ∂C∗.

Lemma 3.3. The set C∗ is the minimal Cheeger set of C ; that is, any Cheeger set
of C must contain C∗ .

Proof. Let K ⊆ C∗ be a Cheeger set in C . We have

hC |K | = −

∫
K

div z = −

∫
∂K

[z · νK
] dHN−1

= P(K ),

so [z · νK
] = −1 a.e. on ∂K . Let νε and ν be the vector fields of unit normals to

the sets Cε
s and Cs , s ∈ [0, |C |], respectively. By the Hausdorff convergence of Cε

s
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to Cs as ε→ 0+ for any s ∈ [0, |C |], we have νε → ν a.e. in C . On the other hand,
|zε + νε | → 0 locally uniformly in C \ C∗: indeed, in C ,

|zε + νε | =

∣∣∣∣∣ Dvε√
1 + |Dvε|2

−
Dvε

|Dvε|

∣∣∣∣∣=
∣∣∣∣∣ |Dvε|√

1 + |Dvε|2
− 1

∣∣∣∣∣ .
Since |Dvε | → ∞ uniformly in any subset of C at positive distance from C∗ (see
the first lines of the proof of Lemma 3.1), this shows the uniform convergence of
|zε + νε | to 0 in such subsets.

These two facts imply that z =−ν a.e. on C \C∗. By modifying z in a set of null
measure, we may assume that z = −ν on C \C∗. We recall that the sets Cs , s ≥ s∗

are minimizers of variational problems of the form minK⊆C P(K )−µ|K |, for some
values ofµ (withµ=hC as long as s ≤ s∗ andµ=µs>hC continuously increasing
with s> s∗). Since these sets are convex, with boundary (locally) uniformly of class
C1,1, and the map s → Cs is continuous in the Hausdorff topology, we conclude
that the normal ν(x) is a continuous function in C \ int(C∗).

Since |z| < 1 inside C∗ and [z · νK
] = −1 a.e. on ∂K , by [Anzellotti 1983a,

Theorem 1]) we have that the boundary of K must be outside the interior of C∗,
hence either K ⊇ C∗ or K ∩C∗ = ∅ (modulo a null set). Let us prove that the last
situation is impossible. Indeed, assume that K ∩C∗ = ∅ (modulo a null set). Since
∂K is of class C1 out of a closed set of zero HN−1-measure (see [Gonzalez et al.
1983]) and z is continuous in C \ int(C∗), by Theorem 2 we have

(23) z(x) · νK (x)= −1 HN−1-a.e. on ∂K .

Now, since K ∩ C∗ = ∅ (modulo a null set), then there is some s ≥ s∗ and some
x ∈ ∂Cs ∩∂K such that νK (x)+ν(x)= 0. Fix 0< ε < 2. By a slight perturbation,
if necessary, we may assume that x ∈ ∂Cs ∩ ∂K with s > s∗, (23) holds at x and

(24) |νK (x)+ ν(x)|< ε.

Since by (23) we have ν(x)= −z(x)= νK (x) we obtain a contradiction with (24).
We deduce that K ⊇ C∗ . �

Therefore, in order to prove the uniqueness of the Cheeger set of C , it is enough
to show that

(25) C∗ = C∗.

Recall that the boundary of both C∗ and C∗ is of class C1,1, and the sum of its
principal curvatures is less than or equal hC , and constantly equal to hC in the
interior of C . We now show that if C∗ 6= C∗ and under additional assumptions, the
sum of the principal curvatures of the boundary of C∗ (or of any Cs for s ∈ (s∗, s∗

])
must be hC out of C∗.
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Lemma 3.4. Assume that C has C2 boundary. Let s ∈ (s∗, s∗
] and x ∈ ∂Cs \ ∂C∗.

If the sum of the principal curvatures of ∂Cs at x is strictly below hC , then the
Gaussian curvature of ∂C at x is 0.

Proof. Let x ∈ ∂Cs \∂C∗ and assume the sum of the principal curvatures of ∂Cs at
x is strictly below hC (assuming x is a Lebesgue point for the curvature on ∂Cs).
Necessarily, this implies that x ∈ ∂C . Assume then that the Gauss curvature of ∂C
at x is positive: by continuity, in a neighborhood of x , C is uniformly convex and
the sum of the principal curvatures is less than hC . We may assume that near x ,
∂C is the graph of a nonnegative, C2 and convex function f : B → R where B is
an (N −1)-dimensional ball centered at x . We may as well assume that ∂Cs is the
graph of fs : B → R, which is C1,1 [Brézis and Kinderlehrer 1974; Stredulinsky
and Ziemer 1997], and also nonnegative and convex. In B, we have fs ≥ f ≥ 0,
and

D2 f ≥ α I and div
D f√

1 + |D f |2
= h

with h ∈ C0(B), h < hC , α > 0, while

div
D fs√

1 + |D fs |
2

= hχ{ f = fs} + hCχ{ fs> f }

(where χ{ f = fs} has positive density at x).
We let g = fs − f ≥ 0. Introducing the Lagrangian 9 : RN−1

→ [0,+∞) given
by 9(p)=

√
1 + |p|2, we obtain, for a.e. y ∈ B,

(hC − h(y))χ{g>0}(y)

= div
(
D9(D fs(y))− D9(D f (y))

)
= div

((∫ 1

0
D29(D f (y)+ t (D fs(y)− D f (y))) dt

)
Dg(y)

)
,

so that, letting A(y) :=
∫ 1

0 D29(D f (y)+ t Dg(y)) dt (which is a positive definite
matrix and Lipschitz continuous inside B), we see that g is the minimizer of the
functional

w 7→

∫
B

(
A(y)Dw(y) · Dw(y)+ (hC − h(y))w(y)

)
dy

under the constraint w ≥ 0 and with boundary condition w = fs − f on ∂B.
Adapting the results in [Caffarelli and Rivière 1976] we get that { f = fs}= {g = 0}

is the closure of a nonempty open set with boundary of zero HN−1-measure.
We therefore have found an open subset D ⊂ ∂C ∩ ∂Cs , disjoint from ∂C∗, on

which C is uniformly convex, with curvature less than hC . Let ϕ be a smooth,
nonnegative function with compact support in D. One easily shows that if ε > 0 is
small enough, ∂Cs − εϕνCs is the boundary of a set C ′

ε which is still convex, with
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P(C ′
ε)/|C

′
ε |> P(Cs)/|Cs | = hC (just differentiate the map ε→ P(C ′

ε)/|C
′
ε |), and

the sum of its principal curvatures is less than hC . This implies that for ε > 0 small
enough, the set C ′

:= C ′
ε is calibrable [Alter et al. 2005a], which in turn implies

that minK⊂C ′ P(K )/|K | = P(C ′)/|C ′
|. But this contradicts C∗ ⊂ C ′, which is true

for ε small enough. �

Proof of Theorem 3. Assume that C is C2 and uniformly convex. Let us prove that
its Cheeger set is unique. Assume by contradiction that C∗

6= C∗. From Lemma
3.4 we have that the sum of the principal curvatures of ∂C∗ is hC outside of C∗.

Let now x̄ ∈ ∂C∗
∩ ∂C∗ be such that ∂C∗

∩ Bρ(x̄) 6= ∂C∗ ∩ Bρ(x̄) for all ρ >
0 (∂C∗

∩ ∂C∗ 6= ∅ since otherwise both C∗ and C∗ would be balls, which is
impossible). Letting T be the tangent hyperplane to ∂C∗ at x̄ , we can write ∂C∗

and ∂C∗ as the graph of two positive convex functions v∗ and v∗, respectively, over
T ∩ Bρ(x̄) for ρ > 0 small enough. Identifying T ∩ Bρ(x̄) with Bρ ⊂ RN−1, we
have that v∗, v

∗
: Bρ → R both solve the equation

(26) − div
Dv√

1 + |Dv|2
= f,

for some function f ∈ L∞(Bρ). Moreover, it holds v∗ ≥ v∗, v∗(0) = v∗(0) and
v∗(y)>v∗(y) for some y ∈ Bρ . Notice that f =λC in the (open) set where v∗>v

∗,
in particular both functions are smooth in this set. Let D be an open ball such that
D ⊂ Bρ , v∗ > v∗ on D and v∗(y) = v∗(y) for some y ∈ ∂D. Notice that, since
both v∗ and v∗ belong to C∞(D)∩C1(D), the fact that v∗(y)= v∗(y) also implies
that Dv∗(y) = Dv∗(y). In D, both functions solve (26) with f = λC . Letting
w= v∗−v∗, we obtain w(y)= 0 and Dw(y)= 0, while w> 0 inside D. Recalling
the function 9(p)=

√
1 + |p|2, we have, for any x ∈ D,

0 = div
(
D9(Dv∗(x))− D9(Dv∗(x))

)
= div

((∫ 1

0
D29(Dv∗(x)+ t (Dv∗(x)− Dv∗(x))) dt

)
Dw(x)

)
,

so that w solves a linear, uniformly elliptic equation with smooth coefficients.
Then Hopf’s lemma [Gilbarg and Trudinger 1983] implies that Dw(y) ·νD(y)< 0,
a contradiction. Hence C∗ = C∗. �

Remark 3.5. As a consequence of Theorem 3 and the results of [Giusti 1978], if
C is of class C2 and uniformly convex, Equation (22) has a solution on the whole
of C , if and only if C is a Cheeger set of itself, i.e., if and only if the sum of the
principal curvatures of ∂C is less than or equal to P(C)/|C |.

Remark 3.6. The results of this paper can be easily extended to the anisotropic
setting (see [Caselles et al. 2005]) provided the anisotropy is smooth and uniformly
elliptic.
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DIMENSION ESTIMATE OF HARMONIC FORMS ON
COMPLETE MANIFOLDS

JUI-TANG RAY CHEN AND CHIUNG-JUE ANNA SUNG

We consider the space of polynomial-growth harmonic forms. We prove
that the dimension of such spaces must be finite and can be estimated if
the metric is uniformly equivalent to one with asymptotically nonnegative
curvature operator. This implies that the space of harmonic forms of poly-
nomial growth order on the connected sum manifolds with nonnegative cur-
vature operator must be finite-dimensional, which generalizes work of Tam.

1. Introduction

Let (Mm, g) be an m-dimensional manifold with complete Riemannian metric g,
where m ≥ 3. We assume that the curvature operator of M is asymptotically non-
negative and we focus on the space of polynomial-growth harmonic p-forms of
degree at most d on the manifold. Classical de Rham–Hodge theory implies that
in the compact case the dimension of the space of harmonic forms is a topological
invariant of the manifold, hence independent of the choice of the Riemannian met-
ric. For complete noncompact manifolds, this topological invariance is no longer
true. Nonetheless, it is an important question to study the space of harmonic forms
and to seek topological and geometrical links. Yau [1975] proved that any positive
harmonic function on a manifold with nonnegative Ricci curvature must be con-
stant; hence the strong Liouville property holds. Saloff and Coste [1992] extended
the result to the case where any Riemannian metric g′ is uniformly equivalent to
g. Thus, the space of positive harmonic functions is stable under a quasi-isometry
for (M, g).

A complete manifold M is said to satisfy a Sobolev inequality S(A, ν) if there
exist a point q ∈ M and constants A > 0, ν > 2, such that for all r > 0 and all
f ∈ C∞

0 (Bq(r)), we have∫
Bq (r)

| f |
2ν/(ν−2)

≤ Ar2V (q, r)−2/ν
∫

Bq (r)
(|∇ f |

2
+ r−2 f 2),

MSC2000: primary 58A05; secondary 58A10.
Keywords: harmonic forms, curvature operator.
Sung was partially supported by the NSC..
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where V (q, r) is the volume of the geodesic ball Bq(r). Examples include minimal
submanifolds with Euclidean volume growth in Rm and manifolds with a nonneg-
ative Ricci curvature. If a manifold satisfies a Sobolev inequality when endowed
with a certain complete Riemannian metric, it obviously satisfies such an inequality
(possibly with a different A) for any uniformly equivalent metric.

Li and Wang [1999], extending earlier work of Li [1997], proved that the di-
mension of the space H 0

d (M) of polynomial-growth harmonic functions of growth
order at most d has an estimate

dim H 0
d (M)≤ C(A, ν)dν

provided that the underlying manifold satisfies the Sobolev inequality S(A, ν). So
the finite dimensionality of the space H 0

d (M) is valid on such a manifold with
respect to any uniformly equivalent metric.

Concerning general harmonic p-forms, Li [1997] established a dimension es-
timate of the space of polynomial-growth harmonic forms. Assuming that Kp,
defined as the curvature operator on M if p ≥ 1, is nonnegative, Li proved that

dim H p
d (M)≤ Cdm−1,

where H p
d (M) denotes the space of polynomial-growth harmonic p-forms on M of

growth order at most d . Recently, Chen and Sung [2006] showed that the stability
of finite dimensionality of the space of H p

d (M) holds true under any uniformly
equivalent metric on such manifold M .

Interestingly, Tam [1998] proved that if M is a complete manifold with non-
negative Ricci curvature outside a compact set, and if each unbounded component
of M\D, where D is a compact smooth domain in M , satisfies a certain kind
of volume comparison property, then the space of polynomial-growth harmonic
functions of degree at most d is finite dimensional. Furthermore, he proves the
finite dimensionality of the space of polynomial-growth harmonic forms with a
fixed growth rate on manifolds with asymptotically nonnegative curvature oper-
ator and the volume comparison property. The curvature operator Kp of M is
asymptotically nonnegative if Kp ≥ −K (r), where K (r) : [0,∞) → [0,∞) is a
nonnegative nonincreasing continuous function of distance r to a fixed point q ∈ M
which satisfies the integrability condition∫

∞

0
r K (r) <∞.

In view of the preceding results on the space H p
d (M), one would naturally to

ask if the dimension of the space H p
d (M) is stable under a uniformly equivalent

metric on M with asymptotically nonnegative curvature operator. An objective of
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this paper is to establish that the dimension of the space H p
d (M) remains finite

under a uniformly equivalent metric on M .
It is proved in [Li and Tam 1992] that if the Ricci curvature of M is asymp-

totically nonnegative then M has finitely many ends. Also, by [Li and Tam 1995,
Proposition 3.8], the volume comparison condition holds on M if M is a complete
noncompact manifold with asymptotically nonnegative sectional curvature. How-
ever, it remains an open question whether an end of M will satisfy the volume
comparison condition, if we only assume that M has nonnegative Ricci curvature
outside a compact set.

Main Theorem 1.1. Let (Mm, g) be a complete Riemannian manifold. Suppose
that the curvature operator Kp is asymptotically nonnegative on (M, g) and the
metric g′ is uniformly equivalent to g on M. Then there exist constants C > 0 and
ν > 2 such that the dimension of the space H p

d (M, g′) is finite and satisfies the
inequality

dim H p
d (M, g′)≤ C dν

for all d ≥ 1, p > 1.

Remark 1.2. For p = 1, the curvature operator becomes Ricci curvature on M , we
must assume that the first Betti number of M is finite so that the volume comparison
condition holds true; compare [Li and Tam 1995]. Under this assumption, the
theorem is valid.

An immediate consequence is that the space of polynomial-growth harmonic
forms on the connected sum manifolds with nonnegative curvature operator must
be finite-dimensional under quasi-isometry. Moreover,

Corollary 1.3. Let (M, g) be a complete Riemannian manifold has nonnegative
curvature operator outside a compact set, with finite first Betti number. If the
metric g′ is uniformly equivalent to g on M. Then there exist constants C > 0
and ν > 2 such that the dimension of the space H p

d (M, g′) is finite and satisfies the
inequality

dim H p
d (M, g′)≤ C dν

for all d ≥ 1, p ≥ 1.

We say g′ is uniformly equivalent to g if there is some positive constant c such
that c−1g′

≤ g ≤ cg′ in the sense of bilinear forms. In other words, the Riemannian
manifolds (M, g) and (M, g′) are then called quasi-isometric. Clearly, quantities
such as the distance and volume are uniformly equivalent under quasi-isometry; in
particular, a Riemannian manifold quasi-isometric to a complete manifold is also
complete. However, in general, any quantity involving derivatives of the Riemann-
ian metric will not be comparable under a quasi-isometry; in particular, the same
curvature condition is not expected to hold under a uniformly equivalent change
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of the metric. We overcome the difficulty by relating the space of harmonic forms
to the eigenvalues of the Hodge Laplacian on the Busemann balls of the manifold
with respect to the absolute boundary conditions. This idea was first introduced
and successfully pursued in [Li and Wang 1999] for the harmonic functions. Here,
our additional steps are to give the lower bound estimate of the eigenvalue of p
form on Busemann balls of M , also show that such eigenvalues on each end of
manifold are comparable under a uniformly equivalent change of the metric. We
obtain a lower bound estimate of eigenvalue by modifying an argument from [Li
1980] in Section 2. Our main result is then proved in Section 3.

Throughout the paper, we assume that the first Betti number of M is finite for the
case of p = 1.

2. Eigenvalue estimates

Let (Mm, g) be a complete, oriented Riemannian manifold with dimension m.
The Hodge–Laplace–Beltrami operator 1 acting on the space of smooth p-forms
3p(M) is defined as

1= dδ+ δd,

here d denotes the exterior differential operator and δ = ∗ d ∗, where the linear
operator ∗ is defined point-wise by

∗(w1 ∧ · · · ∧wp)= wp+1 ∧ · · · ∧wm

for a positively oriented orthonormal coframe {w1, w2, . . . , wm} at the point. A
p-form w ∈3p(M) is called a harmonic p-form on (M, g) if

1gw = 0.

Let q denote a point on (M, g) and let rq(x) represent the geodesic distance func-
tion from x ∈ M to the point q . For each d ≥ 0, we denote the space of polynomial-
growth harmonic p-forms of degree at most d by

H p
d (M, g)≡ {w ∈3p(M) |1gw = 0, and |w| = O(rd

q )}.

For a bounded smooth domain B ⊂ M , a p-form w is said to satisfy the absolute
condition on B if the tangential component of both w and δw on the boundary ∂B
are zeros. On the boundary ∂B, let N∂B (respectively N ∗

∂Bq
) represent the inward

unit normal vector (respectively covector) field. Now, denote exterior multiplica-
tion by ext (·) and dual exterior multiplication by int (·). It is not difficult to verify
that1 is a self-adjoint nonnegative operator on the space3p(B) of smooth p-forms
on B satisfying the absolute boundary condition. By the standard elliptic theory, we
see that1 has a countable set of eigenvalues and the multiplicity of each eigenvalue
is finite. If we list all the eigenvalues with multiplicity in nondecreasing order by
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{λk, k = 1, 2, 3, . . . }, then λk → ∞ as k → ∞. Moreover, the i-th eigenvalue can
be characterized as

λi = inf
dim V =i

sup
w∈V \{0}

R(w),

where V is a subspace of 3p(B) and the Rayleigh–Ritz quotient R(w) is defined
by

R(w)=
(dw, dw)+ (δw, δw)

(w,w)

forw∈3p(B) and the L2 inner product for two forms v andw in3p(B) is defined
by

(v,w)=

∫
B

〈v,w〉 dx

with 〈v,w〉 being the point-wise inner product between v and w.
On the other hand, the Hodge-de Rham theorem provides an orthogonal de-

composition of the space 3p(B) of differential forms of degree p on B. For any
w ∈3p(B), w can be uniquely written as

w = h + dv+ δ u,

where h ∈ Hp(B), the space of harmonic p-forms satisfying the absolute boundary
condition and v ∈ 3p−1(B), u ∈ 3p+1(B). Clearly, the operator 1 leaves this
decomposition invariant, and the eigenvalues of 1 on the subspace Hp(B) are
zeros.

Denote by {µe
j (g) | j ≥1} the eigenvalues of1 acting on the subspace d3p−1(B)

of exact p-forms, and by {µco
l (g) | l ≥ 1} those corresponding to the subspace

δ3p+1(B) of coexact p-forms. Then the eigenvalues {λi (g) | i > dim Hp(B)} is
equal to the reordered union of {µe

j (g) | j ≥ 1} and {µco
l (g) | l ≥ 1}. We have,

{λi (g) | i > dim Hp(B)} = {µe
j (g) | j ≥ 1} ∪ {µco

l (g) | l ≥ 1}.

The next lemma is essentially due to [Dodziuk 1982]; a proof is given in [Chen
and Sung 2006].

Lemma 2.1. Let (M, g) be a complete manifold with Riemannian metric g. Let g′

denote another Riemannian metric on M which is uniformly equivalent to g. Then

dim Hp(B, g)= dim Hp(B, g′),

and there exists a positive constant C such that

C−1λi (g)≤ λi (g′)≤ Cλi (g)

for all i ≥ 1.
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We will obtain a lower bound estimate of the eigenvalues of p-forms satisfying
the absolute boundary condition on Busemann balls of a manifold with asymptot-
ically nonnegative curvature operator. The argument closely follows those in [Li
1980] and [Chen and Sung 2006].

An end E of a manifold M is an unbounded component of the complement of
some compact smooth subset D of M . In this case, E is called an end correspond-
ing to D. We say that M has finitely many ends if there exists b < ∞ such that
the number of ends corresponding to D is less than or equal to b for any compact
subset D ⊂ M . Let E1, E2, . . . , EL be the ends of M with respect to D. We say
that E satisfies volume comparison property if there exists a constant ζ > 0 such
that

(1) VE(r)≤ ζVx

(r
2

)
,

for all x ∈ ∂BE(r) and for r large enough. Here we use BE(r) to denote Bq(r)∩ E ,
∂BE(r)= ∂Bq(r)∩ E , and VE(r) is the volume of BE(r). Also, denote

BE(r1, r)= BE(r)\BE(r1),

and
∂BE(r1, r)= ∂BE(r)∪ ∂BE (r1) ,

where r1 ≤ r . By [Tam 1998, Lemma 1.1], the volume doubling property holds on
ends {El}

L
l=1

of M , that is for r > 2r0,

(2) VEl ((1 + ε) r)≤ (1 + ε)µ VEl (r)

where µ> 0 is a constant depending only on m. Moreover, given any η > 0, there
is r1 > 2r0 such that for all x ∈ ∂BE (R), with R > r1, and for all 3

4 R > r ′ > r > 0,
we have

(3) Vx
(
r ′
)
≤

(r ′

r

)n+η

Vx(r).

Let γ : [0, ∞) → M be a ray with γ (0) = q, a fixed point in M ; namely, γ
is a geodesic of (M, g) and the geodesic distance r(γ (t), γ (s)) between γ (t) and
γ (s) is equal to |t − s| for all t and s in [0, ∞). We define bt(x)= t − r(x, γ (t))
for t ≥ 0. For any fixed x , bt(x) is a nondecreasing function of t and bt(x) =

r(q, γ (t))− r(x, γ (t)) ≤ r(q, x). Therefore bγ (x) = limt→∞ bt(x) exists for all
x ∈ M . In fact, bt(x) converges uniformly on compact sets to bγ (x). Set

β(x)= sup{bγ (x) | γ is a ray from p}.

Since for each x and for any ray γ , bγ (x)≤ r(x, p), β(x) is well defined and finite.
We call β(x) the Busemann function of (M, g) (based at point p).
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We define B(a)= {x | β(x)≤ a} as a Busemann ball on M , for some positive con-
stant a. It is well known that β(x) is proper and convex if the curvature operator of
M is nonnegative. Therefore, the boundary of the Busemann ball is convex. Denote
a Busemann ball on end E as BE(a)= B(a)∩ E . The boundary of the Busemann
ball BE(a) is convex if the curvature operator is nonnegative on each end. We
will obtain a lower bound estimate of the eigenvalues of p-forms satisfying the
absolute boundary condition on Busemann balls of a manifold with asymptotically
nonnegative curvature operator. The argument closely follows those in [Li 1980]
and [Chen and Sung 2006].

Lemma 2.2. Let Mm be a complete manifold with asymptotically nonnegative
curvature operator. If E is an end of M with respect to a compact subset Bq(r0)⊂

M , r0 > 0, for a large enough r > 2r0, such that Bq(r0) is contained in Busemann
ball B(r), then there exist constants C > 0 and ν > 2 such that

dim Hp(B(r))≤ C

and, for each k > dim Hp(B(r)), there exists a constant C depending only on ν,
m, p and η such that

λk(B(r))≥ Ck2/νr−2.

Proof. Let V be the k-dimensional space spanned by the eigen p-forms corre-
sponding to the first k eigenvalues {λ1, . . . , λk} on B(r). Then there exists w ∈ V,
w 6= 0, such that

(4)
k
V

‖w‖
2
2 ≤ ‖w‖

2
∞

· min{(mp ), k},

where V = V (B(r)) denotes the volume of B(r). This is a result in [Li 1980].
On the other hand, we claim that there exist constants C > 0, k0 > 0 and ν > 2

such that for w ∈ V,

(5) ‖w‖
2
∞

≤ CV −1r−νλ
ν/2
k ‖w‖

2
2

for all k ≥ k0. It is easy to see that the Lemma follows by combining inequalities
(4) and (5). To prove (5), by the convexity of Busemann function and [Donnelly
and Li 1982, Lemma 6.2], we first observe that for w ∈3p(B(r)),

∂|w|
2

∂n
≤ 0

on ∂B(r), where ∂/∂n is the outward unit normal of ∂B(r). Since curvature op-
erator Kp is asymptotically nonnegative, it means Kp ≥ −K (r), where K (r) :

[0,∞)→ [0,∞) is a nonnegative nonincreasing continuous function of distance
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r to a fixed point q ∈ M which satisfies the integrability condition∫
∞

0
r K (r) <∞.

By the argument in [Saloff-Coste 1992], we obtain a local weak Poincaré inequal-
ity on the Busemann ball B(r). Also, using doubling volume condition and the
local weak Poincaré inequality for the Busemann ball B(r), we have the Sobolev–
Poincaré inequality on B(r) (see [Hajłasz and Koskela 1995])(∫

B(r)
| f − fB |

2ν/(ν−2)
)(ν−2)/ν

≤ AV −2/νr2
∫

B(r)
|∇ f |

2 ,

where ν > 2, fB = V −1 (B(r))
∫

B(r) f , A > 1 is a constant depending only on
m and η, and V = V (B(r)) is the volume of B(r). Moreover, by [Li 1980], we
observe that the Neumann Sobolev-type inequality

(6)
(∫

B(r)
| f |

2ν/(ν−2)
)(ν−2)/ν

≤ AV −2/νr2
(∫

B(r)
|∇ f |

2
+ r−2

∫
B(r)

| f |
2
)

holds on B(r).
Let {wi }

k
i=1 be the p-eigenforms satisfying the absolute boundary condition with

the corresponding nonzero eigenvalues {λi }
k
i=1 and we also assume {wi }

k
i=1 are or-

thonormal and span V. If w ∈ V, then there exist {ai }
k
i=1 such that w=

∑k
i=1 aiwi ,

that is, 1w =
∑k

i=1 λi aiwi . By the Bochner formula,

1
21 |w|

2
≤ 〈1w,w〉 − |∇w|

2
+ K |w|

2 ,

where K is the lower bound of curvature for all x in B(r). Using the fact in [Li
1980, Lemma 8],

|∇ |w||
2
≤ |∇w|

2 .

Thus,

(7) 1
21 |w|

2
≤ 〈1w,w〉 − |∇ |w||

2
+ K |w|

2 .

Let α ≥ 1, and we multiply both sides of this inequality ((7)) by |w|
2α−2 and

integrate over B(r),

(8)
1
2

∫
B(r)

|w|
2α−21 |w|

2

≤

∫
B(r)

|w|
2α−2

〈1w,w〉 +

∫
B(r)

K |w|
2α

−

∫
B(r)

|w|
2α−2

|∇ |w||
2 .
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Using the absolute boundary condition, the left-hand side of this inequality be-
comes

1
2

∫
B(r)

|w|
2α−21 |w|

2
≥ (α− 1)

∫
B(r)

|w|
2α−3 〈

∇ |w| ,∇ |w|
2〉

=
2(α− 1)
α2

∫
B(r)

〈
∇ |w|

α ,∇ |w|
α
〉
,

and the third term in the right-hand side of (8) can be rewritten as∫
B(r)

|w|
2α−2

|∇ |w||
2
=

1
α2

∫
B(r)

∣∣∇ |w|
α
∣∣2 .

Hence, (8) becomes

(9)
2(α− 1)
α2

∫
B(r)

∣∣∇ |w|
α
∣∣2

≤

∫
B(r)

|w|
2α−2

〈1w,w〉 +

∫
B(r)

K |w|
2α

−
1
α2

∫
B(r)

∣∣∇ |w|
α
∣∣2 .

With f = |w|, this can be rewritten as

(10)
2α− 1
α2

∫
B(r)

∣∣∇ f α
∣∣2 ≤

∫
B(r)

f 2α−2
〈1w,w〉 +

∫
B(r)

K f 2α.

Applying Neumann Sobolev-type inequality (6) to the function f α, one has

(11)
(∫

B(r)
| f |

2βα
)1/β

≤ AV −2/νr2
(∫

B(r)

∣∣∇ f α
∣∣2 + r−2

∫
B(r)

f 2α
)
,

where β =
ν
ν−2 . Thus (10) and (11) suggest

(12) ‖ f ‖
2α
2αβ ≤

α2

2α− 1
AV −2/νr2

∫
B(r)

f 2α−2
〈1w,w〉

+ AV −2/νr2
(

α2

2α− 1

∫
B(r)

K f 2α
+ r−2

‖ f ‖
2α
2α

)
.

By the Hölder inequality, we have∫
K f 2α

≤ BV 1/q
(∫ (

f 2α)q/(q−1)
)(q−1)/q

≤ BV 1/q
(∫

f 2α
)β(q−1)−q

q(β−1)
(∫

f 2αβ
) 1

q(β−1)
,
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where q >
β

β − 1
=
ν

2
and B =

(
V −1

∫
B(r) |K |

q)1/q . However, applying the in-
equality

hε ≤ δ
(ε−1)/ε
1 h + δ1ε

1/(1−ε)
(1
ε

− 1
)

by setting ε =
β (q−1)−q

q (β−1)
and

h =

(
α2

2α− 1
ABV (ν−2q)/qνr2

) q(β−1)
β(q−1)−q

(∫
f 2α
)(∫

f 2αβ
)−1
β
.

Then

α2

2α− 1
ABV (ν−2q)/qνr2

(∫
f 2α
)β(q−1)−q

q(β−1)
(∫

f 2αβ
)q−β(q−1)

qβ(β−1)

≤ δ
(ε−1)/ε
1

(
α2

2α− 1
ABV (ν−2q)/qνr2

) 2q
2q−ν

(∫
f 2α
)(∫

f 2αβ
)−1
β

+ δ1ε
1/(1−ε)

(1
ε

− 1
)
.

If we select δ1 small enough, and since α2

2α−1
≥ 1, Equation (12) can be rewritten

as

‖ f ‖
2α
2αβ ≤

1
1 − δ1c (ε)

(
α2

2α−1

) 2q
2q−ν

AV −2/νr2

×

(∫
B(r)

f 2α−2
〈1w,w〉 +

(
δ
ν/(ν−2q)
1 B2q/(2q−ν)(Ar2)ν/(2q−ν)

+
1
r2

)
‖ f ‖

2α
2α

)
.

Let α = β i , i = 0, 1, 2, . . . . Then

(13) ‖ f ‖
2β i

2β i+1 ≤ C̃
(∫

B(r)
f 2β i

−2
〈1w,w〉 +

(
K̄ + r−2)

‖ f ‖
2β i

2β i

)
.

where

C̃ =
1

1−δ1c(ε)

(
α2

2α− 1

) 2q
2q−ν

AV −2/νr2 and K̄ = B2q/(2q−ν)
(
δ−1

1 Ar2)ν/(2q−ν)
.

When i = 0, (13) gives

‖ f ‖
2
2β ≤

1
1 − δ1c (ε)

AV −2/νr2
(∫

B(r)
〈1w,w〉 +

(
K̄ + r−2)

‖ f ‖
2
2

)
.

Since∫
B(r)

〈1w,w〉 =

∫
B(r)

〈λi aiwi , a jw j 〉 = λi a2
i ≤ λka2

i = λk

∫
B(r)

〈w,w〉 ,
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this implies

‖ f ‖
2
2β ≤

1
1 − δ1c (ε)

AV −2/νr2(λk + K̄ + r−2) ‖ f ‖
2
2 .

By the Hölder inequality,

‖ f ‖
2
2 ≤ V (β−1)/β

‖ f ‖
2
2β .

We conclude that

V −(β−1)/β
‖ f ‖

2
2 ≤

1
1 − δ1c (ε)

AV −2/νr2 (λk + K̄ + r−2)
‖ f ‖

2
2 .

Now we claim that for 1 ≤ i <∞,

(14) V −(β−1)/αβ
‖ f ‖

2
2α

≤

i∏
j=0

(
β2 j

2β j − 1

) 2q
2q−ν

β− j(
1

1 − δ1c (ε)
AV −2/νr2λ∗

k

)∑i
j=0 β

− j

‖ f ‖
2
2 ,

where λ∗

k = λk + K̄ + r−2. Assuming this inequality (14) is true for α = β j ,
j = 0, . . . , i − 1, by induction, we need to show that (14) is still valid for j = i .
Suppose g = |w̄|, where w̄ ∈ V with the property that

(15)
‖g‖2α

‖g‖2
≥

‖w‖2α

‖w‖2
for all w ∈ V.

Without loss of the generality, we may use the scaling and assume ‖g‖2 = 1. By
the Hölder inequality, Equation (13) implies

‖g‖
2α
2αβ ≤ C̃

(∫
B(r)

g2α−2
〈1w̄, w̄〉 +

(
K̄ + r−2)

‖g‖
2α
2α

)
(16)

≤ C̃
(
‖g‖

2α−1
2α ‖1w̄‖2α +

(
K̄ + r−2)

‖g‖
2α
2α
)
.

We also note that if s ≥ 2, then there exists a subset {σ } ⊂ {1, 2, . . . , k} such that∥∥∥∥ k∑
i=1

λiwi

∥∥∥∥
s
≤

∥∥∥∥∑
σ

λkwσ

∥∥∥∥
s
.

This is proved in [Li 1980, Lemma 17]. Hence, let w̄ =
∑

biwi , then 1w̄ =∑
λi biwi and we have

‖1w̄‖2α =

∥∥∥∥∑
i

λi biwi

∥∥∥∥
2α

≤

∥∥∥∥∑
σ

λkbσwσ

∥∥∥∥
2α

= λk

∥∥∥∥∑
σ

bσwσ

∥∥∥∥
2α

≤ λk‖g‖2α

∥∥∥∥∑
σ

bσwσ

∥∥∥∥
2

by (15)

≤ λk ‖g‖2α .
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It is obvious that (16) gives

‖g‖
2α
2αβ ≤ C̃λ∗

k ‖g‖
2α
2α ,

where λ∗

k = λk + K̄ + r−2. By the method of iteration, we obtain

‖g‖
2
2αβ ≤ C̃i (λ

∗

k)
∑i

j=0 β
− j

‖g‖
2
2 ,

where α = β i and

C̃i =

i∏
j=0

(
β2 j

2β j − 1

)2q/(2q−ν)β− j(
1

1 − δ1c (ε)
AV −2/νr2

)∑i
j=0 β

− j

.

On the other hand, by Hölder inequality, we have

‖g‖
2
2α ≤ V (β−1)/αβ

‖g‖
2
2αβ .

Therefore,

(17) V −(β−1)/αβ
‖g‖

2
2α ≤ C̃i ·

(
λ∗

k
)∑i

j=0 β
− j

‖g‖
2
2 .

Applying (15) to (17), it is easy to check that

V −(β−1)/αβ
‖ f ‖

2
2β i ≤ C̃i · (λ∗

k)
∑i

j=0 β
− j

‖ f ‖
2
2 .

Letting i → ∞, due to
∑

∞

j=0 β
− j

= ν/2 and

∞∏
j=0

(
β2 j

2β j − 1

)β− j

≤ exp
1

β1/2 − 1
= c1(ν),

we conclude that

‖ f ‖
2
∞

≤ C(ν, q)
(

AV −2/νr2λ∗

k
)ν/2

‖ f ‖
2
2 ,

where A is a positive constant depending only on m and η. This means, for all
w ∈ V, w satisfies

‖w‖
2
∞

≤ C(ν, η,m)V −1rν
(
λ∗

k
)ν/2

‖w‖
2
2 ,

for all q > ν/2, where

λ∗

k = λk + K̄ + r−2 and K̄ = δ
ν/(ν−2q)
1 B2q/(2q−ν)

(
Ar2)ν/(2q−ν)

.

In fact, by the assumption of curvature, we have B ≤ 1; hence

(18) ‖w‖
2
∞

≤ C(ν, η,m)V −1rν
(
λk + c(δ1, ν)r2ν/(2q−ν)

+ r−2)ν/2
‖w‖

2
2 .

We note that the Hodge Laplace Beltrami operator 1= dδ+ δd is nonnegative
and self-adjoint on B(r) under the absolute boundary condition. Hence, using the
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standard elliptic theory, if we assume λ1 be the first nonzero eigenvalue, then we
have

0< λ1 ≤ λ2 ≤ · · · → ∞.

This means, there exists k0 large enough such that the k-th nonzero eigenvalue

(19) λk ≥ max{c(δ1, ν)r2ν/(2q−ν), r−2
}.

Thus, by (18) and (19), we have

‖w‖
2
∞

≤ C(ν, η,m)V −1rνλν/2k ‖w‖
2
2 ,

for all w belong to the space V spanned by the p-eigenforms corresponding to the
first k nonzero eigenvalues. Therefore, the dimension estimate (4) gives

k
V

‖w‖
2
2 ≤ (mp ) ‖w‖

2
∞

≤ C(ν, η,m, p)V −1rνλν/2k ‖w‖
2
2 ,

and we conclude that
λk(B(r))≥ Ck2/νr−2

for all k ≥ k0, where C = C (ν, η,m, p) is a positive constant. �

3. Main Result

Let (Mm, g), m ≥ 3, be a complete noncompact manifold with Riemannian metric
g. We consider the manifold M with its curvature operator Kp(x) is asymptotically
nonnegative. By [Li and Tam 1992], we know that M has finitely many ends if the
curvature operator Kp(x) of M is asymptotically nonnegative. Assume E1, . . . , EL

be the ends of M with respect to a compact smooth domain Bq(r0) in M . Let
B be a n-dimensional vector bundle over M with a metric. For r > 4r0 > 0,
with Bq (r0) ⊂ B(r), where B(r) is a Busemann ball in M . We define a positive
semidefinite symmetric bilinear form Sr on the space of section 0 (B) of B by

(20) Sr (u, v)= V −1(r)
∫

B(r)
〈u, v〉

for u, v ∈ 0 (B). In particular, Sr is always positive definite, and (B,Sr ) is an
inner product space in B(r).

Suppose each end satisfies volume comparison property, the volume doubling
property holds on ends {El}

L
l=1

of M , that is for r > 2r0 and ε > 0,

VEl ((1 + ε) r)≤ (1 + ε)µ VEl (r),

where µ> 0 is a constant depending only on m. Moreover, given any η > 0, there
is r1 > 2r0 such that for all x ∈ ∂BE (R), with R > r1, and for all 3

4 R > r ′ > r > 0,
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we have
Vx
(
r ′
)
≤

(r ′

r

)n+η

Vx(r).

The curvature operator Kp on M is defined by

Kp ≥ −K =

{
lower bound of curvature operator if p > 1,

lower bound of Ricci curvature if p = 1.

Concerning the asymptotically nonnegative curvature operator, the volume com-
parison property holds on each end for p > 1 [Li and Tam 1995, Proposition 3.8].
For the case of p = 1, the curvature operator is the Ricci curvature, the volume
comparison property holds on ends of M if we assume that the first Betti number
of M is finite.

Lemma 3.1. Let V be a k-dimensional subspace of a vector space W . Assume
that W is endowed with an inner production L and a bilinear form 8. Then for
any given linearly independent set of vectors {w1, . . . , wk−1} ⊂ W , there exists an
orthonormal basis {v1, . . . , vk} of V with respect to L such that 8(vi , w j )= 0 for
all 1 ≤ j < i ≤ k.

Lemma 3.2. Let M be a complete Riemannian manifold with asymptotically non-
negative curvature operator. Let V be a k-dimensional subspace of H p

d (M, g), and
let E1, E2, . . ., EL be the ends of M with respect to Bq (r0), r0 > 0. For any fixed
0 < ε < 1

4 , r > 4r0 and any subspace Y of V, if {vs+1, . . . , vk} is an orthonormal
basis of inner production S(1+ε)r on Y . Then

k∑
i=s+1

Sr (vi , vi )≤
8 (1 + ε)µ

ε2r2

k∑
i=s+1

λ−1
i (B((1 + ε)r)),

where µ > 0 is a constant depending only on m.

Proof. Let λi (B((1 + ε)r)) denote the i-th nonzero eigenvalue of p-forms on Buse-
mann ball B((1+ε)r) satisfying the absolute boundary condition on ∂B ((1 + ε) r).
Let φ be a nonnegative function defined on B((1+ε)r) satisfying these conditions:

φ = 1 on B(r),

0 ≤ φ ≤ 1 on B((1 + ε)r),

φ = 0 on ∂B((1 + ε)r),

and
|∇φ| ≤

2
εr
.

Observing that by the property of unique continuation, V is a k-dimensional sub-
space because

V ⊂ L2 (B((1 + ε)r), φdv)∩ L2 (B(r), dv) .
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Applying Lemma 3.1 with {w1, . . . , wk} as the eigen p-forms of Busemann ball
B((1 + ε)r) corresponding to the nonzero eigenvalues{

λ1 (B((1 + ε)r)) , . . . , λk (B((1 + ε)r))
}
,

we get an orthonormal basis {v1, . . . , vk} of V with respect to the inner product
S(1+ε)r satisfying

S(1+ε)r
(
vi , v j

)
= V −1 ((1 + ε) r)

∫
B((1+ε)r)

〈
vi , v j

〉
.

Hence
8(vi , w j )=

∫
B((1+ε)r)

〈
vi , w j

〉
φ dv = 0

for 1 ≤ j < i ≤ k. Thus, for any 1 ≤ i ≤ k, let |vi |
2
= 〈vi , vi 〉, ‖vi‖

2
= (vi , vi ) =∫

〈vi , vi 〉 and sgn = (−1)m(p+1)+1. We have

(21) λi (B((1 + ε)r))
∫

B((1+ε)r)
|φvi |

2 dv ≤ ‖d(φvi )‖
2
+ ‖δ(φvi )‖

2 .

The right-hand side of this inequality can be rewritten as

(22) (d(φvi ), d(φvi ))+ (δ(φvi ), δ(φvi ))

= (dφ ∧ vi +φdvi , dφ ∧ vi +φdvi )

+
(
φδvi + sgn (dφ ∧ ∗vi ) , φδvi + sgn ∗(dφ ∧ ∗vi )

)
= ‖dφ ∧ vi‖

2
+ 2(φdvi , dφ ∧ vi )+ ‖φdvi‖

2
+ ‖φδvi‖

2

+ 2 (φδvi , sgn ∗(dφ ∧ ∗vi ))+ ‖dφ ∧ ∗vi‖
2 .

On the other hand,

0 =

∫
B((1+ε)r)

φ2
〈vi ,1vi 〉 dv =

(
φ2vi ,1vi

)
=
(
δ(φ2vi ), δvi

)
+
(
d(φ2vi ), dvi

)
= (φδvi , φδvi )+ 2(φδvi , sgn ∗(dφ ∧ ∗vi ))+ (φdvi , φdvi )+ 2 (φdvi , dφ ∧ vi ) .

Then (22) gives

(23)
(
d(φvi ), d(φvi )

)
+
(
δ(φvi ), δ(φvi )

)
= ‖dφ ∧ vi‖

2
+ ‖dφ ∧ ∗vi‖

2

≤ 2 supB((1+ε)r) |∇φ|
2
· ‖vi‖

2

≤
8
ε2r2 V ((1 + ε) r) ,

since vi is orthonormal on B((1 + ε)r). Therefore, (21) and (23) imply
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(24)
∫

B(r)
|vi |

2 dv ≤

∫
B((1+ε)r)

|φvi |
2 dv

≤ λ−1
i (B((1 + ε)r))

{
‖d(φvi )‖

2
+ ‖δ(φvi )‖

2}
≤

8
ε2r2λi (B((1 + ε)r))

V ((1 + ε) r) .

Hence, if we let Y represent the space spanned by {vs+1, . . . , vk}, we get

dim Y = k − s

and
k∑

i=s+1

∫
B(r)

|vi |
2 dv ≤

k∑
i=s+1

8
ε2r2λi (B((1 + ε)r))

V ((1 + ε) r) .

Therefore,

k∑
i=s+1

V −1(r)
∫

B(r)
|vi |

2 dv ≤

k∑
i=s+1

8
ε2r2λi (B((1 + ε)r))

V ((1 + ε) r)
V (r)

.

Moreover, volume doubling property holds on each end of M which implies

V ((1 + ε) r)≤ (1 + ε)µ V (r)

for r > 2r0, where µ > 0 is a constant depending only on m. We conclude

k∑
i=s+1

Sr (vi , vi )≤
8 (1 + ε)µ

ε2r2

k∑
i=s+1

λ−1
i (B((1 + ε)r)). �

Lemma 3.3. Let E1, . . . , EL be the ends of M with respect to B (r0), r0 > 0, and
let V be a k-dimensional vector space with polynomial growth of degree at most d.
Then for all 0 < ε < 1

4 and r1 > 4r0, there is r > r1 such that if {u1, . . . , uk} is an
orthonormal basis for V with respect to S(1+ε)r , then

k∑
i=1

Sr (ui , ui )≥ k (1 + ε)−(2d+1) .

Proof. Denote the trace of Sr with respect to S(1+ε)r by tr(1+ε)r Sr . and the deter-
minant of Sr with respect to S(1+ε)r by det(1+ε)r Sr . Suppose the lemma is false.
Then, for some 0< ε < 1

4 and r1 > 4r0 such that for all r > r1,

tr(1+ε)r Sr = tr(1+ε)r Sr < k (1 + ε)−(2d+1) .

On the other hand, the arithmetic geometric mean asserts that

(det(1+ε)r Sr )
1/k

≤ k−1tr(1+ε)r Sr .
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This implies that
det(1+ε)r Sr ≤ (1 + ε)−k(2d+1) .

Setting r = r1 + 1 and iterating this inequality j time, we obtain

(25) det(1+ε) j r Sr ≤ (1 + ε)− jk(2d+1) .

However, for a fixed Sr orthonormal basis {ui }
k
i=1 of V, and the polynomial growth

assumption imply that there exists a constant C > 0, depending on V, such that

S(1+ε) j r (ui , ui )= V −1 ((1 + ε) j r
) ∫

B((1+ε) j r)
〈ui , ui 〉 ≤ C

(
(1 + ε) j r

)2d

for all 1 ≤ i ≤ k. Hence

detr S(1+ε) j r ≤ k!Ck ((1 + ε) j r
)2dk

.

This contradicts (25) since j → ∞. �

We are now ready to prove the Main Theorem, which we restate here.

Main Theorem. Let (Mm, g), m ≥ 3, be a complete noncompact manifold with
metric g, and q ∈ M be a fixed point. Suppose curvature operator Kp is asymptot-
ically nonnegative. Let E1, E2, . . . , EL be the ends of M with respect to Bq (r0),
r0 > 0. Then for any uniformly equivalent metric g′ on M and for all d ≥ 1, the
space H p

d (M, g′), is finite-dimensional and its dimension satisfies the inequality

dim H p
d (M, g′)≤ C dν

for some constants ν > 2, µ > 0, η > 0 and C = C(m, p, ν, µ, η) > 0.

Proof. For any k-dimensional subspace V of H p
d (M). By Lemma 3.3, if we set

ε = 1/5d , there exists r > 4r0 such that

tr(1+ε)r Sr ≥ k (1 + ε)−(2d+1) .

Let λk be the k-th eigenvalue of the Hodge Laplacian acting on p-forms on Buse-
mann ball B((1 + ε) r) ⊃ B(r0) satisfying the absolute boundary condition on
∂B((1 + ε)r) under the metric g′. Then by Lemma 2.1, Lemma 2.2 and the
assumption of Kp, we have

λk ≥ C k2/ν (1 + ε)−2 r−2,

for k > s =
∑L

l=1dimHp (B((1 + ε) r)), where C is a positive constant depending
only on m, p, ν and η. Combining with Lemma 3.2, we find there exists a subspace
Y in V with

dim Y = dim V −

L∑
l=1

dim Hp(B((1 + ε) r)),



108 JUI-TANG RAY CHEN AND CHIUNG-JUE ANNA SUNG

and a positive constant µ such that

k∑
i=s+k0+1

Sr (vi , vi ) ≤
8 (1 + ε)µ

ε2r2

k∑
i=s+1

λ−1
i (B((1 + ε) r)) ≤

8 (1 + ε)µ+2

ε2 k1−2/ν,

where ε = 1/5d . Hence

k (1 + ε)−(2d+1)
≤ tr(1+ε)r Sr (V )≤ tr(1+ε)r Sr (Y )+ dim Hp (B((1 + ε) r))

≤ C d2 k1−2/ν .

where we have used Lemmas 2.1 and 2.2. Therefore k ≤ C dν . Since V is arbitrary,
we conclude that

dim H p
d (M, g′)≤ C dν

for all d ≥ 1. �

Suppose M has nonnegative curvature operator outside a compact set, with finite
first Betti number, In this case, even thought it is not exactly true that each end of
M satisfies volume comparison property for p = 1, however, it is almost true so
that by modifying some arguments of main theorem still holds for such a manifold;
see [Li and Tam 1995, Corollary 6.2] in particular. Hence we have Corollary 1.3.
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TRANSVERSE POISSON STRUCTURES TO ADJOINT ORBITS
IN SEMISIMPLE LIE ALGEBRAS

PANTELIS A. DAMIANOU, HERVÉ SABOURIN AND POL VANHAECKE

We study the transverse Poisson structure to adjoint orbits in a complex
semisimple Lie algebra. The problem is first reduced to the case of nilpo-
tent orbits. We prove then that in suitably chosen quasihomogeneous co-
ordinates, the quasidegree of the transverse Poisson structure is −2. For
subregular nilpotent orbits, we show that the structure may be computed
using a simple determinantal formula that involves the restriction of the
Chevalley invariants on the slice. In addition, using results of Brieskorn and
Slodowy, the Poisson structure is reduced to a three dimensional Poisson
bracket, which is intimately related to the simple rational singularity that
corresponds to the subregular orbit.

1. Introduction

The transverse Poisson structure was introduced by A. Weinstein [1983], stating
in his famous splitting theorem that every (real smooth or complex holomorphic)
Poisson manifold M is, in the neighborhood of each point m, the product of a
symplectic manifold and a Poisson manifold of rank 0 at m. The two factors of
this product can be geometrically realized as follows. Let S be the symplectic leaf
through m, and let N be any submanifold of M containing m such that

Tm(M)= Tm(S)⊕ Tm(N ).

There exists a neighborhood V of m in N , endowed with a Poisson structure, and
a neighborhood U of m in S such that, near m, M is isomorphic to the product
Poisson manifold U × V . The submanifold N is called a transverse slice at m to
the symplectic leaf S. The Poisson structure on V ⊂ N is called the transverse
Poisson structure to S; up to Poisson isomorphism, it is independent of the point
m ∈ S and the chosen transverse slice N at m: given two points m, m′

∈ S with

MSC2000: primary 53D17; secondary 17B10, 14J17.
Keywords: transverse Poisson structure, nilpotent orbits, Kleinian singularities.
The authors would like to thank the Cyprus Research Foundation and the Ministère Français des
Affaires étrangères for their support.
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transverse slices N , N ′ to S, there exist neighborhoods V of m in N and V ′ of m′

in N ′ such that (V,m) and (V ′,m′) are Poisson diffeomorphic.
When M is the dual g∗ of a complex Lie algebra g and is equipped with its

standard Lie–Poisson structure, we know that the symplectic leaf through µ ∈

g∗ is the coadjoint orbit G · µ of the adjoint Lie group G of g. In this case, a
natural transverse slice to G ·µ is obtained in the following way. We choose any
complement n to the centralizer g(µ) of µ in g, and we take N to be the affine
subspace µ+ n⊥ of g∗. Since g(µ)⊥ = ad∗

g µ, we have

Tµ(g∗)= Tµ(G ·µ)⊕ Tµ(N ),

so that N is indeed a transverse slice to G ·µ at µ. Furthermore, defining on n⊥

any system of linear coordinates (q1, . . . , qk) and using the explicit formula for
Dirac reduction (see formula (4) below), one can write down explicit formulas for
the Poisson matrix3N :=

({
qi , q j

}
N

)
, 1 ≤ i, j ≤ k of the transverse Poisson struc-

ture, from which it follows easily that the coefficients of 3N are actually rational
functions in (q1, . . . , qk). As a corollary, in the Lie–Poisson case, the transverse
Poisson structure is always rational [Saint-Germain 1999]. One immediately won-
ders, for which cases — more precisely, for which Lie algebras g, coadjoint orbits,
and complements n — is the Poisson structure on N polynomial?

Partial answers have been given in the literature for (co)adjoint orbits in a semi-
simple Lie algebra. P. Damianou [1996] computed explicitly how the transverse
Poisson structure to nilpotent orbits of gln for n ≤ 7 correspond to a particu-
lar complement n; in this case the transverse Poisson structure is polynomial.
Cushman and Roberts [2002] proved that there exists for any nilpotent adjoint
orbit of a semisimple Lie algebra a special choice of a complement n such that
the corresponding transverse Poisson structure is polynomial. For the latter case,
H. Sabourin [2005] gave a more general class of complements having a polynomial
transverse structure, using essentially the machinery of semisimple Lie algebras;
he also showed that the choice of complement n is relevant for the polynomial char-
acter of the transverse Poisson structure by giving an example where the structure
is rational for a generic choice of complement.

When the transverse Poisson structure is polynomial, one is tempted to define
its degree as the maximal degree of the coefficients

{
qi , q j

}
N of its Poisson matrix,

as was done in [Damianou 1996] and [Cushman and Roberts 2002], where several
conjectures about this degree are formulated. Unfortunately, as shown in [Sabourin
2005], this degree depends strongly on the choice of the complement n, and hence
it is not intrinsically attached to the transverse Poisson structure. We show in
Section 3 that the right approach is to use the more general notion of quasidegree;
that is, we assign natural quasidegrees $(qi ) to the variables qi (i = 1, . . . , k)
and we show that, in the above mentioned class of complements, the quasidegree



TRANSVERSE POISSON STRUCTURES 113

of the transverse Poisson structure is always −2, irrespective of the simple Lie
algebra, the chosen adjoint orbit, and the chosen transverse slice N ! In fact, the
weights$(qi ) have a Lie-theoretic origin and are also independent of the particular
complement. It follows that

{
qi , q j

}
N for 1 ≤ i, j ≤ k is a quasihomogeneous

polynomial of quasidegree $(qi )+$(q j )− 2.
Another result, established in this article, is that the study of the transverse

Poisson structure to any adjoint orbit G·x can be reduced, via the Jordan–Chevalley
decomposition of x ∈g, to the case of an adjoint nilpotent orbit. Thereby we explain
why we are merely interested in the case of nilpotent orbits.

The transverse structure to the regular nilpotent orbit Oreg of g is always trivial.
So, the next step is to consider the case of the subregular nilpotent orbit Osr of g.
Then N ∼= C`+2, where ` is the rank of g. The dimension of Osr is two less than the
dimension of the regular orbit, so that the transverse Poisson structure has rank 2.
It has ` independent polynomial Casimir functions χ1, . . . , χ`, where χi is the
restriction of the i-th Chevalley invariant Gi to the slice N . In this case, the trans-
verse Poisson structure may be obtained by a simple determinantal formula instead
of the usual, rather complicated Dirac constraints. That formula is as follows. In
linear coordinates q1, q2, . . . , q`+2 on N ,

(1) { f, g}det :=
d f ∧ dg ∧ dχ1 ∧ · · · ∧ dχ`

dq1 ∧ dq2 ∧ . . .∧ dq`+2

defines a Poisson bracket on N that coincides (up to a nonzero constant) with the
transverse Poisson structure on N .

As an application of formula (1), we show in Theorem 5.6 that the Poisson
matrix of the transverse Poisson on N takes, in suitable coordinates, the block
form

3̃N =

(
0 0
0 �

)
, where �=



0
∂F
∂q`+2

−
∂F
∂q`+1

−
∂F
∂q`+2

0
∂F
∂q`

∂F
∂q`+1

−
∂F
∂q`

0


.

The polynomial F = F(u1, . . . , u`−1, q`, q`+1, q`+2) is precisely the one that de-
scribes the universal deformation of the (homogeneous or inhomogeneous) simple
singularity of the singular surface N ∩ N, where N is the nilpotent cone of g.
The u1, . . . , u`−1 are the deformation parameters, which are also Casimirs for the
Poisson structure on N . In particular, the restriction of this Poisson structure to
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N ∩ N is given by

{x, y} =
∂F0

∂z
, {y, z} =

∂F0

∂x
, {z, x} =

∂F0

∂y
,

where F0(x, y, z) := F(0, . . . , 0, x, y, z) is the polynomial that defines N ∩ N as
a surface in C3. As we will recall in Section 5, Brieskorn [1971] showed that, in
the ADE case, the so-called adjoint quotient G = (G1, . . . ,G`) : g → C` is, when
restricted to the slice N , a semiuniversal deformation of the singular surface N ∩N;
this result was generalized by Slodowy [1980a] to the other simple Lie algebras.
Our Theorem 5.6 adds a Poisson dimension to this result.

The article is organized as follows. In Section 2, we recall a few basic facts
concerning transverse Poisson structures, and we show that a general orbit in a
semisimple Lie algebra can be reduced to the case of a nilpotent orbit. In Section
3, we recall the notion of quasihomogeneity, and we show that, for a natural class
of slices, the transverse Poisson structure is quasihomogeneous of quasidegree −2.
In Section 4 and the end of Section 5, we show, in the Lie algebras g2, so8, and
sl4, how the transverse Poisson structure can be computed explicitly, and we use
these examples to illustrate our results. In Section 5, we prove that, in the case of
the subregular orbit, the transverse Poisson structure is given by a determinantal
formula; we also show that this Poisson structure is entirely determined by the
singular variety of nilpotent elements of the slice.

2. Transverse Poisson structures in semisimple Lie algebras

In this section, we recall the main setup for studying the transverse Poisson struc-
ture to a (co)adjoint orbit of a complex semisimple Lie algebra g, and we show
how the general orbit is related to the case of a nilpotent orbit. We use the Killing
form 〈 · | · 〉 of g to identify g with its dual g∗. This leads to a Poisson structure
on g that is given for functions F,G on g at x ∈ g by

(2) {F,G} (x) := 〈x | [d F(x), dG(x)]〉 ,

where we think of d F(x) and dG(x) as elements of g ∼= g∗ ∼= T ∗
x g. Since the

Killing form is Ad-invariant, the isomorphism g ∼= g∗ identifies the adjoint orbits
G · x of G with the coadjoint orbits G ·µ, and so the symplectic leaf of { · , · } that
passes through x is the adjoint orbit G·x . Also, as a transverse slice at x to G·x , we
can take an affine subspace N := x +n⊥, where n is any complementary subspace
to the centralizer g(x) := {y ∈ g | [x, y] = 0} of x in g and ⊥ is the orthogonal
complement with respect to the Killing form. To give an explicit formula for the
Poisson structure { · , · }N transverse to G · x , let (Z1, . . . , Zk) be a basis for g(x),
and let (X1, . . . , X2r ) be a basis for n, where 2r = dim(G · x) is the rank of the
Poisson structure (2) at x . These bases lead to linear coordinates q1, . . . , qk+2r
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on g, centered at x , defined by qi (y) := 〈y − x | Zi 〉, for i =1, . . . , k and qk+i (y) :=
〈y − x | X i 〉, for i = 1, . . . , 2r . Since dqi (y)= Zi for i = 1, . . . , k and dqk+i (y)=
X i for i = 1, . . . , 2r , it follows from (2) that the Poisson matrix of { · , · } at y ∈ g

is given by

(3)
({

qi , q j
}
(y)
)

1≤i, j≤k+2r =

(
A(y) B(y)

−B(y)> C(y)

)
,

where

Ai, j (y)=
〈
y | [Zi , Z j ]

〉
,

Bi,m(y)= 〈y | [Zi , Xm]〉 ,

Cl,m(y)= 〈y | [Xl, Xm]〉 ,

for 1 ≤ i, j ≤ k;

for 1 ≤ i ≤ k, 1 ≤ m ≤ 2r;

for 1 ≤ l,m ≤ 2r .

It is easy to see that the skew-symmetric matrix C(x) is invertible, and so C(y) is
invertible for y in a neighborhood of x in g, and hence for y in a neighborhood
V of x in N . By Dirac reduction, the Poisson matrix of { · , · }N at n ∈ V in the
coordinates q1, . . . , qk (restricted to V ), is given by

(4) 3N (n)= A(n)+ B(n)C(n)−1 B(n)>.

According to the Jordan–Chevalley decomposition theorem, we can write x = s+e,
where s is semisimple, e is nilpotent, and [s, e] = 0. Moreover, the respective
centralizers of x, s and e are related as follows:

(5) g(x)= g(s)∩ g(e).

This leads to a natural class of complements n to g(x). Since the restriction of
〈 · | · 〉 to g(s) is nondegenerate [Dixmier 1996, Prop. 1.7.7.], we have a vector
space decomposition of g as

g = g(s)⊕ ns,

where ns = g(s)⊥. Notice that ns is g(s)-invariant, that is, [g(s), ns] ⊂ ns , since

〈g(s) | [g(s), ns]〉 = 〈[g(s), g(s)] | ns〉 ⊂ 〈g(s) | ns〉 = {0} .

Choosing any complement ne of g(x) in g(s), we get the following decomposition
of g:

g = g(x)⊕ ne ⊕ ns .

We take then n := ne ⊕ns , and we denote Nx := x +n⊥. It follows that, if n ∈ Nx

such that n ∈ g(s), then 〈n | [g(s), ns]〉 ⊂ 〈g(s) | ns〉 = {0}. In particular,

(6) 〈n | [g(x), ns]〉 = {0} and 〈n | [ne, ns]〉 = {0} .

Let us assume that the basis vectors X1, . . . , X2r of n have been chosen such that
X1, . . . , X2p ∈ ne and X2p+1, . . . , X2r ∈ ns . Then the formulas (6) imply that the
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Poisson matrix (3) takes at n ∈ Nx the form

3(n)=

 A(n) Be(n) 0
−Be(n)> Ce(n) 0

0 0 Cs(n)

 ,
where

Ai, j (n)=
〈
n | [Zi , Z j ]

〉
,

Be;i,m(n)= 〈n | [Zi , Xm]〉 ,

Ce;l,m(n)= 〈n | [Xl, Xm]〉 ,

Cs;l,m(n)= 〈n | [Xl, Xm]〉 ,

for 1 ≤ i, j ≤ k;

for 1 ≤ i ≤ k, 1 ≤ m ≤ 2p;

for 1 ≤ l, m ≤ 2p;

for 2p + 1< l, m ≤ 2r .

It follows from (4) that the Poisson matrix of the transverse Poisson structure on
Nx is given by

(7) 3Nx (n)= A(n)+ Be(n)Ce(n)−1 Be(n)>.

Let us now restrict our attention to the Lie algebra g(s), which, being reductive,
decomposes as

g(s)= z(s)⊕ gss(s),

where z(s) is the center of g(s) and gss(s) = [g(s), g(s)] is the semisimple part
of g(s). At the group level we have a similar decomposition of G(s), the centralizer
of s in G whose Lie algebra is g(s), namely,

G(s)= Z(s)Gss(s),

where Z(s) is a central subgroup of G(s) and Gss(s) is the semisimple part of
G(s) with Lie algebra gss(s). Since e ∈ g(s), we can consider G(s) ·e as an adjoint
orbit of the reductive Lie algebra g(s). We may think of it as an adjoint orbit of
a semisimple Lie algebra, since G(s) · e = Gss(s) · e; similarly we may think of
a transverse slice to the adjoint orbit G(s) · e as a transverse slice to Gss(s) · e
up to a summand with trivial Lie bracket. Denoting by ⊥s the 〈 · | · 〉 orthogonal
complement restricted to g(s), we have that N := e + n

⊥s
e is a transverse slice to

G(s) · e, since
g(s)= g(x)⊕ ne = z(s)⊕ gss(s)(e)⊕ ne.

We have used that g(x) = g(s)(e) is the centralizer of e in g(s), which follows
from (5). In the chosen bases (Z1, . . . , Zk) of g(x) and (X1, . . . , X2p) of ne, the
Poisson matrix at n ∈ N takes the form(

A(n) Be(n)
−Be(n)> Ce(n)

)
,
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which leads by Dirac reduction to the transverse Poisson structure 3N on N :

3N (n)= A(n)+ Be(n)Ce(n)−1 Be(n)>,

where n ∈ N . This yields formally the same formula as (7), except that it is
evaluated at points n of N rather than at points of Nx . However, since n

⊥s
e =

g(s)∩n⊥
e = n⊥

s ∩n⊥
e = (ns +ne)

⊥
= n⊥, the affine subspaces Nx and N only differ

by a translation, Nx = s + e + n⊥
= s + N . Thus they, and their Poisson matrices

with respect to the coordinates q1, . . . , qk , can be identified, leading to:

Proposition 2.1. Let x ∈ g be any element, G · x its adjoint orbit, and x = s + e its
Jordan–Chevalley decomposition. Given any complement ne of g(x) in g(s) and
putting n := ns ⊕ne, where ns = g(s)⊥, the parallel affine spaces Nx := x +n⊥ and
N := e + n⊥ are respectively transverse slices to the adjoint orbit G · x in g and to
the nilpotent orbit G(s) · e in g(s). The Poisson structure on both transverse slices
has the same Poisson matrix, namely that of (7), in the same affine coordinates
restricted to the corresponding transverse slice.

In short, the transverse Poisson structure to any adjoint orbit G·x of a semisimple
(or reductive) Lie algebra g is essentially determined by the transverse Poisson
structure of the underlying nilpotent orbit G(s) ·e defined by the Jordan–Chevalley
decomposition x = s+e. A refinement of this proposition will be given in Corollary
3.5.

3. The polynomial and the quasihomogeneous character of the tranverse
Poisson structure

In this section we show that, for a natural class of transverse slices to a nilpotent
orbit O which we equip with an adapted set of linear coordinates centered at a
nilpotent element e ∈ O, the transverse Poisson structure is quasihomogeneous (of
quasidegree −2) in the following sense.

Definition 3.1. Let ν = (ν1, . . . , νd) be nonnegative integers. A polynomial P in
C[x1, . . . , xd ] is said to be quasihomogeneous (relative to ν) if, for some integer κ ,

P(tν1 x1, . . . , tνd xd)= tκ P(x1, . . . , xd) for all t ∈ C,

and κ is then called the quasidegree (relative to ν) of P , denoted $(P). Similarly,
a polynomial Poisson structure { · , · } on C[x1, . . . , xd ] is said to be quasihomo-
geneous (relative to ν) if there exists κ ∈ Z such that, for any quasihomogeneous
polynomials F and G, their Poisson bracket {F,G} is quasihomogeneous of degree

$({F,G})=$(F)+$(G)+ κ;

equivalently, for any i, j the polynomial
{

xi , x j
}

is quasihomogeneous of quaside-
gree νi + ν j + κ . Then κ is called the quasidegree of { · , · }.
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We first show that, given O, we can choose a system of linear coordinates on g,
centered at some nilpotent element e ∈ O, such that the Lie–Poisson structure on g

is quasihomogeneous relative to some vector ν that has a natural Lie-theoretic
interpretation. To describe how this happens, we need to recall some facts from
the theory of semisimple Lie algebras, which will be used throughout this paper.
First, one chooses a Cartan subalgebra h of g, with corresponding root system
1(h), from which a basis5(h) of simple roots is selected. The rank of g, which is
the dimension of h, is denoted by `. According to the Jacobson–Morosov–Kostant
correspondence (see [Tauvel and Yu 2005, paragraphs 32.1 and 32.4]), there is a
canonical triple (h, e, f ) ∈ g associated with O and completely determined, up to
conjugation by G(h), by the following properties:

• (h, e, f ) is a sl2-triple, that is, [h, e] = 2e, [h, f ] = −2 f , and [e, f ] = h;

• h is the characteristic of O, that is, h ∈ h and α(h) ∈ {0, 1, 2} for any simple
root α ∈5(h).

• O = G · e.

The triple (h, e, f ) leads to two decompositions of g.
First, g decomposes into eigenspaces relative to adh . Since each eigenvalue is

an integer, we have
g =

⊕
i∈Z

g(i),

where g(i) is the eigenspace of adh with eigenvalue i . For example, e ∈ g(2) and
f ∈ g(−2).

Second, let s be the Lie subalgebra of g isomorphic to sl2 that is generated by
h, e and f . The Lie algebra g is an s-module, hence it decomposes as

g =

k⊕
j=1

Vn j ,

where each Vn j is a simple s-module, with n j + 1 = dim Vn j and adh-weights
n j , n j − 2, n j − 4, . . . ,−n j . Moreover, k = dim g(e), since the centralizer g(e) is
generated by the highest weight vectors of each Vn j . It follows that

(8)
k∑

j=1

n j = dim g− k = dim(G · e)= 2r.

We center at e a system of linear coordinates on g by using the action of Slodowy
[1980b]: First, he considers the one-parameter subgroup of G,

λ : C∗
→ G

t 7→ exp(λt h),
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where λt is a complex number such that e−λt = t . The restriction of Ad to this
subgroup leaves every eigenspace g(i) invariant and acts for each t as a homothecy
with ratio t−i on g(i):

(9) Adλ(t) x = t−i x for all x ∈ g(i).

Since e ∈ g(2), the action ρ of C∗ on g — defined for t ∈ C∗ and for y ∈ g by
ρt · y := t2 Adλ(t) y — fixes e. We refer to ρ as Slodowy’s action. To see how
it leads to quasihomogeneous coordinates, let us define for x ∈ g the function
Fx(y) := 〈y − e | x〉 for y ∈ g. Then (9) and the Ad-invariance of the Killing form
imply that if x ∈ g(i) then(

ρ∗

t Fx
)
(y)=

〈
ρt−1 · y − e | x

〉
= t−2 〈Adλ(t−1)(y − e) | x

〉
= t−2 〈y − e | Adλ(t) x

〉
= t−2 〈y − e | t−i x

〉
= t−i−2Fx(y).

It follows that the quasidegree$(Fx) of Fx is i +2 for x ∈ g(i). According to (2),
one has, for any x, y, z ∈ g,

(10)
{
Fx ,Fy

}
(z)= 〈z | [x, y]〉 = F[x,y](z)+ 〈e | [x, y]〉 .

If x ∈ g(i) and y ∈ g( j) with i + j 6= −2, then 〈e | [x, y]〉 = 0 and so

$(
{
Fx ,Fy

}
)−$(Fx)−$(Fy)=$(F[x,y])−$(Fx)−$(Fy)

= i + j + 2 − (i + 2)− ( j + 2)= −2.

This result extends to the case i + j = −2, since then $(F[x,y]) = i + j + 2 = 0,
which is the quasidegree of the constant function 〈e | [x, y]〉. This proves:

Proposition 3.2. Let g be a semisimple Lie algebra identified with its dual using its
Killing form. Let O be a nilpotent adjoint orbit of g with canonical triple (h, e, f ).
Let x1, . . . , xd be any basis in g, where each xk belongs to some eigenspace g(ik) of
adh , and let Fk be the dual coordinates on g centered at e as Fk(y) := 〈y − e | xk〉 .

Then the Lie–Poisson structure { · , · } on g is quasihomogeneous of degree −2 with
respect to ($(F1), . . . ,$(Fd))= (i1 + 2, . . . , id + 2). �

We now wish to show that, upon picking a suitable transverse slice N to O at e,
the transverse Poisson structure on N is also quasihomogeneous (of degree −2).
Following [Sabourin 2005], we consider the set Nh of all subspaces n of g that are
complementary to g(e) in g and are adh-invariant. For n ∈ Nh we let N := e +n⊥,
which is a transverse slice to G·e. The adh-invariance of n implies on the one hand
that ρ leaves N invariant: if y ∈ e + n⊥ then

0 =
〈
y − e | Adλ(t−1) n

〉
=
〈
Adλ(t)(y − e) | n

〉
= t−2

〈ρt · y − e | n〉 ,

so that indeed ρt · y ∈ e + n⊥. On the other hand, it implies that n admits a basis
consisting of eigenvectors of h. Thus we can adapt the above basis x1, . . . , xd to n.
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We can choose a basis (Z1, . . . , Zk) for g(e) and a basis (X1, . . . , X2r ) for n so
that:

• each Zi for 1 ≤ i ≤ k is a highest weight vector of weight ni ;

• each X i for 1 ≤ i ≤ 2r is a weight vector of weight νi .

The linear coordinates (centered at e) FZ1, . . . ,FZk , when restricted to N , will be
denoted q1, . . . , qk . By the above, their quasidegrees are defined as$(qi ) :=ni +2.
That the transverse Poisson structure is polynomial in these coordinates was first
shown in [Sabourin 2005, Thm 2.3]. We now refine this statement.

Proposition 3.3. In the notation of Proposition 3.2, the transverse Poisson struc-
ture on N := e + n⊥, where n ∈ N, is a polynomial Poisson structure that is quasi-
homogeneous of degree −2 with respect to the quasidegrees n1 + 2, . . . , nk + 2,
where n1, . . . , nk denote the highest weights of g as an s-module.

Proof. According to (4), we need to show that for any 1 ≤ i, j ≤ k the functions Ai j

and (BC−1 B>)i j are quasihomogeneous of degree$(qi )+$(q j )−2=ni +n j +2.
For Ai j this is clear, since A is part of the Poisson matrix of the Lie–Poisson
structure on g, which we know is quasihomogeneous of degree −2. Similarly, we
have $(Bi p)= ni + νp + 2. Since

$(Bi pC−1
ps B js)= ni + n j + νp + νs + 4 +$(C−1

ps ),

we must show that

(11) $(C−1
ps )= −νp − νs − 2.

This follows from
∑2r

i=1(νi +1)= 0, which is itself a consequence of (8). Indeed,
consider a term of the form C ′

i j = Ci1 j1 . . .Ci2r−1 j2r−1 , where

{i1, i2, . . . , i2r−1} = {1, 2, . . . , 2r} \ {s} ,

{ j1, i2, . . . , j2r−1} = {1, 2, . . . , 2r} \ {p} .

Then

$(C ′

i j )=

2r−1∑
k=1

(νik + ν jk + 2)= −νs − νp − 2,

A typical term of C−1
ps is of the form C ′

i j/1(C), where 1(C) is the determinant
of C . As C is of quasidegree zero, 1(C) is constant by the previous argument.
This observation was made in [Sabourin 2005, Theorem 2.3]. This gives us (11).

�

Remark 3.4. Our referee pointed out that the quasihomogeneity of the transverse
Poisson structure is implicit in [Gan and Ginzburg 2002] and [Premet 2002] for
the special transversal n = Ker ad f . Using the eigenspaces of adh , these authors
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consider a filtration on the universal enveloping algebra Ug of g, which yields a
grading on the transversal Poisson algebra for this n. With the quasidegrees that
we use, the filtration’s graded algebra is Sym(g∗).

Let us consider now any adjoint orbit G · x and x = s +e, the Jordan–Chevalley
decomposition of x . We already considered this case in Proposition 2.1. A well-
known result [Tauvel and Yu 2005, par. 32.1.7.] says that there exists an sl2-triple
(h, e, f ) such that [s, h] = [s, f ] = 0. Consequently, (h, e, f ) is an sl2-triple of
the reductive Lie algebra g(s), and we can also suppose that, up to conjugation
by elements of G(s), h is the characteristic of G(s) · e. Let Ns,h be the set of all
complementary subspaces to g(x) in g(s) that are adh-invariant. Then, by applying
Proposition 3.3, we get:

Corollary 3.5. As in Proposition 2.1, let ns = g(s)⊥, ne ∈ Ns,h and n = ns ⊕ ne.
Let Nx := x +n⊥, which is a transverse slice to G · x. Then the transverse Poisson
structure on Nx is polynomial and is quasihomogeneous of quasidegree −2.

From now on, a transverse Poisson structure given by Proposition 3.3 will be
called an adjoint transverse Poisson structure or ATP-structure.

4. Examples

We want to show in two examples how to compute the ATP-structure. In the first
example, we consider the subregular orbit of g2, and we compute it without choos-
ing a representation of g2. In the second example, the subregular orbit of so8, we
use a concrete representation rather than referring to tables of the Lie brackets in
a Chevalley basis. These two examples will also serve later to illustrate the results
we will prove on the nature of the ATP-structure. Both examples correspond to
subregular orbits and lead to two of the simplest nontrivial ATP-structures in the
following sense. If O is an adjoint orbit in g, then the ATP-structure to O has rank
dim g − `− dim O at a generic point of any slice transverse to O, since the Lie–
Poisson structure on g has rank1 dim g − ` at a generic point of g. For the regular
nilpotent orbit Oreg, the ATP-structure is trivial because dim Oreg = dim g − `.
So, the first interesting nilpotent orbit to consider is the subregular orbit, denoted
by Osr . We recall two well-known facts [Collingwood and McGovern 1993]:

(1) the subregular orbit Osr is the unique nilpotent orbit that is open and dense in
the complement of Oreg in the nilpotent cone;

(2) dim Osr = dim g− `− 2.

It follows that the ATP-structure of the subregular orbit had dimension `+ 2 and
generic rank 2. In both of the following examples, we give the characteristic triplet

1Recall that ` denotes the rank of g.
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(h, e, f ) that corresponds to the orbit; we derive from it a basis of the adh-weight
spaces, which leads to basis vectors Zi of g(e) and X j of an adh-invariant com-
plement to g(e) in g. The Lie brackets of these elements then lead to the matrices
A, B and C in (3), which, by Dirac’s formula (4), yields the matrix 3N of the
transverse Poisson structure.

The subregular orbit of type G2. We first consider the case of the subregular orbit
of the Lie algebra g := g2. Denoting the basis of simple roots by5={α, β}, where
β is the longer root, its Dynkin diagram is given by

β α

and it has the positive roots

1+ = {α, β, α+β, 2α+β, 3α+β, 3α+ 2β}.

The vectors in the Chevalley basis2 of g are denoted by Hα, Hβ for the Cartan
subalgebra, Xγ for the six positive roots γ ∈1+, and Yγ for the six negative roots
−γ , where γ ∈1+. According to [Collingwood and McGovern 1993, Chapter 8.4],
the characteristic h of the subregular orbit Osr is given by the sequence of weights
(0, 2), which means that 〈α, h〉 = 0 and 〈β, h〉 = 2 and yields h = 2Hα+4Hβ . The
decomposition of g into adh-weight spaces g(i) consists of five subspaces:

(12)

g(4)= 〈X3α+2β〉,

g(2)= 〈Xβ, Xα+β, X2α+β, X3α+β〉,

g(0)= 〈Hα, Hβ, Xα, Yα〉,

g(−2)= 〈Yβ, Yα+β, Y2α+β, Y3α+β〉,

g(−4)= 〈Y3α+2β〉.

Taking for e and f an arbitrary linear combination of the above basis elements
of g(2) and g(−2), respectively, and using [e, f ] = h, one easily finds that the
sl2-triple corresponding to Osr is

e = Xβ + X3α+β, h = 2Hα + 4Hβ, f = 2Yβ + 2Y3α+β .

Picking the vectors in the positive subspaces g(i) that commute with e leads to
basis vectors of g(e):

(13)
Z1 = Xβ + X3α+β, Z2 = X2α+β,

Z3 = Xα+β, Z4 = X3α+2β .

2The Chevalley basis that we use is explicitly described in [Tauvel 1998, Chapter VII.4].
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We obtain an adh-invariant complementary subspace n of g(e) by completing these
vectors with additional vectors taken from the bases (12) of the subspaces g(i). Our
choice of basis vectors for n, ordered by weight, is

X1 = Xβ,

X2 = Xα,

X3 = Hα,

X4 = Hβ,

X5 = Yα,

X6 = Yβ,

X7 = Yα+β,

X8 = Y2α+β,

X9 = Y3α+β,

X10 = Y3α+2β .

The Lie brackets of these basis vectors for g, which are listed in [Tauvel 1998,
Chapter VII.4], yield the Poisson matrix ((A, B), (−B>,C)) of the Lie–Poisson
structure on g in the coordinates FZ1, . . . ,FZ4,FX1, . . . ,FX10 on g, as

Ai j =
{
FZi ,FZ j

}
= F[Zi ,Z j ] +

〈
e | [Zi , Z j ]

〉
(see (10)), and similarly for the other elements of the Poisson matrix. We give
the restriction of the matrices A, B and C to the transverse slice N := e + n⊥

only, which amounts to keeping in the Lie brackets only the vectors Z1, . . . , Z4,
as FX (n) = 〈e − n | X〉 = 0 for X ∈ n and n ∈ N = e + n⊥. In the coordinates
q1, . . . , q4 on N , where qi is the restriction of FZi to N , we get

A =


0 0 0 0
0 0 –3q4 0
0 3q4 0 0
0 0 0 0

 ,

B =


0 0 0 –q4 0 q1 –q2 q3 0 0
0 3q1 –q2 0 2q3 0 0 0 0 0
0 2q2 q3 –q3 0 0 0 0 0 0
q4 q3 –3q1 q1 q2 0 0 0 0 0

 ,

C =
1
3



0 3q3 0 0 0 0 0 0 0 1
–3q3 0 0 0 0 0 3 0 0 0

0 0 0 0 0 3 0 0 –3 0
0 0 0 0 0 –2 0 0 1 0
0 0 0 0 0 0 0 3 0 0
0 0 –3 2 0 0 0 0 0 0
0 –3 0 0 0 0 0 0 0 0
0 0 0 0 –3 0 0 0 0 0
0 0 3 –1 0 0 0 0 0 0

–1 0 0 0 0 0 0 0 0 0


.
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Substituted in (4), this yields the Poisson matrix for the ATP-structure:

(14) 3N =


0 0 0 0

0 0 −3q4 2q1q2 − 2q2
3

0 3q4 0 2q2
2 − 2q1q3

0 −2q1q2 + 2q2
3 −2q2

2 + 2q1q3 0

 .
It follows from (12) and (13) that the quasidegree of q1, q2 and q3 is 4, while the
quasidegree of q4 is 6. One easily reads off from (14) that, with respect to these
quasidegrees, the ATP-structure is quasihomogeneous of quasidegree −2.

The subregular orbit of type D4. We now take g = so8 and we realize g as the
following set of matrices:{(

Z1 Z2

Z3 −Z>

1

)
| Zi ∈ Mat4(C), with Z2, Z3 skew-symmetric

}
.

Let h denote the Cartan subalgebra of g consisting of all diagonal matrices in g.
Clearly, h is spanned by the four matrices Hi := Ei,i − E4+i,4+i , 1 ≤ i ≤ 4. Define
for i = 1, . . . , 4 the linear map ei ∈ h∗ by

ei (
∑

ak Hk)= ai .

Then the root system of g is

1 := {±ei ± e j | 1 ≤ i, j ≤ 4, i 6= j},

and a basis of simple roots is 5 := {α1, α2, α3, α4}, where

α1 = e1 − e2, α2 = e2 − e3, α3 = e3 − e4, α4 = e3 + e4.

It leads to the following Chevalley basis of g:

Xei −e j = Ei, j − E4+ j,4+i ,

Xei +e j = Ei,4+ j − E j,4+i ,

X−ei −e j = −E4+i, j + E4+ j,i ,

Hei −e j = Hi − H j ,

Hei +e j = Hi + H j .

i < j,

i < j,

According to [Collingwood and McGovern 1993, Chapter 5.4], the characteristic
h of the subregular orbit is given by the sequence of weights (2, 0, 2, 2). It follows
that

h = 4Hα1 + 6Hα2 + 4Hα3 + 4Hα4 .
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The positive adh-weight spaces are

(15)

g(0)= h ⊕ 〈Xα2, X−α2〉,

g(2)= 〈Xα1, Xα3, Xα4, Xα1+α2, Xα2+α3, Xα2+α4〉,

g(4)= 〈Xα1+α2+α3, Xα2+α3+α4, Xα1+α2+α4〉,

g(6)= 〈Xα1+α2+α3+α4, Xα1+2α2+α3+α4〉.

As in the first example, it follows that the canonical sl2-triple associated to Osr is

e = Xα1 + Xα1+α2 − Xα2+α4 + 2Xα3 − Xα4,

h = 4Hα1 + 6Hα2 + 4Hα3 + 4Hα4,

f = X−α1 + 3X−α1−α2 − 3X−α2−α4 + 2X−α3 − X−α4 .

We can now define the basis vectors Zi of g(e) and X j of an adh-invariant com-
plementary subspace n to g(e) in the Chevalley basis:

(16)

Z1 = Xα1+α2 − Xα2+α4 + 2Xα3,

Z2 = Xα1+α2+α3+α4,

Z3 = Xα1+2α2+α3+α4,

Z4 = Xα1 − Xα4,

Z5 = Xα2+α3 + Xα2+α4 − Xα3 − Xα4,

Z6 = Xα1+α2+α3 + Xα1+α2+α4 − Xα2+α3+α4,

X1 = Xα1+α2+α3,

X2 = Xα2+α3+α4,

X3 = Xα4,

X4 = Xα3,

X5 = Xα2+α4,

X6 = Hα1,

X7 = Hα2,

X8 = Hα3,

X9 = Hα4,

X10 = Xα2,

X11 = X−α2,

X12 = X−α1,

X13 = X−α3,

X14,= −X−α4,

X15 = X−α1−α2,

X16 = X−α2−α3,

X17 = −X−α2−α4,

X18 = −X−α1−α2−α3,

X19 = −X−α1−α2−α4,

X20 = −X−α2−α3−α4,

X21 = −X−α1−α2−α3−α4,

X22 = −X−α1−2α2−α3−α4 .

If we denote by Z̄1, . . . , Z̄6 the dual basis (with respect to 〈X | Y 〉 =
1
2 Trace(XY ))

of the basis Z1, . . . , Z6 of g(e), then a typical element of the transverse slice N =
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e + n⊥ is e +
∑6

i=1 qi Z̄i , that is,

(17) Q =



0 1 1 0 0 0 0 0
q4 0 0 0 0 0 0 –1
q1 0 0 2 0 0 0 –1
0 q5 0 0 0 1 1 0
0 –q3 –q2 0 0 –q4 –q1 0
q3 0 q6 0 –1 0 0 –q5

q2 –q6 0 0 –1 0 0 0
0 0 0 0 0 0 –2 0


,

and we can compute the matrix A restricted to N by Ai j =
〈
Q | [Zi , Z j ]

〉
, and

similarly for the matrices B and C . A direct substitution in (4) leads to the Poisson
matrix for the ATP-structure:

(18) 3N =
1
2



0 q4q6 –q4q6 0 –2q6 2q16

–q4q6 0 0 q4q6 –q5q6 –2q36

q4q6 0 0 –q4q6 q5q6 2q36

0 –q4q6 q4q6 0 2q6 –2q16

2q6 q5q6 –q5q6 –2q6 0 2q56

–2q16 2q36 –2q36 2q16 –2q56 0


,

where

(19)

q16 = 2q2 − q1q4 − q4q5 + q2
4 ,

q36 = q3q4 − q2q4 − q2q5,

q56 = 2q3 − 2q2 − q2
5 + q4q5 − q1q5.

It follows from (15) and (16) that the quasidegrees of the variables qi are $(q1)=

$(q4)=$(q5)= 4, $(q2)=$(q3)= 8, and $(q6)= 6. That the ATP-structure
is quasihomogeneous of quasidegree −2 can again be easily read off from (18).

5. The subregular case

In this section we will explicitly describe the ATP-structure of the subregular orbit
Osr ⊂ g, where g is a semisimple Lie algebra. Since in the subregular orbit the
generic rank of the ATP-structure on the transverse slice N is two, and since we
know dim(N )− 2 independent Casimirs, namely the basic Ad-invariant functions
on g restricted to N , we will easily derive that the ATP-structure is the determi-
nantal structure (also called Nambu structure) determined by these Casimirs, up to
multiplication by a function. What is much less trivial to show is that this function
is only a constant. For this we will use Brieskorn’s theory of simple singularities,
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which is recalled in Section 5 below. First we recall the basic facts on Ad-invariant
functions on g and link them to the ATP-structure.

Invariant functions and Casimirs. Let Osr = G · e, be a subregular orbit in the
semisimple Lie algebra g. Let (h, e, f ) be the corresponding canonical sl2-triple,
and consider the transverse slice N := e + n⊥ to G · e, where n is an adh-invariant
complement to g(e). We know from Section 3 that the ATP-structure on N , when
equipped with the linear coordinates q1, . . . , qk , is a quasihomogeneous polyno-
mial Poisson structure of generic rank 2. Let S(g∗)G be the algebra of Ad-invariant
polynomial functions on g. By a classical theorem due to Chevalley, S(g∗)G is a
polynomial algebra generated by ` homogeneous polynomials (G1, . . . ,G`)whose
degree di := deg(Gi ) = mi + 1, where m1, . . . ,m` are the exponents of g. These
functions are Casimirs of the Lie–Poisson structure on g, since Ad-invariance of
Gi implies that [x, dGi (x)] = 0, and hence the Lie–Poisson bracket (2) is

{F,Gi } (x)= 〈x | [d F(x), dGi (x)]〉 = − 〈[x, dGi (x)] | d F(x)〉 = 0

for any function F on g. If we denote by χi the restriction of Gi to the transverse
slice N then, it follows that these functions are Casimirs of the ATP-structure. The
polynomials χi are not homogeneous, but they are quasihomogeneous.

Lemma 5.1. Each χi is a quasihomogeneous polynomial of quasidegree 2di rela-
tive to the quasidegrees (2 + n1, . . . , 2 + nk).

Proof. Since χi is of degree di and χi is Ad-invariant, we get

ρ∗

t (χi )= χi ◦ ρt−1 = χi ◦ (t−2 Adλ−1(t))= t−2diχi ◦ Adλ−1(t) = t−2diχi ,

so that χi has quasidegree 2di . �

Simple singularities. Let h be a Cartan subalgebra of g. The Weyl group W acts on
h, and the algebra S(g∗)G of Ad-invariant polynomial functions on g is isomorphic
to S(h∗)W, the algebra of W-invariant polynomial functions on h∗. The inclusion
homomorphism S(g∗)G ↪→ S(g∗), is dual to a morphism g → h/W, called the
adjoint quotient. Concretely, the adjoint quotient is given by

(20)
G : g → C`

x 7→ (G1(x), G2(x), . . . ,G`(x)).

The zero-fiber G−1(0) of G is exactly the nilpotent variety N of g. As we are
interested in N ∩ N = N ∩ G−1(0) = χ−1(0)— which is an affine surface with
an isolated, simple singularity — let us recall the notion of simple singularity (see
[Slodowy 1980a] for details). Up to conjugacy, there are five types of finite sub-
groups of SL2 = SL2(C), which are denoted by Cp,Dp,T,O, and I. Given such a
subgroup F, one looks at the corresponding ring of invariant polynomials C[u, v]F .
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In each of the five cases, C[u, v]F is generated by three fundamental polynomials
X, Y, Z , subject to only one relation R(X, Y, Z) = 0; hence the quotient space
C2/F can be identified, as an affine surface, with the singular surface in C3 defined
by R = 0. The origin is its only singular point; it is called a (homogeneous) simple
singularity. The exceptional divisor of the minimal resolution of C2/F is a finite set
of projective lines. If two of these lines meet, then they meet in a single point, and
transversally. Moreover, the intersection pattern of these lines forms a graph that
coincides with one of the simply laced Dynkin diagrams of type A`, D`, E6, E7,
or E8. This type is called the type of the singularity. Moreover, every such Dynkin
diagram (that is, of type ADE) appears in this way; see Table 1.

For the other simple Lie algebras (of type B`, C`, F4 or G2), there exists a
similar correspondence. By definition, an (inhomogeneous) simple singularity of
type 1 is a couple (V, 0) consisting of a homogeneous simple singularity V =

C2/F and a group 0 = F′/F of automorphisms of V , according to Table 2.
The connection between the diagram of (V, 0) and that of V can be described

as follows. The action of 0 on V lifts to an action on a minimal resolution of V
that permutes the components of the exceptional set. Then, we obtain the diagram
of (V, 0) as a 0-quotient of that of V . It leads to Table 3, which is the nonsimply-
laced analog of Table 1.

We can now state an extension of a theorem of Brieskorn.

Proposition 5.2 [Slodowy 1980a, Theorems 1 and 2]. Let g be a simple complex
Lie algebra with Dynkin diagram of type1. Let Osr = G ·e be the subregular orbit,
and let N = e +n⊥ be a transverse slice to G · e. The surface N ∩ N = χ−1(0) has
a (homogeneous or inhomogeneous) simple singularity of type 1.

To finish this section we illustrate the results above for the examples of Section 4.
In both cases we give the invariants restricted to the slice N and their zero locus,

Group F Singularity R(X, Y, Z)= 0 Type 1

C`+1 X`+1
+ Y Z = 0 A`

D`−2 X`−1
+ XY 2

+ Z2
= 0 D`

T X4
+ Y 3

+ Z2
= 0 E6

O X3Y + Y 3
+ Z2

= 0 E7

I X5
+ Y 3

+ Z2
= 0 E8

Table 1. The basic correspondence between finite subgroups F
of SL2, homogeneous simple singularities defined by an equation
R(X, Y, Z)= 0, and simply laced simple Lie algebras of type 1.
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the surface χ−1(0).
First, for the subregular orbit of g2, the invariant functions restricted to the

slice N are

(21)
χ1 = q1,

χ2 = 12q1q2q3 − 4q3
2 − 4q3

3 + 9q2
4 ,

which leads to an affine surface χ−1(0) in C4 that is isomorphic to the surface in
C3 defined by

4q3
2 + 4q3

3 − 9q2
4 = 0.

Up to a rescaling, this is the polynomial R that was given in Table 3.
Second, for the subregular orbit of so8, the invariant functions restricted to the

slice N are found as the (nonconstant) coefficients of the characteristic polynomial

Type 1 V F F′ 0 = F′/F

B` A2`−1 C2` D` Z/2Z

C` D`+1 D`−1 D2`−2 Z/2Z

F4 E6 T O Z/2Z

G2 D4 D2 O Z/3Z

Table 2. List of all possible inhomogeneous singularities of type
1 = (V, 0), where V is one of the homogeneous simple singu-
larities and 0 = F′/F is a group of automorphisms of V . The
labels B`, C`, F4 and G2 for these types will become clear in
Proposition 5.2.

Type 1 Singularity R(X, Y, Z)= 0 0-action

B` X2`
+ Y Z = 0 (X, Y, Z)−→ (−X, Z , Y )

C` X`
+ XY 2

+ Z2
= 0 (X, Y, Z)−→ (X,−Y,−Z)

F4 X4
+ Y 3

+ Z2
= 0 (X, Y, Z)−→ (−X, Y,−Z)

G2 X3
+ Y 3

+ Z2
= 0 (X, Y, Z)−→ (αX, α2Y, Z)

Table 3. For each of the inhomogeneous simple singularities of
type 1 (see Table 2), the corresponding homogeneous simple sin-
gularity V = C2/F is given by its equation R(X, Y, Z) = 0 to-
gether with the action of 0 = F′/F on V . In the last line, α is a
nontrivial cubic root of unity.
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of the matrix Q (see (17)):

(22)

χ1 = −2q1 − 2q4,

χ2 = −12q2 − 4q3 − 4q4q5 + (q1 + q4)
2,

χ3 = −q2 + q3 − q4q5,

χ4 = −4q1q2 −16q2q5 −12q3q4 +12q2q4 +4q1q3 +4q2
4 q5 +4q1q4q5 −4q2

6 .

By linearly eliminating the variables q1, q2 and q3 from the equations χi = 0 for
i = 1, 2, 3, we find that χ−1(0) is isomorphic to the affine surface in C3 defined by

4q2
4 q5 − 2q4q2

5 + q2
6 = 0.

Its defining polynomial corresponds to the polynomial R in Table 1, after putting
X = iγ q4, Y = γ (q5 − q4), and Z = q6, where γ is any cubic root of 2i .

The determinantal Poisson structure. We prove here the announced result that
the ATP-structure in the subregular case is a determinantal Poisson structure deter-
mined by the Casimirs. Let us first point out how such a structure is defined. Let
C1, . . . ,Cd−2 be d −2 (algebraically) independent polynomials in d > 2 variables
x1, . . . , xd . For a polynomial F in the variables x1, . . . , xd , let us denote by ∇F its
differential dF , expressed in the natural basis dxi , that is, ∇F is a column vector
with elements (∇F)i = ∂F/∂xi . Then a polynomial Poisson structure is defined
on Cd by

(23) {F,G}det := det(∇F, ∇G, ∇C1, . . . , ∇Cd−2),

where F and G are arbitrary polynomials. It is clear that each of the Ci is a Casimir
of { · , · }det, so that in particular the generic rank of { · , · }det is two. Notice also that
if the Casimirs Ci are quasihomogeneous with respect to the weights$i :=$(xi ),
then for any quasihomogeneous elements F and G we have

$({F,G}det)=$(F)+$(G)+
d−2∑
i=1

$(Ci )−

d∑
i=1

$i .

This follows easily from the definition of a determinant and that if F is any quasi-
homogeneous polynomial, then ∂F/∂xi is quasihomogeneous and $(∂F/∂xi ) =

$(F)−$i . It follows that { · , · }det is quasihomogeneous of quasidegree κ , where

(24) κ =

d−2∑
i=1

$(Ci )−

d∑
i=1

$i .

Applied to our case, it means that we have two polynomial Poisson structures on
the transverse slice N that have χ1, . . . , χ` as Casimirs on N ∼= C`+2, namely, the
ATP-structure and the determinantal structure constructed by using these Casimirs.
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Remark 5.3. The determinantal Poisson structure first appears (without proof that
it is a Poisson structure) in [Damianou 1989], who attributes the formula to H.
Flaschka and T. Ratiu. The first explicit proof appears in [Grabowski et al. 1993].
A more conceptual proof appears in [Takhtajan 1994, Remark 1 and Theorem 4].

In our two examples (see Section 4), these structures are easily compared by
explicit computation. For the subregular orbit of g2, we have, according to (23),

(3det)i j = det
(
∇qi ∇q j ∇χ1 ∇χ2

)
,

where χ1 and χ2 are the Casimirs (21). This leads to

3det = −6


0 0 0 0

0 0 −3q4 2q1q2 − 2q2
3

0 3q4 0 2q2
2 − 2q1q3

0 −2q1q2 + 2q2
3 −2q2

2 + 2q1q3 0

 .
In view of (14), it follows that 3det = −63N , so that both Poisson structures
coincide. For so8, one finds similarly, using the Casimirs χ1, . . . , χ4 in (22),

3det = −128



0 q4q6 −q4q6 0 −2q6 2q16

−q4q6 0 0 q4q6 −q5q6 −2q36

q4q6 0 0 −q4q6 q5q6 2q36

0 −q4q6 q4q6 0 2q6 −2q16

2q6 q5q6 −q5q6 −2q6 0 2q56

−2q16 2q36 −2q36 2q16 −2q56 0


,

where q16, q36 and q56 are given by (19). In view of (18), both Poisson structures
again coincide, 3det = −2563N .

To show that, in the subregular case, the ATP-structure and the determinantal
structure always coincide, that is, they differ only by a constant factor, we first
show that both structures coincide up to a rational function.

Proposition 5.4. Suppose { · , · } and { · , · }′ are two nontrivial polynomial Pois-
son structures on Cd that have d − 2 common independent polynomial Casimirs
C1, . . . ,Cd−2. Then there exists a rational function R ∈ C(x1, . . . , xd) such that
{ · , · } = R { · , · }′.

Proof. Let M and M ′ denote the Poisson matrices of { · , · } and { · , · }′ in the
coordinates x1, . . . , xd . If we denote R := C(x1, . . . , xd), then M and M ′ both
act naturally as skew-symmetric endomorphisms on the R-vector space Rd . The
subspace H of Rd spanned by ∇C1, . . . ,∇Cd−2 is the kernel of both maps; hence
we have two induced skew-symmetric endomorphisms ϕ and ϕ′ of the quotient
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space Rd/H . Since the latter is two-dimensional, ϕ′ and ϕ are proportional, that
is, ϕ′

= Rϕ with R ∈ R. Since M and M ′ have the same kernel, M ′
= RM . �

Applied to our two Poisson structures { · , · }N and { · , · }det, the proposition yields
that { · , · }N = R { · , · }det, where R = P/Q ∈ R. We show next that R is actually
a (nonzero) constant and thereby characterize completely the ATP-structure in the
subregular case.

Theorem 5.5. Let Osr be the subregular nilpotent adjoint orbit of a complex
semisimple Lie algebra g, and let (h, e, f ) be the canonical triple associated
to Osr . Let N = e + n⊥ be a slice transverse to Osr , where n is an adh-invariant
complementary subspace to g(e). Let { · , · }N and { · , · }det denote respectively the
ATP-structure and the determinantal structure on N. Then { · , · }N = c { · , · }det for
some c ∈ C∗.

Proof. By the above, { · , · }N = R { · , · }det, where R ∈ R. If R has a nontrivial de-
nominator Q, then all elements of the Poisson matrix of { · , · }det must be divisible
by Q, since both Poisson structures are polynomial. Then along the hypersurface
Q = 0, the rank of (∇χ1, . . . ,∇χ`) is smaller than `; hence χ−1(0) is singular
along the curve χ−1(0) ∩ (Q = 0). However, by Proposition 5.2, we know that
χ−1(0) has an isolated singularity, which leads to a contradiction. This shows that
Q is a constant and hence that R is a polynomial.

To show that the polynomial R is constant, it suffices to show that the quaside-
grees of { · , · }N and { · , · }det are the same, which amounts (in view of Proposition
3.2) to showing that the quasidegree of { · , · }det is −2. This follows from the
following formula due to Kostant [1963, Thm 7], which expresses the dimension
of the regular orbit in terms of the exponents mi of g:

2
∑̀
i=1

mi = dim Oreg = dim g− `.

Indeed, if we apply this formula, Lemma 5.1, and (8) to the formula (24) for the
quasidegree of { · , · }det, then we find

κ =

∑̀
i=1

$(χi )−

`+2∑
i=1

$(qi )= 2
∑̀
i=1

di −

`+2∑
i=1

(ni + 2)

= 2
∑̀
i=1

mi −

`+2∑
i=1

ni − 4

= dim g− `− (dim g− `− 2)− 4 = −2. �
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Reduction to a 3×3 Poisson matrix. Let Osr be the subregular nilpotent adjoint or-
bit of a complex semisimple Lie algebra g of rank `. Let (h, e, f ) be its associated
canonical sl2-triple, and let N := e +n⊥ be a transverse slice to Osr , where n is an
adh-invariant complementary subspace to g(e). Let { · , · }N be the ATP-structure
defined on N . Recall that N is equipped with linear coordinates q1, . . . , q`+2 de-
fined in Section 2, and that { · , · }N has independent Casimirs χ1, . . . , χ`, which
are the restrictions to N of the basic homogeneous invariant polynomial functions
on g.

Our goal now is to show that, in well-chosen coordinates, the ATP-structure
{ · , · }N on N is essentially given by a 3 × 3 skew-symmetric matrix which is
closely related to the polynomial that defines the singularity. More precisely:

Theorem 5.6. After possibly relabeling the coordinates qi and the Casimirs χi , the
`+ 2 functions

χi , 1 ≤ i ≤ `− 1, and q`, q`+1, q`+2

form a system of (global) coordinates on the affine space N. The Poisson matrix of
the ATP-structure on N in these coordinates is

(25) 3̃N =

(
0 0
0 �

)
, where �= c′



0
∂χ`

∂q`+2
−
∂χ`

∂q`+1

−
∂χ`

∂q`+2
0

∂χ`

∂q`
∂χ`

∂q`+1
−
∂χ`

∂q`
0


,

for some nonzero constant c′. It has the polynomial χ` as Casimir, which reduces
to the polynomial that defines the singularity if we set χ j =0 for j =1, 2, . . . , `−1.

Proof. The non-Poisson part of this theorem is due to Brieskorn and Slodowy.
Before proving the Poisson part of the theorem, namely, that the Poisson matrix
takes the form (25), we explain for the reader’s convenience the basics of singu-
larity theory used in their proof, but see [Slodowy 1980a] for details. Let (X0, x)
be the germ of an analytic variety X0 at the point x . A deformation of (X0, x) is
a pair (8, ı) where 8 : X → U is a flat morphism of varieties with 8(x)= u and
where the map ı : X0 →8−1(u) is an isomorphism. Such a deformation is called
semiuniversal if any other deformation of (X0, x) is isomorphic to a deformation
induced from (8, ı) by a local change of variables in a neighborhood of x . The
semiuniversal deformation of (X0, x) is unique up to isomorphism. It can be ex-
plicitly described in the following case. Let (X0, 0) be a germ of a hypersurface
of Cd that is singular at 0, and say X0 is locally given by f (z) = 0. Then the
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semiuniversal deformation of (X0, 0) is the (germ at the origin of the) map

8 : Ck
× Cd

→ Ck
× C

(u, z) 7→ (u, F(u, z)),
where

F(u, z)= f (z)+
k∑

i=1

gi (z)ui

and where the polynomials 1, g1, g2, . . . , gk represent a vector space basis of the
Milnor (or Tjurina) algebra

(26) M( f ) :=
C[z1, . . . , zd ](

f,
∂ f
∂z1

, . . . ,
∂ f
∂zd

) =
C[z1, . . . , zd ](
∂ f
∂z1

, . . . ,
∂ f
∂zd

) .
The last equality is valid whenever f is quasihomogeneous, which is true in this
case. The dimension dim M( f )= k + 1 is called the Milnor number of f .

We can now formulate Brieskorn’s result. It says that the map χ : N → C`,
which is the restriction of the adjoint quotient (20) to the slice N , is a semiuniversal
deformation of the singular surface N ∩ N. More precisely, when the Lie algebra
is of the type ADE, then the map

8 : C`−1
× C3

→ C`−1
× C

((χ1, . . . , χ`−1), (q`, q`+1, q`+2)) 7→ ((χ1, . . . , χ`−1), χ`)

is the semiuniversal deformation of the singular surface N ∩ N; for the other
types one has to consider 0-invariant semiuniversal deformations, as was shown
by Slodowy [1980a], see Table 2. It is implicit in Brieskorn’s statement that
(χ1, . . . , χ`−1, q`, q`+1, q`+2) form a system of coordinates on N , which comes
from the fact that one can solve the `− 1 equations χi = χi (q) linearly for `− 1
of the variables qi . That is, the Casimirs have the form

(27)

 χ1
...

χ`−1

= A

 q1
...

q`−1

+

 F1(q`, q`+1, q`+2)
...

F`−1(q`, q`+1, q`+2)

 ,
where A is a constant matrix with det A 6= 0; this will be illustrated in the examples
below.

We now get to the Poisson part of the proof. Since the coordinate functions
χ1, . . . , χ`−1 are Casimirs, the Poisson matrix 3̃N has with respect to these coor-
dinates the block form

3̃N =

(
0 0
0 �

)
,

where � is a 3 × 3 skew-symmetric matrix. We know from Theorem 5.5 that the
ATP-structure is a constant multiple of the determinantal structure. Since det A
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lies in C∗, it follows from (27) that, for `≤ i, j ≤ `+ 2,

3̃i j := c det(∇qi ∇q j ∇χ1 . . . ∇χ`)= c′ det(∇ ′qi ∇
′q j ∇

′χ`),

where c and c′ are nonzero constants and ∇
′ denotes the restriction of ∇ to C3,

namely,

∇
′F =

(
∂F
∂q`

∂F
∂q`+1

∂F
∂q`+2

)>

.

The explicit formula (25) for � follows at once. �

6. Examples

The subregular orbit of g2. For this we have, according to (21), that χ1 = q1.
Then χ2 expressed in terms of q2, q3, q4, and χ1 is

χ2 = 9q2
4 − 4q3

2 − 4q3
3 + 12χ1q2q3.

The Poisson matrix (14) of the ATP-structure is already in the form (25), with
c′

= −1/6 (and χ1 = q1). Since the Milnor algebra (26) is given in this case by
M(9q2

4 − 4q3
2 − 4q3

3 ) = C[q2, q3, q4]/
(
q2

2 , q2
3 , q4

)
, one easily sees that 1 and the

coefficient q2q3 of u1 indeed form a vector space basis for the 0-invariant elements
of the Milnor algebra (see Table 3); compare [Slodowy 1980a, page 136].

The subregular orbit of so8. Recall from (22) that its ATP structure has Casimirs
χ1, . . . , χ4. As stated in the proof of Theorem 5.6, we can solve three of them
linearly for q1, q2, q3 in terms of χ1, χ2, χ3 and the last three variables q4, q5,
and q6. We obtain

q1 = −q4 −
1
2χ1,

q2 =
1

64

(
χ2

1 − 16χ3 − 4χ2 − 32q4q5
)
,

q3 =
1

64

(
χ2

1 + 48χ3 − 4χ2 + 32q4q5
)
.

Substituted in χ4, this yields

χ4 = 8q4q2
5 − 16q2

4 q5 − 4q2
6 − 4χ1q4q5 + (χ2 −

1
4χ

2
1 + 4χ3)q5 − 16χ3q4 − 2χ1χ3,

so that

χ̂4 = 8q4q2
5 − 16q2

4 q5 − 4q2
6 − 4χ1q4q5 + χ̂2q5 − 16χ3q4,

where χ̂2 := χ2 −
1
4χ

2
1 + 4χ3 and χ̂4 := χ4 + 2χ1χ3 can be used instead of χ2 and

χ4 as basic Ad-invariant polynomials restricted to N . Using (18), expressed in the
coordinates χ1, χ̂2, χ3, q4, q5 and q6, we find that the matrix � is indeed of the
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form (25) with c′
= −

1
8 , since

{q4, q5} = q6 = −
1
8
∂χ̂4

∂q6
, {q4, q6} = 2q4q5 − 2q2

4 −
1
2
χ1q4 +

1
8
χ̂2 =

1
8
∂χ̂4

∂q5
,

{q5, q6} = −q2
5 + 4q4q5 +

1
2
χ1q5 + 2χ3 = −

1
8
∂χ̂4

∂q4
.

It follows easily that the Milnor algebra is given by

M(8q4q2
5 − 16q2

4 q5 − 4q2
6 )= C[q4, q5, q6]/(q6, q4(q5 − q4), q5(q5 − 4q4)),

so that 1 and the coefficients q4, q5 and q4q5 of χ̂4 indeed form a vector space basis
for it.

The subregular orbit Osr in sl4. This example is from [Damianou 1996]. It was
also examined by Sabourin [2005], who showed that the slice, originally due to
Arnold [1971], belongs to the set Nh . It is the orbit of the nilpotent element

e =


0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 .
The transverse slice in Arnold’s coordinates consists of matrices of the form

Q =


0 1 0 0
0 0 1 0
q1 q2 q3 q4

q5 0 0 –q3

 .
The basic Casimirs of the ATP-structure, as computed from the characteristic poly-
nomial of Q, are

χ1 = q2 + q2
3 , χ2 = q1 + q2q3, χ3 = q1q3 + q4q5.

If we solve the first two equations for the variables q1, q2 in terms of χ1, χ2 and
q3, q4, q5, and substitute the result in χ3, then we find that

χ3 = q4
3 + q4q5 −χ1q2

3 +χ2q3.

Using the explicit formulas for the ATP-structure given in [Damianou 1996], ex-
pressed in the coordinates χ1, χ2, q3, q4 and q5, we find that the matrix� is indeed
of the form (25) with c′

= 1, since

{q3, q4} = q4 =
∂χ3

∂q5
, {q3, q5} = −q5 = −

∂χ3

∂q4
,
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{q4, q5} = 4q3
3 − 2χ1q3 +χ2 =

∂χ3

∂q3
.

It can be read from these formulas that the Milnor algebra is given by

M(q4
3 + q4q5)= C[q3, q4, q5]/(q4, q5, q3

3 ),

so that the coefficients 1, q3 and q2
3 of χ3 indeed span its vector space.
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STILL ANOTHER APPROACH TO THE BRAID ORDERING

PATRICK DEHORNOY

We develop a new approach to the linear ordering of the braid group Bn,
based on investigating its restriction to the set Div(1d

n) of all divisors of 1d
n

in the monoid B+
∞, that is, to positive n-braids whose normal form has length

at most d. In the general case, we compute several numerical parameters
attached with the finite orders Div(1d

n). In the case of 3 strands, we more-
over give a complete description of the increasing enumeration of Div(1d

3 ).
We deduce a new and especially direct construction of the ordering on B3,
and a new proof of the result that its restriction to B+

3 is a well-ordering of
ordinal type ωω.

This paper investigates the connection between the Garside structure of Artin’s
braid groups and their distinguished linear ordering, sometimes called the De-
hornoy ordering. This leads to a new, alternative construction of the ordering.

Artin’s braid groups Bn are endowed with several interesting combinatorial
structures. One of them stems from Garside’s analysis [1969] and is now known as
a Garside structure [Dehornoy 2002; McCammond 2005]. It describes Bn as the
group of fractions of a monoid B+

n with a rich divisibility theory. This theory gives
a unique normal decomposition of every braid in Bn into simple braids, which are
the divisors of Garside’s fundamental braid1n , a finite family of B+

n that is in one-
to-one correspondence with the permutations of n objects. One obtains a natural
graduation of the monoid B+

n by considering the family Div(1d
n) of all divisors

of 1d
n , which also are the elements of B+

n whose normal forms have length at
most d .

On the other hand, the braid groups are equipped with a distinguished linear
ordering which is compatible with multiplication on the left and admits a simple
combinatorial characterization [Dehornoy 1994]: a braid x is smaller than another
braid y if, among all expressions of the quotient x−1 y in the standard generators
σi , there exists at least one expression in which the generator σm with maximal
(or minimal) index m appears only positively, that is, σm occurs, but σ−1

m does
not. Several deep results about that ordering have been proved, for example, that

MSC2000: primary 20F36; secondary 05A05, 20F60.
Keywords: braid group, orderable group, well-ordering, normal form, fundamental braid.
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its restriction to B+
∞

is a well-ordering. A number of equivalent constructions are
known [Dehornoy et al. 2002].

Although both are combinatorial, the previous structures remain mostly uncon-
nected—and connecting them is among the most natural questions of braid com-
binatorics. For degree 1, that is, for simple braids, the linear ordering corresponds
to a lexicographical ordering of the associated permutations [Dehornoy 1999]. But
this connection does not extend to higher degrees, and almost nothing is known
about the restriction of the linear ordering to positive braids of a given degree. In
particular, no connection is known between the Garside normal form and the al-
ternative normal form constructed by S. Burckel [1997; 1999; 2001] which makes
comparison with respect to the linear ordering easy. For example, the Garside
normal form of12d

3 is (σ1σ2σ1)
2d , while its Burckel normal form is (σ2σ

2
1 σ2)

dσ 2d
1 .

This paper investigates the finite linearly ordered sets (Div(1d
n),<). A nice way

of thinking about this structure is to view the increasing enumeration of Div(1d
n) as

a distinguished path from 1 to1d
n in the Cayley graph of Bn . Completely describing

this path would arguably solve optimally the rather vague task of connecting the
Garside and the ordered structures of braid groups. The combinatorics of such a
description seems to be extremely intricate, and it remains out of reach for the
moment, but we prove partial results in this direction.

(i) In the general case, we determine some numerical parameters associated with
(Div(1d

n),<), which in some sense measure its size. For small values of n
and d , we find explicit values.

(ii) In the special case n = 3, we completely describe the increasing enumeration
of (Div(1d

n),<).

Specifically, the parameters we investigate are the complexity and the heights.
The complexity c(1d

n) is defined as the maximal number of σn−1 occurring in
an expression of 1d

n containing no σ−1
n−1. We connected the complexity with the

termination of the handle reduction algorithm in [Dehornoy 1997], but left its deter-
mination as an open question. The r -height hr (1

d
n) is defined to be the number of

r -jumps in the increasing enumeration of (Div(1d
n),<) (augmented by 1), where

the term r -jump refers to some natural filtration of the linear ordering < by a
sequence of partial orderings <r . When r increases, the r -jumps are higher and
higher, so hr (1

d
n) counts how many big jumps exist in (Div(1d

n),<). Here, we
prove that the complexity c(1d

n) equals the height hn−1(1
d
n) (Proposition 2.19),

and that, for each r , the r -height hr (1
d
n) is the number of divisors of 1d

n whose
d-th factor of the normal form is right divisible by1r (Proposition 3.11). Together
with the combinatorial results of [Dehornoy 2007], this allows for computing the
explicit values listed in Table 1, and for establishing various inductive formulas
(Propositions 3.15 and 3.17, among others).
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Besides the enumerative results, we also prove a general structural result that
connects the ordered set (Div(1d

n),<) with subsets of (Div(1d
n−1),<) (Corollary

3.6). This result suggests an inductive method for directly constructing the in-
creasing enumeration of (Div(1d

n),<) starting from those of (Div(1d
n−1),<) and

(Div(1d−1
n ),<). This approach is completed here for n = 3 (Proposition 4.6). In

some sense, 3 strand braids are simple objects, and the result may appear as of only
modest interest; however, the order on B+

3 is a well-ordering of ordinal type ωω

and hence not such a simple object. The interesting point is that this approach
leads to a new, alternative construction of the braid ordering, with, in particular,
a new and simple proof for the so-called Comparison Property at the heart of the
construction (it guarantees the ordering’s linearity). In this way, one obtains not just
another ordering construction among many [Dehornoy et al. 2002] but, arguably,
the optimal one. After the initial inductive definition is correctly stated, it makes
all proofs simple and also makes explicit the connection to the Garside structure.

The paper is organized as follows. After an introductory section recalling basic
properties and setting the notation, we introduce the parameters c(1d

n) and hr (1
d
n)

in Section 2 and establish how they are connected. In Section 3, we connect in turn
hr (1

d
n) to the number of n-braids whose d-th factor in the normal form satisfies

certain constraints, and deduce explicit values. Finally, in Section 4, we study
(Div(1d

3),<), describe its increasing enumeration, and construct its braid ordering.

1. Background and preliminary results

Our notation is standard, and we refer to textbooks like [Birman 1974] or [Epstein
et al. 1992] for basic results about braid groups. We recall that the n strand braid
group Bn is defined for n > 1 by the presentation

(1-1) Bn =

〈
σ1, . . . , σn−1 ;

σiσ j = σ jσi for |i − j | > 2
σiσ jσi = σ jσiσ j for |i − j | = 1

〉
,

while, for n = 1, we let B1 be the trivial group. The next group B2 is freely
generated by σ1. The elements of Bn are called n strand braids, or simply n-braids.
We use B∞ for the group generated by an infinite sequence of σi ’s subject to the
relations of (1-1), that is, the direct limit of all Bn’s with respect to the inclusion
of Bn into Bn+1.

By definition, every n-braid x admits (infinitely many) expressions in terms of
the generators σi , 1 6 i < n. Such an expression is called an n strand braid word.
Two braid words w,w′ representing the same braid are said to be equivalent; the
braid represented by a braid word w is denoted [w].

1A. Positive braids and the element 1n. We denote by B+
n the monoid admitting

the presentation (1-1), and by B+
∞

the union (direct limit) of all B+
n ’s. The elements
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of B+
n are called positive n-braids. In B+

∞
, no element except 1 is invertible, and

we have a natural notion of divisibility:

Definition 1.1. For x, y in B+
n , we say that x is a left divisor of y, denoted x 4 y,

or, equivalently, that y is a right multiple of x , if y = xz holds for some z in B+
n .

We denote by Div(y) the (finite) set of all left divisors of y in B+
n .

The monoid B+
n is not commutative for n > 3, and therefore there are distinct,

but symmetric, notions of a right divisor and a left multiple; however, we shall
mostly use left divisors. Note that x is a (left) divisor of y in the sense of B+

n if
and only if it is a (left) divisor in the sense of B+

∞
, so there is no need to specify

the index n.
According to Garside theory [1969], B+

n equipped with the left divisibility rela-
tion is a lattice: any two positive n-braids x, y admit a greatest common left divisor
gcd(x, y), and a least common right multiple lcm(x, y). A special role is played
by the lcm 1n of σ1, . . . , σn−1, which can be defined inductively by

(1-2) 11 = 1, 1n = σ1σ2 . . . σn−11n−1.

It is well known that 12
n belongs to the center of Bn (and even generates it for

n > 3), and that the flip automorphism φn of Bn corresponding to conjugation by
1n exchanges σi and σn−i for 1 6 i 6 n − 1.

In B+
n , the left and the right divisors of 1n coincide, and they make a finite

sublattice of (B+
n ,4) with n! elements. These braids will be called simple. When

braid words are represented by diagrams as mentioned in Figure 1, simple braids
are those positive braids that can be represented by a diagram in which any two
strands cross at most once.

By mapping σi to the transposition (i, i + 1), one defines a surjective homo-
morphism π of Bn onto the symmetric group Sn . The restriction of π to simple
braids is a bijection: for every permutation f of {1, . . . , n}, there exists exactly one

σi :

σ−1
i :

1 2 i i+1

. . . . . .

. . . . . .

Figure 1. One associates to every n strand braid word w an n
strand braid diagram by stacking elementary diagrams as above.
Two braid words are equivalent if and only if the associated dia-
grams are the projections of ambient isotopic figures in R3, that is,
one can deform one diagram into the other without allowing the
strands to cross or moving the endpoints.
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simple braid x satisfying π(x)= f . It follows that the number of simple n-braids
is n!.

Example 1.2. The set Div(13) consists of six elements, namely 1, σ1, σ2, σ2σ1,
σ1σ2, and 13. In examples, we shall often use the shorter notation a for σ1, b for
σ2, etc. Thus, the six simple 3-braids are 1, a, b, ba, ab, aba.

1B. The normal form. For each positive n-braid x distinct from 1, the simple
braid gcd(x,1n) is the maximal simple left divisor of x , and we obtain a dis-
tinguished expression x = x1x ′ with x1 simple. By decomposing x ′ in the same
way and iterating, we obtain the so-called normal expression [El-Rifai and Morton
1994; Epstein et al. 1992].

Definition 1.3. A sequence (x1, . . . , xd) of simple n-braids is said to be normal if,
for each k, one has xk = gcd(1n, xk . . . xd).

Clearly, each positive braid admits a unique normal expression. It will be con-
venient to consider the normal expression as unbounded on the right by completing
it with as many trivial factors 1 as needed. In this way, we can speak of the d-th
factor (in the normal form) of x for each positive braid x . We say that a positive
braid has degree d if d is the largest integer such that the d-th factor of x is not 1.
We shall use the following two properties of the normal form:

Lemma 1.4 [El-Rifai and Morton 1994]. Suppose (x1, . . . , xd) is sequence of sim-
ple n-braids. It is normal if and only if , for each k < d, each σi that divides xk+1

on the left divides xk on the right.

Lemma 1.5 [El-Rifai and Morton 1994]. For x a positive braid in B+
n , the follow-

ing are equivalent:

(i) The braid x belongs to Div(1d
n), that is, is a (left or right) divisor of 1d

n ;

(ii) The degree of x is at most d.

Example 1.6. There are 19 divisors of12
3, which also are the 3-braids of degree at

most 2. Their enumeration in normal form—in an ordering that may seem strange
now, but should become familiar soon—is: 1, a, a·a, b, ba, ba·a, b·b, b·ba, ab,
aba, aba·a, ab·b, ab·ba, a·ab, aba·b, aba·ba, ba·ab, aba·ab, aba·aba.

By Lemma 1.5, every divisor of 1d
n can be expressed as the product of at most

d divisors of 1n , so we certainly have #Div(1d
n)6 (n!)d for all n, d .

1C. The braid ordering.

Definition 1.7. Let w be a nonempty braid word. We say that σm is the main
generator in w if σm or σ−1

m occurs in w, but no σ±1
i with i >m does. We say that

w is σ -positive if the main generator occurs only positively in w, and similarly it
is σ -negative if that generator occurs negatively.
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A positive nonempty braid word, that is, one that contains no σ−1
i at all, is σ -

positive, but the inclusion is strict: for instance, σ−1
1 σ2 is not positive, but it is

σ -positive, as its main generator, namely σ2, occurs positively (with one σ2) but
not negatively (no σ−1

2 ).
The following two properties have received a number of independent proofs

[Dehornoy et al. 2002]:

Property A. A σ -positive braid word does not represent 1.

Property C. Every braid except 1 can be represented by a σ -positive word or by a
σ -negative word.

Building on these results, it is straightforward to order the braids:

Definition 1.8. If x , y are braids, we say that x < y holds if the braid x−1 y admits
at least one σ -positive representative.

It is clear that the relation < is transitive and compatible with multiplication on
the left; Property A implies that < has no cycle and hence is a strict partial order,
and Property C then implies that it is actually a linear order.

As every nonempty positive braid word is σ -positive, x 4 y implies x 6 y for
all positive braids x, y. The converse is not true: σ1 is not a left divisor of σ2, but
σ1 < σ2 holds because σ−1

1 σ2 is a σ -positive word.

Example 1.9. The increasing enumeration of the set Div(13) is

1< a < b< ba < ab< aba.

For instance, we have ba < ab, that is, σ2σ1 < σ1σ2 because the quotient, namely
σ−1

1 σ−1
2 σ1σ2 (or ABab), also admits the expression σ2σ

−1
1 , a σ -positive word. Sim-

ilarly, the reader can check that the increasing enumeration of Div(12
3) is the one

given in Example 1.6.

Lemma 1.10. The linear ordering < extends the left divisibility ordering ≺.

Proof. By definition, 1<σi holds for every i . As the ordering< is compatible with
multiplication on the left, it follows that x < xσi holds for all i, x , and, therefore,
x < xy holds whenever y is a nontrivial positive braid. �

Lemma 1.10 implies that 1 is always the first element of (Div(1d
n),<), and 1d

n
is always its last element. A deep result by Laver [1996] shows that, although <
is not compatible with right multiplication in general, nevertheless x <σi x always
holds, that is, < also extends the right divisibility ordering.

By Property C, every nontrivial braid admits at least one σ -positive or σ -negative
expression. In general, such a σ -positive or σ -negative expression is not unique,
but the main generator in such expressions is uniquely defined:
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Lemma 1.11. If a braid x admits a σ -positive expression, then the main generators
in any two σ -positive expressions of x coincide.

Proof. Assume that w, w′ are σ -positive expressions of x , and let σm , σm′ be their
main generators. Assume for instance m < m′. Then w−1w′ is a σ -positive word,
and it represents the trivial braid 1: this contradicts Property A. �

Thus, there will be no ambiguity in referring to the main generator of some
nontrivial braid x : this means the main generator in any σ -positive (or σ -negative)
expression of x .

Remark 1.12. Our definition corresponds to the order <φ of [Dehornoy et al.
2002]. It differs from the one most used in the literature in that the definition of
a σ -position refers to the maximal index rather than the minimal one. Switching
from one definition to the other amounts to conjugating by 1n , that is, to applying
the flip automorphism. The results are entirely similar for both versions. However,
it is much more convenient to consider the “max” choice here, because it guarantees
that B+

n is an initial segment of B+

n+1. Using the “min” convention would make
the statements in the following sections less natural.

2. Measuring the ordered sets (Div(1d
n), <)

To investigate the finite ordered sets (Div(1d
n),<), and, more generally, the sets

(Div(z),<) for positive braids z, we shall define numerical parameters that reflect
their size. The first parameter involves the length of the σ -positive words that are, in
a natural sense defined below, drawn in the Cayley graph of1d

n . It will be called the
complexity of 1d

n , because it is directly connected with the complexity analysis of
the handle reduction algorithm of [Dehornoy 1997]. The other parameters involve
a filtration of the linear ordering by the σi ’s, and they will be called the heights of
1d

n because they count the jumps of a given height in (Div(1d
n),<).

2A. Sigma-positive paths in the Cayley graph. The first parameter we attach to
(Div(z),<) involves the σ -positive paths in the Cayley graph of z.

We recall that the Cayley graph of the group Bn with respect to the standard
generators σi is a labeled graph: it has the vertex set Bn and is such that there
exists a σi -labeled edge from x to y if and only if y = xσi . The Cayley graph of
the monoid B+

n is obtained by restricting the vertices to B+
n . Note that the Cayley

graph of Bn (and a fortiori of B+
n ) can be seen as a subgraph of the Cayley graph

of B∞.

Definition 2.1. (See Figure 2.) For z a positive braid, we denote by 0(z) the
subgraph of the Cayley graph of B∞ obtained by restricting the vertices to Div(z)
and removing the edges do not connect two vertices in Div(z).
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Because every element of B+
n is a left divisor of 1d

n for sufficiently large d , the
Cayley graph of B+

n is the union over all d of the graphs 0(1d
n).

1

σ2 σ2σ1

σ1 σ1σ2

13 1

σ2

σ 2
2 σ 2

2 σ1 σ2σ
2
1 σ2σ

2
1 σ2

σ2σ1σ2σ1 13σ1 13σ1σ2

σ1 σ1σ2 13σ2 13σ2σ1

13 12
3

σ 2
1 σ 2

1 σ2 σ1σ
2
2 σ1σ

2
2 σ1

Figure 2. The graphs of 0(13) and 0(12
3); the dotted edges rep-

resent σ1, the plain ones σ2; observe that the graph of 12
3 is not

planar; in grey: two σ -positive words traced in the graphs, namely
aAbab and bbabAbab (see Lemma 2.3).

A path in the Cayley graph can be specified by its initial vertex and the listed
labels of its successive edges, that is, by a braid word. For each i < n and each x
in Bn , there is in Bn’s Cayley graph exactly one σi -labeled edge leading into x and
exactly one other going out of it. Hence, in the complete Cayley graph of Bn , for
each initial vertex x and each n-braid word w, there is always one path labeled w
starting from x . When we restrict to some fragment 0, this need not be the case,
but we do have an unambiguous notion of w being drawn in 0 from x . Formally:

Definition 2.2. If 0 is a subgraph of the Cayley graph of B∞, and x is a vertex
in 0, we say that a braid word w is drawn from x in 0 if, for every prefix vσi

(resp. vσ−1
i ) of w, there exists a σi -labeled edge starting (resp. finishing) at x [v]

in 0.

For instance, we can check on Figure 2 that the word σ 2
1 is drawn from σ2 in

0(12
3), but not in 0(13). In algebraic terms,

Lemma 2.3. Assume that z is a positive braid, and w is a braid word. Then w is
drawn from x in 0(z) if and only if x[v] 4 z holds for each prefix v of w.

Proof. The condition is sufficient. Indeed, assume it is satisfied by w, and vσi is a
prefix of w. Then, by hypothesis, x[v] and x[v]σi are left divisors of z. Hence are
vertices in 0(z), and, therefore, there is a σi -labeled edge between x[v] and x[v]σi

in 0(z). The argument is similar for a prefix of the form vσ−1
i . Using induction

on the length of w, we deduce that w is drawn from x in 0(z).
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Conversely, if there is a w-labeled path from x in 0(z), then, for each prefix v of
w, the braid x[v] represents some vertex in 0(z). Hence it’s a left divisor of z. �

For z a positive braid, we shall investigate the σ -positive words drawn in the
graph 0(z). It is clear that, even if Div(z) is a finite set, arbitrary long words are
drawn in 0(z)whenever the latter contains at least 2 vertices, that is, z is not 1. The
example of Figure 2 shows that restricting to σ -positive words does not change the
result: for instance, for each k, the word (σ1σ

−1
1 )kσ2σ1σ2 is a σ -positive expression

of 13, and it is drawn in 0(13). So we cannot hope for any finite upper bound on
the length of the σ -positive words drawn in 0(z) in general. The situation changes
if we concentrate on the main generators, that is, we forget about the generators
with nonmaximal index.

Lemma 2.4. Assume that 0 is subgraph of the Cayley graph of B∞, and w is
a σ -positive word drawn in 0(z). Then the number of occurrences of the main
generator in w is at most the number of nonterminal vertices in 0.

Proof. Assume that w is drawn from x in 0. Let σm be the main generator in w.
As there is at most one σm-labeled edge starting from each vertex of 0, it suffices
to show that the number of σm’s in w is bounded above by the number of σm-edges
in 0. Hence, it suffices to show that the path γ associated with w cannot cross the
same σm-edge twice. Now assume that some σm-edge starts from the vertex y, and
that γ crosses this edge twice. This means that γ contains a loop from y to y. Let
v be the subword of w labeling that loop. By construction, v begins with σm , it
contains no σ−1

m and no σ±1
i with i > m as it is a subword of w, and it represents

the braid 1 as it labels a loop in the Cayley graph of B∞: this means that v is a
σ -positive word representing 1, which contradicts Property A. �

Lemma 2.4 applies in particular to every graph 0(z) in which z is a positive
braid. We can introduce our first parameter measuring the size of the ordered set
(Div(z),<):

Definition 2.5. (See Figure 2.) When z is a positive braid with main generator σm ,
the complexity c(z) of z is defined to be the maximal number of σm’s in a σ -positive
word drawn in 0(z).

Example 2.6. The word σ2σ1σ2 is a σ -positive word drawn from 1 in 0(13),
and it contains two σ2’s. Hence we have c(13) > 2. Actually, it is not hard to
obtain the exact value c(13) = 2. Indeed, if a σ -positive path γ contains the two
σ2-edges starting from 1 and σ1σ2, it cannot come back to σ2 without crossing
the third σ2-edge; and if γ contains the σ2-edge that starts from σ1, it can never
come back to 1 or to σ2σ1 and therefore contains at most one σ2-edge. As we have
1d

3 = (σ2σ1σ2)
d , we deduce c(1d

3) > 2d for every d . This value is certainly not
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optimal: Figure 2 contains five σ2’s, proving c(12
3)> 5. The exact value here is 6,

and, more generally, we have c(1d
n)= 2d+1

− 2, as will be seen in Section 3.

Remark 2.7. Restricting to σ -positive words drawn in 0(z) is essential: for in-
stance, for each k, we have

(2-1) 13 = σ k+1
2 σ1σ2σ

−k
1 ,

a σ -positive word containing k +2 letters σ2. Now, for k > 1, the word involved in
(2-1) is not drawn in 0(11

3), because its prefix σ 2
2 is not. Thus the parameter c(z)

does involve the left divisors of z.

Directly applying Lemma 2.4 gives:

Proposition 2.8. Every positive braid has a finite complexity; more precisely, for z
of length ` in B+

n with n > 3, we have c(z)6 (n − 1)`.

Proof. The number of nonterminal vertices in 0(z), that is, the number of proper
left divisors of z, is at most 1 + (n − 1)+ (n − 1)2 + · · · + (n − 1)`−1. �

As the length of any positive expression of 1n is n(n − 1)/2, we obtain in
particular for all n, d

(2-2) c(1d
n)6 (n − 1)dn(n−1)/2.

Before going further, we observe that, in defining the complexity of z, we can
restrict to decompositions of z, that is, instead of considering paths starting and
finishing at arbitrary vertices, we can restrict to paths going from 1 to z:

Lemma 2.9. Assume that z is a positive braid with main generator σm . Then c(z)
is the maximal number of σm’s in any σ -positive decomposition of z drawn in 0(z).

Proof. Let c′(z) be the number involved in the above statement. Clearly we have
c′(z) 6 c(z). Conversely, assume that w is drawn in 0(z) from x , and that the
w-labeled path starting at x finishes at y. Let u be a positive expression of x , and
v be a positive expression of y−1z. The latter exists as, by hypothesis, y is a left
divisor of z. Then uwv is a σ -positive decomposition of z drawn in 0(z). Hence
we have c′(z)> c(z). �

Remark 2.10. We call Property A∗ the statement that all numbers c(1d
n) are finite.

Above, we derived Property A∗ from Property A. The two properties are actually
equivalent, that is, we can also deduce Property A from Property A∗. For that,
assume that some σ -positive braid word w represents 1. The word w may involve
negative letters. We must find a vertex x that begins a path labeled w in some
0(1d

n). Let σm be the main generator in w. The word w has finitely many prefixes,
say w0, . . . , w`. By Garside theory, each word wi is equivalent to one the form
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u−1
i vi , with ui , vi positive. Let x be the least common left multiple of the positive

braids

[u0], . . . , [u`].

For each i , the braid x[wi ] is positive. Moreover, there exist n and d such that

x[w0], . . . , x[w`]

are all divisors of 1d
n . Thus the word w is drawn from x in 0(1d

n), and the associ-
ated path is a loop around x . It follows that wk is drawn in 0(1d

n) from x for each
k. By construction, wk contains at least k generators σm . Hence c(1d

n) cannot be
finite.

2B. Connection with handle reduction. Handle reduction [Dehornoy 1997] is an
algorithmic solution to the word problem of braids that relies on the braid ordering.
It is the most efficient method today. The method converges, and the argument in
[Dehornoy 1997] shows the complexity upper bound to be exponential in the input
word length, an estimate seemingly very far from sharp.

Each step of handle reduction involves a specific generator σi , and, for an in-
duction, the point is to obtain an upper bound on the reduction steps involving the
main generator. The latter will naturally be called the main reduction steps. The
connection between handle reduction and the complexity as defined above relies
on the following technical result:

Lemma 2.11 [Dehornoy 1997]. Assume that z is a positive braid with main gener-
ator σm and that w is drawn in 0(z). Then, for each sequence of handle reductions
from w— that is, each sequence Ew with w0 = w such that wk is obtained by re-
ducing one handle from wk−1 for each k — there exists a witness-word u that is
σ -positive, drawn in Div(z), and such that the number of σm’s in u is the number
of main reductions in Ew.

It follows that the number of main reduction steps in any sequence of handle
reductions starting with a word drawn in 0(z) is bounded above by c(z). In partic-
ular, if we start with an n strand braid word w of length `, then it is easy to show
that w is drawn in 0(1`n), and, applying the upper bound of Equation (2-2), we
deduce the upper bound on the number of possible main reductions from w, and it
is exponential in `.

A natural way to improve this coarse upper bound would be to determine c(1d
n)

more precisely. This will be done in Section 3 below. However, the explicit for-
mulas show that, for n > 3, the growth in d really is exponential, thus dashing any
hopes of proving a polynomial upper bound for the number of reduction steps by
this approach.
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2C. A filtration of the braid ordering. We now introduce new numerical param-
eters for the ordered sets (Div(z),<). These numbers connect with a natural fil-
tration of the ordering <, using an increasing sequence of partial orderings.

By Lemma 1.11, the index of the main generator of a nontrivial braid is well
defined. We can use this index to measure the height of the jump between two
braids x, y satisfying x < y:

Definition 2.12. For x, y in B∞ and r >1, we say that x<r y holds or, equivalently,
that (x, y) is an r-jump, if x−1 y admits a σ -positive expression in which the main
generator is σm with m > r .

Lemma 2.13. For each r >1, the relation<r is a strict partial order that refines< ;
the relation <1 coincides with <, and r 6 q implies that <q refines <r .

Proof. That <r is transitive follows because the concatenation of a σ -positive
word with main generator σm and a σ -positive word with main generator σm′ is a
σ -positive word with main generator σmax(m,m′). �

In the sequel, we consider the <r -chains included in Div(z), and their length:

Definition 2.14. For z a positive braid and r > 1, we define the r-height hr (z) of
z to be the maximal length of a <r -chain included in Div(z).

Before giving examples, we observe the connection between hr (z) and the in-
creasing enumeration of the set Div(z):

Lemma 2.15. Let z be a positive braid and r > 1. Then hr (z)− 1 is the number of
r-jumps in the increasing enumeration of (Div(z),<).

Proof. If the number of r -jumps in the increasing enumeration of Div(z) is Nr −1,
we can extract from Div(z) a <r -chain of length Nr . Conversely, assume that
(y0, . . . yNr ) is a <r -chain in Div(z). Let z0 < . . . < zN be the increasing enu-
meration of Div(z). As <r refines <, there exists an increasing function f of
{0, . . . , Nr } into {0, . . . , N } such that yi = z f (i) holds for every i . Now the hy-
pothesis z f (i) <r z f (i+1) implies that there exists at least one r -jump between z f (i)

and z f (i+1). Indeed, by Lemma 1.11, it is impossible that a concatenation of m-
jumps with m < r results in a r -jump. So the number of r -jumps in (z0, . . . , zN )

is at least Nr . �

In other words, to determine hr (z), there is no need to consider arbitrary chains:
it is enough to consider the maximal chain obtained by enumerating Div(z) ex-
haustively.

Example 2.16. Refining the increasing enumeration of Div(13) of Example 1.9
by indicating for each step the height of the corresponding jump, we obtain:

(2-3) 1<1 a <2 b<1 ba <2 ab<1 13,
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where we recall a, b, . . . stand for σ1, σ2, . . . . For instance, (ba, ab) is a 2-jump,
because we have in (ba)−1(ab)= ABab = AabA = bA a σ -positive decomposition
with main generator σ2. The number of 1-jumps in (2-3), that is, the number of
symbols<r with r > 1, is 5, while the number of 2-jumps is 2, so, by Lemma 2.15,
we deduce h1(13)= 6 and h2(13)= 3. Similarly, we obtain for 12

3

1<1 a <1 aa <2 b<1 ba <1 baa <2 bb<1 bba <2 ab<1 aba <1 abaa <2 abb

<1 abba <2 aab<1 aaba <1 aabaa <2 baab<1 baaba <1 baabaa,

leading to h1(1
2
3)= 19 and h2(1

2
3)= 7.

Proposition 2.17. (i) For every braid z in B+
n , we have

h1(z)= #Div(z)> h2(z)> · · · > hn(z)= 1.

(ii) For all positive braids z, z′ and r > 1, we have

(2-4) hr (zz′)> hr (z)+ hr (z′).

Proof. (i) A <1-chain is simply a <-chain. Hence every subset of Div(z) gives
such a chain. So the maximal <1-chain in Div(z) is Div(z) itself, and h1(z) is the
cardinality of Div(z).

On the other hand, no <n-chain in B+
n has length more than 1, as the main

generator of a σ -positive n-strand braid word cannot be σn or any generator above
it. Thus hn(z) is 1.

Then, for q 6 r , every <r -chain is a <q -chain, which implies hr (z)> hq(z).
Point (ii) is obvious, as the concatenation of two <r -chains is a <r -chain. �

From (2-4) we deduce hr (zd)>d ·hr (z) for all r, z. By Lemma 1.5, every divisor
of 1d

n can be decomposed as the product of at most d divisors of 1n . There are n!

such divisors, so we obtain the (coarse) bounds

d · hr (1n)6 hr (1
d
n)6 (n!)d ,

for all r, n, d . Better estimates will be given below.

Remark 2.18. Instead of restricting to subsets of B∞ of the form Div(z), we can
define the complexity and the r -height for every (finite) set of braids X . Most of
the general results extend, but, when X is not closed under left division, nothing
can be said about the number of σr ’s involved in an r -jump. Considering such an
extension is not useful here.

2D. Connection with the complexity. We shall now connect the complexity c(z)
with the numbers hr (z) just defined. The result is simple:
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Proposition 2.19. For z a positive braid with main generator σm , we have

c(z)= hm(z)− 1.

In particular, for n > 2 and d > 0, we have

c(1d
n)= hn−1(1

d
n)− 1.

One inequality is easy:

Lemma 2.20. For z a positive braid with main generator σm , we have c(z) 6
hm(z)− 1.

Proof. The argument is reminiscent of the one used for Lemma 2.15 but requires
a little more care. Assume that w is a σ -positive word drawn in 0(z) from x
containing Nm occurrences of σm . By Lemma 2.9, we can assume x = 1 without
loss of generality. Let z0 < z1 < . . . < zN be the increasing enumeration of Div(z).
By definition, all prefixes of w represent divisors of z, so, letting ` be the length
of w, there exists a mapping f : {0, . . . , `} → {0, . . . , N } such that, for each k,
the length k prefix of w represents z f (k). By construction, we have f (0) = 0 and
f (`)= N .

The difference from Lemma 2.15 is that f need not be increasing. Now, let
p1, . . . , pNm be the Nm positions in w where the generator σm occurs, completed
with p0 = 0. Then, in the prefix of w of length p1, that is, in the subword of w
corresponding to positions from p0 + 1 to p1, there is one σm , plus letters σ±1

i
with i <m (Figure 3). This subword is therefore σ -positive. Hence we must have
z f (p0)< z f (p1), which requires f (p0)< f (p1). Moreover, the quotient z−1

f (p0)
z f (p1)

is a braid that admits at least one σ -positive expression containing σm , and hence
z f (p0) <m z f (p1). Now the same is true between f (p1) and f (p2), etc. Hence the
number of m-jumps in the increasing enumeration of Div(z) is at least Nm , that is,
we have hm(z)> Nm + 1. �

σ -positive
expression of z

increasing
enumeration of Div(z)z0 z1 z2 <m z3 z4 z5 <m z6 z7 z8

f (0) f (2) f (1) f (4) f (3) f (5)
f (7)

f (6)

Figure 3. Proof of Lemma 2.20. The main generator σm corre-
sponds to the bold arrow: the function f need not be increasing,
but the projection of a bold arrow upstairs must include at least
one bold arrow downstairs, that is, at least one m-jump.
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It remains to prove the second inequality in Proposition 2.19, that is, to prove
that, if z is a positive n-braid satisfying hm(z)= N +1, then z admits a σ -positive
expression containing N generators σm . The problem is as follows: if z is a positive
braid and x, y are left divisors of z satisfying x< y, then, by definition, the quotient
x−1 y admits some σ -positive expression w, but nothing a priori guarantees that w
be drawn in 0(z). In other words, we might have x < y but no σ -positive witness
for this inequality inside Div(z). It turns out this cannot happen, but the proof
requires a rather delicate argument.

Proposition 2.21. Let z be a positive braid. Then, for all x, y in Div(z), the
following are equivalent:

(i) The relation x < y holds, that is, there exists a σ -positive path from x to y in
the Cayley graph of B∞;

(ii) There exists a σ -positive path from x to y in the Cayley graph of Bn;

(iii) There exists a σ -positive path from x to y in 0(z).

Proof. Clearly (iii) implies (ii), which in turn implies (i). We shall prove that (i) im-
plies (iii) — and thus reprove that (i) implies (ii), which was first proved in [Larue
1994] — by using the handle reduction method of [Dehornoy 1997; Dehornoy et al.
2002]. The problem is to prove that, among all σ -positive paths connecting x to y
in the Cayley graph of B∞, at least one is drawn in 0(z).

Now, let u, v be positive words representing x and y. Then the word u−1v

represents x−1 y, and, by hypothesis, it is drawn in 0(z) from x . Handle reduction
transforms a braid word into equivalent words and eventually produces a σ -positive
word if it exists. It is proved in [Dehornoy 1997] that, for every n strand braid word
w, there exists a finite fragment 0w of the Cayley graph of B+

n and a vertex xw
of 0w such that w and all words obtained from w by handle reduction are drawn
from xw in 0w. Moreover, when w has the form u−1v with u, v positive, then all
vertices in 0w are the left divisors of the least common right multiple of the braids
represented by u and v, here x and y, while xw is the braid represented by u, that
is, x . As x and y are divisors of z, so is their least common right multiple, and the
graph 0w is included in 0(z). It follows that every word obtained from u−1v using
handle reduction is drawn from x in 0(z). The termination of handle reduction
guarantees that, among these words, at least one is σ -positive, so (iii) follows. �

A direct application of Proposition 2.21 is the existence of σ -positive quotient
sequences drawn in the Cayley graph. The definition is as follows:

Definition 2.22. Assume that z is a positive braid and X is a subset of Div(z).
Let x0 < . . . < xN be the increasing enumeration of X . We say that a sequence of
words Ew = (w1, . . . , wN ) is a quotient sequence for X if, for each k, the word wk

is an expression of x−1
k−1xk for each k. We say that Ew is σ -positive if every entry in
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Ew is σ -positive, and that Ew is drawn in 0(z) (from x0) if wk is drawn from xk−1

in 0(z) for each k.

Corollary 2.23. Assume that z is a positive braid. Then every subset of Div(z)
admits a σ -positive quotient sequence drawn in 0(z).

Example 2.24. (Figure 4) By computing the successive quotients in the increasing
enumeration of Div(12

3) given in Example 1.9, we easily find that

(a, a, AAb, a, a, AAb, a, AAb, a, a, bAA, a, bAA, a, a, bAA, a, a)

is a σ -positive quotient sequence for Div(12
3) drawn in 0(12

3). This sequence
turns out to be the unique sequence with the above properties, but this uniqueness
is specific to the case of 3-braids (see Figure 8 below).

We can now easily complete the proof of Proposition 2.19:

Proof of Proposition 2.19. Let (z0, . . . , zN ) be the <-increasing enumeration
of Div(z). By Corollary 2.23, there exists a σ -positive quotient sequence Ew for
Div(z) that is drawn in 0(z). Letw=w1 . . . wN . By construction,w is a σ -positive
word drawn in 0(z), and the number of occurrences of the main generator σm in w
is (at least) the number of m-jumps in (z0, . . . , zN ). So we have c(z)> hm(z)−1.
Invoking Lemma 2.20 completes the proof. �

Remark 2.25. Assume that Ew is a σ -positive quotient sequence for Div(z), and
σm is the main generator occurring in Ew. Then each word wi contains zero or one
letter σm . Indeed, if wi contained two σm’s or more, then the vertex reached after
the first σm ought to lie in the open<-interval determined by two successive entries
of Ez, and the latter is empty by construction since all elements of Div(z) occur in Ez.

1

12
3

Figure 4. The increasing enumeration of the divisors of 12
3,

and a σ -positive quotient sequence drawn in 0(12
3): the associ-

ated path visits every vertex, and is labeled aaAAbaaAAbabAAa
aAAbabAAaabAAaa; it crosses 6 σ2-edges (and no σ−1

2 ).
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3. A decomposition result for (Div(z), <)

In this section, we establish a structural result describing (Div(1d
n),<) as the

concatenation of c(1d
n) + 1 intervals isomorphic to subsets of (Div(1d

n−1),<).
We deduce an explicit formula connecting hr (1

d
n) with the number of braids in

Div(1d
n) whose d-th factor is right divisible by 1r , which in turn enables us to

finish computing c(1d
n) and hr (1

d
n) for small values of r , n and d .

3A. Br -classes. To analyze the linearly ordered sets (Div(1d
n),<), and, more

generally, (Div(z),<) for z a positive braid, we introduce convenient partitions.
As Br is a group for each r , it is clear that the relation x−1 y ∈ Br defines an
equivalence relation on (positive) braids, so we may put:

Definition 3.1. For r > 1 and x, y in B+
∞

, we say that x and y are Br -equivalent if
x−1 y belongs to Br .

By construction, Br -equivalence is compatible with multiplication on the left.
In the sequel, we consider the restriction of Br -equivalence to finite subsets of B+

∞

of the form Div(z), that is, we use Br -equivalence to partition Div(z) into subsets,
naturally called Br -classes.

Example 3.2. As B1 is trivial, B1-equivalence is equality, and so, therefore, the
B1-classes are singletons. On the other hand, any two elements of Bn are Br -
equivalent for each r > n, so, for z in B+

n , there is only one Br -class for r > n, and
the only interesting relations arise for 1 < r < n. For instance, Div(13) contains
three B2-classes, while Div(12

3) contains seven of them (Figure 5).

Saying that there is an r -jump between two braids x and y means that x−1 y is
σ -positive and does not belong to Br , so, for x < y, we have the equivalence

(3-1)
(
x, y are not Br -equivalent

)
⇐⇒

(
there is a r -jump between

between x and y

)
.

Figure 5. The B2-classes in Div(13) and Div(12
3).
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Lemma 3.3. Assume that z is a positive braid. Then, each Br -class in Div(z) is an
interval for < and there is an r-jump between each Br -class and the next one.

Proof. Assume x < y ∈ Div(z). By (3-1), if x and y are not Br -equivalent, there is
an r -jump between x and y and hence also between x and any element of Div(z)
above y. Thus no such element may be Br -equivalent to x . This implies that each
Br -class is an <-interval. �

Corollary 3.4. For each r > 1, the number of Br -classes in Div(z) is hr (z).

Proof. By (3-1), there is no r -jump between two elements of the same Br -class,
and there is one between two elements not in the same Br -class. Thus the number
of Br -classes is the number of r -jumps in the <-increasing enumeration of Div(z)
augmented by 1. Hence, by Lemma 2.15, it is hr (z). �

With Br -equivalence, we can partition (Div(z),<) into finitely many subinter-
vals. The interest of this partition is that we can describe Br -classes rather precisely
and, typically, connect them with subsets of Br . In particular, this will allow for
connecting the ordered sets (Div(1d

n),<) with the sets (Div(1d
n−1),<).

Proposition 3.5 (Figure 6). Assume z ∈ B+
∞

and r > 1. Let C be a Br -class in
Div(z), and let a, b be its <-extremal elements. Then a divides every element of
C on the left, and the left translation by a establishes an isomorphism between
(Div(a−1b),4, <) and (C,4, <). In particular, (C,4) is a lattice.

Proof. By Lemma 3.3, C is the <-interval determined by a and b, that is, we have

C = {x ∈ Div(z); a < x < b}.

We know that Div(z) is a lattice with respect to left divisibility: any two elements
x, y of Div(z) admit a greatest common left divisor, here denoted gcd(x, y), and a
least common right multiple, denoted lcm(x, y). Firstly, we claim that C is a lattice
with respect to left divisibility, that is, the left gcd and the right lcm of two elements
of C lie in C . So assume x, y ∈ C . Let x0, y0 be defined by x = gcd(x, y)x0 and
y = gcd(x, y)y0. The hypothesis that x−1 y belongs to Br implies that there exist
x1, y1 in B+

r satisfying x−1 y = x−1
1 y1. By definition of the gcd, there must exist

a positive braid z1 satisfying x1 = z1x0 and y1 = z1 y0. Because z1 is positive,
x1 ∈ B+

r implies x0 ∈ B+
r , and hence gcd(x, y)∈ C . As for the lcm, the conjunction

of x = gcd(x, y)x0 and y = gcd(x, y)y0 implies

lcm(x, y)= gcd(x, y) lcm(x0, y0).

As x0, y0 ∈ B+
r implies lcm(x0, y0) ∈ B+

r , we deduce lcm(x, y) ∈ C .
As C is finite, it follows that C admits a global gcd. Because the linear or-

dering 6 extends the partial divisibility ordering 4, this global gcd must be the
<-minimum a of C . Symmetrically, C admits a global lcm, which must be the
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C

a

b

1

σr

σr

σr

z

Figure 6. Decomposition of (Div(z),<) into Br -classes: each
class C is a lattice with respect to divisibility; the increasing enu-
meration of Div(z) exhausts the first class, then jumps to the next
one by an r -jump, etc. The number of classes is hr (z).

<-maximum b. So, at this point, we know that a is a left divisor of every element
in C , and b is a right multiple of each such element, that is, we have

(3-2) C ⊆ {x ∈ B+

∞
; a 4 x 4 b}.

Moreover, a 4 x 4 b implies a 6 x 6 b. Hence x ∈ C , and so the inclusion in (3-2)
is an equality.

Now, put F(x) = ax for x in Div(a−1b). As B+
∞

is left cancellative, F is
injective. Moreover, for x a positive braid, x 4 a−1b is equivalent to ax 4 b, so
the image of F is {x ∈ B+

∞
; a 4 x 4 b} = C . Finally, by construction, F preserves

both 4 and <. �

For r = 1, each Br -class is a singleton, and Proposition 3.5 says nothing; sim-
ilarly, if the main generator of z is σm , there is only one Br -class for r > m, and
we gain no information. But, for 1< r 6 m, and specially for r = m, Proposition
3.5 states that the chain Div(z) is obtained by concatenating hr (z) copies of sets
of the form Div(z′) with z′ of index at most r . In particular, for z =1d

n , we have:

Corollary 3.6. For each n and r such that r < n, the chain (Div(1d
n),<) is ob-

tained by concatenating hr (1
d
n) intervals, each of which, when equipped with 4,

is a translated copy of some initial sublattice of (Div(1d
r ),4).

The case of 12
3 and 14 are illustrated in Figure 7 and Figure 8.

3B. Extremal elements. The next step is to observe that extremal points in Br -
classes admit a simple characterization in terms of divisibility.

Proposition 3.7. Assume that z is a positive braid.

(i) An element x of Div(z) is the maximum of its Br -class if and only if the relation
xσi 4 z fails for 1 6 i < r .
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(ii) An element x of Div(z) is the minimum of its Br -class if and only if no σi with
1 6 i < r divides x on the right.

Proof. (i) The condition is necessary: if xσi lies in Div(z) for some i with i < r ,
then xσi lies in the same Br -class as x , and it is larger both for 4 and <, so x
cannot be maximal in its Br -class. Conversely, assume that x is not maximal in
its Br -class. Then there exists y satisfying x < y and y is Br -equivalent to x .
Now, by Proposition 3.5, the lcm of x and y is also Br -equivalent to x , which
means that there exists y1 in B+

r satisfying lcm(x, y) = xy1. Now x < y implies

1
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Figure 7. Decomposition of (Div(12
3),<) into B2-classes. The

increasing enumeration of (Div(12
3),<) is the concatenation of

the increasing enumeration of the successive classes, separated by
2-jumps (compare with Figure 4); in this case, B2-classes are sim-
ply chains with respect to divisibility.

2

5

3

4

6

13

5

20

5

13

6

21

22

19

1

7

1011

8 9

12

2

1415

16 17

18

23

24

20

1

14

Figure 8. Decomposition of (Div(14),<) into B3-classes. The
σ3-arrows (thick) corresponding to 3-jumps are not unique; in this
case, all B3-classes are isomorphic to the lattice (Div(13),<,4),
that is, to the Cayley graph of 13.
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y1 6= 1, so there must exist i <m such that σi is a left divisor of y1. Then we have
xσi 4 xy1 4 z. Hence xσi 4 z.

(ii) The argument is symmetric. If x = yσi for some positive braid y and i < r , then
y belongs to the Br -class of x , and x cannot be minimal in its Br -class. Conversely,
assume that x is not minimal in its Br -class. Then there exists y satisfying y < x
and y is Br -equivalent to x . By Proposition 3.5 again, the gcd of x and y is also Br -
equivalent to x , which means that there exists y0 in B+

r satisfying gcd(x, y)y0 = x .
As y < x implies y0 6= 1, there must exist i < m such that σi is a right divisor of
y0 and hence of x . �

When we apply the previous criterion to the braids 1d
n , we obtain:

Proposition 3.8. For x in Div(1d
n) and 1 6 r 6 n, the following are equivalent.

(i) The element x is <-maximal in its Br -class.

(ii) The element xσi belongs to Div(1d
n) for no i < r .

(iii) The d-th factor of x is right divisible by 1r .

(iv) The (d + 1)-st factor of x1r is 1r .

Proof. The equivalence of (i) and (ii) is given by Proposition 3.7(i). It remains
to establish the equivalence of (ii)–(iv). For r = 1, (ii) is vacuously true, while
(iii) and (iv) always hold. So the expected equivalences are true. We henceforth
assume r > 2.

Let x belong to Div(1d
n), and let xd be the d-th factor in the normal form of

x . For i < n, saying that xσi does not belong to Div(1d
n) means that the normal

form of xσi has length d + 1. Hence, equivalently, that the normal form of xdσi

has length 2. This occurs if and only if σi is a right divisor of xd . So, for r 6 n,
(ii) is equivalent to xd being right divisible by all σi ’s with 1 6 i < r and hence to
xd being right divisible by the (left) lcm of these elements, which is 1r .

Finally, (iii) and (iv) are equivalent. Indeed, if the d-th factor xd in the normal
form of x is divisible by 1r on the right, then (xd ,1r ) is a normal sequence as
no σi with i < r from 1r may pass to xd . Hence (x1, . . . , xd ,1r ) is a normal
sequence and necessarily the normal form of x1r . Conversely, assume that the
normal form of x1r is (x1, . . . , xd ,1r ). The hypothesis that (xd ,1r ) is normal
implies that xd is divisible on the right by each σi with i < r . Hence is divisible
on the right by 1r . Now (x1, . . . , xd) is the normal form of x . �

Observe that, for r > 2, an element of Div(1d
n) that is<-maximal in its Br -class

cannot belong to Div(1d−1
n ), that is, it cannot have degree d − 1 or less because

the d-th factor of its normal form cannot be 1.
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Similar conditions characterize the minimal elements of the Br -classes. Because
the normal form has a privileged orientation, the results are not entirely symmetric
with those of Proposition 3.8

Proposition 3.9. For x in Div(1d
n) and 1 6 r 6 n, the following are equivalent.

(i) The element x is <-minimal in its Br -class.

(ii) No σi with i < r is a right divisor of x.

(iii) The degrees of x and x1r are equal.

Proof. The equivalence of (i) and (ii) is given by Proposition 3.7(ii), and everything
is obvious for r = 1. So it remains to establish the equivalence of (ii) and (iii) when
r > 2. Now, assume that (ii) holds and x has degree d . The hypothesis that σi is
not a right divisor of x implies that xσi is a divisor of 1d

n . As this holds for each
i < r , the lcm of xσ1, . . . , xσr−1, namely x1r , also divides 1d

n , which means that
x1r has degree (at most) d . So (ii) implies (iii).

Conversely, assume that σi divides x on the right. Then the degree of xσi is
strictly larger than that of x , and, a fortiori, the same is true for x1r . �

3C. Determination of hr(1
d
n). A direct application of the previous results is a

formula connecting the number hr (1
d
n) of Br -classes in Div(1d

n) with the number
of braids whose normal form ends with some specific factor.

Definition 3.10. For n, d > 1 and for s a simple n-braid, we denote by bn,d(s) the
number of positive braids of degree at most d, that is, of divisors of 1d

n , whose
d-th factor is s.

Proposition 3.11. For 1 6 r 6 n, we have

(3-3) hr (1
d
n)=

∑
s right divisible by 1r

bn,d(s)= bn,d+1(1r ).

In words, the number of r -jumps in (Div(1d
n),<) is the number of n-braids of

degree at most d whose d-th factor is right divisible by 1r .

Proof. By Corollary 3.4, hr (1
d
n) is the number of Br -classes in Div(1d

n). Each
class contains exactly one maximum element, and, by Proposition 3.8, its d-th
factor is right divisible by 1r . The first equality in (3-3) follows. The second one
follows from the equivalence of (iii) and (iv) in Proposition 3.8. �

For r = 1, as every simple braid is divisible by 1 on the right, Equation (3-3)
reduces to

h1(1
d
n)=

∑
s

bn,d(s)= bn,d+1(1),
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a special case of the relation h1(z) = #Div(z) of Proposition 2.17. For r = n, be-
cause the only normal sequence of length d that finishes with 1n is (1n, . . . ,1n),
Equation (3-3) reduces to

hn(1
d
n)= 1,

already noted in Proposition 2.17. Finally, for r = n − 1, we obtain using Propo-
sition 2.19:

Corollary 3.12. For n > 2, we have

c(1d
n)= hn−1(1

d
n)− 1 =

n∑
i=2

bn,d(σiσi+1 . . . σn−11n−1)= bn,d+1(1n−1)− 1.

Proof. The simple n-braids that are right divisible by 1n−1 are the braids of the
form σiσi+1 . . . σn−1 with 1 6 i 6 n. Indeed, it is clear that every such braid is
simple and right divisible by1n−1. Conversely, the only possibility for z1n−1 to be
simple is that z moves the n-th strand to some position between 1 and n without in-
troducing any crossing between the remaining strands. Finally, σ1σ2 . . . σn−11n−1

is 1n , and, remembering that bn,d(1n) is 1, we obtain the first equality. �

3D. Computation of bn,d(s). By Lemma 1.4, normal sequences are characterized
by a local condition involving only pairs of consecutive elements. It follows that
the set of all normal sequences is a rational set, that is, it can be recognized by
a finite state automaton. Standard arguments then show that the numbers bn,d(s)
obey a linear recurrence. Building on this observation, seemingly first used for
braids in [Charney 1995], we can obtain explicit formulas for the parameters c(1d

n)

and hr (1
d
n) for small values of r , n, or d. We shall not go into details here but

refer to [Dehornoy 2007] where we established the formulas and, more generally,
investigated the rich combinatorics underlying the normal form of braids.

In the sequel, we write (M)x,y for the (x, y)-entry of a matrix M . The general
principle for computing the numbers bn,d(s) for some fixed n is as follows:

Lemma 3.13. For n >1, let Mn be the square matrix with entries indexed by simple
n-braids defined by

(Mn)s,t =

{
1 if (s, t) is normal,

0 otherwise.

Then, for every simple t and d > 1, we have bn,d(t)= ((1, 1, . . . , 1)Md−1
n )t .

The proof is an easy induction on d .

Example 3.14. The matrix M1 is (1), corresponding to b1,d(1) = 1. For n = 2,
using the enumeration (1, σ1) of simple 2-braids, we find M2 = ((1, 0), (1, 1)),
leading to b2,d(1) = d and b2,d(σ1) = 1, giving d + 1 braids of degree at most



162 PATRICK DEHORNOY

d . The first d are the braids σ e
1 with e < d in which the d-th factor is 1; the

last is σ d
1 , whose d-th factor is 12, that is, σ1. For n = 3, using the enumeration

(1, σ1, σ2, σ2σ1, σ1σ2,13) of simple 3-braids, we obtain

M3 =



1 0 0 0 0 0
1 1 0 0 1 0
1 0 1 1 0 0
1 1 0 0 1 0
1 0 1 1 0 0
1 1 1 1 1 1


,

from which we can deduce b3,3(1)= 19 or b3,4(σ1)= 15 using Lemma 3.13.

Using Proposition 3.11, we deduce:

Proposition 3.15. With Mn as in Lemma 3.13, we have for n > r > 1 and d > 1

c(1d
n)= ((1, 1, . . . , 1)Md

n )1n−1 − 1,

hr (1
d
n)= ((1, 1, . . . , 1)Md

n )1r .

Corollary 3.16. (i) For fixed n, r , the generating functions for the sequences
c(1d

n) and hr (1
d
n) are rational.

(ii) For fixed n, r , the numbers c(1d
n) and hr (1

d
n) admit expressions of the form

(3-4) P1(d)ρd
1 + · · · + Pk(d)ρd

k .

where ρ1, . . . , ρk are the nonzero eigenvalues of Mn and P1, . . . , Pk are poly-
nomials with deg(Pi ) of at most the multiplicity of ρi in Mn .

Because the matrix Mn is an n! × n! matrix, completing the computation is not
so easy, even for small values of n. Actually, it is shown in [Dehornoy 2007]
how to replace Mn with a smaller matrix Mn of size p(n) × p(n), where p(n)
is the number of partitions of n. The property is connected with classical results
of Solomon [1976] about the descents of permutations. With such methods, one
easily obtains the values listed in Table 1.

Using the reduced matrices

M3 =

1 0 0
4 2 0
1 1 1

 and M4 =


1 0 0 0 0
11 4 1 0 0
5 3 2 1 0
6 4 2 2 0
1 1 1 1 1

 ,
we obtain the following explicit form for (3-4) involving the nonzero eigenvalues
(1, 1, 2) of M3 and (1, 1, 3 ±

√
6) of M4:
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Proposition 3.17. Let ρ± = 3 ±
√

6. Then, for d > 1, we have

h1(1
d
3)= 8 · 2d

− 3d − 7,

h2(1
d
3)= c(1d

3)+ 1 = 2 · 2d
− 1,

h1(1
d
4)=

∑
±

3
20
(32 ± 13

√
6)ρd

±
−

128
5

· 2d
+ 6d + 17,

h2(1
d
4)=

∑
±

1
20
(32 ± 13

√
6)ρd

±
−

16
5

· 2d
+ 1,

h3(1
d
4)= c(14

3)+ 1 =

∑
±

1
20
(4 ±

√
6)ρd

±
+

8
5

· 2d
− 1.

These formulas show each parameter grows exponentially in d , with estimate
O(2d) for n = 3, and O((3 +

√
6)d) for n = 4. For practical purposes, it may be

more convenient to resort to recursive formulas, for instance,

h1(1
d
3)= 2h1(1

d−1
3 )+ 3d + 1,(3-5)

h1(1
d
4)= 6h1(1

d−1
4 )− 3h1(1

d−2
4 )+ 32 · 2d

− 12d − 34,(3-6)

together with initial values h1(1
0
3)= h1(1

0
4)= 1, h1(1

1
4)= 24 (or h1(1

−1
4 )= 0).

3E. Small values of d. Another approach is to keep d fixed and let n vary. Once
again, we only mention a few results, and refer the reader to [Dehornoy 2007] for
the proofs and additional comments. For d = 1, it is easy to determine all values:

Proposition 3.18 [Dehornoy 2007]. For n > r > 1, we have

hr (1n)=
n!

r !
.

For d = 2, it is easier to complete the computation for hn−r (1
2
n).

Proposition 3.19 [Dehornoy 2007]. For n > r > 1, we have

hn−r (1
2
n)= r ! (r + 1)n +

r∑
i=1

Pi (n) in−r+i−1,

for some polynomial Pi of degree at most r − i + 1. The values for r = 1, 2 are

hn−1(1
2
n)= 2n

− 1,

hn−2(1
2
n)= 2 · 3n

− (n + 6) · 2n−1
+ 1.
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For hr (1
2
n) itself, no general formula is known. We mention the case of h1(1

2
n),

which follows from results of Carlitz et al. [1976]:

Proposition 3.20 [Dehornoy 2007]. The numbers h1(1
2
n) are determined by the

induction

h1(1
2
0)= 1, h1(1

2
n)=

n−1∑
i=0

(−1)n+i+1
(

n
i

)2

h1(1
2
i ).

Their double exponential generating function is, with J0(x) is the Bessel function,
∞∑

n=0

h1(1
2
n)

zn

n!2
=

( ∞∑
n=0

(−1)n
zn

n!2

)−1

=
1

J0(
√

z)
.

Finally, for d =3, the computation can be completed at least in the case n−r =1:

Proposition 3.21 [Dehornoy 2007]. For n > 1, we have, with e = exp(1),

hn−1(1
3
n)=

n−1∑
i=0

n!

i !
= bn!ec − 1.

d 0 1 2 3 4 5 6

h1(1
d
2 ) 1 2 3 4 5 6 7

h1(1
d
3 ) 1 6 19 48 109 234 487

h2(1
d
3 ) 1 3 7 15 31 63 127

h1(1
d
4 ) 1 24 211 1,380 8,077 45,252 249,223

h2(1
d
4 ) 1 12 83 492 2,765 15,240 83,399

h3(1
d
4 ) 1 4 15 64 309 1,600 8,547

h1(1
d
5 ) 1 120 3,651 79,140 1,548,701 29,375,460 551,997,751

h2(1
d
5 ) 1 60 1,501 30,540 585,811 11,044,080 207,154,921

h3(1
d
5 ) 1 20 311 5,260 94,881 1,755,360 32,741,851

h4(1
d
5 ) 1 5 31 325 4,931 86,565 1,590,231

h1(1
d
6 ) 1 720 90,921 7,952,040 634,472,921 49,477,263,360 3,836,712,177,121

h2(1
d
6 ) 1 360 38,559 3,228,300 254,718,389 19,808,530,620 1,535,016,069,499

h3(1
d
6 ) 1 120 8,727 649,260 49,654,757 3,831,626,580 296,361,570,667

h4(1
d
6 ) 1 30 1,075 61,620 4,387,195 332,578,230 25,612,893,355

h5(1
d
6 ) 1 6 63 1,956 116,423 8,448,606 643,888,543

Table 1. First values of hr (1
d
n) for 1 6 r < n — the value is 1

for r > n. For instance, the number h1(1
2
3) of 3-strand braids

of degree at most 2 is 19 (see Example 2.16), while the maximal
number c(14

4) of σ3’s in a σ -positive word drawn in 0(14
4)—

which is h3(1
4
4)− 1, according to Proposition 2.19 — is 308.
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Using Proposition 2.19, we deduce the following explicit values for c(1d
n), that

is, for the maximal number of occurrences of σn−1 in a σ -positive word drawn in
the Cayley graph of 1d

n :

c(1n)= n − 1, c(12
n)= 2n

− 2, c(13
n)=

n−1∑
i=0

n!

i !
− 1 = bn!ec − 2.

The formulas listed above show that a number of different induction schemes ap-
pear, suggesting that the combinatorics of normal sequences of braids is very rich.

4. A complete description of (Div(1d
3 ), <)

Our ultimate goal is a complete description of each chain (Div(1d
n),<). Typically,

this means that we are able to explicitly specify the increasing enumeration of its
elements. The goal remains generally out of reach, but we can show how the
process can be completed when n = 3. The counting formulas of Section 3 play
a key role in the construction, and, in particular, the Pascal’s triangle of Figure 9
connects directly with the 2d factor in the inductive formulas of Proposition 3.17.
As an application, we deduce a new proof of Property C and of the well-ordering
property and hence a complete reconstruction of the braid ordering when n = 3.

The general principle is to make the decomposition of Corollary 3.6 explicit.
The latter shows that, for all n and d , the chain (Div(1d

n),<) can be decomposed
into c(1d

n) subintervals each of which copies some fragment of (Div(1d
n−1),<).

Moreover, the approach of Section 3 suggests an induction on d as well. We are
led to seek a recursion for (Div(1d

n),<) in (Div(1d
n−1),<) and (Div(1d−1

n ),<);
here this means expressing (Div(1d

3),<) in (Div(1d
2),<) and (Div(1d−1

3 ),<).

4A. The braids θn, p. The subsequent construction will appeal to a double series
θn,p of braids, and we begin with a few preliminary properties.

Definition 4.1. For n > 2, let σn,1 and σ1,n denote the braid words σn−1σn−2 . . . σ1

and σ1σ2 . . . σn−1. For p > 0, we define θ̃n,p as (the braid represented by) the
length p prefix of the right-infinite word (σn,1σ1,n)

∞, and let θn,p be (the braid
represented by) the length p suffix of the left-infinite word ∞(σn,1σ1,n).

For instance, we find θ3,0 = 1, θ3,1 = b, θ3,2 = ab, . . . , θ3,4 = baab, . . . , θ3,7 =

aabbaab, etc. Similarly, we have θ4,6 = cbaabc and, more generally, θn,2n−2 =

θ̃n,2n−2 = σn,1σ1,n . Note that, as words, θn,p is the reverse of θ̃n,p.

Lemma 4.2. For n > 2 and p, q > 0 satisfying p + q = d(n − 1), we have

(4-1) θn,p 1
d
n−1 θ̃n,q =1d

n .
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Proof. We first prove using induction on d the relation

(4-2) θn,d(n−1)1
d
n−1 =1d

n ,

that is, (4-1) with q = 0. For d = 0, (4-2) reduces to 1 = 1. Assume d > 1.
By definition, θn,d(n−1) is σn,1 θn,(d−1)(n−1) for d odd and is σ1,n θn,(d−1)(n−1) for d
even. In either case, we can write

θn,d(n−1) = φd−1
n (σ1,n) θn,(d−1)(n−1),

where we recall φn denotes the flip automorphism of Bn that exchanges σi and
σn−i . Using the induction hypothesis and (1-2), we find

θn,d(n−1)1
d
n−1 = φd−1

n (σ1,n) θn,(d−1)(n−1)1
d−1
n−1 1n−1

= φd−1
n (σ1,n)1

d−1
n 1n−1 =1d−1

n σ1,n 1n−1 =1d−1
n 1n =1d

n .

We return to the general case of (4-1). For d even, we have θn,d(n−1) = θ̃n,d(n−1)

and hence θ̃n,q θn,p = θn,d(n−1). If d is odd, we have θn,d(n−1) = φn(θ̃n,d(n−1)),
which implies φn(θ̃n,q) θn,p = θn,d(n−1). So φd

n (θ̃n,q) θn,p = θn,d(n−1) holds in both
cases. Now, using (4-2), we find

φn(θ̃n,q) θn,p 1
d
n−1 θ̃n,q = θn,d(n−1)1

d
n−1 θ̃n,q =1d

n θ̃n,q = φn(θ̃n,q)1
d
n ,

from which we deduce (4-1) by cancelling φn(θ̃n,q) on the left. �

Lemma 4.3. For 1 6 i 6 n − 2 we have

(4-3) θn,d(n−1) σi = σi+e θn,d(n−1)

with e = 0 if d is even and e = 1 if d is odd.

Proof. For 1 6 i 6 n − 2, we have σ1,n σi = σi+1 σ1,n and σn,1 σi+1 = σi σn,1,
as an easy induction shows. This implies σn,1 σ1,n σi = σi σn,1 σ1,n and therefore
(σn,1 σ1,n)

d σi = σi (σn,1 σ1,n)
d , that is, θn,2d(n−1) σi = σi θn,2d(n−1) for every d . On

the other hand, we have θn,(2d+1)(n−1) = σ1,n θn,2d(n−1) and hence

θn,(2d+1)(n−1) σi = σ1,n σi θn,2d(n−1) = σi+1 σ1,n θn,2d(n−1) = σi+1 θn,(2d+1)(n−1),

as was expected. �

4B. A Pascal triangle. We shall now construct for every d a sequence of positive
braids Sd

3 that will be the increasing enumeration of (Div(1d
3),<). The construc-

tion relies on an induction similar to Pascal’s triangle. To make it easily under-
standable, we start with the (trivial) cases n = 1 and n = 2.

Because B1 is the trivial group, for every d , 1 is the only element of degree at
most d , and we can state:



STILL ANOTHER APPROACH TO THE BRAID ORDERING 167

Proposition 4.4. Define Sd
1 for d > 0 by

Sd
1 = (1).

Then Sd
1 is the increasing enumeration of Div(1d

1).

The group B2 is the rank 1 free group generated by σ1. The braid 12 is just σ1,
and the braids of degree at most d, that is, the divisors of 1d

2 , consist of the d + 1
braids 1, σ1, . . . , σ

d
1 . On the other hand, we have σ1,2 = σ2,1 = σ1, and θ1,i = σ i

1
for every i .

Notation 4.5. If S1, S2 are sequences (of braids), we denote by S1+S2 the (ordered)
concatenation of S1 and S2. If S is a sequence of braids and x is a braid, we denote
by x S the translated sequence obtained by multiplying each entry in S by x on the
left.

In these terms, the sequence (1, σ1, . . . , σ
d
1 ) can be expressed as a sum of se-

quences θ2,0(1)+ θ2,1(1)+ · · · + θ2,d(1). Hence:

Proposition 4.6. Define Sd
2 for d > 0 by

(4-4) Sd
2 = θ2,0Sd

1 + θ2,1Sd
1 + · · · + θ2,d Sd

1 .

Then Sd
2 is the increasing enumeration of Div(1d

2).

We repeat the process for n = 3, introducing a sequence Sd
3 by a definition

similar to (4-4) that involves Sd
2 and Sd−1

3 . The result we shall prove is:

Proposition 4.7. Let Sd
3 be defined for d > 0 by

Sd
3 = θ3,0Sd

2 + Sd,1
3 + θ3,1Sd

2 + · · · + θ3,2d−1Sd
2 + Sd,2d

3 + θ3,2d Sd
2 ,(4-5)

where Sd,1
3 , · · · , Sd,2d

3 are defined by Sd,1
3 = Sd,2d

3 = ∅ and, for 2 6 p 6 2d − 1,

Sd,p
3 =


σ1(S

d−1,p−1
3 + θ3,p−1Sd−1

2 + Sd−1,p
3 ) for p = 0 (mod 4),

σ2σ1(S
d−1,p−2
3 + θ3,p−1Sd−1

2 + Sd−1,p−1
3 ) for p = 1 (mod 4),

σ2(S
d−1,p−1
3 + θ3,p−1Sd−1

2 + Sd−1,p
3 ) for p = 2 (mod 4),

σ1σ2(S
d−1,p−2
3 + θ3,p−1Sd−1

2 + Sd−1,p−1
3 ) for p = 3 (mod 4).

Then Sd
3 is the increasing enumeration of Div(1d

3).

The general scheme is illustrated in Figure 9. The sequence Sd
3 is constructed

by starting with 2d + 1 copies of Sd
2 translated by θ3,0, . . . , θ3,2d and inserting

(translated copies of) fragments of the previous sequence Sd−1
3 .

Example 4.8. The difference between the definition of Sd
3 in (4-5) and that of Sd

2 in
(4-4) is the insertion of the additional factors Sd,p

3 between the consecutive terms
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θ3,0S3
2 (S

3,1
3 ) θ3,1S3

2 S3,2
3 θ3,2S3

2 S3,3
3 θ3,3S3

2 S3,4
3 θ3,4S3

2 S3,5
3 θ3,4S3

2 (S
3,6
3 ) θ3,6S3

2︸ ︷︷ ︸
σ2· σ1σ2·↙ ↘

︸ ︷︷ ︸
σ1· σ2σ1·↙ ↘

︸ ︷︷ ︸
σ2· σ1σ2·↙ ↘

· · · · · · · · · · · · · · · · · ·

θ3,0S2
2 (S

2,1
3 ) θ3,1S2

2 S2,2
3 θ3,2S2

2 S2,3
3 θ3,3S2

2 (S
2,4
3 ) θ3,4S2

2︸ ︷︷ ︸
σ2· σ1σ2·↙ ↘

︸ ︷︷ ︸
σ1· σ2σ1·↙ ↘

θ3,0S1
2 (S

1,1
3 ) θ3,1S1

2 (S
1,2
3 ) θ3,2S1

2︸ ︷︷ ︸
σ2· σ1σ2·↙ ↘

θ3,0S0
2

Figure 9. The inductive construction of Sd
3 as a Pascal triangle:

the subsequence Sd,p
3 is obtained by translating and concatenating

the previous subsequences Sd−1,p−1
3 and Sd−1,p

3 , or Sd−1,p−2
3 and

Sd−1,p−1
3 , depending on the parity of p. The bracketed sequences

are empty; if we remove the subsequences θ3,q Sd
2 , we have the

Pascal triangle.

θ3,q Sd
2 . Because Sd,1

3 and Sd,2d
3 are empty, the difference occurs for d > 2 only.

The first values are:

S0
3 = θ3,0S0

2 = (1),

S1
3 = θ3,0S1

2 + S1,1
3 + θ3,1S1

2 + S1,2
3 + θ3,2

= (1, a)+ ∅ + b(1, a)+ ∅ + ab(1, a)= (1, a, b, ba, ab, aba),

S2
3 = θ3,0S2

2 + S2,1
3 + θ3,1S2

2 + S2,2
3 + θ3,2S2

2 + S2,3
3 + θ3,3S2

2 + S2,4
3 + θ3,4S2

2

= (1, a, aa)+ ∅ + b(1, a, aa)+ b(b, ba)+ ab(1, a, aa)

+ ab(b, ba)+ aab(1, a, aa)+ ∅ + baab(1, a, aa)

= (1, a, aa, b, ba, baa, bb, bba, ab, aba, abaa, abb, abba, aab,

aaba, aabaa, baab, baaba, baabaa).

It is easy to check directly that the sequence Sd
3 provides the increasing enumeration

of Div(1d
3) for d = 0, 1, 2.

The proof of Proposition 4.7 will be split into several pieces, each of which is
established using an induction on the degree d.

Lemma 4.9. All entries in Sd
3 are divisors of 1d

3 .

Proof. The result is true for d = 0. Assume d > 1. By construction, each entry
in Sd

3 either is of the form θ3,qσ
e
1 with 0 6 q 6 2d and 0 6 e 6 d or belongs to

some subsequence Sd,p
3 with 2 6 p 6 2d − 1. In the first case, θ3,qσ

e
1 is a right

divisor of θ3,2dσ
e
1 , which itself is a left divisor of θ3,2dσ

d
1 . By Equation (4-1), the
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latter is 1d
3 . Hence each θ3,qσ

e
1 is a divisor of 1d

3 . As for the entries coming
from some subsequence Sd,p

3 , by definition they are of the form xy with x one of
σ2, σ1σ2, σ1, σ2σ1 and y an entry in Sd−1

3 . Then x is a divisor of 13, while, by the
induction hypothesis, y is a divisor of 1d−1

3 . Thus xy is a divisor of 1d
3 . �

Lemma 4.10. The length of the sequence Sd
3 equals the cardinality of Div(1d

3).

Proof. Let `d denote the length of Sd
3 . Computing `d by recursion is not very

difficult but also unnecessary. Indeed, we saw in Section 3 that the cardinality
h1(1

d
3) of Div(1d

3) obeys the inductive rule (3-5). So it will be enough to check
that `d satisfies the relation

(4-6) `d = 2`d−1 + 3d + 1

and starts from the initial `1 = 6 (or `0 = 1). The latter point was checked in
Example 4.8.

Figure 9 shows that most entries in Sd−1
3 generate two entries in Sd

3 . More
precisely, each entry of Sd−1

3 not belonging to a factor of the form θ3,2q Sd−1
2 gen-

erates two entries in Sd
3 , and, conversely, each entry in Sd

3 not belonging to a factor
θ3,q Sd

2 comes from such an entry in Sd−1
3 . The d factors θ3,2q Sd−1

2 in Sd−1
3 each

have length d, and the 2d + 1 factors θ3,2q Sd
2 in Sd

3 each have length d + 1. So we
obtain

`d − (2d + 1)(d + 1)= 2(`d−1 − d2),

which gives Equation (4-6). �

At this point, we cannot (yet) conclude that each divisor of 1d
3 occurs exactly

once in Sd
3 , as there could be some repetitions.

4C. A quotient sequence for Sd
3 . Our next aim is to show that Sd

3 is<-increasing.
To this end, we shall explicitly determine the quotient of adjacent entries in Sd

3 ,
that is, we shall specify a quotient sequence for Sd

3 in the sense of Definition 2.22.
We begin by determining the first and the last entries of the sequence Sd,p

3 . For
S a nonempty sequence, we denote by (S)1 and (S)

∞
the first and last entry in S.

Lemma 4.11. For 1< p < 2d , we have

(Sd,p
3 )1 = θ3,p−1 σ2 and (Sd,p

3 )
∞
σ2 = θ3,p σ

d
1 .

Proof. The result is vacuously true for d =0, 1. Assume d >2 with p =0 (mod 4).
Using the definition, the induction hypothesis, and (4-3), we find

(Sd,p
3 )1 = σ1 (S

d−1,p−1
3 )1 = σ1 θ3,p−2 σ2 = θ3,p−1 σ2,

(Sd,p
3 )

∞
σ2 = σ1 (S

d−1,p
3 )

∞
σ2 = σ1 θ3,p σ

d−1
1 = θ3,p σ

d
1 .
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Similarly, for p = 1 (mod 4), we have

(Sd,p
3 )1 = σ2σ1 (S

d−1,p−2
3 )1 = σ2σ1 θ3,p−3 σ2 = θ3,p−1 σ2,

(Sd,p
3 )

∞
σ2 = σ2σ1 (S

d−1,p−1
3 )

∞
σ2 = σ2σ1 θ3,p−1 σ

d−1
1 = σ2 θ3,p−1 σ

d
1 = θ3,p σ

d
1 .

Then, for p = 2 (mod 4), we have

(Sd,p
3 )1 = σ2 (S

d−1,p−1
3 )1 = σ2 θ3,p−2 σ2 = θ3,p−1 σ2,

(Sd,p
3 )

∞
σ2 = σ2 (S

d−1,p
3 )

∞
σ2 = σ2 θ3,p σ

d−1
1 = θ3,p σ

d
1 .

Finally, for p = 3 (mod 4), we find

(Sd,p
3 )1 = σ1σ2 (S

d−1,p−2
3 )1 = σ1σ2 θ3,p−3 σ2 = θ3,p−1 σ2,

(Sd,p
3 )

∞
σ2 = σ1σ2 (S

d−1,p−1
3 )

∞
σ2 = σ1σ2 θ3,p−1 σ

d−1
1 = σ1σ2σ1σ2 θ3,p−3 σ

d−1
1

= σ1σ1σ2σ1 θ3,p−3 σ
d−1
1 = σ1σ1σ2 θ3,p−3 σ

d
1 = θ3,p σ

d
1 . �

We shall now construct an explicit quotient sequence for Sd
3 , that is, a sequence

of braid words representing the quotients of the consecutive entries of Sd
3 . Before

doing it for Sd
3 , let us consider the (trivial) cases of Sd

1 and Sd
2 . As Sd

1 consists of
one single entry, it vacuously admits the empty sequence as a quotient sequence.
As for Sd

2 , we can state:

Lemma 4.12. For d > 0, let wd
1 be the empty sequence, and let wd

2 be defined by

wd
2 = wd

1 + (σ1)+ wd
1 + · · · +wd

1 + (σ1)+ wd
1 ,

d times (σ1). Then wd
2 is a quotient sequence for Sd

2 .

In a similar way, we shall prove:

Proposition 4.13. Let wd
3 be the sequence defined by w0

3 = ∅ and

(4-7) wd
3 = wd

2 + (σ−d
1 σ2) + wd

2 + (σ−d
1 σ2)+ w

d,2
3 + (σ2σ

−d
1 )

+ wd
2 + (σ−d

1 σ2)+ w
d,3
3 + (σ2σ

−d
1 )+ · · ·

+ wd
2 + (σ−d

1 σ2)+ w
d,2d−1
3 + (σ2σ

−d
1 )

+ wd
2 + (σ2σ

−d
1 )+ wd

2 ,
with

w
d,2
3 = w

d,3
3 = wd−1

2 + (σ2σ
−d+1
1 )+ w

d−1,2
3 ,

w
d,2d−2
3 = w

d,2d−1
3 = w

d−1,2d−3
3 + (σ−d+1

1 σ2)+ wd−1
2 ,

w
d,2p
3 = w

d,2p+1
3 = w

d−1,2p−1
3 + (σ−d+1

1 σ2)+ wd−1
2 + (σ2σ

−d+1
1 )+ w

d−1,2p
3 ,

for 4 6 2p 6 2d − 4. Then wd
3 is a quotient sequence for Sd

3 .
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Example 4.14. We find w1
3 = w1

2 + (Ab)+w1
2 + (bA)+w1

2 = (a, Ab, a, bA, a), and

w2
3 = w2

2 + (AAb)+ w2
2 + (AAb)+ w

2,2
3 + (bAA)

+ w2
2 + (AAb)+ w

2,3
3 + (bAA)+ w2

2 + (bAA)+ w2
2

with w
2,2
3 = w

2,3
3 = w1

2 = (a), whence

w2
3 = (a, a, AAb, a, a, AAb, a, bAA, a, a, AAb, a, bAA, a, a, bAA, a, a).

Proof of Proposition 4.13. We prove using induction on d that wd
3 is a quotient

sequence for Sd
3 with the 4d−2 terms in (4-7) corresponding to the 4d−1 nonempty

terms in (4-5). In particular, for 2 6 p 6 2d −1, the subsequence w
d,p
3 is a quotient

sequence for Sd,p
3 . The result is vacuously true for d = 0. Assume d > 1. By

definition, the sequence Sd
3 consists of the concatenation of the 2d + 1 sequences

θ3,0Sd
2 , · · · , θ3,2d Sd

2 , in which the 2d −2 sequences Sd,2
3 , . . . , Sd,2d−1

3 are inserted.
We shall consider these subsequences separately and then consider the transitions
between consecutive subsequences.

First, since wd
2 is a quotient sequence for Sd

2 , it is a quotient sequence for ev-
ery sequence θ3,q Sd

2 as well, because, by definition, the quotients we consider are
invariant under left translation. Then, by construction, each subsequence Sd,2p

3 or
Sd,2p+1

3 appearing in Sd
3 is obtained by translating some subsequence S of Sd−1

3 ,
namely

S = Sd−1,2p−1
3 + θ3,q−1Sd−1

2 + Sd−1,2p
3 .

By the induction hypothesis, the sequence

w
d−1,2p−1
3 + (σ−d+1

1 σ2)+ wd−1
2 + (σ2σ

−d+1
1 )+ w

d−1,2p
3 ,

which by definition is precisely w
d,2p
3 and w

d,2p+1
3 , is a quotient sequence for S.

The property remains true in the special cases p = 1 and p = d , which correspond
respectively to removing the initial term Sd−1,2p−1

3 and the final term Sd−1,2p
3 . Then

w
d,2p
3 and w

d,2p+1
3 are also quotient sequences for any sequence obtained from S

by a left translation, and, in particular, for Sd,2p
3 and Sd,2p+1

3 .
It remains to study the transitions between the consecutive terms in the expres-

sion (4-5) of Sd
3 , that is, to compare the last entry in each term with the first entry

in the next term. Four cases are to be considered, namely the special cases of the
first two terms and of the final two terms, and the generic cases of the transitions
from θ3,q Sd

2 to Sd,p+1
3 and from Sd,p

3 to θ3,q Sd
2 .

As for the first two terms θ3,0Sd
2 = Sd

2 and θ3,1Sd
2 = σ2Sd

2 , the last entry in Sd
2

is σ d
1 , while the first entry in σ2Sd

2 is σ2, so σ−d
1 σ2 is a quotient. For the last two

terms θ3,2d−1Sd
2 and θ3,2d Sd

2 , the last entry in θ3,2d−1Sd
2 is θ3,2d−1 σ

d
1 , while the

first entry in θ3,2d Sd
2 is θ3,2d . Now, by (4-1), we have θ3,2d−1 σ

d
1 σ2 = θ3,2d σ

d
1 , so

σ2σ
−d
1 expresses the quotient.
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Consider now the transition from θ3,q Sd
2 to Sd,q+1

3 . The last entry in θ3,q Sd
2 is

θ3,q σ
d
1 , while, by Lemma 4.11, the first entry in Sd,q+1

3 is θ3,q σ2. Hence σ−d
1 σ2

represents the quotient. Finally, consider the transition from Sd,p
3 to θ3,q Sd

2 . By
Lemma 4.11 again, the last entry x in θ3,q Sd

2 satisfies x σ2 = θ3,q σ
d
1 , while the first

entry in θ3,q Sd
2 is θ3,q . Hence σ2σ

−d
1 represents the quotient. �

Corollary 4.15. For each d the sequence Sd
3 is <-increasing; so, in particular, it

consists of pairwise distinct braids.

Proof. By definition, every word in wd
3 is σ -positive. Hence, by Property A, it does

not represent 1. �

As Sd
3 consists of pairwise distinct divisors of 1d

3 , Lemma 4.10 implies that
every divisor of 1d

3 occurs exactly once in Sd
3 . Then, as Sd

3 is <-increasing, it
must be the increasing enumeration of Div(1d

3), and the proof of Proposition 4.7
is complete.

Remark 4.16. Once we know that Sd
3 is the increasing enumeration of Div(1d

3)

and that wd
3 is a σ -positive quotient sequence for Sd

3 , we can count the 2-jumps in
Sd

3 and obtain the value of h2(1
d
3) directly. This amounts to forgetting about all

σ±1
1 in the construction of wd

3 , and it is then fairly obvious that there only remains
2d

− 2 times σ2.

4D. Larger values of n. The same construction can be developed for n = 4 and
beyond. The general scheme is to define Sd

4 using an inductive rule

Sd
4 = θ4,0Sd

3 + Sd,1
4 + θ4,1Sd

3 + · · · + θ4,3d−1Sd
3 + Sd,3d

4 + θ4,3d Sd
3 ,

where the intermediate factor Sd,p
4 is constructed by concatenating and translating

convenient fragments of Sd−1
4 . Owing to the inductive rule (3-6) satisfied by the

number of elements h1(1
d
4) of Div(1d

4), we can expect the generic entry of Sd−1
4 to

be repeated six times in Sd
4 , but with some entries from Sd−2

4 repeated three times
only. After completing the inductive definition of Sd

4 , showing that the sequence
is <-increasing and counting its entries should be easy. As we have no complete
description so far, we leave the question open here.

4E. A new construction for the linear ordering of B3. In pursuing the approach
described above, we were interested in connecting the Garside structure of Bn with
its linear ordering. In the process, we found something more: a new, independent
construction of the braid ordering, at least for B3, which is currently the only
completed case.

As recalled in the introduction, the existence of the linear ordering of braids
relies on two properties of braids, namely Property A and Property C. These prop-
erties have received a number of independent proofs [Dehornoy et al. 2002]. In
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particular, Property A has now a very short proof based on Dynnikov’s coordiniza-
tion for singular triangulations of a punctured disk [Dehornoy et al. 2002, Chapter
9]. As for Property C, no really simple proof exists so far. Even without the initial
argument involving self-distributive algebra, the remaining arguments—the com-
binatorial proofs based on handle reduction or on Burckel’s uniform tree approach,
or the geometric proofs based on standardization of curve diagrams—all require
some care. For now, it seems that the optimal proof of Property C is forthcoming.

Here is a direct application of our construction of the sequence Sd
3 :

Proposition 4.17. Property C holds for B3; that is, every nontrivial 3-braid admits
a σ -positive or a σ -negative expression.

New proof. We take as an hypothesis that Property A is true, so that the relation <
is a partial ordering, but we do not assume that < is linear. As every braid in B3

is the quotient of two positive braids in B+

3 , proving Property C for B3 amounts to
proving that, if x, y are arbitrary elements of B+

3 , then the quotient x−1 y admits a
σ -positive or a σ -negative expression.

Now the construction of Sd
3 is self-contained, as is that of wd

3 . Then, by con-
struction, every word in wd

3 is σ -positive. As any concatenation of σ -positive
words is σ -positive, it follows that, if x, y are any braids occurring in

⋃
d Sd

3 ,
then the quotient x−1 y admits a σ -positive or a σ -negative expression, according
to whether x occurs before or after y in Sd

3 . To conclude Property C is true, it
remains to check that each positive 3-braid occurs in

⋃
d Sd

3 . Because every entry
of Sd

3 belongs to Div(1d
3), this is equivalent to proving that each divisor of 1d

3
occurs in Sd

3 . Property A guarantees that the entries of Sd
3 are pairwise distinct

(Corollary 4.15), so it suffices to compare the length of Sd
3 with the cardinality of

Div(1d
3), and this is what we made in Lemma 4.10. �

The construction of Sd
3 gives more. The approach developed by S. Burckel

[1997] introduces a convenient notion of normal braid words such that every posi-
tive braid admits exactly one normal expression. For 3-strand braids, the definition
is as follows. Every positive 3-strand braid word w can be written as an alternating
product of blocks σ e

1 and σ e
2 . Then we define the code of w to be the sequence of

the sizes of these blocks. To avoid ambiguity, we consider the last block to be a
block of σ1’s, that is, we decide that the code of σ1 is (1), while the code of σ2 is
(1, 0). For instance, the code of σ 2

2 σ
3
1 σ

5
2 is (2, 3, 5, 0).

Definition 4.18. A positive 3 strand braid word w is said to be normal in the sense
of Burckel if its code has the form (e1, . . . , e`) with ek > 2 for 2 6 k 6 `− 2.

Burckel [1997] shows that every positive 3-braid admits a unique normal ex-
pression and, moreover, that x < y holds if and only if the normal form of x
is ShortLex-smaller than the normal form of y, where ShortLex refers to the
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variant of the lexicographic ordering of sequences in which the length is given
priority: (e1, . . . , e`) <ShortLex (e′

1, . . . , e′

`′) always holds for ` < `′ and, when
` = `′, it holds when (e1, . . . , e`) is lexicographically smaller than (e′

1, . . . , e′

`′).
Burckel’s method defines an iterative reduction process on nonnormal braid words.
Our current approach provides for a simpler method. First, a direct inspection
shows:

Lemma 4.19. Let Sd
3 be the sequence of braid words defined by the inductive rule

(4-5). Then Sd
3 consists of words that are normal in the sense of Burckel.

Then, by construction, every braid in Sd
3 is represented by a word of Sd

3 . As
every positive 3-braid occurs in

⋃
Sd

3 , we immediately deduce:

Proposition 4.20. Every positive 3-braid admits an expression that is normal in
the sense of Burckel.

This in turn enables us to obtain a simple proof for the following deep, and so
far not very well understood, result due to Laver [1996] and to Burckel [1997] for
the ordinal type:

Corollary 4.21. The restriction of < to B+

3 is a well-ordering of ordinal type ωω.

Proof. The ShortLex ordering of sequences of nonnegative integers is a well-
ordering of ordinal type ωω, so its restriction to codes of normal words in the
sense of Burckel is a well-ordering as well. The type of the latter cannot be less
than ωω, as one can easily exhibit an increasing sequence of length ωω. �

Burckel’s approach extends to all braid monoids B+
n . Burckel introduces a

convenient notion of a normal word, but the associated reduction process is very
intricate. Hopefully, the above approach will provide a much simpler approach
to completing the construction of the sequences Sd

4 and, more generally, Sd
n . In

particular, once the correct definition is given, all subsequent proofs should reduce
to easy inductions.
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EXISTENCE OF INFINITELY MANY EQUILIBRIUM
CONFIGURATIONS OF A LIQUID CRYSTAL SYSTEM

PRESCRIBING THE SAME NONCONSTANT BOUNDARY
VALUE

MIN-CHUN HONG

In 1986, Hardt, Kinderlehrer and Lin established the existence and par-
tial regularity of minimizers of the liquid crystal energy with the Oseen–
Frank density. Motivated by the earlier results of Bethuel–Brezis–Coron
and Riviere on harmonic maps, we prove the existence of infinitely many
equilibrium configurations of the liquid crystal energy prescribing the same
nonconstant boundary data.

1. Introduction

Let�⊂ R3 be a domain with smooth boundary ∂�, and let γ : ∂�→ S2 be smooth
boundary data. The equilibrium configuration of a liquid crystal is described by
a unit vector field u on �. For any map u ∈ H 1

γ (�, S2) with γ : ∂� → S2, the
integral

8(γ )=
1
2

∫
�

[
tr(∇u)2 − (div u)2

]
dx

depends only on γ [Hardt et al. 1986]. According to the Ericksen–Leslie the-
ory [Giaquinta et al. 1998], the Oseen–Frank bulk energy of a configuration u ∈

H 1(�, S2) can be reduced to

(1–1) E (u, �)=

∫
�

W (u,∇u) dx,

where W (u,∇u) is the Oseen–Frank density

(1–2) W (u,∇u)= α|∇u|
2

+(k1 −α)(div u)2 + (k2 −α)(u · curl u)2 + (k3 −α) |u × curl u|
2 ,

with constants k1 > 0, k2 > 0, k3 > 0, and α = min{k1, k2, k3}.

MSC2000: primary 35J50; secondary 35Q99.
Keywords: liquid crystal, equilibrium configurations, harmonic maps.
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For the above density W (u,∇u), we set V (u, p)= W (u, p)−α |p|
2 with p =

∇u. As in [Hardt et al. 1986], the equilibrium system associated to E is of the
form

(1–3) − div
(
Wp(u,∇u)− u ⊗ uVp(u,∇u)

)
+ Y (u,∇u)= 0 in �,

where

Y (u,∇u)= (I − u ⊗ u)Wu (u,∇u)− ∇u
(
uVp (u,∇u)

)
−
(
Wp (u,∇u) · ∇u

)
u

satisfies |Y (u, p)| ≤ C |p|
2 for all p = (p j

i )3×3 with p j
i ∈ R.

A static equilibrium configuration u corresponds to an extremal of the functional
(1–1) in H 1(�, S2), that is, u ∈ H 1(�, S2) is a weak solution of system (1–3).

In a special case k1 = k2 = k3, the equilibrium system (1–3) is

4u + |∇u|
2 u = 0 in �,

which is the equation for harmonic maps. When k1 = k2 = k3 = 1, Bethuel et al.
[1990] first proved the existence of infinitely many harmonic maps for some special
boundary values γ . Rivière [1995] proved the existence of infinite many harmonic
maps for all nonconstant boundary values. See further generalizations to higher
dimensions in [Isobe 1995] and [Pakzad 2001].

In general, (1–3) is not always elliptic for every choice of the constants ki , and so
the system (1–3) is much more complicated than the harmonic map equation. Hardt
et al. [1986], in a fundamental paper, proved the existence and partial regularity of
a minimizer u, which is a weak solution of system (1–3) that gives the energy E
in H 1

γ (�, S2) given boundary data γ : ∂�→ S2. One questions whether one can
prove there exist infinitely many weak solutions of the liquid crystal system (1–3)
prescribing the same boundary data. Here, we prove the existence of infinitely
many equilibrium configurations prescribing the same nonconstant boundary data
γ in:

Theorem 1.1. Let γ : ∂� → S2 be a nonconstant smooth map. Assume that the
constants k1, k2 and k3 in (1–2) satisfy |k1 − k2|≤min{k1, k2}4(1−ln 2)/ln 2. Then
there exist infinitely many stable weak solutions of system (1–3) in H 1(�, S2) with
the same boundary value γ .

The key to proving Theorem 1.1 is generalizing the idea of Rivière [1995] to the
liquid crystal energy. Riviere’s idea relies on constructing dipoles and the relaxed
energy of the Dirichlet energy in [Brezis et al. 1986] and [Bethuel et al. 1990].
More precisely, Riviere inserts a dipole into nonconstant maps and finds a way to
confine the energy to strictly less than 8π times the length of the dipole.

In this paper, we extend a key result of Riviere to the liquid crystal:
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Theorem 1.2. Assume that the constants k1, k2 and k3 in (1–2) satisfy the condition
|k1 − k2| ≤ min{k1, k2}4(1 − ln 2)/ln 2. Let u ∈ H 1(�, S2) be a nonconstant and
smooth map, and let x0 be a point inside � such that ∇u(x0) 6= 0. For any ρ > 0
with Bρ(x0) ⊂ �, there exist two points P, N ∈ Bρ(x0) with middle point x0 and
|P − N | = 2σ ≤ 2ρ and a map v in H 1(�, S2)∩ C0,1(�\{P, N }, S2) such that

v = u in �\Bρ(x0), deg(v, P)= − deg(v, N )= +1,

and∫
�

W (v(x),∇v(x)) dx <
∫
�

W (u(x),∇u(x)) dx + 8π0(k1, k2, k3) |P − N | .

For the proof of Theorem 1.2, thanks to Giaquinta et al. [1990], the dipoles and
relaxed functional of the liquid crystal energy E was given: For any u ∈ H 1(�, S2),
the vector field D(u) is defined by

D(u)= (u · ux2 ∧ ux3, u · ux3 ∧ ux1, u · ux1 ∧ ux2).

Given u0
∈ H 1

γ (�, S2), we set

L(u, u0) :=
1

4π
sup

ξ :�→R,

‖∇ξ‖L∞ ≤1

∫
�

[
D(u)− D(u0)

]
· ∇ξ dx

for maps u ∈ H 1
γ (�, S2). The relaxed functional Fu0 of the liquid crystal energy

E is given by

Fu0(u)=

∫
�

W (u(x),∇u(x)) dx + 8π0(k1, k2, k3)L(u, u0),

where

0(k1, k2, k3)=

√
kk3

∫ 1

0

√
1 + (k/k3 − 1) s2 ds ≥ α, k = min{k1, k2}.

More precisely, Fu0(u) is lower semicontinuous in the weak H 1-topology and any
minimizer of Fu0(u) in H 1

γ is also a weak solution of system (1–3) prescribing the
boundary value γ . One key to proving Theorem 1.2 is obtaining new estimates on
the irrotational and solenoidal dipole in [Giaquinta et al. 1990] for inserting a small
dipole into nonconstant map. More precisely, for k2 ≥ k1, one finds the irrotational
map u (with u · curl u = 0) on R2

× (0, l) of the form

u(x)=

(
g(r)

x1

r
, g(r)

x2

r
, sign(1 − r)

√
1 − g2(r)

)
, r =

√
]x2

1 + x2
2

such that E(u)=8πl0(k1, k2, k3), where g ∈C([0,∞); [0, 1]), g′(r)>0 on (0, 1),
and g′(r) < 0 on (1,∞). Similarly, for k2 ≤ k1, one finds the solenoidal map (with



180 MIN-CHUN HONG

div u = 0) on R2
× (0, l) of the form

u(x)=

(
g(r)

x2

r
,−g(r)

x1

r
, sign(1 − r)

√
1 − g2(r)

)
such that E(u) = 8πl0(k1, k2, k3), where g ∈ C([0,∞); [0, 1]) and g′(r) > 0 on
(0, 1), and g′(r)< 0 on (1,∞). In this paper, we derive new estimates on g(r) and
also prove that g′(0) exists, is positive, and is bounded by a constant depending on
k1, k2 and k3.

The second key step is to improve the method in [Rivière 1995] (also [Brezis and
Coron 1983]) of inserting a small dipole into a nonconstant map. During the proof,
it is important that g′(0) is positive and bounded. Due to the differing constants k1,
k2, and k3, the liquid crystal is more complicated and involved than the harmonic
maps.

Theorem 1.1 is a consequence of Theorem 1.2. Rivière [1995] also used Theo-
rem 1.2 to construct weak harmonic maps having singularities almost everywhere
in �. With Theorem 1.2, we conjecture that one can construct a weak solution of
system (1–3) having singularities almost everywhere in � for different constants
k1, k2, and k3.

In the last part, we deal with the partial regularity of weak solutions of system
(1–3). The partial regularity of weak solutions of elliptic systems and weakly
harmonic maps has been of great interest (for example [Giaquinta 1983; Giaquinta
et al. 1998]). For the liquid crystal, Hardt et al. [1986; 1988], in fundamental
papers, proved the partial regularity of minimizers of the liquid crystal energy E .
Here, we investigate the partial regularity of the weak solutions that minimize a
modified relaxed functional of the liquid crystal energy E .

For a parameter λ ∈ [0, 1], as in [Bethuel and Brézis 1991], we consider the
modified λ-energy

(1–4) Eλ(u) := E(u)+ λ8π0(k1, k2, k3)L(u, u0)

for a map u ∈ H 1
γ (�, S2). It follows from [Bethuel et al. 1990] and [Giaquinta

et al. 1990] that there exists a minimizer uλ of Eλ in H 1
γ (�, S2), and uλ is a

weak solution of (1–3). The author in [Hong 2004] proved the partial regularity
of minimizers uλ for 0 ≤ λ < λ0 = α/0(k1, k2, k3) with 0(k1, k2, k3) ≥ α. It was
not clear then whether one can establish the partial regularity of minimizers uλ of
(1–4) for λ ∈ [λ0, 1]. Now we make progress with:

Theorem 1.3. For any parameter λ with 0 ≤ λ < 1, let uλ be a minimizer of Eλ
in H 1

γ (�, S2). Then uλ is smooth in a set �0 ⊂ �̄ and Hβ(�̄\�0) = 0 for some
positive β < 1, where Hβ is the Hausdorff measure.



INFINITELY MANY EQUILIBRIUM CONFIGURATIONS OF A LIQUID CRYSTAL 181

The paper is organized as follows. In Section 2, we derive some new estimates
for the irrotational dipole and the solenoidal dipole. In Section 3, we prove Theo-
rems 1.1 and 1.2 for k2 ≥ k1. In Section 4, we prove those theorems for k1 > k2.
In Section 5, we complete a proof of Theorem 1.3.

2. Improving estimates for irrotational dipole and solenoidal dipole

Proposition 2.1 [Giaquinta et al. 1990]. There exists a C∞ function ũ(x) from R2

into S2
⊂ R3 such that

(i) ũ = q at infinity, where q is the south pole of S2
⊂ R3;

(ii) ũ, seen as a map from S2 into S2, has degree 1;

(iii) if � := R2
× (0, l) and u0 :�→ S2 is defined as

u0(x1, x2, x3)= ũ(x1, x2),

we have

(2–1) E
(
u0,R2

× (0, l)
)
= 8πl0(k1, k2, k3).

Now we will improve Proposition 2.1 so we can apply it to prove Theorem 1.2.
Consider the dipole

T0 = Gq + L × [[S2
]], where L = [[(0, 0, x3) : 0< x3 ≤ l]],

that is, P = (0, 0, 0) and N = (0, 0, l) with l > 0, where Gq is the current by the
graph of the constant function q.

From [Giaquinta et al. 1990], we have

E
(
T0,R2

× (0, l)
)
= 2l

∫
S2

√
k2n2

3 + kk3(1 − n2
3) d H 2(n),

where n = (n1, n2, n3) ∈ S2. Then

E
(
u0,R2

× (0, l)
)
= E

(
T0,R2

× (0, l)
)
= 8πkl

∫ 1

0

√
k3/k + (1 − k3/k)z2 dz

= 8πkl
∫ 1

0

√
1 −βy2√
1 − y2

y dy,

where β = 1 − k3/k.

The irrotational dipole. Assume k2 ≥ k1 = k. We consider the all maps u =

(u1, u2, u3) : R3
→ S2 of form

u1(x)= g(r)
x1

r
, u2 = g(r)

x2

r
, u3(x)=

{ √
1 − g2(r), for 0 ≤ r ≤ 1,

−
√

1 − g2(r), for r > 1,
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where g : [0,+∞)→[0, 1] is continuous and satisfies g(0)=0, g(1)=1, g(r)→0
as r → +∞, g′(r) > 0 on (0, 1), and g′(r) < 0 on (1,+∞).

By a standard calculation, we have

(div u)2 = (g′)2 +
g2

r2 + 2gg′
1
r
,

|u × curl u|
2
= | curl u|

2
= |∇u3|

2
=

g2(g′)2

1 − g2 ,

and

u · curl u = 0, |∇u1|
2
+ |∇u2|

2
= (g′)2 +

g2

r2 .

The Oseen–Frank density becomes

(2–2) W (u,∇u)= k1

[
g2

r2 + g′2 (1 −β)g2

1 − g2

]
+ 2(k1 −α)gg′

1
r
,

where β = 1 − k3/k. Then

E
(
u,R2

× (0, l)
)
= 2πkl

∞∫
0

[
g2

r2 + g′2 1 −βg2

1 − g2

]
r dr.

So

E(T0)= 4πkl

∞∫
0

g
r

g′

√
1 −βg2√
1 − g2

r dr ≤ 2πkl

∞∫
0

[
g2

r2 + g′2 1 −βg2

1 − g2

]
r dr = E(u),

with equality if and only if

(2–3) g′
=


−

g
r

√
1 − g2√

1 −βg2
, for r ≥ 1,

g
r

√
1 − g2√

1 −βg2
, for 0 ≤ r ≤ 1.

First we consider the case 0 ≤ r ≤ 1. We will prove that there is a solution of
the equation

(2–4) g′
=

g
r

√
1 − g2√

1 −βg2

with g(0)= 0 and g(1)= 1. Moreover, g′(0) exists and is positive and bounded.

Case I: k ≥ k3.
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Since 0 ≤ β ≤ 1, we have 1 − g2
≤ 1 −βg2

≤ 1. Then

g
r

≥
g
r

√
1 − g2√

1 −βg2
≥

g
r

√
1 − g2.

We consider two auxiliary equations:

g′

1 =
g1

r
,

g′

2 =
g2

r

√
1 − g2

2 .

It is easy to see that g1(r) = r solves the first with g1(0) = 0 and g1(1) = 1 and
g2(r)= 2r/1 + r2 solves the second with g2(0)= 0 and g2(1)= 1.

By the comparison theorem, there is a solution g of (2–4) such that

(2–5) r ≤ g ≤
2r

1 + r2 , g(0)= 0, g(1)= 1.

Using Equation (2–3), we have

g′′(r)=
g′

r

√
1 − g2√

1 −βg2
−

g
r2

√
1 − g2√

1 −βg2
−

g
r

gg′√
1 − g2

√
1 −βg2

+
g
r

√
1 − g2βgg′

(1 −βg2)3/2

=
g
r2

√
1 − g2√

1 −βg2

( √
1 − g2√

1 −βg2
− 1

)
−

g2g′

r
1 −β

(1 − g2)1/2(1 −βg2)2/3
≤ 0.

Therefore g′(0)= limr→0 g′(r) exists and is finite because g′

1(0)= 1 and g′

2(0)= 2.
More precisely, we know

1 ≤ g′(0)≤ 2.

Case II: k3 ≥ k.
Since β ≤ 0, we have 1 −β ≥ 1 −βg2

≥ 1. Then

1
√

1 −β

g
r

√
1 − g2 ≤

g
r

√
1 − g2√

1 −βg2
≤

g
r

√
1 − g2.

Then we consider two auxiliary equations:

g′

1 =
1

√
1 −β

g1

r

√
1 − g2

1,

g′

2 =
g2

r

√
1 − g2

2 .

Note that g1(r)=2r c/1 + r2c with c =1/
√

1 −β solves the first with g1(0)=0 and
g1(1)= 1 and g2(r)= 2r/1 + r2 solves the second with g2(0)= 0 and g2(1)= 1.
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By the comparison theorem, there is a solution g of the equation with g(0)= 0
and g(1)= 1 such that

2r
1 + r2 ≤ g ≤

2r c

1 + r2c .

Then

1√
1 −βg2

≥
1

1 −βg2 = 1 +
βg2

1 −βg2 ≥ 1 − |β| g2
≥ 1 − 4 |β|

r2c

(1 + r2c)2
.

Note that as r → 0, g′

1(r)→ +∞. So we need to consider the auxiliary equation

(2–6) g′

3 =

(
1 − 4 |β|

r2c

(1 + r2c)2

)
g3

r

√
1 − g2

3

with g3(0)= 0 and g3(1)= 1. The solution to Equation (2–6) is

g3(r)= 2r exp
(

|β|

c
1 − r2c

1 + r2c

)/(
1 + r2 exp

(
2|β|

c
1 − r2c

1 + r2c

))
.

By the comparison theory, we have
(2–7)

g2(r)≤ g(r)≤ g3(r)= 2r exp
(

|β|

c
1 − r2c

1 + r2c

)/(
1 + r2 exp

(
2|β|

c
1 − r2c

1 + r2c

))
It is easy to see that g′(0) exists and is finite because g′

2(0)= 2 and g′

3(0)= 2e|β|/c.
More precisely, we have

2 ≤ g′(0)≤ 2e|β|/c.

In both Cases I and II, there is a solution with g(0) = 0, g(1) = 1 and with g′(0)
positive and finite.

If r ≥ 1, take h(r) = g(r−1), where g(r) solves Equation (2–4) with g(0) = 0
and g(1)= 1. Using Equation (2–4), we have

h′ (r)= g′
(
r−1) (

−r−2)
=

g
(
r−1

)
r−1

√
1 − g2√

1 −βg2

(
−r−2)

= −
h
r

√
1 − h2√

1 −βh2
.

Then

g̃(r)=

{
g(r), for 0 ≤ r ≤ 1,
h(r), for r > 1,

is the required solution of Equation (2–3) with g̃(r)= g̃(r−1).

The solenoidal dipole. Assume k2 ≥ k1 = k. Consider all maps u = (u1, u2, u3) :

�→ S2 of the form

u1(x)= g(r)
x2

r
, u2 = −g(r)

x1

r
, u3(x)=

{ √
1 − g2(r), for 0 ≤ r ≤ 1

−
√

1 − g2(r), for r > 1,
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where g : [0,+∞)→[0, 1] is continuous and satisfies g(0)=0, g(1)=1, g(r)→0
as r → +∞, g′(r) > 0 on (0, 1), and g′(r) < 0 on (1,+∞). Then we have

E
(
u,R2

× (0, l)
)
= 2πkl

∫
∞

0

[
g2

r2 (1 −βg2)+
(g′)2

1 − g2

]
r dr

such that E
(
T0,R2

× (0, l)
)
≤ E(u), with equality if and only if

(2–8)
dg
dr

= sign(1 − r)
g
r

√
1 − g2

√
1 −βg2,

This equation has a solution g(r) such that g : [0,+∞) → [0, 1] is continuous
and satisfies g(0) = 0, g(1) = 1, g(r)→ 0 as r → +∞, g′(r) > 0 on (0, 1), and
g′(r) < 0 on (1,+∞). Moreover, g′(0) exists and is positive and bounded.

3. Proof of Theorems 1.1 and 1.2 for k2 ≥ k1

3.1. The construction of uδ for k2 ≥ k1. We assume Theorem 1.2 that ∇u(x0) 6=0.
Without losing generality, we also assume x0 = 0. Note that

W (Qu, Q∇uQT )= W (u,∇u), for all Q ∈ O(3).

After a rotation Q on both x, u ∈ R3, we can choose an orthonormal basis {I, J, K }

of R3 for both x, u ∈ R3 as in [Brezis and Coron 1983] such that u(0, 0, 0) = K .
ux1(0, 0, 0) · ux2(0, 0, 0)= 0 and ux1(0, 0, 0) 6= 0.

Without loss of generality, we may choose

K (x3)= u(0, 0, x3), I (x3)=
ux1(0, 0, x3)

|ux1(0, 0, x3)|
.

to form a basis {I (x3), J (x3), K (x3)} of R3 depending on x3. We write

u = û1 I (x3)+ û2 J (x3)+ û3K (x3)

with û1(0, 0, x3)= û2(0, 0, x3)= 0 and û3(0, 0, x3)= 1. More precisely, there are
two numbers a > 0 and b ≥ 0 — this is true after a rotation in R3: after a rotation
in the subspace R2 of R3, the conclusion of Theorem 1.2 does not change — such
that

ux1(0, 0, x3)= (a+O(x3))I (x3), ux2(0, 0, x3)= O(x3)I (x3)+(b+O(x3))J (x3).

We use polar coordinates for (x1, x2) ∈ R2, that is,

x1 = r cos θ, x2 = r sin θ,

and consider the cylinder Cδ in R3 defined by

Cδ
=
{
(x1, x2, x3) ∈ R3 ∣∣ 0 ≤ r ≤ δ+ δ2, −δ− δ2

≤ x3 ≤ δ+ δ2} .



186 MIN-CHUN HONG

As in [Rivière 1995], we construct a map

uδ = ûδ1 I (x3)+ ûδ2 J (x3)+ ûδ3K (x3)

such that

(i) uδ = u outside Cδ.

(ii) Inside Cδ, for each x3 ∈ [−δ+ δ2, δ− δ2
] (that is, the subcylinder of Cδ), we

construct uδ in three different cases:

(a) If r > 2δ2, we set uδ(x)= u(x);
(b) If r < δ2, we set

uδ (x1, x2, x3)=

g (r/λ)
x1

r
I (x3)+ g (r/λ)

x2

r
J (x3)+ sign (1 − r)

√
1 − g2 (r/λ) K (x3) .

(c) If δ2
≤ r ≤ 2δ2, we set

uδ(x)=

(A1r+B1) I (x3)+(A2r+B2) J (x3)+
√

1−(A1r+B1)2−(A2r+B2)2 K (x3),

where A1, A2, B1, B2, depending only on θ , δ and x3, are determined by

(3–1)

2δ2 A1 + B1 = û1(2δ2 cos θ, 2δ2 sin θ, x3),

2δ2 A2 + B2 = û2(2δ2 cos θ, 2δ2 sin θ, x3),

δ2 A1 + B1 = g(δ2/λ) cos θ = g(λ/δ2) cos θ,

δ2 A2 + B2 = g(δ2/λ) sin θ = g(λ/δ2) sin θ,

and g(r) is the solution of Equation (2–3) with g(0) = 0, g′(0) > 0,
g(1)= 1, g(r)= g(1/r), and λ= cδ4, where c will be determined later.

(iii) Inside Cδ, for each

x3 ∈ [−δ,−δ+ δ2
] ∪ [δ, δ− δ2

],

we let P = (0, 0, δ) and N = (0, 0,−δ) in a small cylinder cδP (or cδN ). The
cylinder is centered at P (or N ) with radius 2δ2, length 2δ2, and its axis along
the x3-axis. If we denote by 5+ (or 5−) the radial projection centered at
P (or N ) onto the boundary of cδP (or cδN ), the transformed map uδ is the
composition of 5+ (or 5−) and the value of uδ on this boundary.

3.2. The estimate of the energy of uδ for k2 ≥ k1. Case 1. The estimate of the
energy of uδ on the domain of x3 ∈ [−δ+ δ2, δ− δ2

] and δ2
≤ r ≤ 2δ2.
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Notice that ûi (0, 0, x3)= 0 for i = 1, 2 and

∂ û1

∂x1
(0, 0, x3)= a + O(x3),

∂ û2

∂x1
(0, 0, x3)= O(x3),

∂ û1

∂x2
(0, 0, x3)= O(x3),

∂ û2

∂x2
(0, 0, x3)= b + O(x3),

g(cδ2)= cδ2g′(0)+ O(δ4)

Then we have
2δ2 A1 + B1 = 2aδ2 cos θ + O(δ3),

2δ2 A2 + B2 = 2bδ2 sin θ + O(δ3),

δ2 A1 + B1 = g′(0)cδ2 cos θ + O(δ4),

δ2 A2 + B2 = g′(0)cδ2 sin θ + O(δ4).

Solving these equations, we have

(3–2)

A1 = (2a − cg′(0)) cos θ + O(δ),

A2 = (2b − cg′(0)) sin θ + O(δ),

B1 = 2δ2(g′(0)c − a) cos θ + O(δ3),

B2 = 2δ2(g′(0)c − b) sin θ + O(δ3).

In a way similar to (3–2), it follows from (3–1) that

(3–3)

∂A1

∂θ
= −(2a − cg′(0)) sin θ + O(δ),

∂A2

∂θ
= (2b − cg′(0)) cos θ + O(δ),

∂B1

∂θ
= −2δ2(cg′(0)− a) sin θ + O(δ3),

∂B2

∂θ
= 2δ2(cg′(0)− b) cos θ + O(δ3).

In polar coordinates, we know

∂θ

∂x1
= −

sin θ
r
,

∂θ

∂x2
=

cos θ
r
,

∂r
∂x1

= cos θ,
∂r
∂x2

= sin θ.

Using û1(0, 0, x3)= û2(0, 0, x3)= 0 in (3–1), we obtain, for δ2
≤ r ≤ 2δ2,

(3–4)
∂A1

∂x3
= O(δ),

∂A2

∂x3
= O(δ),

∂B1

∂x3
= O(δ3),

∂B2

∂x3
= O(δ3).
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and, by the chain rule,

∂ ûδ1
∂x2

−
∂ ûδ2
∂x1

=
∂ (A1r + B1)

∂x2
−
∂ (A2r + B2)

∂x1

=
∂(A1r + B1)

∂θ

∂θ

∂x2
+
∂(A1r + B1)

∂r
∂r
∂x2

−
∂(A2r + B2)

∂θ

∂θ

∂x1
−
∂(A2r + B2)

∂r
∂r
∂x1

=

(
∂A1

∂θ

∂θ

∂x2
−
∂A2

∂θ

∂θ

∂x1

)
r +

(
A1
∂r
∂x2

− A2
∂r
∂x1

)
+

(
∂B1

∂θ

∂θ

∂x2
−
∂B2

∂θ

∂θ

∂x1

)
.

It follows from (3–3), (3–4) that(
∂A1

∂θ

∂θ

∂x2
−
∂A2

∂θ

∂θ

∂x1

)
r = −

(
2a − cg′ (0)

)
sin θ cos θ

−
(
2b − cg′ (0)

)
r cos θ

(
−

sin θ
r

)
+ O (δ)

= 2 (b − a) sin θ cos θ + O (δ) ,

A1
∂r
∂y

− A2
∂r
∂x1

=(2a − cg′(0)) cos θ sin θ − (2b − cg′(0)) cos θ sin θ + O(δ)

=2(a − b) sin θ cos θ + O(δ),

and

∂B1

∂θ

∂θ

∂x2
−
∂B2

∂θ

∂θ

∂x1
=
(
−2δ2 (cg′ (0)− a

)
sin θ + O

(
δ3)) (cos θ

r

)
−
(
2δ2 (cg′ (0)− b

)
cos θ + O

(
δ3)) (

−
sin θ

r

)
= 2δ2 (a − b) sin θ cos θ

1
r

+ O
(
δ3) 1

r
.

These imply that, for δ2
≤ r ≤ 2δ2,

∂ ûδ1
∂x2

−
∂ ûδ2
∂x1

= 2δ2(a − b) sin θ cos θ
1
r

+ O(δ).

Since |ûδ3|
2
= 1 − |ûδ1|

2
− |uδ2|

2, we have

ûδ3
∂ ûδ3
∂x1

= −ûδ1
∂ ûδ1
∂x1

− ûδ2
∂ ûδ2
∂x1

, ûδ3
∂ ûδ3
∂x2

= −ûδ1
∂ ûδ1
∂x2

− û2
∂ ûδ2
∂x2

and ûδ3 = 1 + O(δ2). Then for δ2
≤ r ≤ 2δ2, we have

(3–5)
∂ ûδ3
∂x1

= O(δ2),
∂ ûδ3
∂x2

= O(δ2).
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We consider a new map ûδ = ûδ1 I + ûδ2 J + ûδ3K , and thus obtain

(3–6)

∣∣ûδ · curl ûδ
∣∣2 = 4δ4(a − b)2 sin2 θ cos2 θ

1
r2 + O(δ),∣∣ûδ × curl ûδ

∣∣2 = O(δ).

Moreover, we have

(3–7)
∂ ûδ1
∂x1

=
∂(A1r + B1)

∂x1
=

(
∂A1

∂θ
r +

∂B1

∂θ

)
∂θ

∂x1
+ A1

∂r
∂x1

+ O(δ)

= (2a − cg′(0))+ 2δ2(cg′(0)− a)
sin2 θ

r
+ O(δ).

Similarly,

(3–8)
∂ ûδ2
∂x2

=
∂(A2r + B2)

∂x2
= (2b − cg′(0))+ 2δ2(cg′(0)− b)

cos2 θ

r
+ O(δ).

It follows from (3–4), (3–7) and (3–8) that

(div ûδ)2 = 4
(

a + b − cg′(0)+
δ2cg′(0)

r
− δ2 (a sin2 θ + b cos2 θ)

r

)2
+ O(δ)

= 4(a + b)2 + 4c2(g′(0))2 +
4δ4c2(g′(0))2

r2 +
4δ4(a sin2 θ + b cos2 θ)2

r2

−8(a + b)cg′(0)+ 8δ2(a + b)
cg′(0)

r
− 8δ2(a + b)

a sin2 θ + b cos2 θ

r

−
8δ2c2(g′(0))2

r
+8δ2cg′(0)

a sin2 θ+b cos2 θ

r
−8δ4cg′(0)

a sin2 θ+b cos2 θ

r2 .

Combining this estimate with (3–6) yields∫
δ2≤r≤2δ2

(div ûδ)2 + | curl ûδ|2 dx1dx2 =

∫ 2π

0

∫ 2δ2

δ2
(div ûδ)2 + | curl ûδ|2 rdr dθ

= 12πδ4 ((a + b)2 + c2(g′(0))2 − 2(a + b)cg′(0)
)
+ 16πδ4(a + b)cg′(0)

−8πδ4(a + b)2 − 16πδ4c2(g′(0))2 + 8πδ2cg′(0)(a + b)

+4δ4 ln 2
∫ 2π

0
[c2(g′(0))2 − 2cg′(0)(a sin2 θ + b cos2 θ)] dθ

+4δ4 ln 2
∫ 2π

0
[a2 sin4 θ + b2 cos4 θ + (a2

+ b2) sin2 θ cos2 θ ] dθ

= 4πδ4((a + b)2 − g′(0)2c2
+
(
a2

+ b2
+ 2(g′(0)c)2 − 2ag′(0)c − 2bg′(0)c

)
ln 2).
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It follows from [Brezis and Coron 1983] that∫
δ2≤r≤2δ2

|∇ûδ|2dx1dx2 =

∫
δ2≤r≤2δ2

[
|ûδx1

|
2
+ |ûδx2

|
2
+ O(δ)

]
dx1dx2

= 4πδ4(a2
+ b2

−
g′(0)2c2

2
+
(
a2

+ b2
+ 2(g′(0)c)2 − 2ag′(0)c − 2bg′(0)c

)
ln 2

)
+O(δ5).

It follows from (3–3), (3–4) and (3–5) that

(3–9)
∫
δ2≤r≤2δ2

W (ûδ,∇ûδ) dx1dx2

= α

∫
δ2≤r≤2δ2

∣∣∇ûδ
∣∣2 dx1dx2 +

∫
δ2≤r≤2δ2

(k1 −α)(div u)2 dx1dx2

+

∫
δ2≤r≤2δ2

[
(k2 −α)|ûδ · curl ûδ|2 + (k3 −α)|ûδ × curl ûδ|2

]
dx1dx2

= 4απδ4(a2
+b2

−
g′(0)2c2

2
+
(
a2

+ b2
+ 2(g′(0)c)2 − 2ag′(0)c − 2bg′(0)c

)
ln 2

)
+(k1 −α)4πδ4

(
(a + b)2 − g′(0)2c2

+
(
a2

+ b2
+ 2(g′(0)c)2

)
ln 2

)
−8απδ4 (ag′(0)c + bg′(0)c

)
ln 2 +π(k2 − k1)δ

4(a − b)2 ln 2 + O(δ5).

On other hand, we see

∂uδ

∂x1
=
∂ ûδ

∂x1
+ O(δ),

∂uδ

∂x2
=
∂ ûδ

∂x2
+ O(δ)

and

∂uδ

∂x3
=
∂ ûδ1
∂x3

I (x3)+
∂ ûδ2
∂x3

J (x3)+
∂ ûδ3
∂x3

K (x3)+ ûδ1
d I (x3)

dx3
+ ûδ2

d J (x3)

dx3
+ ûδ3

d K (x3)

dx3
.

For δ2
≤ r ≤ 2δ2, we have

∂ ûδ1
∂x3

= O(δ2),
∂ ûδ2
∂x3

= O(δ2),
∂ ûδ3
∂x3

= O(δ4),

and, moreover,

ûδ(x1, x2, x3)= ûδ(0, 0, x3)+ O(δ2)= K (x3)+ O(δ2).

It follows from u(0, 0, x3)= K (x3) that for δ2
≤ r ≤ 2δ2, we have

∂uδ

∂x3
(x1, x2, x3)=

∂u
∂x3

(0, 0, x3)+ O(δ2).
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Using |u| = 1 and u3(0, 0, 0)= (0, 0, 1), we have ∂u3/∂x3(0, 0, 0)= 0. Thus

∂uδ3
∂x3

(x1, x2, x3)=
∂u3

∂x3
(0, 0, x3)+ O(δ2)= O(δ).

For δ2
≤ r ≤ 2δ2, we have

(3–10) (div uδ)2 = (div ûδ)2 + O(δ), (uδ · curl uδ)2 = (ûδ · curl ûδ)2 + O(δ)

and

(3–11) (uδ × curl uδ)2 = (ûδ × curl ûδ)2 +

∣∣∣∣∂uδ1
∂x3

∣∣∣∣2 +

∣∣∣∣∂uδ2
∂x3

∣∣∣∣2 + O(δ)

= (ûδ × curl ûδ)2 + d2
+ f 2

+ O(δ),

where we have set
d =

∂u1

∂x3
(0, 0, 0), f =

∂u2

∂x3
(0, 0, 0).

It follows from (3–9), (3–10)-(3–11) that∫ δ−δ2

−δ+δ2
dx3

∫
δ2≤r≤2δ2

dx1dx2 W (uδ,∇uδ)

=

∫ δ−δ2

−δ+δ2
dx3

∫
δ2≤r≤2δ2

dx1dx2 W (ûδ,∇ûδ)+ 6πk3δ
5(d2

+ f 2)+ O(δ6)

= 8απδ5
(

a2
+b2

−
g′(0)2c2

2
+
(
a2

+ b2
+ 2(g′(0)c)2 − 2ag′(0)c − bg′(0)c

)
ln 2

)
+8πδ5(k1 −α)

(
(a + b)2 − g′(0)2c2

+
(
a2

+ b2
+ 2(g′(0)c)2

)
ln 2

)
−16πδ5(k1 −α)

(
ag′(0)c + bg′(0)c

)
ln 2 + 2π(k2 − k1)δ

5(a − b)2 ln 2

+6πk3δ
5(d2

+ f 2)+ O(δ6).

Next, we estimate
∫ δ−δ2

−δ+δ2 dx3
∫

0≤r≤δ2 dx1dx2 W (uδ,∇uδ).
Let u0 be the map defined by u0 = ũ(x1, x2) in the Section 2. By (2–1) and

(2–2), we know

(3–12)
∫

r≤δ2
W (ûδ,∇ûδ) dx1dx2 =

∫
r≤1/cδ2

W (u0,∇u0) dx1dx2

= 4πk1

∫ 1/cδ2

0

g2(r)
r

dr + 4π(k1 −α)

∫ 1/cδ2

0
gg′ dr

= 4πk1

∫
∞

0

g2(r)
r

dr − 4πk1

∫
∞

1/cδ2

g2

r2 r dr + 2π(k1 −α)δ4c2(g′(0))2 + O(δ5)

= 8π0(k1, k2, k3)− 2παδ4c2
[g′(0)]2

+ O(δ5),
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because g(r)= g′(0)r + O(r2) and g(r)= g(1/r).
On other hand, we see

(3–13)
∂uδ

∂x1
=
∂ ûδ

∂x1
+ O(δ),

∂uδ

∂x2
=
∂ ûδ

∂x2
+ O(δ)

and

(3–14)
∂uδ

∂x3
= ûδ1

d I (x3)

dx3
+ ûδ2

d J (x3)

dx3
+ ûδ3

d K (x3)

dx3
,

which implies

∂uδ1
∂x3

= ûδ2
d J (x3)

dx3
· I + ûδ3

d K (x3)

dx3
· I + O(δ),

∂uδ2
∂x3

= ûδ1
d I (x3)

dx3
· J + ûδ3

d K (x3)

dx3
· J + O(δ).

From the results in the Section 2, we have

(3–15) |∇ûδ| ≤ C
g(r/λ)

r
≤ C

δ4

δ8 + r2 .

We estimate the term

uδ1
∂uδ3
∂x2

∂ ûδ2
∂x3

=
(
ûδ1 + O(δ)

) (∂ ûδ3
∂x2

+ O(δ)
)(

ûδ1
d I (x3)

dx3
· J + ûδ3

d K (x3)

dx3
· J + O(δ)

)
=

(
−

g2 (ρ) g′ (ρ) cos θ sin θ

λ
√

1 − g(ρ)2

)(
g(ρ) sin θ

d J (x3)

dx3
· I +

√
1 − g(ρ)2

d K (x3)

dx3
· I
)

+O(δ)

∣∣∣∣∣∂ ûδ3
∂x2

∣∣∣∣∣+ O(δ),

where ρ = r/λ. Integrating the above identity and using (3–15), we have∫
r≤δ2

uδ1
∂uδ3
∂x2

∂uδ2
∂x3

dx1dx2 =

∫ δ2

0

∫ 2π

0
uδ1
∂uδ3
∂x2

∂uδ2
∂x3

dθ r dr = O(δ5 ln(1/δ)).

Similarly, we obtain ∫
r≤δ2

uδ2
∂uδ3
∂x1

∂uδ1
∂x3

dx1dx2 = O(δ5 ln δ).

By a similar argument, we also have∫
r≤δ2

∂uδ3
∂x1

∂uδ1
∂x3

dx1dx2 = O(δ5 ln δ),
∫

r≤δ2

∂uδ3
∂x2

∂uδ2
∂x3

dx1dx2 = O(δ5 ln δ).
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From (3–14), it is easy to see that∫
r≤δ3

∣∣∣∂uδ

∂x3
(x1, x2, x3)

∣∣∣2 dx1dx2 = O(δ6).

By combining above estimates with the identity
∣∣curl uδ

∣∣2 =
∣∣u · curl uδ

∣∣2 +∣∣u × curl uδ
∣∣2, we obtain

(3–16)
∫ δ−δ2

−δ+δ2
dx3

∫
r≤δ3

dx1dx2 W (uδ,∇uδ)

=

∫ δ−δ2

−δ+δ2
dx3

∫
r≤δ3

dx1dx2 W (ûδ,∇ûδ)+ O(δ6 ln δ).

For δ3
≤ r ≤ δ2, it follows from (2–5) and (2–7) that

(3–17) g(r/λ)≤ C
rλ

λ2 + r2 = O(δ)

for some constant C . Using (3–17), it follows from (3–13)-(3–14) that∫ δ−δ2

−δ+δ2
dx3

∫
δ3≤r≤δ2

dx1dx2 W (uδ,∇uδ)

=

∫ δ−δ2

−δ+δ2
dx3

∫
δ3≤r≤δ2

dx1dx2

(
W (ûδ,∇ûδ)+k3

[∣∣∣∂uδ1
∂x3

∣∣∣2 +

∣∣∣∂uδ2
∂x3

∣∣∣2])+ O(δ6 ln δ).

Combining this with (3–12)and (3–16) yields∫ δ−δ2

−δ+δ2
dx3

∫
r≤δ2

dx1dx2 W (uδ,∇uδ)=16π(δ−δ2)0(k1, k2, k3)−4παδ5c2
[g′(0)]2

+2πk3δ
5(d2

+ f 2)+ O(δ6 ln δ).

Case 2. Estimate for E(uδ) in cδP and cδN .
Let G P be the little cone inside cδP with vertex P = (0, 0, δ) given by

G P =
{
(x1, x2, x3) ∈ R3 ∣∣ (x1)

2
+ (x2)

2
≤ (δ− x3)

2, δ− δ2
≤ x3 ≤ δ

}
.

Its end is the disk

Dδ2 =
{
(x ′

1, x ′

2, x ′

3) ∈ R3 ∣∣ r ′2
= x ′2

+ y′2
≤ δ4, x ′

3 = δ− δ2}.
Let x = (x1, x2, x3) be a point in G P and let x ′

= (x ′

1, x ′

2, x ′

3) be its projection
x ′

=5+(x) on the disk Dδ2 as

x ′
=5+(x)=

( δ2x1

δ− x3
,
δ2x2

δ− x3
, δ− δ2

)
.
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Now uδ is constant on the rays passing by P , that is,

uδ(x1, x2, x3)= uδ(x ′

1, x ′

2, δ− δ2).

Using the chain rule, it follows from the previous two equations that for a point
(x1, x2, x3) ∈ G P ,

(3–18)

∂uδ

∂x1
(x1, x2, x3)=

δ2

δ− x3

∂uδ

∂x ′

1
(x ′

1, x ′

2, δ− δ2)

∂uδ

∂x2
(x1, x2, x3)=

δ2

δ− x3

∂uδ

∂x ′

2
(x ′

1, x ′

2, δ− δ2)

∂uδ

∂x3
(x1, x2, x3)=

x ′

1

δ−x3

∂uδ

∂x ′

1
(x ′

1, x ′

2, δ−δ
2)+

x ′

2

δ−x3

∂uδ

∂x ′

2
(x ′

1, x ′

2, δ−δ
2).

Using the third identity of (3–18), we have∫
G P

∣∣∣∂uδ

∂x3
(x1, x2, x3)

∣∣∣2 dx1dx2dx3

=

∫ δ

δ−δ2
dx3

∫
r2≤(δ−x3)2

dx1dx2
1

(δ− x3)2

(
x ′

1
∂uδ

∂x ′

1
+ x ′

2
∂uδ

∂x ′

2

)2

(x ′

1, x ′

2, δ− δ2)

=

∫
r ′≤δ2

1
δ2

(
x ′

1
∂uδ

∂x ′

1
+ x ′

2
∂uδ

∂x ′

2

)2

(x ′

1, x ′

2, δ− δ2) dx ′

1dx ′

2.

On other hand, from the results in the Section 2, we obtain

|∇x ′

1
uδ|2(x ′

1, x ′

2, δ− δ2)+ |∇x ′

2
uδ|2(x ′

1, x ′

2, δ− δ2)

≤ C
g(r ′/cδ2)

r ′2
≤ C

λ2

(λ2 + r ′2)2
≤ C

δ8

(δ8 + r ′2)2
,

where λ= cδ4. Combining the previous two equations, we obtain∫
G P

∣∣∣∂uδ

∂x3
(x1, x2, x3)

∣∣∣2 dx1dx2dx3 ≤ C
∫ δ2

0

δ6r ′2

(δ8 + r ′3)2
dr ′

= O(δ6 ln(δ)).

A simple calculation yields

(3–19)
(

uδ2
∂uδ3
∂x ′

1

(
x ′

1
∂uδ1
∂x ′

1
+ x ′

2
∂uδ1
∂x ′

2

))
(x ′

1, x ′

2, δ− δ2)

=

(
g2(r ′/λ)+ g(r ′/λ)

( 1
r ′

g(r ′/λ)
)

r ′

)(
±

√
1 − g2(r ′/λ)

)
r ′

sin θ cos θ,

where we use polar coordinates x ′

1 = r ′ cos θ and x ′

2 = r ′ sin θ .
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By (3–18) and (3–19), we calculate∫ δ

δ−δ2
dx3

∫
r≤δ−x3

dx1dx2 uδ2(x1, x2, x3)
∂uδ3
∂x1

(x1, x2, x3)
∂uδ1
∂x3

(x1, x2, x3)

=
1
δ2

∫ δ

δ−δ2
dx3

∫
r ′≤δ2

dx1dx2

(
uδ2
∂uδ3
∂x ′

1

(
x ′

1
∂uδ1
∂x ′

1
+ x ′

2
∂uδ1
∂x ′

2

))
(x ′

1, x ′

2, δ− δ2)= 0.

Similarly, we have∫ δ

δ−δ2
dx3

∫
r≤δ−x3

dx1dx2
∂uδ3
∂x1

(x1, x2, x3)
∂uδ1
∂x3

(x1, x2, x3)= 0,∫ δ

δ−δ2
dx3

∫
r≤δ−x3

dx1dx2 uδ1(x1, x2, x3)
∂uδ3
∂x2

(x1, x2, x3)
∂uδ2
∂x3

(x1, x2, x3)= 0,∫ δ

δ−δ2
dx3

∫
r≤δ−x3

dx1dx2
∂uδ3
∂x2

(x1, x2, x3)
∂uδ2
∂x3

(x1, x2, x3)= 0.

Combining these estimates with (3–12) yields∫
G P

W (uδ,∇uδ)(x1, x2, x3) dx1dx2dx3

=

∫ δ

δ−δ2
dx ′

3

∫
r ′≤δ2

dx ′

1 dx2 W (uδ,∇uδ)(x ′

1, x ′

2, δ− δ2)+ O(δ6 ln δ)

= 8π0(k1, k2, k3)δ
2
+ O(δ6 ln δ).

Since u is regular and |∇uδ| is bounded by a constant, we obtain∫
cδP\G P

W (uδ,∇uδ) dx1dx2dx3 = O(δ6).

Therefore, it follows from the previous two equations that∫
cδP

W (uδ,∇uδ) dx1dx2dx3 = 8πδ20(k1, k2, k3)+ O(δ6 ln δ).

Similarly, we get
∫

cδN

W (uδ,∇uδ) dx1dx2dx3 = 8πδ20(k1, k2, k3)+ O(δ6 ln δ).

Proof of Theorem 1.2 for k2 ≥ k1. Since u is smooth, we have∫ δ+δ2

−δ−δ2
dx3

∫
r≤2δ2

dx1dx2 W (u,∇u)(x1, x2, x3)

=

∫ δ+δ2

−δ−δ2
dx3

∫
r≤2δ2

dx1dx2
[
α(a2

+b2)+(k1 −α)(a +b)2 +k3(d2
+ f 2)

]
+ O(δ6)

= 8πδ5[α(a2
+ b2)+ (k1 −α)(a + b)2 + k3(d2

+ f 2)
]
+ O(δ6).
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Also∫
cδN

W (u,∇u) dx1dx2dx3 = O(δ6),

∫
cδP

W (u,∇u) dx1dx2dx3 = O(δ6).

Finally, we have

E
(
uδ, �

)
− E(u, �)− 16π0(k1, k2, k3)δ

= − 8k1πδ
5
(

g′(0)2c2
−
(
a2

+ b2
+ 2(g′(0)c)2 − 2ag′(0)c − bg′(0)c

)
ln 2

)
+2πδ5(k2 − k1)(a − b)2 ln 2 + O(δ6 ln δ).

When k2 − k1 ≤ k14(1 − ln 2)/ln 2, we choose g′(0)c = max{a, b} to obtain

g′(0)2c2
−
(
a2

+b2
+2(g′(0)c)2 − (2a +b)g′(0)c

)
ln 2−

k2 − k1

4k1
(a −b)2 ln 2> 0.

Choosing δ sufficiently small, Theorem 1.2 is proved. �

Remark 3.1. Let u0 ∈ H 1
γ (�, S2) for smooth boundary data γ with deg(γ ) 6=0. For

a map u ∈ H 1
γ (�, S2), in similar fashion to arguments of [Giaquinta et al. 1998,

Chapter 4], there is a one-dimensional rectifiable current Lu,u0 with −∂Lu,u0 =

P(u)− P(u0) that minimizes the mass among all one-dimensional rectifiable cur-
rents L with −∂L = P(u)− P(u0), where P(u) is the zero-dimensional current in
� determined by u (see [Giaquinta et al. 1998, Chapter 4]). Moreover, we have

M(Lu,u0)= L(u, u0).

For u ∈ H 1
γ (�, S2), consider

[[u]] :=
{
T = GuT + Lu,u0 × [[S2

]]
∣∣ T − [[Gu0]] ∈ Cart2,1(�× R3), uT = u

}
.

Define

E([[u]])=

∫
�

W (u(x),∇u(x)) dx + 8π0(k1, k2, k2)M(Lu,u0)= Fu0(u, �).

Then the semicontinuity E implies that Fu0(u, �) is also lower semicontinuous
with respect to the weak convergence in H 1

u0
(�, S2) (see [Giaquinta et al. 1989;

1998]).

Proof of Theorem 1.1 for k2 ≥ k1. If there are infinitely many distinct minimizers
for E in H 1

γ (�, S2), the proof of Theorem 1.1 is completed. Now we assume that
there are only a finite number of minimizers w1,. . . ,wm for E in H 1

γ (�, S2).
By the partial regularity of [Hardt et al. 1986], with the fact that γ is not a

constant, there is a new subdomain �1 of � such that w1 is smooth in �1, and
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there is some x0 ∈�1 with ∇w1(x0) 6= 0. For sufficiently small ρ, it follows from
taking v1 = wδ in Theorem 1.2 that

E(v1) < Fv1(w1)= E(w1)+ 8π0(k1, k2, k3)L(v1, w1).

Let u1 be a minimizer of Fv1 in H 1
γ (�, S2), and let u1 be a weak solution of

Equation (1–3) with boundary value γ .
For δ sufficiently small, we shall prove that u1 is different from all minimizers

wi of E in H 1
γ (�, S2). We have two cases.

(i) L(wk, w1)= 0 for some k. It is easy to see L(v1, w1)= L(v1, wk). Noticing
E(w1)= E(wk), it follows the minimality of u1 that

Fv1(u1)≤ E(v1) < E(w1)+ 8π0(k1, k2, k3)L(v1, w1)= Fv1(wk).

This implies that u1 6= wk .

(ii) L(wk, w1) > 0. We know

L(wk, v1)+ L(v1, w1)≥ L(wk, w1).

This implies

Fv1(wk)= E(wk)+ 8π0(k1, k2, k3)L(wk, v1)

≥ E(w1)+ 8π0(k1, k2, k3)(L(wk, w1)− 2ρ).

Choose ρ > 0 sufficiently small so that

0< 2ρ <
L(wk, w1)

2
.

This gives L(wk, w1)− 2ρ > 2ρ > L(v1, w1). Therefore

Fv1(wk) > Fv1(w1)≥ Fv1(u1).

So u1 is different from all minimizers wk of E .

We construct by induction a sequence u j of distinct weak solutions of (1–3) in
H 1
γ (�, S2) which are also different from the minimizer wi . Choose ρ j+1 such that

0< 2ρ j+1 <min {L(wk, w1)/2, with L(wk, w1) > 0}

and

(3–20) 0< 2ρ j+1 <min
{

E(ui )− E(w1)

8π0(k1, k2, k3)
, i = 1, . . . , j

}
.

By taking ρ=ρ j+1 and u =w1 in Theorem 1.2, there exists a v j+1 and δ j+1 ≤ρ j+1

such that
E(v j+1) < E(w1)+ 16π0(k1, k2, k3)δ j+1.
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Let u j+1 be a minimizer of Fv j+1 in H 1
γ (�, S2). The same argument as above

assures that u j+1 is different from all wi . Next we prove that u j+1 6= ui for all
i ≤ j . From the above estimates, we know

(3–21) Fv j+1(u j+1)≤ Fv j+1(v j+1)= E(v j+1) < E(w1)+ 16π0(k1, k2, k3)ρ j+1.

From (3–20) we have

16πρ j+10(k1, k2, k3) < E(ui )− E(w1).

Combining this with (3–21) yields

E(v j+1)≤ Fv j+1(u j+1) < E(ui ),

which implies u j+1 6= ui for i = 2, . . . , j . Letting j → ∞, we see that there exist
infinitely many solutions {u j }

∞

j=1 of (1–3) in H 1
γ (�, S2). This proves Theorem 1.1

for k2 ≥ k1. �

4. Proof of Theorems 1.1 and 1.2 for k1 > k2

As in Section 3.1, for a sufficiently small δ and x3 in [−δ + δ2, δ − δ2
], we may

choose

K (x3)= u(0, 0, x3), I (x3)=
ux1(0, 0, x3)

|ux1(0, 0, x3)|
.

to form a basis {I (x3), J (x3), K (x3)} of R3 depending on x3. We write

u = û1 I (x3)+ û2 J (x3)+ û3K (x3)

with û1(0, 0, x3)= û2(0, 0, x3)= 0, û3(0, 0, x3)= 1. There are two numbers a> 0
and b ≤ 0 (for a suitable rotation of R3) such that

ux1(0, 0, x3)=(a+O(x3))J (x3), ux2(0, 0, x3)=(b+O(x3))I (x3)+O(x3)J (x3).

We consider the cylinder Cδ in R3 defined by

Cδ
=
{
(x1, x2, x3) ∈ R3 ∣∣ 0 ≤ r ≤ δ+ δ2, −δ− δ2

≤ x3 ≤ δ+ δ2} .
As in Section 3.1, we construct a map uδ = ûδ1 I (x3)+ ûδ2 J (x3)+ ûδ3K (x3) as

follows:

(i) uδ = u outside Cδ.

(ii) Inside Cδ, for each x3 ∈ [−δ+ δ2, δ− δ2
] (that is, the subcylinder of Cδ), we

construct uδ in three different cases:

(a) If r > 2δ2, we set uδ(x)= u(x).
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(b) If r < δ2, we set, with ρ = r/λ,

uδ(x1, x2, x3)

= g(ρ)
x2

r
I (x3)− g(ρ)

x1

r
J (x3)+ sign(1 − r)

√
1 − g2(ρ) K (x3).

(c) If δ2
≤ r ≤ 2δ2, we set

uδ(x)=

(A1r+B1) I (x3)+(A2r+B2) J (x3)+
√

1−(A1r+B1)2−(A2r+B2)2 K (x3),

where A1, A2, B1, B2 depend only on θ , δ, and x3 and are determined by

(4–1)

2δ2 A1 + B1 = û1(2δ2 cos θ, 2δ2 sin θ, x3),

2δ2 A2 + B2 = û2(2δ2 cos θ, 2δ2 sin θ, x3),

δ2 A1 + B1 = g(δ2/λ) sin θ = g(λ/δ2) sin θ,

δ2 A2 + B2 = −g(δ2/λ) cos θ = −g(λ/δ2) cos θ,

and g(r) is the solution of Equation (2–8) with g(0) = 0, g′(0) > 0,
g(1)= 1, g(r)= g(1/r) and λ= cδ4, where c will be determined later.

(iii) Inside Cδ, for each

x3 ∈ [−δ,−δ+ δ2
] ∪ [δ, δ− δ2

],

we let P = (0, 0, δ) and N = (0, 0,−δ), in a small cylinder cδP (or cδN ). The
cylinder is centered at P (or N ) with radius 2δ2, length 2δ2, and its axis along
the x3-axis. If we denote by 5+ (or 5−) the radial projection centered at
P (or N ) onto the boundary of cδP (or cδN ), the transformed map uδ is the
composition of 5+ (or 5−) and the value of uδ on this boundary.

The proof of Theorem 1.2 for k2 ≤ k1 is very similar to the one for k1 ≤ k2 on
page 195. We only need to make a few modifications.

For δ2
≤ r ≤ 2δ2 and for each

x3 ∈ [−δ+ δ2, δ− δ2
],

we solve Equation (4–1) for A1, A2, B1 and B2 to obtain

(4–2)

A1 = (2a − cg′(0)) sin θ + O(δ),

A2 = (2b + cg′(0)) cos θ + O(δ),

B1 = 2δ2(g′(0)c − a) sin θ + O(δ3),

B2 = −2δ2(g′(0)c + b) cos θ + O(δ3).
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and

(4–3)

∂A1

∂θ
= (2a − cg′(0)) cos θ + O(δ),

∂A2

∂θ
= −(2b + cg′(0)) sin θ + O(δ),

∂B1

∂θ
= 2δ2(cg′(0)− a) cos θ + O(δ3),

∂B2

∂θ
= 2δ2(cg′(0)+ b) sin θ + O(δ3).

Using (4–2) and (4–3), we have

∂ ûδ1
∂x1

=

(∂A1

∂θ
r +

∂B1

∂θ

) ∂θ
∂x1

+ A1
∂r
∂x1

+ O(δ)

= −2δ2(cg′(0)− a)
cos θ sin θ

r
+ O(δ),

∂ ûδ2
∂x2

=
∂(A2r + B2)

∂x2
= 2δ2(cg′(0)+ b)

sin θ cos θ
r

+ O(δ),

∂ ûδ1
∂x2

=
∂(A1r + B1)

∂x2
= (2a − cg′(0))+ 2δ2(cg′(0)− a)

cos2 θ

r
+ O(δ),

∂ ûδ2
∂x1

=
∂(A2r + B2)

∂x1
= (2b + cg′(0))− 2δ2(cg′(0)+ b)

sin2 θ

r
+ O(δ).

Consider a new map ûδ = ûδ1 I + ûδ2 J + ûδ3K . Then we have

∣∣div ûδ
∣∣2 = 4δ4(a + b)2 sin2 θ cos2 θ

1
r2 + O(δ),∣∣ûδ × curl ûδ

∣∣2 = O(δ),

(curl ûδ)2 =

[
2(a −b)−2cg′(0)+

2δ2cg′(0)
r

−2δ2 (a cos2 θ − b sin2 θ)

r

]2
+ O(δ).

Using this, we have∫
δ2≤r≤2δ2

(div ûδ)2 + | curl ûδ|2 dx1dx2

= 4πδ4((a − b)2 − g′(0)2c2
+
(
a2

+ b2
+ 2(g′(0)c)2 − (2a − 2b)g′(0)c

)
ln 2

)
.

We know that



INFINITELY MANY EQUILIBRIUM CONFIGURATIONS OF A LIQUID CRYSTAL 201

|ûδx1
|
2
+|ûδx2

|
2
= 4δ4(g′(0)c−a)2

cos2 θ

r2 +4δ4(g′(0)c+b)2
sin2 θ

r2 + (2a −g′(0)c)2

+(2b + g′(0)c)2 + 4δ2(2a − g′(0)c)(g′(0)c − a)
cos2 θ

r

−4δ2(2b + g′(0)c)(g′(0)c + b)
sin2 θ

r
.

Using this, we have∫
δ2≤r≤2δ2

|∇ûδ|2dx1dx2 =

∫
δ2≤r≤2δ2

[
|ûδx1

|
2
+ |ûδx2

|
2
+ O(δ)

]
dx1dx2

= 4πδ4
(

a2
+ b2

−
g′(0)2c2

2
+
(
a2

+ b2
+ 2(g′(0)c)2 − 2(a − b)g′(0)c

)
ln 2

)
+O(δ5).

From arguments similar to those in Section 3.2, we finally have

E(uδ, �)− E(u, �)− 16π0(k1, k2, k3)δ

= − 8k1πδ
5
(

g′(0)2c2
−
(
a2

+ b2
+ 2(g′(0)c)2 − 2(a − b)g′(0)c

)
ln 2

)
+2πδ5(k2 − k1)(a + b)2 ln 2 + O(δ6 ln δ).

When 0 ≤ k1 − k2 ≤ k24(1 − ln 2)/ln 2, we choose g′(0)c = max{a,−b} to obtain

g′(0)2c2
−
(
a2

+ b2
+ 2(g′(0)c)2 − 2(a − b)g′(0)c

)
ln 2−

k1 − k2

4k1
(a +b)2 ln 2> 0.

Theorem 1.2 follows from choosing δ sufficiently small.
The proof of Theorem 1.1 for the case k1 > k2 is the same as one for the case

k2 ≥ k1 in Section 3.2. We omit details here. �

5. Partial regularity of the weak solutions

We will now complete a proof of Theorem 1.3. We recall that

W (u, p)= α|p|
2
+ (k1 −α)(tr p)2 + (k2 −α)(g · u)2 + (k3 −α)|g × u|

2,

where p = (p j
i )3×3 and g is the axial vector of p − pT , that is, the vector defined

in coordinates by
gi = εi jk pk

j

with εi jk being the components of the Levi-Civita tensor. For simplicity, we assume
α = 1.

There exists a positive constant 3> 0 such that

|p|
2
≤ W (u, p)≤3|p|

2.
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Lemma 5.1. For any λ ∈ [0, 1), let uλ be a minimizer of Eλ in H 1
γ (�, S2). Then

uλ is a quasiminimizer of the functional E in H 1
γ (�, S2), that is, E(uλ, B) ≤

QE(w; B) for any w ∈ H 1
uλ(B, S2) and any subdomain B ⊂ � with Q = (1 +

λ)/(1 − λ).

Proof. Let R∞
γ be a set of all maps in H 1

γ (�, S2) having a finite number of singular
points, of which {Pi } are of positive degree +1 and {Ni } are of negative degree −1
inside �. Let u be a map in R∞

g .
As in [Giaquinta et al. 1989; 1998], the function

0(n, ξ) := inf
{
W (n,G)

∣∣ M2(G)= ξ, GT n = 0
}

is given at every n ∈ S2 and ξ = t ∧ ε(n) ∈ ∧3(R
3
× Tn S2), where |t | = 1, ε(n) is

the unit 2-vector associated to Tn S2, and GT is the transpose of the matrix G. A
calculation (see [Giaquinta et al. 1989; 1998]) yields

0(n, ξ)= 2
√

k2(t, n)2 + kk3(1 − (t, n)2)2 + (k −α)(t, n).

Thus

W (u(x),∇u(x))≥ 0(n,M2(∇u(x))= 0

(
(n,

D(u(x))
|D(u(x))|

∧ ε(n)
)

|M2(∇u(x)|.

Integrating over B and using the co-area formula, we then have

E(u, B)≥

∫
B
0

(
n,

D(u(x))
|D(u(x))|

∧ ε(n)
)

|M2(∇u(x)| dx

≥

∫
S2

dH2(n)
∫

u−1(n)
0

(
n,

D(u(x))
|D(u(x))|

∧ ε(n)
)

dH1.

We know that u−1(n) is the union of curves of two kind of curves oriented by
D(u)/|D(u)|:

(i) closed curves 0u
1 ∪0u

2 ∪ · · · ∪0u
l ;

(ii) curves joining ∂B∩{Pu
i }

k
i=1∩{N u

i }
k
i=1, where {Pu

i , N u
i }

k
i=1 are all singularities

of u inside B.

For any positive singularity Pu
i , there is a curve Ci (u) joining Pu

i to another
point Ñ u

i , which is either a negative singularity of the map u or a point yi on the
boundary ∂B.

Since 0(n, · ∧ ε(n)) is convex and one-homogeneous, Jensen’s inequality im-
plies ∫

Ci

0

(
n,

D(u(x))
|D(u(x))|

∧ ε(n)
)

dH1
≥ 0

(
n,
∫

Ci

D(u(x))
|D(u(x))|

dH1
∧ ε(n)

)
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Note that for any vector t with |t | = 1, we have [Giaquinta et al. 1990]∫
S2
0(n, t ∧ ε(n)) dH2(n)= 8π0(k1, k2, k3).

Let w ∈ R∞
γ and w− u ∈ H 1

0 (B,R3). Then w−1(n) is the union of curves of
two kind of curves oriented by D(w)/|D(w)|:

(iii) closed curves 0w1 ∪0w2 ∪ · · · ∪0wl ;

(iv) curves joining ∂B ∩{Pwi }
k
i=1 ∩{Nw

i }
m
i=1, where {Pwi , Nw

i }
m
i=1 are all singular-

ities of u inside B.

If Ñ u
i is a boundary point yi with u(yi ) = n joining a curve to a positive sin-

gularity Pu
i by a curve C i (u) inside the set u−1(n), there is a positive singularity

Pwi of w joining to yi by a curve C i (w) inside the set w−1(n). As in [Giaquinta
et al. 1998], we note that D(u(x)) is the tangent to the level line u(x)= n. For an
oriented curve Ci (u) joining Pu

i to Ñ u
i and a curve Ci (w) joining Pwi to Ñw

i , we
have∫

Ci (u)

D(u(x))
|D(u(x))|

dH1
= −(Pu

i − Ñ u
i ),

∫
Ci (w)

D(w(x))
|D(w(x))|

dH1
= −(Pwi − Ñw

i ),

where Ñ u
i is either a negative singularity of u or a boundary yi with u(y)= n, and

Ñw
i is either a negative singularity of w or a boundary yi with w(y)= n.
Then

E(u, B)+ E(w, B) ≥

∫
S2

dH2(n)
k∑

i=1

0

(
n,
∫

Ci (u)

D(u(x))
|D(u(x))|

dH1
∧ ε(n)

)

+

∫
S2

dH2(n)
m∑

i=1

0

(
n,
∫

Ci (w)

D(w(x))
|D(w(x))|

dH1
∧ ε(n)

)

=

k∑
i=1

|Pu
i − Ñ u

i |

∫
S2
0

(
n,

Pu
i − Ñ u

i

|pu
i − Ñ u

i |
∧ ε(n)

)
dH2(n)

+

k∑
i=1

|Pwi − Ñw
i |

∫
S2
0

(
n,

Pwi − Ñw
i

|pwi − Ñw
i |

∧ ε(n)
)

dH2(n)

= 8π0(k1, k2, k3)
( k∑

i=1

|Pu
i − Ñ u

i | +

m∑
i=1

|Pwi − Ñw
i |

)
≥ 8π0(k1, k2, k3)L(u, w),

where L(u, w) is the minimal connection of w and u, that is, the minimal connec-
tion between {Pu

i }
k
i=1 ∪ {Nw

i }
m
i=1 and {N u

i }
k
i=1 ∪ {Pwi }

m
i=1.
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By the density result of [Bethuel 1990], the last equation is true for all w, u ∈

H 1
γ (B, S2) with w− u ∈ H 1

0 (B, S2).
Now, taking u = uλ for 0 ≤ λ < 1, let w be any map H 1

γ (�, S2) with uλ−w ∈

H 1
0 (B, S2) with an arbitrary subdomain B ⊂�. By the minimality of uλ, we have

E(uλ, �)+ λ8π0(k1, k2, k3)L(uλ, u0)≤ E(w;�)+ λ8π0(k1, k2, k3)L(w, u0),

Moreover, we know

L(w, u0)− L(uλ, u0)≤ L(w, uλ).

For 0 ≤ λ < 1, we have

E(uλ; B)≤
1 + λ

1 − λ
E(w; B)

for all w ∈ H 1
uλ(B, S2). This proves our claim. �

Using Lemma 5.1 with an extension lemma in [Hardt et al. 1988], we have:

Proposition 5.2 (Caccioppoli’s inequality). For any 0≤λ<1, let uλ be a minimizer
of Eλ in H 1

γ (�, S2). Then for all x0 ∈� and R < dist(x0, ∂�), we have

(5–1)
∫

BR/2(x0)

|∇uλ|2 ≤ C R−2
∫

BR(x0)

|uλ − uλx0,R|
2 dx .

Next, we have:

Proposition 5.3 [Hong 2004]. Let u ∈ H 1(�, S2) be any weak solution of (1–3)
and assume that u satisfies the Caccioppoli inequality (5–1). Then u is smooth in
an open set �0 ⊂� and Hβ(�\�0)= 0 for some positive β < 1.

Proof of Theorem 1.3. It follows from Propositions 5.2 and 5.3. �

Finally, it seems that there exists no monotonicity formula for the minimizers
of Fu0 in H 1. It is a challenging question whether one can establish the partial
regularity of minimizers of Fu0 in H 1(�, S2) for a given map u0 ∈ R∞

γ .
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SUR LE DÉPLOIEMENT DES FORMES BILINÉAIRES EN
CARACTÉRISTIQUE 2

AHMED LAGHRIBI

This article deals with the standard splitting of bilinear forms in characte-
ristic 2. The first part is devoted to the study of bilinear Pfister neighbors
(the definition of such a bilinear form is slightly different from the clas-
sical definition of a Pfister neighbor quadratic form). In the second part,
we introduce the degree invariant for bilinear forms and we prove that for
any integer d ≥ 0, the d-th power of the ideal of even dimensional bilinear
forms coincides with the set of bilinear forms of degree ≥ d (this is a posi-
tive answer to the analogue of the degree conjecture for quadratic forms).
In the third part, we classify good bilinear forms of height 2, and we give
information on the possible dimensions of bilinear forms of height 2 which
are not necessarily good.

1. Introduction

Le but de cet article est d’étendre la théorie de déploiement standard aux formes
bilinéaires en caractéristique 2. Cette théorie a été introduite en premier par M.
Knebusch dans les années soixante-dix dans le cas des formes quadratiques en
caractéristique 6= 2 [Knebusch 1976 ; 1977]. On la connait plutôt sous le nom de
la théorie de déploiement générique, puisque dans ce cas la suite de déploiement
standard d’une forme quadratique reflète des informations liées au comportement
de la forme sur les extensions du corps de base. Récemment, en caractéristique 2,
Knebusch et Rehmann ont étudié le déploiement standard des formes quadratiques
de radical de dimension ≤ 1, et ont montré sa généricité comme ce qui est le cas en
caractéristique 6= 2 [Knebusch and Rehmann 2000]. Ceci ne se généralise pas au
cas des formes quadratiques de radical de dimension ≥ 2 [Hoffmann and Laghribi
2004, example 8.15]. Pour ces dernières, le déploiement standard a été traité dans
[Laghribi 2002b], et une autre notion de généricité a été introduite dans [Knebusch
≥ 2007].

MSC2000: 11E04, 11E81.
Keywords: symmetric bilinear form, function field of a bilinear form, standard splitting of bilinear

forms, bilinear Pfister neighbors.
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Pour la suite de cet article, on fixe F un corps commutatif de caractéristique
2, et l’expression “forme bilinéaire” signifiera “forme bilinéaire symétrique de
dimension finie et de radical nul”.

A une forme bilinéaire B d’espace sous-jacent V , on associe une forme qua-
dratique B̃ définie par : B̃(v) = B(v, v) pour v ∈ V . Cette forme quadratique est
totalement singulière1 et est unique à isométrie près, on l’appelle la forme qua-
dratique associée à B. Le corps de fonctions de B, qu’on note F(B), est défini
comme étant celui de B̃. On note dim B (resp. Ban) la dimension de B (resp. la
partie anisotrope de B).

La tour de déploiement standard d’une forme bilinéaire B non nulle est une suite
(Bi , Fi )0≤i≤h donnée par :{

F0 = F et B0 = Ban

Pour n ≥ 1 : Fn = Fn−1(Bn−1) et Bn = ((Bn−1)Fn )an.

La hauteur (standard) de B, qu’on note h(B), est le plus petit entier h vérifiant
dim Bh ≤ 1. En plus de la hauteur, on montre qu’il existe une d-forme bilinéaire
de Pfister π unique telle que Bh(B)−1 soit semblable à une sous-forme de π de
dimension 2d

−1 ou 2d suivant que dim B est impaire ou paire. L’entier d s’appelle
le degré de B et on le note deg(B) (voir section 4).

On traitera le déploiement standard des formes bilinéaires en parallèle avec ce
qui a été fait pour les formes quadratiques. Plus particulièrement, on s’intéressera
à l’invariant degré et au problème de classification par hauteur et degré. Nos mé-
thodes sont propres aux formes bilinéaires en caractéristique 2. Pour les faire deux
difficultés se sont posées. D’une part, l’utilisation de l’analogue du théorème de
la sous-forme (théorème 3.5) dont la formulation est basée sur la notion de forme
bilinéaire et forme totalement singulière associées, qui est moins forte que la condi-
tion de sous-forme (ou de domination) utilisée dans le cas des formes quadratiques.
D’autre part, on manque pour les formes bilinéaires d’un objet analogue à l’algèbre
de Clifford d’une forme quadratique.

Maintenant on détaille le contenu de notre travail. Pour garder l’autonomie de
cet article, on rappelera dans la section 2 quelques notions de base sur les formes
bilinéaires et quadratiques en caractéristique 2.

La section 3 sera consacrée aux formes bilinéaires voisines de Pfister et vient
compléter des résultats établis récemment dans [Laghribi 2005, Section 5]. Dans la
sous-section 3A, on donnera des généralités sur les formes bilinéaires voisines. La
définition d’une telle forme utilise la notion de forme bilinéaire et forme totalement
singulière associées. En terme de déploiement sur les corps de fonctions, on sait
d’après [Laghribi 2005, Cor. 5.6] qu’une forme bilinéaire anisotrope B est une

1C’est-à-dire, une forme quadratique dont le radical coincide avec son espace sous-jacent.
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voisine de Pfister si et seulement si il existe C et D des formes bilinéaires telles
que (CF(B))an ' DF(B) et que B̃ ' C̃ (' désigne l’isométrie). Contrairement au cas
des formes quadratiques voisines, on va donner un exemple où la forme bilinéaire
C ⊥ D est isotrope, et un autre où (BF(B))an ' D′

F(B) avec B ⊥ D′ isotrope
(Exemple 3.11). De plus, on va voir qu’une forme bilinéaire anisotrope B peut
être une voisine de Pfister sans que la forme (BF(B))an soit définie sur F (Exemple
3.12). On finira cette sous-section par un fait important affirmant que toute forme
bilinéaire anisotrope devient une voisine de Pfister anisotrope après extension des
scalaires à un corps convenable (proposition 3.13). Ce résultat nous sera très utile
dans la sous-section 5C pour les formes bilinéaires de hauteur 2. La sous-section
3B sera consacrée à la classe des formes bilinéaires voisines anisotropes B pour
lesquelles la forme (BF(B))an est définie sur F . On utilisera les formes de cette
classe pour suggérer une définition de forme bilinéaire excellente.

Dans la section 4, on abordera l’invariant degré en montrant que l’ensemble des
formes bilinéaires de degré ≥ d coincide avec l’idéal I d F pour tout entier d ≥ 0
(théorème 4.5). Pour cela, on va se ramener au cas des formes quadratiques en
associant à toute forme bilinéaire B la forme quadratique B ⊗ [1, t−1

] avec t une
variable sur F . Ceci va permettre d’utiliser quelques résultats récents dus à Aravire
et Baeza [2003].

La section 5 sera consacrée aux formes bilinéaires bonnes, c’est-à-dire, celles
dont la forme bilinéaire de Pfister correspondant à l’avant-dernière forme de leurs
tours de déploiement standard est définie sur F . Plus particulièrement, on clas-
sifiera les formes bilinéaires bonnes de hauteur 2 (proposition 5.9 et théorème
5.10). Pour cela, on utilisera entre autres une généralisation aux formes bilinéaires
d’un résultat récent de Karpenko sur les dimensions des formes quadratiques de
I n en caractéristique 6= 2 (proposition 5.7). Notre classification fait paraı̂tre une
classe de formes bilinéaires bonnes de hauteur 2 dont on n’a pas un analogue pour
les formes quadratiques en caractéristique 6= 2 (Commentaire après le théorème
5.10 ; Exemple 5.11). Finalement dans la sous-section 5C on donnera des infor-
mations sur les éventuelles dimensions des formes bilinéaires de hauteur 2 non
nécessairement bonnes (corollaire 5.20), et ce en utilisant une version raffinée de
la décomposition de Witt d’une forme bilinéaire (proposition 5.15).

2. Quelques rappels

Soit ϕ une forme quadratique (resp. une forme bilinéaire) d’espace sous-jacent
V . On dit que ϕ est isotrope s’il existe v ∈ V − {0} tel que ϕ(v) = 0 (resp.
ϕ(v, v) = 0). Dans le cas contraire, on dit que ϕ est anisotrope. On désigne par
DF (ϕ) l’ensemble des scalaires de F∗ représentés par ϕ (resp. l’ensemble des
scalaires ϕ(v, v) ∈ F∗ avec v ∈ V ).
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Pour n ≥ 1 un entier et B une forme bilinéaire (ou quadratique), on désigne par
n × B la somme orthogonale de n copies de B.

Deux formes bilinéaires (ou quadratiques) B et B ′ sont dites semblables si B '

αB ′ pour un certain α ∈ F∗.
Le radical d’une forme bilinéaire B (resp. d’une forme quadratique ϕ) d’espace

sous-jacent V est l’espace {v ∈ V | B(v, V ) = 0} (resp. le radical de la forme
bilinéaire Bϕ associée à ϕ).

Une forme quadratique est dite non singulière si son radical est nul.
On sait qu’une forme quadratique non singulière (resp. totalement singulière) est

isométrique à une somme orthogonale de formes de type [a, b] = ax2
+ xy + by2

(resp. de type [a] = ax2).
On note W (F) (resp. Wq(F)) l’anneau de Witt des formes bilinéaires (resp. le

groupe de Witt des formes quadratiques non singulières).

2A. Décomposition de Witt.

2A1. Cas des formes quadratiques. Toute forme quadratique ϕ se décompose, à
isométrie près, comme suit :

(1) ϕ ' ϕan ⊥ i × [0, 0] ⊥ j × [0]

où ϕan est une forme anisotrope, qu’on appelle la partie anisotrope de ϕ [Hoffmann
and Laghribi 2004]. L’entier i s’appelle l’indice de Witt de ϕ et on le note iW (ϕ).

Une forme quadratique non singulière ϕ est dite hyperbolique si dimϕ=2iW (ϕ).

2A2. Cas des formes bilinéaires. On note 〈a1 : b : a2〉 la forme bilinéaire B dont
l’espace sous-jacent a pour base {e1, e2} qui satisfait les conditions B(ei , ei )=ai et
B(e1, e2)=b. Un plan métabolique est une forme bilinéaire isométrique à 〈a : 1 : 0〉

pour un certain a ∈ F .
Toute forme bilinéaire B se décompose de la manière suivante :

(2) B ' M ⊥ Ban

où M est une somme orthogonale de plans métaboliques, et Ban est une forme
bilinéaire anisotrope. La forme Ban est unique à isométrie près [Milnor and Huse-
moller 1973; Knebusch 1970] ; on l’appelle la partie anisotrope de B. L’indice de
Witt de B, qu’on note iW (B), est l’entier 1

2 dim M .
Une forme bilinéaire B est dite métabolique si dim B = 2iW (B).
On renvoie à la proposition 5.15 pour une version raffinée de la décomposition

donnée dans (2).
Deux formes quadratiques (resp. deux formes bilinéaires) B et B ′ sont dites

équivalentes, qu’on note B ∼ B ′, lorsque les formes Ban et B ′
an sont isométriques.
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2B. Formes bilinéaires et formes quadratiques de Pfister. On note 〈a1, . . . , an〉

la forme bilinéaire
∑n

i=1 ai xi yi avec a1, . . . , an ∈ F∗. Une n-forme bilinéaire de
Pfister est une forme isométrique à 〈1, a1〉⊗· · ·⊗〈1, an〉. On la note 〈〈a1, . . . , an〉〉.
La partie pure d’une forme bilinéaire de Pfister B est l’unique forme B ′ vérifiant
B = 〈1〉 ⊥ B ′.

Une (n+1)-forme quadratique de Pfister est une forme isométrique à

〈〈a1, . . . , an〉〉 ⊗ [1, b],

où ⊗ est l’action de module de W (F) sur Wq(F), et a1, . . . , an ∈ F∗, b ∈ F .
Soit I F l’idéal de W (F) formé des formes bilinéaires de dimension paire. On

pose I n F = (I F)n et I n+1
q F = I n F ⊗Wq(F) pour tout n ≥ 0 (avec I 0 F = W (F)).

On sait que I n F (resp. I n+1
q F) est engendré additivement par les n-formes bi-

linéaires de Pfister (resp. les (n+1)-formes quadratiques de Pfister).
Une n-forme quadratique de Pfister est dite de degré n [Hoffmann and Lagh-

ribi 2004; Laghribi 2002b]. Notre définition de degré diffère de celle adoptée par
Aravire et Baeza [2003]. La notre étend la définition de degré en caractéristique
6= 2.

2C. Formes quadratiques voisines. Soient ϕ et ϕ′ deux formes quadratiques d’es-
paces sous-jacent respectifs V et V ′. On dit que ϕ est dominée par ϕ′, qu’on
note ϕ ≺ ϕ′, s’il existe une application linéaire injective σ : V −→ V ′ telle que
ϕ′(σ (v))= ϕ(v) pour tout v ∈ V . On renvoit à [Hoffmann and Laghribi 2004, lem.
3.1] pour une description équivalente à cette définition. Notons que la relation de
domination n’est autre que la relation de sous-forme lorsque les formes ϕ et ϕ′ sont
non singulières ou totalement singulières

Une forme quadratique ϕ est dite voisine d’une forme de Pfister π si 2 dimϕ >

dimπ et aϕ ≺ π pour un certain a ∈ F∗. Lorsque ϕ est voisine de π , alors π est
unique et pour toute extension K/F , la forme ϕK est isotrope si et seulement si
πK est isotrope.

On sait qu’une forme quadratique voisine ne peut être totalement singulière.
Mais pour les formes totalement singulières on a aussi la notion de forme voisine
(Définition 3.7).

3. Les formes bilinéaires voisines

3A. Généralités sur les formes bilinéaires voisines. La notion de forme bilinéaire
et forme totalement singulière associées va jouer un rôle essentiel dans cet article.
Le lemme qui suit donne une définition équivalente à cette notion :

Lemme 3.1. Une forme quadratique totalement singulière ϕ est associée à une
forme bilinéaire B si et seulement si dim B = dimϕ et DF (B)= DF (ϕ).
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Démonstration. D’après [Laghribi 2004a, lem. 2.1], on sait que deux formes qua-
dratiques totalement singulières sont isométriques si elles sont de même dimension
et représentent les mêmes scalaires de F∗. �

Remarque 3.2. (1) Notons qu’une forme bilinéaire B est isotrope si et seulement
si B̃ est isotrope.
(2) La correspondance B 7→ B̃ est compatible avec la somme orthogonale et la
multiplication par des scalaires de F∗.

Notations 3.3. Pour ϕ une forme quadratique totalement singulière, on notera A(ϕ)

l’ensemble de toutes les formes bilinéaires associées à ϕ.

Définition 3.4. Une forme bilinéaire B est dite une sous-forme d’une autre forme
C si C ' B ⊥ B ′ pour une certaine forme bilinéaire B ′.

La définition d’une forme bilinéaire voisine est motivée par l’analogue du thé-
orème de la sous-forme dont voici la formulation :

Théorème 3.5 [Laghribi 2005, prop. 1.1]. Soient B et C deux formes bilinéaires
anisotropes telles que B devienne métabolique sur F(C). Alors, pour tout α ∈

DF (C)DF (B), il existe B ′ une sous-forme de αB telle que B ′
∈ A(C̃). En particu-

lier, dim C ≤ dim B.

Définition 3.6 [Laghribi 2005, section 5]. Une forme bilinéaire B est dite voisine
d’une forme bilinéaire de Pfister π si 2 dim B > dimπ et s’il existe B ′

∈ A(B̃)
semblable à une sous-forme de π .

Dans le cas des formes quadratiques totalement singulières, les notions de formes
de Pfister et leurs voisines se définissent comme suit :

Définition 3.7. (1) Une forme totalement singulière est une quasi n-forme de Pfister
si elle est associée à une n-forme bilinéaire de Pfister.
(2) Une forme totalement singulière ϕ est dite une quasi-voisine de Pfister s’il
existe une quasi-forme de Pfister π tels que 2 dimϕ > dimπ et aϕ ≺ π pour un
certain a ∈ F∗.

On renvoie à [Hoffmann and Laghribi 2004] et [Laghribi 2004a] pour plus de
détails sur les formes quasi-voisines et leurs déploiements standard.

Les formes bilinéaires voisines et les formes quadratiques quasi-voisines se cor-
respondent mutuellement comme le montre la proposition suivante :

Proposition 3.8. Une forme bilinéaire anisotrope B est une voisine de Pfister si et
seulement si B̃ est une quasi-voisine de Pfister.

Démonstration. Soit B une forme bilinéaire anisotrope.
Supposons que B soit voisine d’une forme bilinéaire de Pfister π . Alors on a

2 dim B > dimπ et il existe B ′
∈ A(B̃) qui est semblable à une sous-forme de π .
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Puisque B̃ ' B̃ ′, la forme B̃ est semblable à une sous-forme de π̃ . Ainsi, B̃ est une
quasi-voisine de π̃ .

Réciproquement, supposons maintenant que B̃ soit quasi-voisine d’une quasi-
forme de Pfister τ . Soit C une forme bilinéaire de Pfister telle que C̃ ' τ . Puisque
τF(B) est isotrope, la forme CF(B) est isotrope et donc elle est métabolique [Laghribi
2005, prop. 3.3]. Par le théorème 3.5, il existe B ′

∈ A(B̃) qui est semblable à une
sous-forme de C . Puisque 2 dim B > dim τ = dim C , la forme B est bien une
voisine de C . �

On se servira souvent de la proposition suivante qui montre qu’une forme bi-
linéaire anisotrope est une voisine de Pfister lorsqu’elle devient métabolique sur le
corps de fonctions d’une autre forme bilinéaire de dimension suffisamment grande :

Proposition 3.9 [Laghribi 2005, cor. 5.4]. Soient B et C deux formes bilinéaires
anisotropes. Si BF(C) est métabolique et 2 dim C > dim B, alors B est semblable
à une forme bilinéaire de Pfister π , et toute forme bilinéaire B ′

∈ A(C̃) est voisine
de π . En particulier, C est voisine de π .

Comme dans le cas des formes quadratiques voisines ou quasi-voisines, les
formes bilinéaires voisines vérifient certaines propriétés classiques :

Proposition 3.10 [Laghribi 2005, prop. 5.2, 5.3, cor. 5.6]. Soient B et C deux
formes bilinéaires anisotropes avec C une forme bilinéaire de Pfister.
(1) Si B est voisine de C , alors pour toute extension K/F les formes BK et CK

sont simultanément isotropes ou anisotropes.
(2) B est voisine de C si et seulement si 2 dim B > dim C et CF(B) est isotrope.
(3) B est une voisine d’une forme bilinéaire de Pfister si et seulement si il existe
B ′

∈ A(B̃) telle que la forme (B ′

F(B))an soit définie sur F.

Cependant, d’autres propriétés sur les formes quadratiques voisines ou quasi-
voisines ne se généralisent pas aux formes bilinéaires voisines. Par exemple, une
forme bilinéaire peut être voisine de deux formes bilinéaires de Pfister non isomé-
triques. De plus, contrairement à un résultat classique de Fitzgerald [1981, th. 1.6],
l’exemple suivant illustre un cas d’une forme bilinéaire voisine anisotrope B et
d’une forme C ∈ A(B̃) telles que (CF(B))an ' DF(B) pour une certaine forme D
mais que C ⊥ D est isotrope.

Exemple 3.11. Soient x1, . . . , xd , u, v des variables sur un corps F0 de caracté-
ristique 2 (d ≥ 1), F = F0(xi , u, v) et R = 〈〈x1, . . . , xd〉〉. Soient

B = 〈1, 1 + u, v, uv〉 ⊗ R, C = 〈1, u, u + v, uv〉 ⊗ R

et π = 〈〈u, v〉〉 ⊗ R qui sont des formes anisotropes. Alors :
(1) B est une voisine de π .
(2) (BF(B))an ' (〈u, 1 + u〉 ⊗ R)F(B) et B ⊥ 〈u, 1 + u〉 ⊗ R est isotrope.



214 AHMED LAGHRIBI

(3) C ∈ A(B̃).
(4) (CF(B))an ' (〈v, u + v〉 ⊗ R)F(B) et C ⊥ 〈v, u + v〉 ⊗ R est isotrope.

Démonstration. Puisque les formes 〈1, 1 + u, v, uv〉 et 〈1, u, u + v, uv〉 sont as-
sociées à la forme quadratique [1] ⊥ [u] ⊥ [v] ⊥ [uv], on déduit que B̃ ' π̃ ' C̃ .
Ainsi, B est voisine de π et C ∈ A(B̃). On a B ∼ π ⊥ 〈u, 1 + u〉⊗ R et C ∼ π ⊥

〈v, u + v〉 ⊗ R. Puisque πF(B) est isotrope et les formes (〈u, 1 + u〉 ⊗ R)F(B) et
(〈v, u + v〉⊗ R)F(B) sont anisotropes (par raison de dimension et le théorème 3.5),
on déduit que (BF(B))an ' (〈u, 1 + u〉⊗R)F(B) et (CF(B))an ' (〈v, u + v〉⊗R)F(B).

�

L’exemple qui va suivre montre qu’une forme bilinéaire anisotrope B peut être
une voisine de Pfister sans que la forme (BF(B))an soit définie sur F :

Exemple 3.12. Soient x, y, z des variables sur un corps F0 de caractéristique 2, et
F = F0(x, y, z). Soit B = 〈x, y, xy, 1 + x, z, (1 + x)z〉. Alors, B est une voisine
de Pfister mais la forme (BF(B))an n’est pas définie sur F .

Démonstration. Puisque [x] ⊥ [1+ x] ' [1] ⊥ [x] et [z] ⊥ [z(1+ x)] ' [z] ⊥ [xz],
on obtient que B est voisine de 〈〈x, y, z〉〉. On a nécessairement dim(BF(B))an = 4
puisque BF(B) ne peut être métabolique. Ainsi, B est de hauteur et de degré 2. De
plus, par le théorème 5.10 B ne peut être bonne et donc la forme (BF(B))an n’est
pas définie sur F . �

On finit cette sous-section par un résultat qui montre qu’une forme bilinéaire
anisotrope devient une voisine de Pfister anisotrope après extension des scalaires
à un corps convenable. L’ingrédient essentiel qu’on utilise est la notion de degré
normique d’une forme totalement singulière. On renvoie à [Hoffmann and Laghribi
2004, section 8] pour plus de détails sur cet invariant et certaines de ses applica-
tions. Rappelons tout de même que le corps normique d’une forme quadratique
totalement singulière non nulle ϕ, qu’on note NF (ϕ), est défini par NF (ϕ) =

F2(ab | a, b ∈ DF (ϕ)). Le degré [NF (ϕ) : F2
] s’appelle le degré normique de

ϕ, et on le note ndegF (ϕ).

Proposition 3.13. Soient n ≥ 1 un entier et B une forme bilinéaire anisotrope telle
que dim B ∈ ]2n, 2n+1

]. Posons ndegF (B̃)= 2l .
(1) On a l ≥ n + 1, et B est une voisine de Pfister si et seulement si l = n + 1.
(2) Si l>n+1, alors il existe une suite de formes bilinéaires πl−n−2 ⊂· · ·⊂π0 telle
que chaque πi soit une (l − i)-forme bilinéaire de Pfister et BK soit une voisine de
Pfister anisotrope, où K = F(π0) · · · (πl−n−2).

Démonstration. (1) L’inégalité l ≥ n+1 provient de [Hoffmann and Laghribi 2004,
prop. 8.6]. De plus, par [Hoffmann and Laghribi 2004, prop. 8.9] on a que B̃ est
une quasi-voisine de Pfister si et seulement si l = n + 1, et par la proposition 3.8
ceci équivaut à dire que B est une voisine de Pfister.
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(2) On reprend la même preuve de [Laghribi 2004b, prop. 1.9] appliquée à la
forme B̃, et on utilise la proposition 3.8. �

3B. Les formes bilinéaires voisines strictes.

Définition 3.14. Une forme bilinéaire anisotrope B est dite une voisine stricte s’il
existe une forme bilinéaire anisotrope C telle que (BF(B))an ' CF(B).

Supposons que B ⊥ C soit anisotrope.

Lemme 3.15. Soient B,C,C ′ des formes bilinéaires anisotropes telles que

(BF(B))an ' CF(B) ' C ′

F(B).

Si B ⊥ C est anisotrope, alors B ⊥ C ′ est aussi anisotrope.

Démonstration. Par la proposition 3.9, la forme B ⊥ C (resp. (B ⊥ C ′)an) est
semblable à une forme bilinéaire de Pfister π1 (resp. π2) dont B est voisine. Puisque
B̃ est semblable à une sous-forme de π̃2 et que B est isotrope sur F(π1), on déduit
que π2 est isotrope sur F(π1) et donc elle est métabolique sur F(π1). En particulier,
dimπ1 ≤ dimπ2. Comme dimπ2 ≤ dimπ1, on a nécessairement dim(B ⊥ C) =

dim(B ⊥ C ′)an. Ainsi, B ⊥ C ′ est anisotrope. �

Soit B une forme bilinéaire voisine stricte et C une autre forme bilinéaire telle
(BF(B))an ' CF(B). Par le lemme 3.15, B est de l’un des deux types suivants qui
s’excluent mutuellement :

Type I : si B ⊥ C est isotrope.

Type II : si B ⊥ C est anisotrope.

Voici une propriété sur les formes voisines strictes de type II qui les rapprochent
des formes quadratiques voisines :

Proposition 3.16. Soient B et C des formes bilinéaires anisotropes. Si (BF(B))an '

CF(B) et B ⊥ C est anisotrope, alors B ⊥ C est semblable à une forme bilinéaire
de Pfister et la forme C est unique.

Démonstration. Soit n ≥ 1 un entier tel que dim B ∈ ]2n−1, 2n
]. Puisque dim B >

dim C et (B ⊥ C)F(B) ∼ 0, alors on obtient par la proposition 3.9 que B ⊥ C est
semblable d’une m-forme bilinéaire de Pfister dont B est voisine. Ainsi, n = m et
dim C < 2n−1 < dim B. Si C ′ est une forme bilinéaire telle que (BF(B))an ' C ′

F(B),
alors par le lemme 3.15 B ⊥ C ′ est anisotrope. Comme pour la forme C , on a
dim C ′ < 2n−1 < dim B. Puisque (C ⊥ C ′)F(B) ∼ 0 et 2 dim B > 2n > dim C +

dim C ′, on obtient par la proposition 3.9 que C ' C ′. �

Cette proposition motive la définition suivante :
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Définition 3.17. Soient B et C deux formes bilinéaires anisotropes telles que
(BF(B))an ' CF(B) et B ⊥ C est anisotrope. La forme C est appelée la forme
complémentaire de B.

Lemme 3.18. Soit B une forme bilinéaire anisotrope qui est une voisine stricte de
type II et de forme complémentaire C. Si K est une extension de F telles que BK

et CK soient anisotropes, alors (BK (B))an ' CK (B).

Démonstration. La condition (BF(B))an ' CF(B) donne BK (B) ∼ CK (B). Comme
B est de forme complémentaire C , on obtient que dim B > 2n > dim C pour un
certain entier n ≥ 1. Comme BK et CK sont anisotropes, on a par [Hoffmann and
Laghribi 2006, th. 1.1] que CK (B) est anisotrope et donc (BK (B))an ' CK (B). �

Définition 3.19. Soient B et C des formes bilinéaires anisotropes telles que dim B>
dim C . Un couple de formes bilinéaires (B ′,C ′) est dit lié au couple (B,C) s’il
existe une forme bilinéaire η telle que : B ' B ′

⊥ η, C ' C ′
⊥ η et (B ⊥ C)an '

B ′
⊥ C ′. Dans ce cas, on note (B,C) 99K (B ′,C ′).

Le résultat suivant montre que de toute forme voisine stricte on peut se ramener
au cas d’une forme voisine stricte de type II :

Proposition 3.20. Soient B et C des formes bilinéaires anisotropes telles que
dim B > dim C. Soient B ′ et C ′ des formes bilinéaires telles que (B,C) 99K
(B ′,C ′).
(1) On a équivalence entre les assertions suivantes:
(i) (BF(B))an ' CF(B).
(ii) (B ′

F(B ′))an ' C ′

F(B ′), B ′

F(B) est isotrope et CF(B) est anisotrope.
(2) Si l’une des conditions équivalentes de (1) est vérifiée, alors B et B ′ sont voi-
sines de la même forme bilinéaire de Pfister, et B ′ est une voisine stricte de type II.

Démonstration. Soient B ′ et C ′ des formes bilinéaires telles que (B,C)99K (B ′,C ′).
(1) (i) H⇒ (ii) Supposons que (BF(B))an ' CF(B). Alors, CF(B) est anisotrope

et (B ′
⊥ C ′)F(B) ∼ 0. Puisque B ′

⊥ C ′ est anisotrope et

dim(B ′
⊥ C ′)≤ dim(B ⊥ C) < 2 dim B,

on déduit par la proposition 3.9 que B ′
⊥ C ′ est semblable à une n-forme de Pfister

dont B est voisine. En particulier, B ′

F(B) est isotrope puisque dim B ′ > dim C ′ (car
dim B > dim C). Comme dim B ′ > 2n−1 > dim C ′, on déduit par [Hoffmann and
Laghribi 2006, th. 1.1] que C ′

F(B ′) est anisotrope. Puisque (B ′
⊥ C ′)F(B ′) ∼ 0, on

obtient (B ′

F(B ′))an ' C ′

F(B ′).
(ii) H⇒ (i) Puisque (B ′

F(B ′))an ' C ′

F(B ′), la proposition 3.9 implique que B ′
⊥ C ′

est semblable à une forme bilinéaire de Pfister. De l’isotropie de B ′

F(B) on déduit
que (B ′

⊥ C ′)F(B) ∼ 0. Ainsi, (B ⊥ C)F(B) ∼ 0. Comme CF(B) est anisotrope, on
a bien (BF(B))an ' CF(B).
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(2) Si on a l’une des conditions équivalentes de (1), il est clair que B ′ est une
voisine stricte de type II. Comme dim B ≥ dim B ′ et B ′

F(B) est isotrope, on obtient
par la proposition 3.10 que B et B ′ sont voisines d’une même forme bilinéaire de
Pfister. �

En vue de l’introduction de la notion de forme complémentaire dans le cas des
formes voisines strictes de type II, on suggère la définition suivante d’une forme
bilinéaire excellente :

Définition 3.21. Une forme bilinéaire anisotrope B est dite excellente si dim B ≤ 1
ou bien dim B>1 et B est une voisine stricte de type II et de forme complémentaire
une forme excellente.

Voici une description de la tour de déploiement standard d’une forme bilinéaire
excellente :

Proposition 3.22. Soit B une forme bilinéaire anisotrope excellente de dimension
≥ 2 et de tour de déploiement standard (Bi , Fi )0≤i≤h(B). Alors, h(B)≥ 1 et il existe
une suite de formes bilinéaires (Ci )0≤i≤h(B) telle que:
(1) Bi ' (Ci )Fi pour tout i ∈ {0, . . . , h(B)}.
(2) Ci est une voisine stricte de type II et de forme complémentaire Ci+1 pour tout
i ∈ {0, . . . , h(B)− 1}.

Démonstration. Il est évident que h = h(B)≥ 1. Supposons que B soit excellente.
Alors, il existe une suite (Ci )0≤i≤k de formes bilinéaires telles que C0 = B, Ck est
la forme nulle, et Ci soit une voisine stricte de type II et de forme complémentaire
Ci+1. Supposons qu’on ait Bi ' (Ci )Fi pour un certain i < h(B). Alors, Fi+1 =

Fi (Ci ) et on a

(3) (Bi )Fi+1 ∼ Bi+1 ∼ (Ci )Fi (Ci ) ∼ (Ci+1)Fi+1 .

Comme Ci est une voisine de forme complémentaire Ci+1 et que Ci est anisotrope
sur Fi , alors la forme Ci+1 est aussi anisotrope sur Fi . On déduit par le lemme 3.18
que ((Ci )Fi (Ci ))an ' (Ci+1)Fi+1 , et la relation (3) implique que Bi+1 ' (Ci+1)Fi+1 .

Ainsi de suite, on aboutit à Bh−1 ' (Ch−1)Fh−1 et donc la forme Ch est forcèment
nulle. En particulier, k = h(B). �

4. L’invariant degré pour les formes bilinéaires

Pour introduire le degré d’une forme bilinéaire, on se basera sur le théorème
suivant qui classifie les formes bilinéaires de hauteur 1 :

Théorème 4.1. Soit B une forme bilinéaire anisotrope. Alors, B est de hauteur 1 si
et seulement si B est semblable à une forme bilinéaire de Pfister ou est semblable
à la partie pure d’une forme bilinéaire de Pfister.
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Démonstration. Le théorème a été prouvé dans [Laghribi 2005, cor. 5.5] lorsque
dim B est paire. Supposons que dim B soit impaire. Alors, par hypothèse on a
(BF(B))an ' 〈α〉F(B) avec α = det B. Par conséquent, (B ⊥ 〈α〉)F(B) ∼ 0. On a
B ⊥ 〈α〉 6∼ 0, et le théoème 3.5 donne dim B ≤ dim(B ⊥ 〈α〉)an. Ainsi, B ⊥ 〈α〉 est
anisotrope. Par la proposition 3.9, B ⊥ 〈α〉 ' βπ avec π une forme bilinéaire de
Pfister et β ∈ F∗. Par la multiplicativité d’une forme bilinéaire de Pfister [Baeza
1978, cor. 2.16, page 101], et l’unicité de la partie pure d’une telle forme (cor. 2.18,
ibid.), il est clair que αB ' π ′. �

Corollaire 4.2. Soit B une forme bilinéaire non nulle de tour de déploiement stan-
dard (Fi , Bi )0≤i≤h avec h = h(B). Alors, il existe une unique forme bilinéaire de
Pfister π telle que Bh−1 soit semblable à π ou semblable à la partie pure de π
suivant que dim B est paire ou impaire.

Démonstration. On utilise le théorème 4.1 et le fait que Bh−1 est de hauteur 1, ainsi
que la multiplicativité et l’unicité de la partie pure d’une forme de Pfister. �

Définition 4.3. Soit B une forme bilinéaire non nulle de tour de déploiement stan-
dard (Fi , Bi )0≤i≤h avec h = h(B)≥ 1.
(1) Le corps Fh−1 s’appelle le corps dominant de B.
(2) La forme dominante de B est l’unique forme bilinéaire de Pfister correspondant
à Bh−1 au sens du corollaire 4.2.
(3) Si dim B est paire, le degré de B est l’entier d tel que dim Bh−1 = 2d . Si dim B
est impaire, on dit que B est de degré 0. Dans les deux cas, on désigne par deg(B)
le degré de B.

Notations 4.4. Pour tout entier n ≥ 0, on désigne par :
(1) J b

n (F) l’ensemble des formes bilinéaires de degré ≥ n.
(2) I n F le quotient I n F/I n+1 F .
(3) I n(K/F) le noyau de l’homomorphisme I n F −→ I n K induit par l’inclusion
F ⊂ K .

Le résultat principal de cette section est le théorème suivant :

Théorème 4.5. Pour tout entier n ≥ 0, on a I n F = J b
n (F).

On introduit quelques résultats préliminaires nécessaires pour la preuve de ce
théorème.

Lemme 4.6. Soient t une variable sur F , B une forme bilinéaire sur F et ϕ =

B ⊗ [1, t−1
]. Alors:

(1) B est isotrope si et seulement si ϕ est isotrope.
(2) iW (ϕ) = 2iW (B). En particulier, B est métabolique si et seulement si ϕ est
hyperbolique.
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Démonstration. (1) Si ϕ est anisotrope, alors B est aussi anisotrope. Supposons
que B soit anisotrope. On pose B ' 〈a1〉 ⊥ · · · ⊥ 〈an〉 pour a1, · · · , an ∈ F∗

convenables. On a ϕ'a1[1, t−1
]⊥ · · ·⊥an[1, t−1

]. Supposons que ϕ soit isotrope,
et soit (p1, q1, . . . , pn, qn) ∈ F(t)2n

− {0} tel que :

(4)
n∑

i=1

ai (p2
i + pi qi + t−1q2

i )= 0.

Sans perdre de généralités, on peut supposer que p1, q1, . . . , pn, qn sont des po-
lynômes non tous divisibles par t . On multiplie (4) par t , on substitue 0 à t , et on
utilise l’anisotropie de B pour déduire que les polynômes qi sont tous divisibles
par t . On substitue de nouveau 0 à t et on utilise l’anisotropie de B pour déduire
cette fois-ci que t divise tous les polynômes pi , une contradiction.

(2) Soit B ' M ⊥ Ban la décomposition de Witt de B. On a ϕ ' M ⊗[1, t−1
] ⊥

Ban ⊗ [1, t−1
] et la forme M ⊗ [1, t−1

] est hyperbolique. Par (1) on a que Ban ⊗

[1, t−1
] est anisotrope. Ainsi, iW (ϕ)= dim M = 2iW (B). �

Lemme 4.7. Soient t une variable sur F , B une forme bilinéaire non nulle de degré
d. Alors, deg(B ⊗ [1, t−1

])≤ d + 1.

Démonstration. Posons K = F(t). Soient (Fi , Bi )0≤i≤h et (K j , ϕ j )0≤ j≤k les tours
de déploiement standard respectives de B et ϕ, avec h = h(B) et k = h(ϕ). On
a donc dim(BFh−1)an = 2d . Par le lemme 4.6, dim(ϕK ·Fh−1)an = 2d+1. Puisque
(K j , ϕ j )0≤ j≤k est la tour de déploiement générique de ϕ [Knebusch and Rehmann
2000], il existe 1 ≤ j ≤ k − 1 tel que dimϕ j = 2d+1. Ainsi, deg(ϕ)≤ d + 1. �

On donne l’analogue du Hauptsatz d’Arason-Pfister pour les formes bilinéaires.
Baeza a prouvé le même résultat dans le cas des formes quadratiques en caracté-
ristique 2 [Baeza 1973] :

Lemme 4.8. Soit n ≥ 0 un entier et B une forme bilinéaire non métabolique. Si
B ∈ I n F , alors dim Ban ≥ 2n . Si dim Ban = 2n , alors Ban est semblable à une
n-forme bilinéaire de Pfister.

Démonstration. Sans perdre de généralités, on peut supposer que B est anisotrope.
Soit t une variable sur F et ϕ= B ⊗[1, t−1

]. On a ϕ ∈ I n+1
q F(t). Par le lemme 4.6,

ϕ est anisotrope. Par [Baeza 1973] dimϕ ≥ 2n+1, i.e., dim B ≥ 2n . Si dim B = 2n ,
alors BF(B) ∼ 0 puisque BF(B) ∈ I n F(B). Par le théorème 4.1, B est semblable à
une n-forme bilinéaire de Pfister. �

On aura besoin du théorème de la sous-forme dans le cas des formes quadra-
tiques :

Théorème 4.9 [Hoffmann and Laghribi 2004, th. 4.2]. Soient ϕ et ϕ′ deux formes
quadratiques anisotropes telles que ϕ′ soit non singulière et devienne hyperbolique
sur F(ϕ). Alors, ϕ ≺ αϕ′ pour tout scalaire α ∈ DF (ϕ)DF (ϕ

′).
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Comme on l’a évoqué dans l’introduction, l’analogue du théorème 4.5 pour les
formes quadratiques en caractéristique 2 est dû à Aravire et Baeza [2003] :

Théorème 4.10. Pour tout entier n ≥ 1, on a que I n
q F est l’ensemble des formes

quadratiques non singulières de degré ≥ n.

Ce théorème 4.10 permet de déduire le corollaire suivant :

Corollaire 4.11. Soient n ≥ 0 un entier, ϕ ∈ I n+1
q F et ψ une forme quadratique

totalement singulière anisotrope de dimension > 2n . Si ϕF(ψ) ∈ I n+2
q F(ψ), alors

ϕ ∈ I n+2
q F.

Démonstration. Supposons que ϕ 6∈ I n+2
q F . Par le théorème 4.10, on déduit que ϕ

est de degré n + 1. Soient (Fi , ϕi )0≤i≤h sa tour de déploiement standard et π sa
forme dominante avec h = h(ϕ). Puisque πFh−1(ψ) ∈ I n+2 Fh−1(ψ), on obtient par
le lemme 4.8 que πFh−1(ψ) ∼ 0. Comme ψ est totalement singulière de dimension
> 2n , on obtient par le théorème 4.9 que π ∼ 0, une contradiction. �

Lemme 4.12. Soient t une variable sur F , B ∈ I n F une forme bilinéaire telle que
B ⊗ [1, t−1

] ∈ I n+2
q F(t). Alors, B ∈ I n+1 F.

Démonstration. Posons B =π1 ⊥· · ·⊥πm avec π1, · · · , πm des formes semblables
à des n-formes bilinéaires de Pfister anisotropes. On procède par induction sur m.
Si m ≤ 1, alors le lemme 4.8 implique que B ⊗[1, t−1

] est hyperbolique, et donc B
est métabolique par le lemme 4.6. Supposons que m ≥ 2. Sur le corps L = F(πm)

et par induction sur m, on a que BL ∈ I n+1L . Ainsi, B + I n+1 F ∈ I n(L/F). Par
un résultat de Aravire et Baeza [2003], on déduit que B ⊥ π ∈ I n+1 F pour une n-
forme bilinéaire de Pfister convenable. Puisque B⊗[1, t−1

] ∈ I n+2
q F(t), on obtient

que π ⊗ [1, t−1
] ∈ I n+2 F(t). Les lemmes 4.6 et 4.8 impliquent que π ∼ 0. Ainsi,

B ∈ I n+1 F . �

Le résultat suivant étend un calcul fait auparavant par Aravire et Baeza unique-
ment dans le cas du corps de fonctions d’une forme bilinéaire de Pfister [Aravire
and Baeza 2003] :

Proposition 4.13. Soit n ≥ 1 un entier et ψ une forme quadratique totalement
singulière telle que dimψan > 2n . Alors, I n(F(ψ)/F)= {0}.

Démonstration. On sait que si ψ est isotrope, alors F(ψ) est une extension trans-
cendante pure de F(ψan). Donc, sans perdre de généralités, on peut supposer
que ψ est anisotrope. Soient B ∈ I n F telle que B + I n+1 F ∈ I n(F(ψ)/F), et
ϕ = B ⊗ [1, t−1

]. Alors, ϕ ∈ I n+1
q F(t) et ϕ + I n+2

q F ∈ I n+1
q (F(t)(ψ)/F(t)). Par

le corollaire 4.11, ϕ ∈ I n+2
q F(t). Le lemme 4.12 implique que B ∈ I n+1 F . �

On obtient un corollaire qui va permettre de simplifier certains calculs plus tard :
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Corollaire 4.14. Soient ϕ0, . . . , ϕk des formes quadratiques totalement singulières
anisotropes de dimension > 2n telles que ϕi soit anisotrope sur F(ϕ0) · · · (ϕi−1)

pour tout i ≥ 1. Soit L = F(ϕ0) · · · (ϕk). Alors:
(1) I j (L/F)= {0} pour tout j ≤ n.
(2) Une forme bilinéaire métabolique sur L appartient à I n+1 F.

Démonstration. Puisque dimϕi > 2 j pour tous j ≤ n et i ∈ {0, · · · , k}, on peut
appliquer de manière répétée la proposition 4.13. �

Démonstration du théorème 4.5. Soit n ≥ 1 un entier.
(1) I n F ⊂ J b

n (F) : Soient B ∈ I n F non nulle, t une variable sur F et ϕ =

B⊗[1, t−1
]. Par le lemme 4.7, deg(ϕ)≤ deg(B)+1. Comme ϕ ∈ I n+1

q K , on déduit
par le théorème 4.10 que deg(ϕ)≥ n + 1, i.e., deg(B)≥ n et donc B ∈ J b

n (F).
(2) J b

n (F) ⊂ I n F : Soit B ∈ J b
n (F) non nulle. On peut supposer B anisotrope

et on procède par induction sur dim B. On a dim B ≥ 2n .
Si dim B =2n , alors BF(B) est métabolique. Par le théorème 4.1, B est semblable

à une n-forme bilinéaire de Pfister, et donc B ∈ I n F .
Si dim B > 2n . Puisque deg(B) = deg(BF(B)), on obtient par induction que

BF(B)∈ I n F(B). Par la proposition 4.13, on déduit que si B ∈ I k F avec k<n, alors
B ∈ I k+1 F . Ainsi, en appliquant ceci de manière successive pour k ∈{1, . . . , n−1},
on déduit que B ∈ I n F . �

Maintenant on donne un corollaire qui complète le lemme 4.7 :

Corollaire 4.15. Soient t une variable sur F et B une forme bilinéaire non nulle.
Alors, deg(B)+ 1 = deg(B ⊗ [1, t−1

]).

Démonstration. Posons ϕ = B ⊗ [1, t−1
], d = deg(B) et d ′

= deg(ϕ). Si d = 0,
alors il est clair que d ′

= 1. Supposons d ≥ 1. L’inégalité d ′
≤ d + 1 provient du

lemme 4.7. Si d + 1 > d ′, alors B ∈ J b
d ′(F) = I d ′

F . Par conséquent, ϕ ∈ I d ′
+1

q F ,
une contradiction. �

5. Les formes bilinéaires bonnes

5A. Généralités sur les formes bilinéaires bonnes. La théorie de déploiement
met en évidence une classe importante de formes quadratiques, celle des formes
quadratiques bonnes (“good forms” dans la terminologie de [Fitzgerald 1984]).
Dans cette section, on va étendre certains résultats connus sur ces formes quadra-
tiques au cas des formes bilinéaires en caractéristique 2.

Définition 5.1. Une forme bilinéaire non nulle est dite bonne si sa forme dominante
est définie sur F .

Exemple 5.2. Si B est une forme bilinéaire de dimension paire et de déterminant
d 6= 1, alors elle est bonne de degré 1 et de forme dominante 〈1, d〉L , où L est le
corps dominant de B.
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Démonstration. Soit π la forme dominante de B. Puisque BL ∼ π , les formes BL

et π ont le même déterminant (modulo un carré). Ainsi, π ne peut être qu’une
1-forme bilinéaire de Pfister et donc π ' 〈1, d〉L . �

Voici quelques propriétés générales liées aux formes bilinéaires bonnes :

Proposition 5.3. Soit B une forme bilinéaire non nulle de hauteur h. On note
(Fi , Bi )0≤i≤h la tour de déploiement standard de B et τ sa forme dominante. Po-
sons dim τ = 2d .
(1) Si B est bonne, alors il existe une unique d-forme bilinéaire de Pfister C définie
sur F telle que τ ' CFh−1 .
(2) Si B est de dimension paire, alors B est bonne si et seulement si B ⊥C ∈ I d+1 F
pour une certaine d-forme bilinéaire de Pfister C. Dans ce cas, CFh−1 est la forme
dominante de B.
(3) Si B est de dimension impaire, alors B est bonne si et seulement si B ⊥ 〈det B〉

est bonne. Dans ce cas, B et B ⊥ 〈det B〉 ont la même forme dominante.
(4) Si dim B est paire et C est une d-forme bilinéaire de Pfister telle que B ⊥ rC ∈

I d+2 F pour r ∈ F∗ convenable, alors Bh−1 ' (rC)Fh−1 .

Avant de prouver cette proposition, on donne un lemme préliminaire :

Lemme 5.4. Soient B et C des formes bilinéaires anisotropes avec C une forme
bilinéaire de Pfister. Soit t une variable sur F.
(1) Si B ⊗[1, t−1

] est hyperbolique sur le corps de fonctions de C ⊗[1, t−1
], alors

il existe α1, . . . , αs ∈ F∗ des scalaires convenables tels que B ' α1C ⊥ · · · ⊥ αsC.
(2) Si dim B = dim C = 2d et aB ⊥ C ∈ I d+1 F pour un certain a ∈ F∗, alors B
est semblable à C.

Démonstration. Posons ϕ = B ⊗ [1, t−1
] et ψ = C ⊗ [1, t−1

].
(1) On procède par induction sur dim B. Soit α1 ∈ DF (B)DF (C). Par le théorème

4.9, on a α1ψ ⊂ϕ. Du lemme 4.6 on obtient α1C ⊂ B. Soit B ′ une forme bilinéaire
telle que B ' α1C ⊥ B ′. Puisque (ϕ ⊥ α1ψ)an ' B ′

⊗[1, t−1
] est hyperbolique sur

F(t)(ψ) et que dim B ′<dim B, on obtient par induction que B ′
'α2C ⊥· · ·⊥αsC

pour certains α2, . . . , αs ∈ F∗. Ainsi, B ' α1C ⊥ · · · ⊥ αsC .
(2) Puisque aB ⊥ C ∈ I d+1 F , on obtient que aϕ⊥ψ ∈ I d+2 F(t). Par le lemme

4.8, la forme ϕ devient hyperbolique sur le corps de fonctions de ψ . Par l’assertion
(1), on déduit que B est semblable à C . �

Démonstration de la proposition 5.3. Soit B une forme bilinéaire non nulle de
hauteur h, de degré d et de tour de déploiement standard (Fi , Bi )0≤i≤h . Soit τ sa
forme dominante.

La proposition est clairement vérifiée lorsque h = 1. On peut donc supposer
h ≥ 2.
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(1) Supposons que B soit bonne. Soit ρ une forme bilinéaire définie sur F telle
que ρFh−1 ' τ . Alors ρFh−1 ∈ I d Fh−1. Soit k le plus grand entier tel que ρ ∈ I k F .
Par le lemme 4.8, on a k ≤ d . Si k < d , alors ρFh−1 ∈ I k(Fh−1/F). Par le corollaire
4.14(1), ρ ∈ I k+1 F car Fh−1 est la succession de corps de fonctions de formes
bilinéaires de dimension > 2d , une contradiction. Ainsi, ρ ∈ I d F et par le lemme
4.8 ρ est semblable à une d-forme bilinéaire de Pfister C .

Il reste à prouver l’unicité de C . En effet, si C ′ est une autre forme bilinéaire de
Pfister telle que τ ' C ′

Fh−1
, alors (C ⊥ C ′)Fh−1 ∼ 0. Le corollaire 4.14(2) implique

que C ⊥ C ′
∈ I d+1 F . Comme C ⊥ C ′ est isotrope (car 1 ∈ DF (C)∩ DF (C ′)), on

obtient par le lemme 4.8 que C ' C ′.
(2) Supposons que dim B soit paire. Soit C une d-forme bilinéaire de Pfister

définie sur F .
Si τ ' CFh−1 , alors BFh−1 ⊥ CFh−1 ∈ I d+1 F . Puisque B ⊥ C ∈ I d F , on déduit que

B ⊥C+ I d+1 F ∈ I d(Fh−1/F). Par le corollaire 4.14(1), on obtient B ⊥C ∈ I d+1 F .
Réciproquement, si B ⊥C ∈ I d+1 F , alors xτ ⊥CFh−1 ∈ I d+1 Fh−1 pour x ∈ F∗

h−1
convenable. Par le lemme 5.4(2) et la multiplicativité d’une forme de Pfister, on
déduit que τ est isométrique à CFh−1 , et donc B est bonne.

(3) Supposons que dim B soit impaire. Posons α = det B.
Si B est bonne, alors par l’assertion (1) il existe C une d-forme bilinéaire de

Pfister tel que τ ' CFh−1 . Comme Bh−1 est semblable à la partie pure τ ′ de τ ,
on obtient par comparaison des déterminants que αBh−1 ' τ ′. Ainsi, αBh−1 ⊥

〈1〉 ' CFh−1 , et donc (αB ⊥ 〈1〉 ⊥ C)Fh−1 ∼ 0. Comme Fh−1 est une succession
de corps de fonctions de formes bilinéaires de dimension ≥ 2d

+ 1, on obtient par
le corollaire 4.14(2) que αB ⊥ 〈1〉 ⊥ C ∈ I d+1 F . Ainsi, αB ⊥ 〈1〉 est bonne,
c’est-à-dire, B ⊥ 〈α〉 est aussi bonne.

Réciproquement, supposons que B ⊥ 〈α〉 soit bonne. Alors, il existe C une d-
forme bilinéaire de Pfister tel que B ⊥ 〈α〉 ⊥ C ∈ I d+1 F . En particulier, Bh−1 ⊥

(〈α〉 ⊥ C)Fh−1 ∈ I d+1 Fh−1. Comme Bh−1 ⊥ 〈α〉 est semblable à τ , on obtient par
le lemme 5.4 que τ ' CFh−1 et donc B est bonne.

(4) Supposons que B ⊥ rC ∈ I d+2 F pour un certain r ∈ F∗. Alors, Bh−1 ⊥

(rC)Fh−1 ∈ I d+2 Fh−1. Par le lemme 4.8 on a que Bh−1 ' (rC)Fh−1 . �

L’exemple suivant montre que la réciproque de l’assertion (4) de la proposition
5.3 n’est pas vraie en général :

Exemple 5.5. Soient F0 un corps de caractéristique 2 et x , y des variable sur F0.
Soient F = F0(x, y) et B = 〈1, x, x + y, xy〉. Alors :
(1) B est bonne de hauteur 2, de degré 1 et de forme dominante τ = 〈1, y(x + y)〉.
(2) On a (BF(B))an ' (yτ)F(B) mais B ⊥ yτ ne peut être dans I 3 F .

Démonstration. Soit π = 〈〈x, y〉〉. Puisque π ∈ A(B̃), la forme B est voisine de π .
De plus, B est de déterminant y(x + y) 6= 1, donc B est nécessairement de hauteur
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2, de degré 1 et de forme dominante τ . Puisque πF(B) est isotrope et B ∼π⊥ yτ , on
obtient (BF(B))an ' (yτ)F(B). Mais par le lemme 4.8, on ne peut avoir B ⊥ατ ∈ I 3 F
car B est anisotrope. �

5B. Formes bilinéaires bonnes de hauteur 2. La démonstration du lemme suivant
se fait comme dans le cas des formes quadratiques en utilisant la multiplicativité
d’une forme bilinéaire de Pfister :

Lemme 5.6. Soient α1, . . . , αs ∈ F∗ et B une forme bilinéaire de Pfister. Alors,
iW (⊥

s
i=1 αi B)= 0 ou ≥ dim B.

On étend aux formes bilinéaires un résultat récent de Karpenko [2004] décrivant
les dimensions de certaines formes quadratiques de I n sur un corps de caracté-
ristique 6= 2 :

Proposition 5.7. Soient n ≥ 1 un entier et B ∈ I n F anisotrope telle que dim B <
2n+1. Alors, dim B ∈ {2n+1

− 2i
| 1 ≤ i ≤ n + 1}.

Démonstration. Soit t une variable sur F . On a B ⊗ [1, t−1
] ∈ I n+1

q F(t) qui est
de dimension < 2n+2. En considérant F(t) comme étant le corps résiduel d’un
corps K de caractéristique 0, complet pour une valuation discrète, on peut utiliser
le résultat de Karpenko [2004] pour déduire qu’un relèvement de B ⊗[1, t−1

] à K
a pour dimension 2n+2

−2i avec 1 ≤ i ≤ n +2 (en fait on a ceci pour 2 ≤ i ≤ n +2
puisque dim B est paire). Ainsi, dim B ∈ {2n+1

− 2i
| 1 ≤ i ≤ n + 1}. �

Remarque 5.8. La même idée de la preuve de la proposition 5.7 permet d’avoir
l’analogue du résultat de Karpenko dans le cas des formes non singulières. Mais
on n’en a pas besoin ici.

Maintenant on donne nos résultats classifiant les formes bilinéaires bonnes de
hauteur 2. Dans le cas d’une forme de dimension impaire on obtient :

Proposition 5.9. Soit B une forme bilinéaire anisotrope bonne de hauteur 2 et de
dimension impaire. Alors:
(1) B est une voisine de Pfister.
(2) Il existe π semblable à une forme bilinéaire de Pfister dont B est voisine, et C
une forme bilinéaire semblable à la partie pure d’une certaine d-forme bilinéaire
de Pfister telles que: dim B > 2d et B ∼ C ⊥ π .
Réciproquement, une forme bilinéaire B vérifiant les conditions de (2) est bonne
de hauteur 2.

Démonstration. Soit B une forme bilinéaire anisotrope de dimension impaire et de
hauteur 2. Soit (Bi , Fi )0≤i≤2 sa tour de déploiement standard. Par le corollaire 4.2,
il existe une unique forme bilinéaire de Pfister τ définie sur F tel que B1 'ατ ′ pour
un certain α ∈ F∗

1 . En comparant les déterminants, on peut supposer que α ∈ F∗.
De plus, si dim τ = 2d alors dim B ≥ 2d

+1> 2d puisque dim B> dim B1 = 2d
−1.
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Posons C = ατ ′. Puisque (B ⊥ C)F(B) ∼ 0 et dim B > dim C , on obtient par la
proposition 3.9 que la forme (B ⊥ C)an est semblable à une forme bilinéaire de
Pfister dont B est voisine. La forme π sera alors (B ⊥ C)an. D’où le résultat.

Réciproquement, si B est une forme bilinéaire qui vérifie les conditions de (2),
alors BF(B) ∼ CF(B). Puisque dim B > 2d > dim C , on obtient par [Hoffmann
and Laghribi 2006] que la forme CF(B) est anisotrope. Ainsi, (BF(B))an ' CF(B).
Comme C est semblable à la partie pure d’une forme bilinéaire de Pfister, on a que
CF(B) est de hauteur 1, et donc B est bonne de hauteur 2. �

Le résultat suivant classifie les formes bilinéaires bonnes de hauteur 2 et de
dimension paire :

Théorème 5.10. Soit B une forme bilinéaire non nulle de dimension paire, de
hauteur 2 et de degré d. On suppose que B est bonne de forme dominante C.
(1) Si dim B > 2d+1, alors on a deux cas:
(i) soit dim B est une puissance de 2. Dans ce cas, on ne peut pas conclure.
(ii) soit dim B n’est pas une puissance de 2. Dans ce cas, il existe ρ une forme
bilinéaire de dimension impaire tel que B ' ρ⊗C et B ⊥ αC soit semblable à une
n-forme bilinéaire de Pfister avec n ≥ d + 2 et α = det ρ.
(2) Si dim B ≤ 2d+1, alors dim B = 2d+1 et B ∼ xC ⊥ π avec x ∈ F∗ et π une
forme semblable à une (d + 1)-forme bilinéaire de Pfister.
Réciproquement, les conditions dans (1)(ii) (resp. dans (2)) sont suffisantes pour
dire que B est bonne de hauteur 2, de degré d et de forme dominante C.

Démonstration. Soient t une variable sur F , L = F(t), ϕ = B ⊗ [1, t−1
] et τ =

C ⊗ [1, t−1
]. Puisque (BF(B))an ' a(CF(B)) pour un certain a ∈ F(B)∗, alors

ϕL(B) ∼ a(τL(B)). Ainsi,

(5) ϕL(τ )(B) ∼ 0.

En particulier, ϕL(τ )(ϕ)(B) ∼ 0. Ceci implique que

(6) ϕL(τ )(ϕ) ∼ 0

car sinon la forme B̃L(τ )(ϕ) (qui est anisotrope par [Laghribi 2002a]) serait dominée
par (ϕL(τ )(ϕ))an, ce qui n’est pas possible par le théorème 4.9 car dim(ϕL(τ )(ϕ))an <

dimϕ = 2 dim B̃.
(1) Supposons que dim B>2d+1 et que dim B ne soit pas une puissance de 2. En

particulier, dimϕ n’est pas une puissance de 2. La forme ϕL(τ ) est nécessairement
isotrope et donc par (6) ϕL(τ ) ∼ 0, car sinon ϕL(τ ) serait de hauteur 1 et donc serait
semblable à une forme de Pfister [Laghribi 2002b], en particulier dimϕ serait une
puissance de 2. Par le lemme 5.4 on obtient B ' ρ ⊗ C pour une certaine forme
bilinéaire ρ. On a dim ρ impaire car sinon B serait dans I d+1 F , ce qui contredirait
deg(B)= d. Pour α = det ρ, on a ρ ⊥ 〈α〉 ∈ I 2 F , ainsi B ⊥ αC ∈ I d+2 F . Puisque
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(BF(B))an est semblable à CF(B), on obtient par le lemme 4.8 que (B ⊥αC)F(B)∼0.
La forme B ⊥ αC est anisotrope, car sinon par le lemme 5.6 iW (B ⊥ αC) ≥

dim C = 2d , et donc on aurait dim(B ⊥ αC)an ≤ dim B − dim C < dim B. Le
théorème 3.5 impliquerait B ⊥αC ∼ 0 et donc B serait isotrope, une contradiction.
Par la proposition 3.9, B ⊥ αC est semblable à une n-forme de Pfister. Puisque
dim(B ⊥ αC) > 2 dim C = 2d+1, on obtient n ≥ d + 2.

(2) Supposons que dim B ≤ 2d+1.
(i) Cas où BF(C) est anisotrope. Puisque BF(B)(C) est métabolique, on déduit par

le théorème 4.1 que BF(C) est semblable à une forme bilinéaire de Pfister. Ainsi,
dim B = 2d+1 puisque dim B > 2d .

(ii) Cas où BF(C) est isotrope. Par la relation (5) et [Laghribi 2005, prop. 3.9],
on obtient que ϕL(τ )(C) est hyperbolique. Comme τL(C) est isotrope, l’extension
L(C)(τ )/L(C) est transcendante pure et donc ϕL(C) est hyperbolique. Par le lemme
4.6, on a que BF(C) est métabolique. Puisque 2d < dim B ≤ 2d+1, on déduit de
[Laghribi 2005, th. 1.2] que B ' β1 B1 ⊥ β2 B2, où B1, B2 sont des d-formes
bilinéaires de Pfister associées à C̃ . En particulier, dim B = 2d+1.

Ainsi, dans les deux cas (i) et (ii) on a que dim B = 2d+1.
Soit x ∈ DF (B). On a 0 < dim(B ⊥ xC)an < 2d+1

+ 2d du fait que B ⊥ xC
est isotrope mais non métabolique. Puisque B ⊥ xC ∈ I d+1 F , on déduit par la
proposition 5.7 que dim(B ⊥ xC)an = 2d+1. Par le lemme 4.8, il existe π semblable
à une (d + 1)-forme bilinéaire de Pfister tel que B ⊥ xC ∼ π .

Réciproquement, si on est dans le cas (1)(ii) ou (2), alors B ⊥ C ∈ I d+1 F .
La proposition 5.3 implique que B est bonne de degré d et de forme dominante
C . Il reste à prouver que B est de hauteur 2. En effet, dans le cas (1)(ii) on a
BF(B) ∼ (αC)F(B). Puisque dim C = 2d < dim B, la forme CF(B) est anisotrope
[Hoffmann and Laghribi 2006]. Ainsi, (BF(B))an ' (αC)F(B) et donc B est de
hauteur 2. Si on est dans le cas (2), alors BF(B)(C) ∼ πF(B)(C). Comme dim B =

dimπ et BF(B) est isotrope, la forme πF(B)(C) est isotrope et donc métabolique.
Ainsi, BF(B)(C) ∼ 0. La forme BF(B) ne peut être métabolique, car sinon B serait
semblable à une (d + 1)-forme de Pfister et donc xC ∈ I d+1 F , ce qui contredirait
l’anisotropie de C . Ainsi, 0 < dim(BF(B))an < 2d+1. Puisque BF(B)(C) ∼ 0, on a
par [Laghribi 2005, th. 1.2] que (BF(B))an est semblable à une d-forme bilinéaire
de Pfister et donc B est de hauteur 2. �

On n’a pas une caractérisation des formes bilinéaires indiquées dans l’assertion
(1)(i) du théorème 5.10, c’est-à-dire, les formes B anisotropes qui sont bonnes
de hauteur 2 telles que dim B soit une puissance de 2 strictement supérieure à
2deg(B)+1. Ci-dessous on donne quelques exemples de telles formes bilinéaires.

Exemple 5.11. Soient k ≥ 2 et d ≥ 1 des entiers et x1, . . . , xd−1, y1, . . . , yk−1, u, v
des variables sur un corps F0 de caractéristique 2. Soit F = F0(u, v, xi , y j ). On
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considère C = 〈〈x1, . . . , xd−1〉〉, D = 〈〈y1, . . . , yk−1〉〉 et π = 〈〈u, v〉〉 ⊗ D ⊗ C .
Alors, la forme

B = 〈1, u, u + v, uv〉 ⊗ C ⊥ 〈〈u, v〉〉 ⊗ D′
⊗ C

vérifie les conditions suivantes :

(1) B est anisotrope de dimension 2k+d .
(2) B est une voisine de π .
(3) B ∼ π ⊥ v 〈1, v(u + v)〉 ⊗ C .
(4) B est bonne de forme dominante 〈1, v(u + v)〉⊗C , de hauteur 2 et de degré d.

Démonstration. La forme bilinéaire 〈1, u, u + v, uv〉 est associée à la forme qua-
dratique totalement singulière [1] ⊥ [u] ⊥ [v] ⊥ [uv]. Ainsi, on déduit facilement
que π est associée à B̃, et par conséquent B est une voisine de π . Puisque π est
anisotrope, la forme B est aussi anisotrope. Aussi, on vérifie que

B ∼ π ⊥ v 〈1, v(u + v)〉 ⊗ C.

Par raison de dimension et le théorème 3.5, la forme 〈1, v(u + v)〉⊗C est anisotrope
sur F(B). Puisque πF(B) est isotrope, on déduit que

(BF(B))an ' (v 〈1, v(u + v)〉 ⊗ C)F(B).

Ainsi, B est bonne de hauteur 2, de degré d et de forme dominante

〈1, v(u + v)〉 ⊗ C. �

Question 5.12. Soit B une forme bilinéaire anisotrope bonne de hauteur 2, de degré
d et de forme dominante C . On suppose que dim B = 2k > 2d+1. A-t-on B voisine
d’une k-forme bilinéaire de Pfister π et B ∼ απ ⊥ βC pour certains scalaires
α, β ∈ F∗ ?

5C. Sur les dimensions des formes bilinéaires de hauteur 2. Avant de donner
notre résultat concernant les dimensions des formes bilinéaires de hauteur 2, on
commence par donner un résultat sur la décomposition de Witt des formes bi-
linéaires. Notons tout d’abord que la forme métabolique M intervenant dans la
décomposition (2) n’est pas unique à isométrie près. En voici un exemple :

Exemple 5.13. Soit t une variable sur F . On a

〈t : 1 : 0〉 ⊥ 〈t〉 ' 〈0 : 1 : 0〉 ⊥ 〈t〉

et 〈t : 1 : 0〉 6' 〈0 : 1 : 0〉.

Démonstration. Posons B =〈t : 1 : 0〉⊥〈t〉. Soit {e, f, g} une F(t)-base de l’espace
sous-jacent à B telle que :
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B(e, e)= B(g, g)= t,

B( f, f )= B(e, g)= B( f, g)= 0,

B(e, f )= 1.

La restriction de B à l’espace engendré par {e+g, f } est la forme 〈0 : 1 : 0〉. Ainsi,
〈t : 1 : 0〉 ⊥ 〈t〉 ' 〈0 : 1 : 0〉 ⊥ 〈α〉 pour un certain α ∈ F(t)∗. En comparant les
déterminants dans cette dernière isométrie, on trouve que a =α (modulo un carré).
Finalement, 〈t : 1 : 0〉 6' 〈0 : 1 : 0〉 puisque les formes quadratiques associées à ces
formes bilinéaires sont [t] ⊥ [0] et [0] ⊥ [0] qui ne sont pas isométriques. �

Définition 5.14. Une forme bilinéaire est dite un plan hyperbolique si elle est
isométrique à 〈0 : 1 : 0〉. On la note H.

La proposition suivante raffine la décomposition de Witt d’une forme bilinéaire.

Proposition 5.15. Soit B une forme bilinéaire de dimension ≥ 1. Alors, il existe un
couple d’entiers (s, t) unique, des scalaires a1, . . . , at ∈ F∗ tels que:
(1) B ' s × H ⊥ (〈a1 : 1 : 0〉 ⊥ · · · ⊥ 〈at : 1 : 0〉)⊥ Ban.
(2) La forme quadratique (B̃)an est associée à la forme bilinéaire 〈a1, . . . , at 〉 ⊥

Ban.
En particulier, 〈a1, . . . , at 〉 ⊥ Ban est anisotrope, t + dim Ban = dim(B̃)an et
dim B̃ − dim(B̃)an = 2s + t .

Démonstration. Soit M une forme métabolique telle que B ' M ⊥ Ban. Parmi toutes
ces décompositions, on choisit celle telle que M contienne comme sous-forme un
nombre maximal de copies de H. Notons ce nombre s. Alors,

(7) B ' s × H ⊥ (〈a1 : 1 : 0〉 ⊥ · · · ⊥ 〈at : 1 : 0〉)⊥ Ban

pour certains a1, . . . , at ∈ F∗ avec 〈a1, . . . , at 〉 anisotrope. Sinon, il existerait
l1, . . . , lt ∈ F non tous nuls tels que b :=

∑t
i=1 ai l2

i ∈ DF (Ban). Ainsi, Ban '〈b〉⊥C
pour une certaine forme bilinéaire C , et on vérifie facilement que

(8) 〈a1 : 1 : 0〉 ⊥ · · · ⊥ 〈at : 1 : 0〉 ' 〈b : 1 : 0〉 ⊥ M ′

pour une forme bilinéaire convenable M ′. Par unicité de la partie anisotrope, la
forme M ′ est nécessairement métabolique. En utilisant la même preuve que celle
de l’exemple 5.13, on a

(9) 〈b : 1 : 0〉 ⊥ 〈b〉 ' H ⊥ 〈b〉

En substituant (8) et (9) dans (7), on aurait une contradiction avec le choix de s.
Posons C = 〈a1, . . . , at 〉 ⊥ Ban. En prenant la forme quadratique associée à B,

on obtient l’isométrie :

B̃ ' (2s + t)× [0] ⊥ C̃ ' j × [0] ⊥ (B̃)an
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pour un certain j ≥ 0. Puisque C̃ est anisotrope, on obtient par la simplification
de Witt [Hoffmann and Laghribi 2004, lem. 2.6] que C̃ ' (B̃)an. En particulier,
j = 2s + t = dim B − dim(B̃)an. D’où l’unicité du couple (s, t). �

Notations 5.16. Comme dans la proposition 5.15, on note ih(B)= s et im(B)= t .

Comme prouvé par Milnor [1971, th. 3], une forme bilinéaire B est déterminée,
à isométrie près, par sa dimension qui vaut 2 dim(B̃)an−dim Ban+2ih(B), sa partie
anisotrope et le F2-espace vectoriel DF (B)∪ {0}.

La proposition 5.15 se précise beaucoup plus dans le cas d’une forme bilinéaire
voisine de Pfister étendue à son corps de fonctions :

Proposition 5.17. Soit B une forme bilinéaire anisotrope qui est une voisine de
Pfister. Posons dim B = 2n

+ l avec 0 < l ≤ 2n , B1 = (BF(B))an, s = ih(BF(B)) et
t = im(BF(B)). Alors, on a:
(1) 2s + t = l et t + dim B1 = 2n .
(2) dim B = 2n+1

− dim B1 + 2s.

Démonstration. Posons C = (BF(B))an. Par la proposition 5.15, on peut écrire :

(10) BF(B) ' s × H ⊥ (〈a1 : 1 : 0〉 ⊥ · · · ⊥ 〈at : 1 : 0〉)⊥ C

avec 〈a1, . . . , at 〉 ⊥ C anisotrope. En considérant la forme quadratique associée à
BF(B), on obtient :

(11) B̃F(B) ' (2s + t)× [0] ⊥ ([a1] ⊥ · · · ⊥ [at ])⊥ C̃ .

Puisque B est une voisine de Pfister, la forme B̃ est une quasi-voisine de Pfister.
D’après [Laghribi 2004a, th. 3.6] et [Hoffmann and Laghribi 2004, section 8], on
sait que

(12) B̃F(B) ' l × [0] ⊥ (B̃F(B))an

et donc dim(B̃F(B))an =2n . Par la proposition 5.15, on a t+dim B1 =2n et l =2s+t ,
d’où l’affirmation (1). (2) se déduit de (1). �

De cette proposition on peut déduire quelques corollaires. Le premier donne
des exemples de formes bilinéaires dont la décomposition de Witt admet des plans
métaboliques non hyperboliques et inversement :

Corollaire 5.18. (1) Si B est une n-forme bilinéaire de Pfister anisotrope, alors
ih(BF(B))= 0 et im(BF(B))= 2n−1.
(2) Si B est une forme bilinéaire de dimension 6 comme dans l’exemple 3.12, alors
ih(BF(B))= 1 et im(BF(B))= 0.

Démonstration. Puisque dans les deux cas les formes bilinéaires sont des voisines
de Pfister, on applique la proposition 5.17 sachant que dans le premier cas on a
dim(BF(B))an = 0, et dans le deuxième cas on a dim(BF(B))an = 4. �
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Corollaire 5.19. Soient B une forme bilinéaire anisotrope et K comme dans la
proposition 3.13. Posons dim B = 2n

+ l avec 0 < l ≤ 2n , s = ih(BK (B)) et t =

im(BK (B)). Alors, on a:
(1) 2s + t = l et t + dim(BK (B))an = 2n .
(2) dim B = 2n+1

− dim(BK (B))an + 2s.

Démonstration. Puisque BK est une voisine bilinéaire de Pfister anisotrope, le co-
rollaire se déduit de la proposition 5.17. �

Voici notre résultat autour des dimensions des formes bilinéaires anisotropes de
hauteur 2 :

Corollaire 5.20. Soit B une forme bilinéaire anisotrope de hauteur 2 et de forme
dominante de dimension 2d , non nécessairement bonne. Supposons que 2n <dim B
≤ 2n+1 pour un certain entier n ≥ 1. Alors, dim B appartient à l’ensemble {2n+1

−

2d
+ 2s + ε | 0 ≤ s ≤ 2d−1

− ε}, où ε = 0 ou 1 suivant que dim B est paire ou
impaire.

Démonstration. Soit ε comme dans le corollaire, et K comme dans la proposition
3.13. Si dim B = 2n+1

−ε, alors dans ce cas dim B ∈ {2n+1
−2d

+2s +ε | 0 ≤ s ≤

2d−1
−ε} pour s = 2d−1

−ε. On peut donc supposer que dim B 6= 2n+1
−ε. Posons

C = (BK (B))an et B1 = (BF(B))an. Alors, BK (B) ∼ (B1)K (B). La forme (B1)K (B)

est anisotrope, car sinon dim((B1)K (B))an = ε et donc BK serait de hauteur 1, en
particulier on aurait dim B = 2n+1

−ε. Ainsi. C ' (B1)K (B) et donc dim C = 2d
−ε.

Par le corollaire 5.19(2), on a dim B = 2n+1
−2d

+2s+ε où s = ih(BK (B)). Puisque
dim B < 2n+1

− ε, on déduit que 0 ≤ s < 2d−1
− ε. D’où le corollaire. �

Remarque 5.21. Dans le cas des formes bilinéaires B anisotropes de hauteur 2 et
de degré d > 0, le corollaire 5.20 prend son intérêt lorsque dim B ≥ 2d+1, puisque
dans le cas dim B< 2d+1 la proposition 5.7 donne de manière précise la dimension
de B.

On finit par un commentaire sur les dimensions des formes bilinéaires aniso-
tropes de hauteur 2. On sait par le corollaire 5.20 qu’une telle forme de degré 2 ne
peut avoir que la dimension 2n , 2n

− 4 ou 2n
− 2. Le théorème 5.10 montre que

les deux premiers entiers sont réalisables comme dimensions de formes bilinéaires
anisotropes (bonnes) de hauteur et degré 2. En ce qui concerne l’entier 2n

− 2, on
a montré dans un travail en préparation [Laghribi and Rehmann ≥ 2007] qu’une
forme de dimension 2n

− 2 de hauteur et degré 2 qui n’est pas bonne a exacte-
ment la dimension 6 et que l’entier 8 est aussi réalisable comme dimension d’une
forme bilinéaire de hauteur et degré 2. En ce qui concerne le degré d > 2, on ne
sait pas exactement lesquelles des possibilités données par le corollaire 5.20 sont
réalisables comme dimensions de formes bilinéaires anisotropes de hauteur 2 et de
degré d .
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ASYMPTOTICALLY LINEAR HAMILTONIAN SYSTEMS WITH
LAGRANGIAN BOUNDARY CONDITIONS

CHUN-GEN LIU

We study the multiplicity of the solutions of certain asymptotically linear
Hamiltonian systems with a Lagrangian boundary condition.

1. Introduction and main results

We consider the solutions of the nonlinear Hamiltonian systems with Lagrangian
boundary condition

(1–1) ẋ(t)= J H ′(t, x(t)), x(0) ∈ L , x(1) ∈ L .

where x(t) ∈ R2n and

J =

(
0 −In

In 0

)
is the standard symplectic matrix with In the identity in Rn , and L ∈3(n), where
3(n) is the set of all Lagrangian subspaces of (R2n, ω0) with standard symplectic
form ω0 =

∑n
j=1 dx j ∧ dy j . The Hamiltonian function H ∈ C2([0, 1] × R2n,R)

satisfies these conditions:

• (H0): H ′(t, 0)≡ 0, t ∈ [0, 1].

• (H∞): There exist continuous symmetric matrix functions B1(t) and B2(t)
with iL(B1)= iL(B2), νL(B2)= 0 such that

B1(t)≤ H ′′(t, x)≤ B2(t)

for all (t, x) with |x | ≥ r for some large r > 0 and for all t ∈ [0, 1].

For two symmetric matrices A and B, A ≥ B means that A − B is a semipositive
definite matrix, and A> B similarly means that A− B is a positive definite matrix.

For a Lagrangian subspace L of the standard symplectic vector space (R2n, ω0),
[Liu 2007] defined the Maslov-type index pair (iL(B), νL(B)) ∈ Z ×{0, 1, . . . , n}

for a continuous symmetric matrix function B : [0, 1]→ Ls(2n) (here Ls(2n) is the
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Keywords: index theory, Hamiltonian systems, Lagrangian boundary conditions.
Partially supported by the National Natural Science Foundation of China, 973 program of MOST.
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set of symmetric 2n × 2n matrices). In the Appendix, we give a brief introduction
of this index theory.

Theorem 1.1. Let H satisfy conditions (H0) and (H∞). Suppose J B1(t)= B1(t)J
and B0(t)= H ′′(t, 0) satisfying one of the twisted conditions

B1(t)+ k I ≤ B0(t),(1–2)

B0(t)+ k I ≤ B1(t),(1–3)

for some constant k ≥ π . Then (1–1) possesses at least one nontrivial solution. If
νL(B0)= 0, the system (1–1) possesses at least two nontrivial solutions.

For the periodic solutions of a asymptotically linear Hamiltonian system, we
refer to [Chang 1981; Long 1993; Conley and Zehnder 1984; Liu 2005b]. We note
that we only need to prove the case

L = L0 = {0} ⊕ Rn.

The reason is that there is an orthogonal symplectic matrix P such that P L = L0.
All the conditions hold in (1–1) after taking z(t) = Px(t) there. We note that
the problem (1–1) is related to the Bolza problem (see [Clarke and Ekeland 1982;
Ekeland 1990]).

We should briefly review the general study of the problem (1–1). For a general
symplectic manifold (M, ω) (usually closed, that is, compact without boundary; an
example nonclosed case is the cotangent bundle of a closed Riemannian manifold
with the zero section as the Lagrangian submanifold) and a closed Lagrangian
submanifold L ⊂ M , the problem (1–1) has been widely studied. The multiplic-
ity problems of Hamiltonian systems on a symplectic manifold with Lagrangain
boundary values are related to Arnold’s conjecture about Lagrangian intersections.
The autonomous case of this problem in R2n is related to the Arnold chord conjec-
ture. Generally, a Hamiltonian flow starting from a Lagrangian submanifold does
not necessary return to the Lagrangian submanifold again. Arnold conjectured
that, under some conditions, the Lagrangian intersection number has a lower bound
estimated by the sum of all Beti numbers of the Lagrangian submanifold in the non-
degenerate case; this sum is in turn estimated by the cup-length of the Lagrangian
submanifold (see for example [Conley and Zehnder 1984; Hofer 1988; Floer 1988,
1989; Oh 1995; Ono 1996; Chekanov 1996, 1998; Liu 2005a]). For the Arnold
chord conjecture, we mention [Arnold 1986; Mohnke 2001]. The multiplicity of
the fixed energy problem (1–1) was studied in [Guo and Liu 2007]. The main
differences between this work and the others are that here the symplectic manifold
and the Lagrangian submanifold are not compact and all the topological data of
the Lagrangian submanifold are trivial.
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2. Some further properties of the Maslov type index theory

Liu [2007] developed some important properties of the L-index theory. In this sec-
tion we study the relation between the L-index of solutions of Hamiltonian systems
with L-boundary conditions and the Morse index of the corresponding functional
defined via the Galerkin approximation method on the finite-dimensional truncated
space at its corresponding critical points. Fei and Qiu [1996] treated the periodic
case.

The eigenspace Ek of the operator A = −Jd/dt in the domain

W 1,2
L0
([0, 1], R2n) := {z ∈ W 1,2([0, 1],R2n) : z(0) ∈ L0, z(1) ∈ L0}

can be written as

Ek = −J exp(kπ t J )ak = −J (cos(kπ t)I2n + J sin(kπ t))ak,

ak = (ak1, · · · , akn, 0, · · · , 0) ∈ R2n.

We define a Hilbert space

WL0 = W 1/2,2
L0

([0, 1],R2n)⊂

⊕
k∈Z

Ek

with L0 boundary conditions

WL0 =

{
z ∈ L2

∣∣∣ z(t)=

∑
k∈Z

−J exp(kπ t J )ak, ‖z‖2
:=

∑
k∈Z

(1 + |k|)|ak |
2 <∞

}
.

We denote its inner product by 〈 · , · 〉. By the well-known Sobolev embedding
theorem, for any s ∈ [1,+∞), there is a constant Cs > 0 such that

‖z‖Ls ≤ Cs ‖z‖ for all z ∈ WL0 .

For any Lagrangian subspace L ∈ 3(n), suppose P ∈ Sp(2n) ∩ O(2n) such that
L = P L0. Then we define WL = PWL0 . We denote by

Wm
L0

=

m⊕
k=−m

Ek =

{
z
∣∣∣ z(t)=

m∑
k=−m

−J exp(kπ t J )ak

}
the finite dimensional truncation of WL0 , and Wm

L = PWm
L0

.
Let Pm

= Pm
L : WL → Wm

L be the orthogonal projection for m ∈ N. Then
0 = {Pm

; m ∈ N} is a Galerkin approximation scheme with respect to A defined
in (2–2) below, that is,

Pm
→ I strongly as m → ∞ andPm A = APm .

In this section we still consider the problem (1–1), with H satisfying

(2–1) |H ′′(t, z)| ≤ a(1 + |z|p) for all (t, z) ∈ R × R2n
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and for some a > 0, p > 1. We consider the functional on WL

(2–2) f (z)=

∫ 1

0

( 1
2(−J ż, z)− H(t, z)

)
dt =

1
2〈Az, z〉 − g(z), z ∈ WL .

A critical point of f on WL is a solution of (1–1). For a critical point z = z(t), we
denote B(t)= H ′′(t, z(t)) and define an operator B on WL by

〈Bz, w〉 =

∫ 1

0
(B(t)z, w)dt.

Using the Floquet theory we have

(2–3) νL(B)= dim ker(A − B).

For δ > 0, we denote by m∗

δ ( · ), where ∗ = +, 0,−, the dimension of the to-
tal eigenspace corresponding to the eigenvalue λ belonging to [δ,+∞), (−δ, δ),
(−∞,−δ], respectively, and denote by m∗( · ), where again ∗ = +, 0,− the di-
mension of the total eigenspace corresponding to the eigenvalue λ belonging to
(0,+∞), {0}, (−∞, 0), respectively. For any adjoint operator L , we define L] =

(L|I mL)
−1, and we also define Pm L Pm

= (Pm L Pm)|Wm
L
. The following result

is adapted from [Fei and Qiu 1996], where the periodic boundary condition was
considered (see also [Long 1993]).

Theorem 2.1. For any B(t) ∈ C([0, 1],Ls(R
2n)) having the pair of L indexes

(iL(B), νL(B)) and any constant 0 < δ ≤
1
4‖(A − B)]‖, there exists m0 > 0 such

that for m ≥ m0, we have

(2–4)

m+

δ (P
m(A − B)Pm)= mn − iL(B)− νL(B),

m−

d (P
m(A − B)Pm)= mn + iL(B)+ n,

m0
δ(P

m(A − B)Pm)= νL(B).

Proof. We follow the ideas of [Fei and Qiu 1996].

Step 1. There is an m1 > 0 such that for m ≥ m1

(2–5) dim ker(Pm(A − B)Pm)≤ dim ker(A − B).

In fact, by contradiction it is easy to show that there is a constant m2 > 0 such that
for m ≥ m2

(2–6) dim Pm ker(A − B)= dim ker(A − B).

Since B is compact, there is m1 ≥ m2 such that for m ≥ m1

‖(I − Pm)B‖ ≤ 2δ.
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Take m ≥ m1, and let Wm
L = Pm ker(A − B)⊕ Y m . Then Y m

⊂ Im(A − B). For
y ∈ Y m we have

y = (A − B)](A − B)y = (A − B)](Pm(A − B)Pm y + (Pm
− I )By).

This implies

(2–7) ‖y‖ ≤
1
2δ

∥∥Pm(A − B)Pm y
∥∥ for all y ∈ Y m .

By (2–6) and (2–7) we have (2–5).

Step 2. We distinguish two cases.

Case 1: νL(B)= 0. By (2–3) and step 1 we obtain for m ≥ m1 that

m0(Pm(A − B)Pm)= dim ker(A − B)= 0.

Since B is compact, there exists m3 ≥ m1 such that, for m ≥ m3,

‖(I − Pm)B‖ ≤
1
2‖(A − B)]‖−1.

Then Pm(A − B)Pm
= (A − B)Pm

+ (I − Pm)B Pm implies that

‖Pm(A − B)Pmz‖ ≥
1
2‖(A − B)]‖−1

‖z‖ for all z ∈ Wm
L .

Thus the eigen-subspace M∗

δ (P
m(A − B)Pm) with eigenvalue λ belonging to the

intervals m∗

δ (P
m(A − B)Pm) and the eigen-subspace M∗(Pm(A − B)Pm) satisfy

M∗

δ (P
m(A − B)Pm)= M∗(Pm(A − B)Pm) for ∗ = +, 0,−.

By Equation (A.5), there is m0 ≥ m3 such that for m ≥ m0 the relation (2–4) holds.

Case 2: νL(B) > 0. By step 1, it is easy to show that there exists m4 > 0 such that
for m ≥ m4

(2–8) m0
δ(P

m(A − B)Pm)≤ νL(B).

Let γ ∈ P(2n) be the fundamental solution of the linear Hamiltonian system

ż = J B(t)z.

Let γs , 0 ≤ s ≤ 1 be the perturbed path defined by Equation (A.4). Define

Bs(t)= −J γ̇s(t)γs(t)−1, t ∈ [0, 1].

Let Bs be the compact operator defined as B corresponding to Bs(t). For s 6= 0,
there holds m0(A − Bs)= 0 and ‖Bs − B‖ → 0 as s → 0. If s ∈ (0, 1], we have

(2–9) iL(γs)− iL(γ−s)= νL(γ )= νL(B), iL(γ−s)= iL(B)= iL(γ ).
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Choose 0< s < 1 such that ‖B − B±s‖ ≤ δ/2. By case 1, (2–8), (2–9) and that

Pm(A − B±)Pm
= Pm(A − B)Pm

+ Pm(B − B±)Pm,

there exists m0 ≥ m4 such that for m ≥ m0

m+

δ (P
m(A − B)Pm)≤ m+(Pm(A − Bs)Pm)= mn − iL(B)− νL(B),

m+

δ (P
m(A − B)Pm)≥ m+(Pm(A − B−s)Pm)− m0

δ(P
m(A − B)Pm)

≥ mn − iL(B)− νL(B).

Hence, m0
δ(P

m(A − B)Pm)= νL(B) and

m+

δ (P
m(A − B)Pm)= mn − iL(B)− νL(B).

Note that dim Wm
L = (2m + 1)n, so

m−

δ (P
m(A − B)Pm)= mn + n + iL(B). �

Corollary 2.2. Let B j (t) ∈ C([0, 1],Ls(R
2n)), j = 1, 2. Assume B1(t) < B2(t),

that is, B2(t)− B1(t) is positive definite for all t ∈ [0, 1]. Then there holds

iL(B1)+ νL(B1)≤ iL(B2).

Proof. Just as in Theorem 2.1, corresponding to B j (t) we have the operator B j .
Let 0 = {Pm

} be the approximation scheme with respect to the operator A. Then
by (2–4), there exists m0 > 0 such that if m ≥ m0 there holds

m−

δ (P
m(A − B1)Pm)= mn + n + iL(B1),

m−

δ (P
m(A − B2)Pm)= mn + n + iL(B2),

where we choose 0 < δ < ‖B2 − B1‖/2. Since A − B2 = (A − B1)− (B2 − B1)

and B2 − B1 is positive definite in Wm
L = PmWL and 〈(B2 − B1)x, x〉 ≥ 2δ‖x‖, we

have 〈(Pm(A − B2)Pm)x, x〉 ≤ −δ‖x‖ with

x ∈ M−

δ (P
m(A − B1)Pm)⊕ M0

δ (P
m(A − B1)Pm).

This implies that mn + n + iL(B1)+ νL(B1)≤ mn + n + iL(B2). �

Remark. From the proof of Corollary 2.2, it is easy to show that if B1(t)≤ B2(t)
for all 0 ≤ t ≤ 1,

iL(B1)≤ iL(B2), iL(B1)+ νL(B1)≤ iL(B2)+ νL(B2).

Definition 2.3. For any two matrix functions B j ∈ C([0, 1],Ls(R
2n)), j = 0, 1

with B0(t) < B1(t) for all t ∈ R, we define

IL(B0, B1)=

∑
s∈[0,1)

νL((1 − s)B0 + s B1).
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Theorem 2.4. For any two matrix functions B j ∈ C([0, 1],Ls(R
2n)) with B0(t) <

B1(t) for all t ∈ R, we have

(2–10) IL(B0, B1)= iL(B1)− iL(B0).

So we call IL(B0, B1) the relative L-index of the pair (B0, B1).

Proof. Step 1. By Corollary 2.2, if we denote iL(λ) = iL((1 − λ)B0 + λB1),
νL(λ)= νL((1 − λ)B0 + λB1), there holds

(2–11) iL(λ2)≥ iL(λ1)+ νL(λ1), for λ2 > λ1.

So the function iL(λ) is a monotone function in [0, 1].

Step 2. We prove that for any λ ∈ [0, 1) there holds

iL(λ+ 0)= iL(λ)+ νL(λ),

where iL(λ+0) is the right limit of iL(s) at λ. In fact, by (2–11), we have iL(λ)+

νL(λ) ≤ iL(λ+ 0). We now use the saddle point reduction methods to prove the
opposite inequality iL(λ)+νL(λ)≥ iL(λ+0). Define Bλ(t)= (1−λ)B0(t)+λB1(t).
We define in L2([0, 1],R2n)

fλ(x)=

∫ 1

0
[(−J ẋ(t), x(t))− (Bλ(t)x(t), x(t))] dt for all x ∈ dom(A)= WL .

Then by the saddle point reduction methods (see Equation (A.5)), we can re-
duce the functional fλ in L2([0, 1],R2n) to a finite-dimensional subspace X of
L2([0, 1],R2n) by aλ(x)= fλ(uλ(x)), where uλ : X → L2([0, 1],R2n) is injective,
and aλ is continuous in λ. Denote the Morse indices of aλ on X at x = 0 by m−

λ ,
m0
λ and m−

λ . If dim X = 2d + n large enough, we have from (A.5)

(2–12) m−

λ = d + n + iL(λ), m0
λ = νL(λ), m+

λ = d − iL(λ)− νL(λ).

For any fixed λ ∈ [0, 1), choosing µ ∈ (λ, 1) ∪ [0, λ) sufficiently close to λ, we
obtain

m±

λ ≤ m±

µ ≤ m±

λ + νL(λ).

Then by (2–12), we have iL(λ) ≤ iL(µ) and iL(λ) + νL(λ) ≥ iL(µ). This im-
plies iL(λ)+ νL(λ) ≥ iL(λ+ 0) and iL(λ) ≤ iL(λ− 0). But by (2–11), we have
iL(λ) ≥ iL(λ− 0), so iL(λ) = iL(λ− 0). That is to say, the function iL(λ) is left
continuous at (0, 1]. Moreover if m0

λ = m0 is constant in some interval [λ1, λ2],
then m−

λ = m− and m+

λ = m+ are constant in this interval. Thus the function iL(λ)

is locally constant at its continuous points, its discontinuous points are those with
with νL(λ) > 0, and there holds

iL(1)= iL(0)+
∑

0≤λ<1

νL(λ),
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which is exactly (2–10). �

Corollary 2.5. If γ ∈ P(2n) is the fundamental solution of the linear Hamiltonian
system with respect to B(t) > 0, there holds

(2–13) iL(γ )=

∑
0<t<1

dim(γ (t)L ∩ L).

Thus we can understand the index iL(γ ) as a kind of intersection number of the
two Lagrangian paths w(t)= γ (t)L and w0(t)= L.

Proof. We take B1(t) = B(t) and B0(t) = 0 in Theorem 2.4. We note that the
fundamental solution corresponding to B0(t)= 0 is the constant path I . We have

IL(0, B)= iL(γ )− iL(I ).

But iL(I ) = iL0(I ) = −n and Bs(t) = (1 − s)B0(t)+ s B1(t) = s B(t). The corre-
sponding fundamental solution corresponding to Bs(t)= s B(t) is γ (st). Thus

IL(0, B)=

∑
s∈[0,1)

νL(s B)=

∑
s∈[0,1)

dim[(γ (s)L)∩ L].

But dim[(γ (0)L)∩ L] = dim L = n, so we have (2–13). �

3. Dual index theory for linear Hamiltonian systems

Let B ∈ C([0, 1],Ls(R
2n)). Recall that Ls(R

2n) is the set of symmetric 2n × 2n
metrics. Consider the linear Hamiltonian system

(3–1) ż = J B(t)z, z ∈ R2n.

We consider in this section the dual Morse index theory of system (3–1) with La-
grangian boundary condition. The dual Morse index theory for periodic boundary
condition was studied by Girardi and Matzeu [1991] for the cases of superquadatic
Hamiltonian systems, and by the author in [Liu 2001] for the subquadratic Hamil-
tonian systems. This theory is an application of the Morse–Ekeland index theory
[Ekeland 1990]. The dual action principal in Hamiltonian framework was first es-
tablished by Clarke [1978; 1979; 1981] and Clarke and Ekeland [1978; 1980], and
has since been adapted by many mathematicians to the study of various variational
problems. The index theory for convex Hamiltonian systems was established by
I. Ekeland (see for example [1990]), whose works are of fundamental importance
in the study of convex Hamiltonian systems.

Let WL be the Hilbert space defined by

WL = {z = (x, y)T ∈ W 1,2([0, 1],R2n)| z(0), z(1) ∈ L} ⊂ L2.
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The embedding j : WL → L = L2([0, 1],R2n) is compact. Denote by 〈 · , · 〉 and
〈 · , · 〉2 the respective inner products on WL and L. We define an operator A :L→L
with domain WL by A = −Jd/dt . The spectrum of A is isolated, and in fact,
σ(A)= πZ. Let k /∈ σ(A) be so large such that B(t)+ k I > 0. Then the operator
3k = A + k I : WL → L is invertible, and its inverse is compact. We define a
quadratic form in L by

Q∗

k,B(v, u)=

∫ 1

0

(
(Ck(t)v(t), u(t))− (3−1

k v(t), u(t))
)

dt for all v, u ∈ L,

where Ck(t)= (B(t)+ k I )−1. Define Q∗

k,B(v)= Q∗

k,B(v, v). Then

〈Ckv, v〉2 =

∫ 1

0
(Ck(t)v(t), v(t)) dt

defines a Hilbert structure in L. C−1
k 3−1

k is a self-adjoint and compact operator
under this inner product. By the spectral theory, there exists a basis e j , j ∈ N of
L, and an eigenvalue sequence λ j → 0 in R such that

〈Ckei , e j 〉2 = δi j ,

〈3−1
k e j , v〉2 = 〈Ckλ j e j , v〉2 for all v ∈ L.

For any v ∈ L with v =
∑

∞

j=1 ξ j e j , there holds

Q∗

k,B(v)= −

∫ 1

0
(3−1

k v(t), v(t))− (Ck(t)v(t), v(t)) dt =

∞∑
j=1

(1 − λ j )ξ
2
j .

Define

L−

k (B)=

{ ∞∑
j=1
ξ j e j

∣∣∣ ξ j = 0 if 1 − λ j ≥ 0
}
,

L0
k(B)=

{ ∞∑
j=1
ξ j e j

∣∣∣ ξ j = 0 if 1 − λ j 6= 0
}
,

L+

k (B)=

{ ∞∑
j=1
ξ j e j

∣∣∣ ξ j = 0 if 1 − λ j ≤ 0
}
.

Observe that L−

k (B), L0
k(B) and L+

k (B) are Q∗

k,B-orthogonal, and also that L =

L−

k (B)⊕ L0
k(B)⊕ L+

k (B). Since λ j → 0 as j → ∞, both L−

k (B) and L0
k(B) are

finite subspaces. We define the k-dual Morse index of B by

i∗

k (B)= dim L−

k (B), ν∗

k (B)= dim L0
k(B).

Theorem 3.1. There holds

(3–2) i∗

k (B)= iL(B)+ n + n
[ k
π

]
, ν∗

k (B)= νL(B),
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where [a] = max{ j ∈ Z | j ≤ a}.

Proof. We only prove (3–2) for the special case L = L0. We first define a functional
on

W m
=

{
x
∣∣∣ x(t)=

m∑
j=−m

−J exp( jπ t J )a j , a j ∈ Rn
⊕ {0} ⊂ R2n

}
by

Qm(x)=

∫ 1

0
[(3k x(t), x(t))− (C−1

k (t)x, x)] dt

=

∫ 1

0
[(−J ẋ(t), x(t))− (B(t)x(t), x(t))] dt for all x ∈ W m .

We define two linear operators Ak and Bk from W m onto its dual space W m∗ ∼= W m

such that

〈Ak x, y〉2 =

∫ 1

0
(3k x(t), y(t)) dt for all x, y ∈ W m,

〈Bk x, y〉2 =

∫ 1

0
((B(t)+ k I )x(t), y(t)) dt for all x, y ∈ W m .

Next 〈 · , · 〉m := 〈Bk · , · 〉2 is a inner product in W m . We consider the eigenvalues
µ j ∈ R of Ak with respect to this inner product, that is,

Ak x j = µ j Bk x j

for some x j ∈ W m
\{0}. Suppose µ1 ≤µ2 ≤ · · · ≤µl with l = dim W m

= 2mn +n
(each eigenvalue is counted with its multiplicity), and construct a basis in W m of
eigenvectors v1, . . . , vl such that, for i, j = 1, 2, . . . , l,

〈vi , v j 〉m = δi j ,

〈Amvi , v j 〉m = µiδi j ,

Qm(vi , v j )= (µi − 1)δi j .

The Morse indexes m−(Qm),m0(Qm) and m+(Qm) of Qm satisfy

m−(Qm)=
]
{µ j | 1 ≤ j ≤ l, µ j < 1},

m+(Qm)=
]
{µ j | 1 ≤ j ≤ l, µ j > 1},

m0(Qm)=
]
{µ j | 1 ≤ j ≤ l, µ j = 1}.

By Theorem 2.1, we have for m > 0 large enough

(3–3) m−(Qm)= mn + n + iL(B), m0(Qm)= νL(B).
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We denote by Q∗

k,m the restriction of the quadratic Q∗

k to the subspace W m , and
define i∗

k,m(B)= m−(Q∗

k,m), ν
∗

k,m(B)= m0(Q∗

k,m). By an argument from [Girardi
and Matzeu 1991], we have i∗

k,m(B)→ i∗

k (B) and ν∗

k,m(B)→ ν∗

k (B) as m → ∞.
Let v′

j = Amv j for j = 1, 2, . . . , l. It is a basis of W m and

Q∗

k,m(v
′

i , v
′

j )=

{
0, for i 6= j,
µ j (µ j − 1), for i = j.

Q∗

k,m(v
′

j ) is negative if and only if 0<µ j <1. We now deduce the total multiplicity
of the negative eigenvalues µ j < 0. If one replaces the inner product 〈 · , · 〉m by
the usual one, that is , one replaces the matrix Bk by the identity I , the eigenvalues
µ j should be replaced by the eigenvalues η j of Am with respect to the standard
inner product. It is easy to check that µ j and η j have the same signs. So the total
multiplicity of negative µ j ’s equals the total multiplicity of negative ηh’s. But we
have

ηh = hπ + k, −m ≤ h ≤ m,

and each has multiplicity n. Therefore, the total multiplicity of the negative ηh is
n(m −[k/π ]). So the total multiplicity of µ j ∈ (0, 1) is m−(Qm)−n(m −[k/π ]).
By definition we have

i∗

k,m(B)= m−(Qm)− n(m − [k/π ]).

So for m > 0 large enough, from (3–3) we get (3–2). �

Corollary 3.2. 3.2 Under the condition of Equation (2–3), there holds

IL(B0, B1)= i∗

k (B1)− i∗

k (B0).

4. Proof of Theorem 1.1 and some consequences

Lemma 4.1 [Chang 1981, Theorem 5.1, Corollary II.5.2]. Let f ∈ C2(L,R) satisfy
the (PS) condition f ′(0)= 0 and suppose there exists

r /∈ [m−( f ′′(0)),m−( f ′′(0))+ m0( f ′′(0))]

with Hq(L, fa; R)∼= δq,r R. Then f has at least one nontrivial critical point u1 6= 0.
Moreover, if m0( f ′′(0)) = 0 and m0( f ′′(u1)) ≤ |r − m−( f ′′(0))|, then f has one
more nontrivial critical point u2 6= u1.

Theorem 1.1. Without loss any generality we can suppose H(t, 0)= 0 and L = L0.
By the condition (H∞) and the remark after Equation (2–1), we get that iL(B1)+

νL(B1) ≤ iL(B2)+ νL(B2), and so we have νL(B1) = 0. We shall first prove that
under the above conditions (1–2) or (1–3), there holds

iL(B1) /∈ [iL(B0), iL(B0)+ νL(B0)].
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More clearly, under the condition (1–2), it is claimed

(4–1) iL(B1)= iL(B1)+ νL(B1) < iL(B0),

and under the condition (1–3), it is claimed

(4–2) iL(B0)+ νL(B0) < iL(B1).

We first prove (4–1). By Equation (2–1) and condition (1–2), we have

iL(B1)≤ iL(B1 + k I )≤ iL(B0).

We shall prove
iL(B1) < iL(B1 + k I ).

In fact, suppose

γ1(t)=

(
S1(t) V1(t)
T1(t) U1(t)

)
∈ P(2n)

is a symplectic path that is the fundamental solution of the linear Hamiltonian
system associated with the matrix function B1(t). Since J B1(t) = B1(t)J , one
can show that exp(Jkt)γ1(t) is the fundamental solution of the linear Hamiltonian
system

ż = J (B1(t)+ k I )z.

One has

exp(Jkt)γ1(t)=

(
S1(t) cos kt − T1(t) sin kt V1(t) cos kt − U1(t) sin kt
S1(t) sin kt + T1(t) cos kt V1(t) sin kt + U1(t) cos kt

)
.

The associated unitary n×n matrix Q(t) defined by (2–2) with respect to the above
matrix is

Q(t)= [U1(t)−
√

−1V1(t)][U1(t)+
√

−1V1(t)]−1 exp(2k
√

−1t)

= Q1(t) exp(2k
√

−1t).

In Equation (A.6), 1 j = θ j (1)−θ j (0) and 11
j = θ1

j (1)−θ
1
j (0), associated respec-

tively to Q(t) and Q1(t), satisfy

1 j = θ j (1)− θ j (0)=11
j + 2k = θ1

j (1)− θ
1
j (0)+ 2k.

Since k ≥ π , there holds

(4–3) iL(B1)+ n ≤ iL(B1 + k I ).

Thus we have proved (4–1), and (4–2) can be proved similarly.
By the condition (H∞), H ′′(t, x) is bounded and there exist µ1, µ> 0 such that

(4–4) I ≤ H ′′(t, x)+µI ≤ µ1 I for all (t, x).
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We define a convex function N (t, x)= H(t, x)+µ|x |
2/2. Its Fenchel dual defined

by
N ∗(t, x)= sup

y∈R2n
{(x, y)− N (t, y)}

satisfies (see [Ekeland 1990])

N ∗
∈ C2([0, 1] × R2n,R),

N ∗′′
(t, y)= N ′′(t, x)−1 for y = N ′(t, x).

From (4–4) we have

(4–5) µ−1
1 I ≤ N ∗′′

(t, y)≤ I for all (t, y).

So we have |x | → ∞ if and only if |y| → ∞ with y = N ′(t, x). Thus there exists
r1 > 0 such that

(4–6) (B2(t)+µI )−1
≤ N ∗′′

(t, y)≤ (B1(t)+µI )−1

for all t, y with |y| ≥ r1. We choose µ > 0 satisfying (4–4) and µ /∈ σ(A). We
recall that (3µx)(t)= −J ẋ(t)+µx(t). We consider the functional

f (u)= −
1
2

∫ 1

0

[
(3−1

µ u(t), u(t))− N ∗(t, u(t))
]

dt for u ∈ L.

It is easy to see that f ∈ C2 and satisfies (PS) condition (see [Ekeland 1990]).
There is a one to one correspondence from the critical points of f to the solu-
tions of Hamiltonian systems (1–1). We note that 0 is a trivial critical point of f
and N ∗′(t, 0) = 0. At every critical point u0, the second variation of f defines a
quadratic form on L by

( f ′′(u0)u, u)=−

∫ 1

0

[
(3−1

µ u(t), u(t))− (N ∗′′
(t, u0(t))u(t), u(t))

]
dt for u ∈L.

Its Morse index and nullity are both finite we denote by (i∗
µ(u0), ν

∗
µ(u0)) the index

pair. The critical point u0 corresponds to a solution x0 = 3−1
µ u0 of (1–1), and

N ∗′′(t, u0(t))= N ′′(t, x0(t))−1. So by Theorem 3.1, we have

i∗

µ(u0)= iL(x0)+ n + n
[µ
π

]
, ν∗

µ(u0)= νL(x0).

The index pair (iL(x0), νL(x0)) is the L-index of the linear Hamiltonian system

ẏ(t)= J H ′′(t, x0(t))y(t).

By condition (1–2) and the result (4–3), we have

(4–7) iL(B1)+ νL(B1)+ n ≤ iL(B0).
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By condition (1–3), similarly we have

iL(B0)+ νL(B0)+ n ≤ iL(B1).

From (4–7) and the above inequality, we have that

(4–8) |iL(B0)− iL(B1)| ≥ n and |i∗

µ(B0)− i∗

µ(B1)| ≥ n.

In the following, we need to prove that the homology groups satisfy

(4–9) Hq(L, fa; R)∼= δqr R, q = 0, 1, . . . ,

for some a ∈ R and r = i∗
µ(B1). fa = {x ∈ L | f (x) ≤ a} is the level set below a.

We follow the ideas of the proof of Lemma II.5.1 in [Chang 1981] to prove (4–9).
See [Dong 2005] and [Liu 2005b] for some similar computations.

Step 1. Under the condition (H∞), there holds

L = L−

µ (B1)⊕ L+

µ (B2),

where L∗
µ(B) for ∗ = ±, 0 is defined in Section 3. In fact, it is clear that L−

µ (B1)∩

L+
µ (B2) = {0}. By ν∗

µ(B2) = νL(B2) = 0, we have L = L−
µ (B2)⊕ L+

µ (B2). By
condition (H∞), we have i∗

µ(B1) = i∗
µ(B2) = r . Suppose ξ1, ξ2, · · · , ξr is a basis

in L−
µ (B1). Decompose ξ j by ξ j = ξ−

j + ξ+

j with ξ j ∈ L±
µ (B2). It is clear that

ξ−

1 , · · · , ξ
−
r are linear independent, so it is a basis for L−

µ (B2). For any ξ ∈ L,
there holds ξ = ξ−

+ ξ+ with ξ±
∈ L±

µ (B2). Suppose ξ−
= a1ξ

−

1 + · · · + arξ
−
r .

Then

ξ =

r∑
j=1

a jξ j + (ξ+
−

r∑
j=1

a jξ
+

j )= ξ1 + ξ2

with ξ1 ∈ L−
µ (B1) and ξ2 ∈ L+

µ (B2).

Step 2. For sufficiently small s > 0, from the structure of the symplectic group and
the definition of the Maslov-type index, we know that νL(B1 − s I )= νL(B1)= 0,
and νL(B2+s I )=νL(B2)=0, and so iL(B1−s I )= iL(B1)= iL(B2)= iL(B2+s I ).
Denote the so-called deformation space by

DR = L−

µ (B1 − s I )⊕ {u ∈ L+

µ (B2 + s I ) | ‖u‖ ≤ R}.

For R > 0 and −a > 0 large, we have the deformation result

(4–10) Hq(L, fa; R)= Hq(DR, DR ∩ fa; R).

The proof of (4–10) is standard in the Morse theory [Bott 1982]. We only need to
use the negative flow to deform (L, fa) to (DR, DR ∩ fa). For any u = u1 +u2 ∈ L
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with u1 ∈ L−
µ (B1 − s I ) and u2 ∈ L+

µ (B2 + s I ), by the self-adjointness, we have

( f ′(u), u2 − u1)= −

∫ 1

0
dt
[
(3−1u, u2 − u1)− (N ∗′

(t, u), u2 − u1)
]

=

∫ 1

0
dt
[
(3−1u1, u1)− (3

−1u2, u2)
]

+

∫ 1

0
dt
(∫ 1

0
dτ N ∗′′

(t, τu)(u1 + u2), u2 − u1

)
=

∫ 1

0
dt (3−1u1, u1)−

∫ 1

0
dt
(∫ 1

0
dτ N ∗′′

(t, τu)u1, u1

)
−

∫ 1

0
dt (3−1u2, u2)+

∫ 1

0
dt
(∫ 1

0
dτ N ∗′′

(t, τu)u2, u2

)
.

By (4–5) and (4–6), we have∫ 1

0
dt
(∫ 1

0
dτ N ∗′′

(t, τu)u1, u1

)
=

∫ 1

0
dt
∫ h(t,u)

0
dτ (N ∗′′

(t, τu)u1, u1)+

∫ 1

0
dt
∫ 1

h(t,u)
dτ (N ∗′′

(t, τu)u1, u1)

≤ c0‖u‖ +

∫ 1

0
dt ((B1(t)+µI − s I )u1, u1),

where h(t, u)= r1/|u(t)|. Similarly,∫ 1

0
dt
(∫ 1

0
dτ N ∗′′

(t, τu)u2, u2

)
≥

∫ 1

0
dt
∫ 1

h(t,u)
dτ (N ∗′′

(t, τu)u2, u2)

≥

∫ 1

0
dt ((B2(t)+µI + s I )u2, u2)− c‖u‖

for some c > 0. So by the last three relations, we have

( f ′(u), u2 − u1)≥ c1‖u1‖
2
+ c2‖u2‖

2
− c3(‖u1‖ +‖u2‖).

Thus for large R with ‖u1‖ ≥ R or ‖u2‖ ≥ R, we have

(4–11) (− f ′(u), u2 − u1) < − 1.

We know from (4–11) that f has no critical point outside DR , and that − f ′(u)
points inward to DR on ∂DR . So we can define the deformation by negative flow. In
fact, for any u =u1+u2 /∈ DR , let σ(θ, u)=eθu1+e−θu2, and du = log ‖u2‖−log R.
We define the deformation map η : [0, 1] × L → L by

η(θ, u1 + u2)=

{
u1 + u2, ‖u2‖ ≤ R,
σ (duθ, u), ‖u2‖> R.
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The map η satisfies the properties

η(0, · )= id, η(1,L)⊂ DR, η(1, fa)⊂ DR ∩ fa

η(θ, fa)⊂ fa, η(θ, · )|DR = id|DR .

Thus the pair (DR, DR ∩ fa) is a deformation retract of the pair (L, fa).

Step 3. For large R,−a > 0, there holds

Hq(DR, DR ∩ fa)∼= δq,r R.

In fact, similarly to the above computation, for large m > 0, we have∫ 1

0
dt N ∗(t, u(t))

=

∫ 1

0
dt
(

N ∗(t, 0)+
∫∫

[0,1]×[0,1]

dτ ds τ(N ∗′′
(t, τ su(t))u(t), u(t))

)

≤

∫
|u(t)|≥mr1

dt
∫∫

[0,1]×[0,1]

dτ ds τ(N ∗′′
(t, τ su(t))u(t), u(t))+ cm

≤

∫
|u(t)|≥mr1

dt
∫∫

|sτu(t)|≥r1, τ,s∈[0,1]

dτ ds τ(N ∗′′
(t, τ su(t))u(t), u(t))

+

∫
|u(t)|≥mr1

dt
∫∫

|sτu(t)|≤r1, τ,s∈[0,1]

dτ ds τ(N ∗′′
(t, τ su(t))u(t), u(t))+ cm

≤
1
2

∫ 1

0
dt ((B1(t)+µI )−1u(t), u(t))+ km‖u‖ + cm,

where cm and km are constants depending only on m and km → 0 as m → +∞. So
for the small s in the step 2 above, we can choose a large number m such that∫ 1

0
dt N ∗(t, u(t))≤

1
2

∫ 1

0
dt ((B1(t)+µI − s I )−1u(t), u(t))+ C for all u ∈ L

for some constant C > 0. Thus for any u = u1 + u2 with u1 ∈ L−
µ (B1 − s I ) and

u2 ∈ L+
µ (B2 + s I ) with ‖u2‖ ≤ R, there holds

f (u)≤ −C1‖u1‖
2
+ C2‖u1‖ + C3,

where C j , j = 1, 2, 3 are constants and C1 > 0. It implies that f (u) → −∞ if
and only if ‖u1‖ → ∞ uniformly for u2 ∈ L+

µ (B2 + s I ) with ‖u2‖ ≤ R. In the
following we denote by Br ={x ∈ L| ‖x‖≤ r} the ball with radius r in L. Therefore
for −a1>−a2 sufficiently large, there exist three numbers with R< R1< R2< R3
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satisfying

(L+

µ (B2 + s I )∩ BR3)⊕ (L−

µ )(B1 − s I ) \ BR2)⊂ fa1 ∩ DR3

⊂ (L+

µ (B2 + s I )∩ BR3)⊕ (L−

µ )(B1 − s I ) \ BR1)⊂ fa2 ∩ DR3 .

Recall that σ(θ, u)= eθu1+e−θu2. By definition, we have f (σ (0, u))= f (u)>a1

and f (σ (θ, u))→ −∞ as θ → ∞ if u = u1 + u2 ∈ DR3 ∩ ( fa2 \ fa1). It implies
that there exists θ0 = θ0(u) > 0 such that f (σ (θ0, u))= a1. But by (4–11),

d
dθ

f (σ (θ, u))≤ −1 at any point θ > 0.

By the implicit function theorem, θ0(u) is continuous in u. We define another
deformation map η0 : [0, 1] × fa2 ∩ DR3 → fa2 ∩ DR3 by

η0(θ, u)=

{
u u ∈ fa1 ∩ DR3,

σ (θ0(u)θ, u), u ∈ DR3 ∩ ( fa2 \ fa1).

It is clear that η0 is a deformation from fa2 ∩ DR3 to fa1 ∩ DR3 . We now define

η̃(u)= d(η0(1, u)) with d(u)=

{
u, ‖u1‖ ≥ R1,

u2 +
u1

‖u1‖
R1, 0< ‖u1‖< R1.

This map defines a strong deformation retract:

η̃ : DR3 ∩ da2 →
(
L+

µ (B2 + s I )∩ BR3

)
⊕
(
L−

µ (B1 − s I )∩ {u ∈ L| ‖u‖ ≥ R1}
)
.

Now we can compute the homology groups

Hq(DR3, DR3 ∩ fa2; R)

∼= Hq(DR3, (L
+

µ (B2 + s I )∩ BR3)⊕ (L−

µ (B1 − s I )∩ {u ∈ L| ‖u‖ ≥ R1}); R)

∼= Hq(L−

µ (B1 − s I )∩ BR3, ∂(L
−

µ (B1 − s I )∩ BR3); R)

∼= δqr R.

From (4–8), (4–9), and (A.2) below, and by using Equation (4–1), we complete
the proof. �

Corollary 4.2. Let H satisfy the conditions (H0) and (H∞), and suppose B0(t) =

H ′′(t, 0) satisfies one of the twisted conditions:

(i) B1(t) < B0(t), there exists λ ∈ (0, 1) such that νL((1 − λ)B1 + λB0) 6= 0;

(ii) B0(t) < B1(t), there exists λ ∈ (0, 1) such that νL((1 − λ)B0 + λB1) 6= 0.

Then (1–1) possesses at least one nontrivial solution. Furthermore, if νL(B0) = 0
and in (i) we replace the second condition by

∑
λ∈(0,1) ν((1 −λ)B1 +λB0)≥ n, or

in (ii) we replace the second condition by
∑

λ∈(0,1) ν((1 − λ)B0 + λB1) ≥ n, the
Hamiltonian system (1–1) possesses at least two nontrivial solutions.
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Proof. It follows from (2–3), the proof of Theorem 1.1 and (4–2). In the first
case, we have r = iL(B1) /∈ [iL(B0), iL(B0)+νL(B0)]. In the second case we have
|iL(B0)− iL(B1)| ≥ n. �

The proof of Theorem 1.1 in fact proves this:

Theorem 4.3. Let H satisfy conditions (H0) and (H∞). Suppose B0(t)= H ′′(t, 0)
satisfies the twisted conditions

iL(B1) /∈ [iL(B0), iL(B0)+ νL(B0)].

Then the problem (1–1) possesses at least one nontrivial solution. Moreover, if
νL(B0)= 0 and |iL(B1)− iL(B0)| ≥ n, then (1–1) possesses at least two nontrivial
solutions.

Remark. The condition B1(t) < B2(t) in Theorem 2.4 can be replaced by B1(t)≤
B2(t) for all t and B2 − B1 ≥ δ > 0 for some constant δ as an operator in L.
So the conditions in parts (i) and (ii) of Corollary 4.2 can be replaced by this
kind of condition. The condition J B1(t) = B1(t)J in (H∞) can be replaced by
J B0(t)= B0(t)J .

Appendix. Maslov-type index for symplectc paths with Lagrangian boundary
condition

We give a brief introduction to the Maslov-type index for symplectc paths with
Lagrangian boundary condition. The details can be found in [Liu 2007]. We denote
the symplectic group by

Sp(2n)=
{

M ∈ L(R2n) | MT J M = J
}
,

and denote the symplectic path space by

P(2n)= {γ ∈ C([0, 1],Sp(2n)) | γ (0)= I2n} .

We write a symplectic path γ ∈ P(2n), in the form

(A.1) γ (t)=

(
S(t) V (t)
T (t) U (t)

)
,

where S(t), T (t), V (t),U (t) are n × n matrices. The n vectors coming from the
rightmost columns of the above matrix are linearly independent and they span a
Lagrangian subspace of (R2n, ω0). In particular, at t = 0, this Lagrangian subspace
is L0 = {0} ⊕ Rn .

Definition A.1. We define the L0-nullity of any symplectic path γ ∈ P(2n) by

(A.2) νL0(γ )≡ dim kerL0(γ (1)) := dim ker V (1)= n − rankV (1)
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with the n × n matrix function V (t) defined in (A.1).

We define two subsets of P(2n) by

P(2n)∗L0
= {γ ∈ P(2n) | νL0(γ )= 0},

P(2n)0L0
= {γ ∈ P(2n) | νL0(γ ) > 0}.

We note that

rank
(

V (t)
U (t)

)
= n,

so the complex matrix U (t)±
√

−1V (t) is invertible. We define a complex matrix
function by

(A.3) Q(t)=
(
U (t)−

√
−1V (t)

) (
U (t)+

√
−1V (t)

)−1
.

It is easy to see that the matrix Q(t) is a unitary matrix for any t ∈ [0, 1]. We define

M+ =

(
0 In

−In 0

)
, M− =

(
0 Jn

−Jn 0

)
, Jn = diag(−1, 1, . . . , 1).

For a path γ ∈ P(2n)∗L0
, we first adjoin it with a simple symplectic path starting

from J = −M+, that is, we define a symplectic path by

γ̃ (t)=

{
I cos(π/2)(1 − 2t)+ J sin(π/2)(1 − 2t), t ∈ [0, 1/2];

γ (2t − 1), t ∈ [1/2, 1].

then we choose a symplectic path β(t) in Sp(2n)∗L0
starting from γ (1) and ending

at M+ or M−. We now define a joint path by

γ̄ (t)= β ∗ γ̃ :=

{
γ̃ (2t), t ∈ [0, 1/2],

β(2t − 1), t ∈ [1/2, 1].

By the definition, we see that the symplectic path γ̄ starting from −M+ and ending
at either M+ or M−. As above, we define

(A.4) Q̄(t)=
(
Ū (t)−

√
−1V̄ (t)

) (
Ū (t)+

√
−1V̄ (t)

)−1
.

for γ̄ (t)=
(

S̄(t) V̄ (t)
T̄ (t) Ū (t)

)
. We can choose a continuous function 1̄(t) in [0, 1] such

that

(A.5) det Q̄(t)= e2
√

−11̄(t).

By the above arguments, we see that the number 1
π
(1̄(1)− 1̄(0)) ∈ Z and it does

not depend on the choice of the function 1̄(t).
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Definition A.2. For a symplectic path γ ∈ P(2n)∗L0
, we define the L0-index of γ

by

(A.6) iL0(γ )=
1
π
(1̄(1)− 1̄(0)).

Definition A.3. For a symplectic path γ ∈ P(2n)0L0
, we define the L0-index of γ

by

iL0(γ )= inf
{
iL0(γ̃ ) | γ̃ ∈ P(2n)∗L0

, and γ̃ is sufficiently close to γ
}
.

We note that 3(n) = U (n)/O(n); this means that for any linear subspace L ∈

3(n), there is an orthogonal symplectic matrix

P =

(
A −B
B A

)
with A±

√
−1B ∈ U (n) such that P L0 = L . P is uniquely determined by L up to

an orthogonal matrix C ∈ O(n). It means that for any other choice P ′ satisfying
above conditions, there exists a matrix C ∈ O(n) such that

P ′
= P

(
C 0
0 C

)
.

See [McDuff and Salamon 1998, Lemma 2.31]. We define the conjugated sym-
plectic path γc ∈ P(2n) of γ by γc(t)= P−1γ (t)P .

Definition A.4. We define the L-nullity of any symplectic path γ ∈ P(2n) by

νL(γ )≡ dim kerL(γ (1)) := dim ker Vc(1)= n − rankVc(1),

The n × n matrix function Vc(t) is defined in (A.1) with the symplectic path γ
replaced by γc, that is,

γc(t)=

(
Sc(t) Vc(t)
Tc(t) Uc(t)

)
.

Definition A.5. For a symplectic path γ ∈ P(2n), we define the L-index of γ by

iL(γ )= iL0(γc).

Theorem A.6. If γ ∈ P(2n)0L , there is a family of paths γs ∈ P(2n)L depend
continuous on s ∈ [−1, 1] such that γ0 = γ , γs ∈ P(2n)∗L , s 6= 0 and

iL(γs)− iL(γ−s)= νL(γ ) for all s ∈ (0, 1],

and
iL(γ )= iL(γ−s), s ∈ (0, 1].
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For a symmetric matrix function B : [0, 1] → Ls(2n), we consider the functional

f (z)=

∫ 1

0

( 1
2(−J ż, z)− (B(t)z, z)

)
dt, z ∈ WL ,

where WL = {z = (x, y)T ∈ W 1,2([0, 1],R2n) | z(0), z(1) ∈ L} ⊂ L2. By the
saddle point reduction methods (see [Amann 1979; Amann and Zehnder 1980;
Long 1993; 2002; Liu 2007]), there exists a finite-dimensional subspace X of
WL with dim X = 2d + n and an injection map X → WL , such that the function
a(x)= f (u(x)) is C2 and we have:

Theorem A.7. For any L ∈3(n),

m−(a)= d + iL(B)+ n,

m0(a)= νL(B),

m+(a)= d − iL(B)− νL(B),

where m∗(a) for ∗ = +, 0,− are respectively the positive, null and the negative
Morse indices of the function a(x) at the origin.

Theorem A.8. For any symplectic path γ ∈ P(2n), there holds

iL0(γ )=

n∑
j=1

E
(
θ j (1)− θ j (0)

2π

)
,

where E(a)= max{k ∈ Z | k < a} and λ j (t)= e
√

−1θ j (t) are the eigenvalues of Q(t)
defined in (A.3).
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Sur le déploiement des formes bilinéaires en caractéristique 2 207
AHMED LAGHRIBI

Asymptotically linear Hamiltonian systems with Lagrangian boundary
conditions 233

CHUN-GEN LIU

0030-8730(200709)232:1;1-C

Pacific
JournalofM

athem
atics

2007
Vol.232,N

o.1

Pacific
Journal of
Mathematics

Volume 232 No. 1 September 2007


	Pacific Journal of Mathematics Vol 232 Issue 1, September 2007
	Copyright and Masthead
	Systems of bands in hyperbolic 3-manifolds
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33
	page 34
	page 35
	page 36
	page 37
	page 38
	page 39
	page 40
	page 41
	page 42

	Classification of fiber surfaces of genus 2 with automorphisms acting trivially in cohomology
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17

	Vector fields, torus actions and equivariant cohomology
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16

	Uniqueness of the Cheeger set of a convex body
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14

	Dimension estimate of harmonic forms on complete manifolds
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19

	Transverse Poisson structures to adjoint orbits in semisimple Lie algebras
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28

	Still another approach to the braid ordering
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33
	page 34
	page 35
	page 36
	page 37

	Existence of infinitely many equilibrium configurations of a liquid crystal system prescribing the same nonconstant boundary value
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30

	Sur le déploiement des formes bilinéaires en caractéristique 2
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26

	Asymptotically linear Hamiltonian systems with Lagrangian boundary conditions
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23

	Guidelines for Authors
	Table of Contents

