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We study the multiplicity of the solutions of certain asymptotically linear
Hamiltonian systems with a Lagrangian boundary condition.

1. Introduction and main results

We consider the solutions of the nonlinear Hamiltonian systems with Lagrangian
boundary condition

(1–1) ẋ(t) = J H ′(t, x(t)), x(0) ∈ L , x(1) ∈ L .

where x(t) ∈ R2n and

J =

(
0 −In

In 0

)
is the standard symplectic matrix with In the identity in Rn , and L ∈ 3(n), where
3(n) is the set of all Lagrangian subspaces of (R2n, ω0) with standard symplectic
form ω0 =

∑n
j=1 dx j ∧ dy j . The Hamiltonian function H ∈ C2([0, 1] × R2n, R)

satisfies these conditions:

• (H0): H ′(t, 0) ≡ 0, t ∈ [0, 1].

• (H∞): There exist continuous symmetric matrix functions B1(t) and B2(t)
with iL(B1) = iL(B2), νL(B2) = 0 such that

B1(t) ≤ H ′′(t, x) ≤ B2(t)

for all (t, x) with |x | ≥ r for some large r > 0 and for all t ∈ [0, 1].

For two symmetric matrices A and B, A ≥ B means that A − B is a semipositive
definite matrix, and A > B similarly means that A− B is a positive definite matrix.

For a Lagrangian subspace L of the standard symplectic vector space (R2n, ω0),
[Liu 2007] defined the Maslov-type index pair (iL(B), νL(B)) ∈ Z ×{0, 1, . . . , n}

for a continuous symmetric matrix function B : [0, 1]→ Ls(2n) (here Ls(2n) is the
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set of symmetric 2n × 2n matrices). In the Appendix, we give a brief introduction
of this index theory.

Theorem 1.1. Let H satisfy conditions (H0) and (H∞). Suppose J B1(t) = B1(t)J
and B0(t) = H ′′(t, 0) satisfying one of the twisted conditions

B1(t) + k I ≤ B0(t),(1–2)

B0(t) + k I ≤ B1(t),(1–3)

for some constant k ≥ π . Then (1–1) possesses at least one nontrivial solution. If
νL(B0) = 0, the system (1–1) possesses at least two nontrivial solutions.

For the periodic solutions of a asymptotically linear Hamiltonian system, we
refer to [Chang 1981; Long 1993; Conley and Zehnder 1984; Liu 2005b]. We note
that we only need to prove the case

L = L0 = {0} ⊕ Rn.

The reason is that there is an orthogonal symplectic matrix P such that P L = L0.
All the conditions hold in (1–1) after taking z(t) = Px(t) there. We note that
the problem (1–1) is related to the Bolza problem (see [Clarke and Ekeland 1982;
Ekeland 1990]).

We should briefly review the general study of the problem (1–1). For a general
symplectic manifold (M, ω) (usually closed, that is, compact without boundary; an
example nonclosed case is the cotangent bundle of a closed Riemannian manifold
with the zero section as the Lagrangian submanifold) and a closed Lagrangian
submanifold L ⊂ M , the problem (1–1) has been widely studied. The multiplic-
ity problems of Hamiltonian systems on a symplectic manifold with Lagrangain
boundary values are related to Arnold’s conjecture about Lagrangian intersections.
The autonomous case of this problem in R2n is related to the Arnold chord conjec-
ture. Generally, a Hamiltonian flow starting from a Lagrangian submanifold does
not necessary return to the Lagrangian submanifold again. Arnold conjectured
that, under some conditions, the Lagrangian intersection number has a lower bound
estimated by the sum of all Beti numbers of the Lagrangian submanifold in the non-
degenerate case; this sum is in turn estimated by the cup-length of the Lagrangian
submanifold (see for example [Conley and Zehnder 1984; Hofer 1988; Floer 1988,
1989; Oh 1995; Ono 1996; Chekanov 1996, 1998; Liu 2005a]). For the Arnold
chord conjecture, we mention [Arnold 1986; Mohnke 2001]. The multiplicity of
the fixed energy problem (1–1) was studied in [Guo and Liu 2007]. The main
differences between this work and the others are that here the symplectic manifold
and the Lagrangian submanifold are not compact and all the topological data of
the Lagrangian submanifold are trivial.
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2. Some further properties of the Maslov type index theory

Liu [2007] developed some important properties of the L-index theory. In this sec-
tion we study the relation between the L-index of solutions of Hamiltonian systems
with L-boundary conditions and the Morse index of the corresponding functional
defined via the Galerkin approximation method on the finite-dimensional truncated
space at its corresponding critical points. Fei and Qiu [1996] treated the periodic
case.

The eigenspace Ek of the operator A = −Jd/dt in the domain

W 1,2
L0

([0, 1], R2n) := {z ∈ W 1,2([0, 1], R2n) : z(0) ∈ L0, z(1) ∈ L0}

can be written as

Ek = −J exp(kπ t J )ak = −J (cos(kπ t)I2n + J sin(kπ t))ak,

ak = (ak1, · · · , akn, 0, · · · , 0) ∈ R2n.

We define a Hilbert space

WL0 = W 1/2,2
L0

([0, 1], R2n) ⊂

⊕
k∈Z

Ek

with L0 boundary conditions

WL0 =

{
z ∈ L2

∣∣∣ z(t) =

∑
k∈Z

−J exp(kπ t J )ak, ‖z‖2
:=

∑
k∈Z

(1 + |k|)|ak |
2 < ∞

}
.

We denote its inner product by 〈 · , · 〉. By the well-known Sobolev embedding
theorem, for any s ∈ [1, +∞), there is a constant Cs > 0 such that

‖z‖Ls ≤ Cs ‖z‖ for all z ∈ WL0 .

For any Lagrangian subspace L ∈ 3(n), suppose P ∈ Sp(2n) ∩ O(2n) such that
L = P L0. Then we define WL = PWL0 . We denote by

Wm
L0

=

m⊕
k=−m

Ek =

{
z
∣∣∣ z(t) =

m∑
k=−m

−J exp(kπ t J )ak

}
the finite dimensional truncation of WL0 , and Wm

L = PWm
L0

.
Let Pm

= Pm
L : WL → Wm

L be the orthogonal projection for m ∈ N. Then
0 = {Pm

; m ∈ N} is a Galerkin approximation scheme with respect to A defined
in (2–2) below, that is,

Pm
→ I strongly as m → ∞ andPm A = APm .

In this section we still consider the problem (1–1), with H satisfying

(2–1) |H ′′(t, z)| ≤ a(1 + |z|p) for all (t, z) ∈ R × R2n
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and for some a > 0, p > 1. We consider the functional on WL

(2–2) f (z) =

∫ 1

0

( 1
2(−J ż, z) − H(t, z)

)
dt =

1
2〈Az, z〉 − g(z), z ∈ WL .

A critical point of f on WL is a solution of (1–1). For a critical point z = z(t), we
denote B(t) = H ′′(t, z(t)) and define an operator B on WL by

〈Bz, w〉 =

∫ 1

0
(B(t)z, w)dt.

Using the Floquet theory we have

(2–3) νL(B) = dim ker(A − B).

For δ > 0, we denote by m∗

δ ( · ), where ∗ = +, 0, −, the dimension of the to-
tal eigenspace corresponding to the eigenvalue λ belonging to [δ, +∞), (−δ, δ),
(−∞, −δ], respectively, and denote by m∗( · ), where again ∗ = +, 0, − the di-
mension of the total eigenspace corresponding to the eigenvalue λ belonging to
(0, +∞), {0}, (−∞, 0), respectively. For any adjoint operator L , we define L]

=

(L|I mL)−1, and we also define Pm L Pm
= (Pm L Pm)|Wm

L
. The following result

is adapted from [Fei and Qiu 1996], where the periodic boundary condition was
considered (see also [Long 1993]).

Theorem 2.1. For any B(t) ∈ C([0, 1], Ls(R
2n)) having the pair of L indexes

(iL(B), νL(B)) and any constant 0 < δ ≤
1
4‖(A − B)]‖, there exists m0 > 0 such

that for m ≥ m0, we have

(2–4)

m+

δ (Pm(A − B)Pm) = mn − iL(B) − νL(B),

m−

d (Pm(A − B)Pm) = mn + iL(B) + n,

m0
δ(Pm(A − B)Pm) = νL(B).

Proof. We follow the ideas of [Fei and Qiu 1996].

Step 1. There is an m1 > 0 such that for m ≥ m1

(2–5) dim ker(Pm(A − B)Pm) ≤ dim ker(A − B).

In fact, by contradiction it is easy to show that there is a constant m2 > 0 such that
for m ≥ m2

(2–6) dim Pm ker(A − B) = dim ker(A − B).

Since B is compact, there is m1 ≥ m2 such that for m ≥ m1

‖(I − Pm)B‖ ≤ 2δ.
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Take m ≥ m1, and let Wm
L = Pm ker(A − B) ⊕ Y m . Then Y m

⊂ Im(A − B). For
y ∈ Y m we have

y = (A − B)](A − B)y = (A − B)](Pm(A − B)Pm y + (Pm
− I )By).

This implies

(2–7) ‖y‖ ≤
1
2δ

∥∥Pm(A − B)Pm y
∥∥ for all y ∈ Y m .

By (2–6) and (2–7) we have (2–5).

Step 2. We distinguish two cases.

Case 1: νL(B) = 0. By (2–3) and step 1 we obtain for m ≥ m1 that

m0(Pm(A − B)Pm) = dim ker(A − B) = 0.

Since B is compact, there exists m3 ≥ m1 such that, for m ≥ m3,

‖(I − Pm)B‖ ≤
1
2‖(A − B)]‖−1.

Then Pm(A − B)Pm
= (A − B)Pm

+ (I − Pm)B Pm implies that

‖Pm(A − B)Pmz‖ ≥
1
2‖(A − B)]‖−1

‖z‖ for all z ∈ Wm
L .

Thus the eigen-subspace M∗

δ (Pm(A − B)Pm) with eigenvalue λ belonging to the
intervals m∗

δ (Pm(A − B)Pm) and the eigen-subspace M∗(Pm(A − B)Pm) satisfy

M∗

δ (Pm(A − B)Pm) = M∗(Pm(A − B)Pm) for ∗ = +, 0, −.

By Equation (A.5), there is m0 ≥ m3 such that for m ≥ m0 the relation (2–4) holds.

Case 2: νL(B) > 0. By step 1, it is easy to show that there exists m4 > 0 such that
for m ≥ m4

(2–8) m0
δ(Pm(A − B)Pm) ≤ νL(B).

Let γ ∈ P(2n) be the fundamental solution of the linear Hamiltonian system

ż = J B(t)z.

Let γs , 0 ≤ s ≤ 1 be the perturbed path defined by Equation (A.4). Define

Bs(t) = −J γ̇s(t)γs(t)−1, t ∈ [0, 1].

Let Bs be the compact operator defined as B corresponding to Bs(t). For s 6= 0,
there holds m0(A − Bs) = 0 and ‖Bs − B‖ → 0 as s → 0. If s ∈ (0, 1], we have

(2–9) iL(γs) − iL(γ−s) = νL(γ ) = νL(B), iL(γ−s) = iL(B) = iL(γ ).
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Choose 0 < s < 1 such that ‖B − B±s‖ ≤ δ/2. By case 1, (2–8), (2–9) and that

Pm(A − B±)Pm
= Pm(A − B)Pm

+ Pm(B − B±)Pm,

there exists m0 ≥ m4 such that for m ≥ m0

m+

δ (Pm(A − B)Pm) ≤ m+(Pm(A − Bs)Pm) = mn − iL(B) − νL(B),

m+

δ (Pm(A − B)Pm) ≥ m+(Pm(A − B−s)Pm) − m0
δ(Pm(A − B)Pm)

≥ mn − iL(B) − νL(B).

Hence, m0
δ(Pm(A − B)Pm) = νL(B) and

m+

δ (Pm(A − B)Pm) = mn − iL(B) − νL(B).

Note that dim Wm
L = (2m + 1)n, so

m−

δ (Pm(A − B)Pm) = mn + n + iL(B). �

Corollary 2.2. Let B j (t) ∈ C([0, 1], Ls(R
2n)), j = 1, 2. Assume B1(t) < B2(t),

that is, B2(t) − B1(t) is positive definite for all t ∈ [0, 1]. Then there holds

iL(B1) + νL(B1) ≤ iL(B2).

Proof. Just as in Theorem 2.1, corresponding to B j (t) we have the operator B j .
Let 0 = {Pm

} be the approximation scheme with respect to the operator A. Then
by (2–4), there exists m0 > 0 such that if m ≥ m0 there holds

m−

δ (Pm(A − B1)Pm) = mn + n + iL(B1),

m−

δ (Pm(A − B2)Pm) = mn + n + iL(B2),

where we choose 0 < δ < ‖B2 − B1‖/2. Since A − B2 = (A − B1) − (B2 − B1)

and B2 − B1 is positive definite in Wm
L = PmWL and 〈(B2 − B1)x, x〉 ≥ 2δ‖x‖, we

have 〈(Pm(A − B2)Pm)x, x〉 ≤ −δ‖x‖ with

x ∈ M−

δ (Pm(A − B1)Pm) ⊕ M0
δ (Pm(A − B1)Pm).

This implies that mn + n + iL(B1) + νL(B1) ≤ mn + n + iL(B2). �

Remark. From the proof of Corollary 2.2, it is easy to show that if B1(t) ≤ B2(t)
for all 0 ≤ t ≤ 1,

iL(B1) ≤ iL(B2), iL(B1) + νL(B1) ≤ iL(B2) + νL(B2).

Definition 2.3. For any two matrix functions B j ∈ C([0, 1], Ls(R
2n)), j = 0, 1

with B0(t) < B1(t) for all t ∈ R, we define

IL(B0, B1) =

∑
s∈[0,1)

νL((1 − s)B0 + s B1).
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Theorem 2.4. For any two matrix functions B j ∈ C([0, 1], Ls(R
2n)) with B0(t) <

B1(t) for all t ∈ R, we have

(2–10) IL(B0, B1) = iL(B1) − iL(B0).

So we call IL(B0, B1) the relative L-index of the pair (B0, B1).

Proof. Step 1. By Corollary 2.2, if we denote iL(λ) = iL((1 − λ)B0 + λB1),
νL(λ) = νL((1 − λ)B0 + λB1), there holds

(2–11) iL(λ2) ≥ iL(λ1) + νL(λ1), for λ2 > λ1.

So the function iL(λ) is a monotone function in [0, 1].

Step 2. We prove that for any λ ∈ [0, 1) there holds

iL(λ + 0) = iL(λ) + νL(λ),

where iL(λ+0) is the right limit of iL(s) at λ. In fact, by (2–11), we have iL(λ)+

νL(λ) ≤ iL(λ + 0). We now use the saddle point reduction methods to prove the
opposite inequality iL(λ)+νL(λ)≥ iL(λ+0). Define Bλ(t)= (1−λ)B0(t)+λB1(t).
We define in L2([0, 1], R2n)

fλ(x) =

∫ 1

0
[(−J ẋ(t), x(t)) − (Bλ(t)x(t), x(t))] dt for all x ∈ dom(A) = WL .

Then by the saddle point reduction methods (see Equation (A.5)), we can re-
duce the functional fλ in L2([0, 1], R2n) to a finite-dimensional subspace X of
L2([0, 1], R2n) by aλ(x) = fλ(uλ(x)), where uλ : X → L2([0, 1], R2n) is injective,
and aλ is continuous in λ. Denote the Morse indices of aλ on X at x = 0 by m−

λ ,
m0

λ and m−

λ . If dim X = 2d + n large enough, we have from (A.5)

(2–12) m−

λ = d + n + iL(λ), m0
λ = νL(λ), m+

λ = d − iL(λ) − νL(λ).

For any fixed λ ∈ [0, 1), choosing µ ∈ (λ, 1) ∪ [0, λ) sufficiently close to λ, we
obtain

m±

λ ≤ m±

µ ≤ m±

λ + νL(λ).

Then by (2–12), we have iL(λ) ≤ iL(µ) and iL(λ) + νL(λ) ≥ iL(µ). This im-
plies iL(λ) + νL(λ) ≥ iL(λ + 0) and iL(λ) ≤ iL(λ − 0). But by (2–11), we have
iL(λ) ≥ iL(λ − 0), so iL(λ) = iL(λ − 0). That is to say, the function iL(λ) is left
continuous at (0, 1]. Moreover if m0

λ = m0 is constant in some interval [λ1, λ2],
then m−

λ = m− and m+

λ = m+ are constant in this interval. Thus the function iL(λ)

is locally constant at its continuous points, its discontinuous points are those with
with νL(λ) > 0, and there holds

iL(1) = iL(0) +

∑
0≤λ<1

νL(λ),
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which is exactly (2–10). �

Corollary 2.5. If γ ∈ P(2n) is the fundamental solution of the linear Hamiltonian
system with respect to B(t) > 0, there holds

(2–13) iL(γ ) =

∑
0<t<1

dim(γ (t)L ∩ L).

Thus we can understand the index iL(γ ) as a kind of intersection number of the
two Lagrangian paths w(t) = γ (t)L and w0(t) = L.

Proof. We take B1(t) = B(t) and B0(t) = 0 in Theorem 2.4. We note that the
fundamental solution corresponding to B0(t) = 0 is the constant path I . We have

IL(0, B) = iL(γ ) − iL(I ).

But iL(I ) = iL0(I ) = −n and Bs(t) = (1 − s)B0(t) + s B1(t) = s B(t). The corre-
sponding fundamental solution corresponding to Bs(t) = s B(t) is γ (st). Thus

IL(0, B) =

∑
s∈[0,1)

νL(s B) =

∑
s∈[0,1)

dim[(γ (s)L) ∩ L].

But dim[(γ (0)L) ∩ L] = dim L = n, so we have (2–13). �

3. Dual index theory for linear Hamiltonian systems

Let B ∈ C([0, 1], Ls(R
2n)). Recall that Ls(R

2n) is the set of symmetric 2n × 2n
metrics. Consider the linear Hamiltonian system

(3–1) ż = J B(t)z, z ∈ R2n.

We consider in this section the dual Morse index theory of system (3–1) with La-
grangian boundary condition. The dual Morse index theory for periodic boundary
condition was studied by Girardi and Matzeu [1991] for the cases of superquadatic
Hamiltonian systems, and by the author in [Liu 2001] for the subquadratic Hamil-
tonian systems. This theory is an application of the Morse–Ekeland index theory
[Ekeland 1990]. The dual action principal in Hamiltonian framework was first es-
tablished by Clarke [1978; 1979; 1981] and Clarke and Ekeland [1978; 1980], and
has since been adapted by many mathematicians to the study of various variational
problems. The index theory for convex Hamiltonian systems was established by
I. Ekeland (see for example [1990]), whose works are of fundamental importance
in the study of convex Hamiltonian systems.

Let WL be the Hilbert space defined by

WL = {z = (x, y)T
∈ W 1,2([0, 1], R2n)| z(0), z(1) ∈ L} ⊂ L2.
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The embedding j : WL → L = L2([0, 1], R2n) is compact. Denote by 〈 · , · 〉 and
〈 · , · 〉2 the respective inner products on WL and L. We define an operator A :L→L
with domain WL by A = −Jd/dt . The spectrum of A is isolated, and in fact,
σ(A) = πZ. Let k /∈ σ(A) be so large such that B(t) + k I > 0. Then the operator
3k = A + k I : WL → L is invertible, and its inverse is compact. We define a
quadratic form in L by

Q∗

k,B(v, u) =

∫ 1

0

(
(Ck(t)v(t), u(t)) − (3−1

k v(t), u(t))
)

dt for all v, u ∈ L,

where Ck(t) = (B(t) + k I )−1. Define Q∗

k,B(v) = Q∗

k,B(v, v). Then

〈Ckv, v〉2 =

∫ 1

0
(Ck(t)v(t), v(t)) dt

defines a Hilbert structure in L. C−1
k 3−1

k is a self-adjoint and compact operator
under this inner product. By the spectral theory, there exists a basis e j , j ∈ N of
L, and an eigenvalue sequence λ j → 0 in R such that

〈Ckei , e j 〉2 = δi j ,

〈3−1
k e j , v〉2 = 〈Ckλ j e j , v〉2 for all v ∈ L.

For any v ∈ L with v =
∑

∞

j=1 ξ j e j , there holds

Q∗

k,B(v) = −

∫ 1

0
(3−1

k v(t), v(t)) − (Ck(t)v(t), v(t)) dt =

∞∑
j=1

(1 − λ j )ξ
2
j .

Define

L−

k (B) =

{ ∞∑
j=1

ξ j e j

∣∣∣ ξ j = 0 if 1 − λ j ≥ 0
}
,

L0
k(B) =

{ ∞∑
j=1

ξ j e j

∣∣∣ ξ j = 0 if 1 − λ j 6= 0
}
,

L+

k (B) =

{ ∞∑
j=1

ξ j e j

∣∣∣ ξ j = 0 if 1 − λ j ≤ 0
}
.

Observe that L−

k (B), L0
k(B) and L+

k (B) are Q∗

k,B-orthogonal, and also that L =

L−

k (B) ⊕ L0
k(B) ⊕ L+

k (B). Since λ j → 0 as j → ∞, both L−

k (B) and L0
k(B) are

finite subspaces. We define the k-dual Morse index of B by

i∗

k (B) = dim L−

k (B), ν∗

k (B) = dim L0
k(B).

Theorem 3.1. There holds

(3–2) i∗

k (B) = iL(B) + n + n
[ k
π

]
, ν∗

k (B) = νL(B),
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where [a] = max{ j ∈ Z | j ≤ a}.

Proof. We only prove (3–2) for the special case L = L0. We first define a functional
on

W m
=

{
x
∣∣∣ x(t) =

m∑
j=−m

−J exp( jπ t J )a j , a j ∈ Rn
⊕ {0} ⊂ R2n

}
by

Qm(x) =

∫ 1

0
[(3k x(t), x(t)) − (C−1

k (t)x, x)] dt

=

∫ 1

0
[(−J ẋ(t), x(t)) − (B(t)x(t), x(t))] dt for all x ∈ W m .

We define two linear operators Ak and Bk from W m onto its dual space W m∗ ∼= W m

such that

〈Ak x, y〉2 =

∫ 1

0
(3k x(t), y(t)) dt for all x, y ∈ W m,

〈Bk x, y〉2 =

∫ 1

0
((B(t) + k I )x(t), y(t)) dt for all x, y ∈ W m .

Next 〈 · , · 〉m := 〈Bk · , · 〉2 is a inner product in W m . We consider the eigenvalues
µ j ∈ R of Ak with respect to this inner product, that is,

Ak x j = µ j Bk x j

for some x j ∈ W m
\{0}. Suppose µ1 ≤ µ2 ≤ · · · ≤ µl with l = dim W m

= 2mn +n
(each eigenvalue is counted with its multiplicity), and construct a basis in W m of
eigenvectors v1, . . . , vl such that, for i, j = 1, 2, . . . , l,

〈vi , v j 〉m = δi j ,

〈Amvi , v j 〉m = µiδi j ,

Qm(vi , v j ) = (µi − 1)δi j .

The Morse indexes m−(Qm), m0(Qm) and m+(Qm) of Qm satisfy

m−(Qm) =
]
{µ j | 1 ≤ j ≤ l, µ j < 1},

m+(Qm) =
]
{µ j | 1 ≤ j ≤ l, µ j > 1},

m0(Qm) =
]
{µ j | 1 ≤ j ≤ l, µ j = 1}.

By Theorem 2.1, we have for m > 0 large enough

(3–3) m−(Qm) = mn + n + iL(B), m0(Qm) = νL(B).
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We denote by Q∗

k,m the restriction of the quadratic Q∗

k to the subspace W m , and
define i∗

k,m(B) = m−(Q∗

k,m), ν∗

k,m(B) = m0(Q∗

k,m). By an argument from [Girardi
and Matzeu 1991], we have i∗

k,m(B) → i∗

k (B) and ν∗

k,m(B) → ν∗

k (B) as m → ∞.
Let v′

j = Amv j for j = 1, 2, . . . , l. It is a basis of W m and

Q∗

k,m(v′

i , v
′

j ) =

{
0, for i 6= j,
µ j (µ j − 1), for i = j.

Q∗

k,m(v′

j ) is negative if and only if 0<µ j <1. We now deduce the total multiplicity
of the negative eigenvalues µ j < 0. If one replaces the inner product 〈 · , · 〉m by
the usual one, that is , one replaces the matrix Bk by the identity I , the eigenvalues
µ j should be replaced by the eigenvalues η j of Am with respect to the standard
inner product. It is easy to check that µ j and η j have the same signs. So the total
multiplicity of negative µ j ’s equals the total multiplicity of negative ηh’s. But we
have

ηh = hπ + k, −m ≤ h ≤ m,

and each has multiplicity n. Therefore, the total multiplicity of the negative ηh is
n(m −[k/π ]). So the total multiplicity of µ j ∈ (0, 1) is m−(Qm)−n(m −[k/π ]).
By definition we have

i∗

k,m(B) = m−(Qm) − n(m − [k/π ]).

So for m > 0 large enough, from (3–3) we get (3–2). �

Corollary 3.2. 3.2 Under the condition of Equation (2–3), there holds

IL(B0, B1) = i∗

k (B1) − i∗

k (B0).

4. Proof of Theorem 1.1 and some consequences

Lemma 4.1 [Chang 1981, Theorem 5.1, Corollary II.5.2]. Let f ∈ C2(L, R) satisfy
the (PS) condition f ′(0) = 0 and suppose there exists

r /∈ [m−( f ′′(0)), m−( f ′′(0)) + m0( f ′′(0))]

with Hq(L, fa; R)∼= δq,r R. Then f has at least one nontrivial critical point u1 6= 0.
Moreover, if m0( f ′′(0)) = 0 and m0( f ′′(u1)) ≤ |r − m−( f ′′(0))|, then f has one
more nontrivial critical point u2 6= u1.

Theorem 1.1. Without loss any generality we can suppose H(t, 0) = 0 and L = L0.
By the condition (H∞) and the remark after Equation (2–1), we get that iL(B1) +

νL(B1) ≤ iL(B2) + νL(B2), and so we have νL(B1) = 0. We shall first prove that
under the above conditions (1–2) or (1–3), there holds

iL(B1) /∈ [iL(B0), iL(B0) + νL(B0)].
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More clearly, under the condition (1–2), it is claimed

(4–1) iL(B1) = iL(B1) + νL(B1) < iL(B0),

and under the condition (1–3), it is claimed

(4–2) iL(B0) + νL(B0) < iL(B1).

We first prove (4–1). By Equation (2–1) and condition (1–2), we have

iL(B1) ≤ iL(B1 + k I ) ≤ iL(B0).

We shall prove
iL(B1) < iL(B1 + k I ).

In fact, suppose

γ1(t) =

(
S1(t) V1(t)
T1(t) U1(t)

)
∈ P(2n)

is a symplectic path that is the fundamental solution of the linear Hamiltonian
system associated with the matrix function B1(t). Since J B1(t) = B1(t)J , one
can show that exp(Jkt)γ1(t) is the fundamental solution of the linear Hamiltonian
system

ż = J (B1(t) + k I )z.

One has

exp(Jkt)γ1(t) =

(
S1(t) cos kt − T1(t) sin kt V1(t) cos kt − U1(t) sin kt
S1(t) sin kt + T1(t) cos kt V1(t) sin kt + U1(t) cos kt

)
.

The associated unitary n×n matrix Q(t) defined by (2–2) with respect to the above
matrix is

Q(t) = [U1(t) −
√

−1V1(t)][U1(t) +
√

−1V1(t)]−1 exp(2k
√

−1t)

= Q1(t) exp(2k
√

−1t).

In Equation (A.6), 1 j = θ j (1)−θ j (0) and 11
j = θ1

j (1)−θ1
j (0), associated respec-

tively to Q(t) and Q1(t), satisfy

1 j = θ j (1) − θ j (0) = 11
j + 2k = θ1

j (1) − θ1
j (0) + 2k.

Since k ≥ π , there holds

(4–3) iL(B1) + n ≤ iL(B1 + k I ).

Thus we have proved (4–1), and (4–2) can be proved similarly.
By the condition (H∞), H ′′(t, x) is bounded and there exist µ1, µ > 0 such that

(4–4) I ≤ H ′′(t, x) + µI ≤ µ1 I for all (t, x).
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We define a convex function N (t, x)= H(t, x)+µ|x |
2/2. Its Fenchel dual defined

by
N ∗(t, x) = sup

y∈R2n
{(x, y) − N (t, y)}

satisfies (see [Ekeland 1990])

N ∗
∈ C2([0, 1] × R2n, R),

N ∗′′
(t, y) = N ′′(t, x)−1 for y = N ′(t, x).

From (4–4) we have

(4–5) µ−1
1 I ≤ N ∗′′

(t, y) ≤ I for all (t, y).

So we have |x | → ∞ if and only if |y| → ∞ with y = N ′(t, x). Thus there exists
r1 > 0 such that

(4–6) (B2(t) + µI )−1
≤ N ∗′′

(t, y) ≤ (B1(t) + µI )−1

for all t, y with |y| ≥ r1. We choose µ > 0 satisfying (4–4) and µ /∈ σ(A). We
recall that (3µx)(t) = −J ẋ(t) + µx(t). We consider the functional

f (u) = −
1
2

∫ 1

0

[
(3−1

µ u(t), u(t)) − N ∗(t, u(t))
]

dt for u ∈ L.

It is easy to see that f ∈ C2 and satisfies (PS) condition (see [Ekeland 1990]).
There is a one to one correspondence from the critical points of f to the solu-
tions of Hamiltonian systems (1–1). We note that 0 is a trivial critical point of f
and N ∗′(t, 0) = 0. At every critical point u0, the second variation of f defines a
quadratic form on L by

( f ′′(u0)u, u)=−

∫ 1

0

[
(3−1

µ u(t), u(t)) − (N ∗′′
(t, u0(t))u(t), u(t))

]
dt for u ∈L.

Its Morse index and nullity are both finite we denote by (i∗
µ(u0), ν

∗
µ(u0)) the index

pair. The critical point u0 corresponds to a solution x0 = 3−1
µ u0 of (1–1), and

N ∗′′(t, u0(t)) = N ′′(t, x0(t))−1. So by Theorem 3.1, we have

i∗

µ(u0) = iL(x0) + n + n
[µ
π

]
, ν∗

µ(u0) = νL(x0).

The index pair (iL(x0), νL(x0)) is the L-index of the linear Hamiltonian system

ẏ(t) = J H ′′(t, x0(t))y(t).

By condition (1–2) and the result (4–3), we have

(4–7) iL(B1) + νL(B1) + n ≤ iL(B0).
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By condition (1–3), similarly we have

iL(B0) + νL(B0) + n ≤ iL(B1).

From (4–7) and the above inequality, we have that

(4–8) |iL(B0) − iL(B1)| ≥ n and |i∗

µ(B0) − i∗

µ(B1)| ≥ n.

In the following, we need to prove that the homology groups satisfy

(4–9) Hq(L, fa; R) ∼= δqr R, q = 0, 1, . . . ,

for some a ∈ R and r = i∗
µ(B1). fa = {x ∈ L | f (x) ≤ a} is the level set below a.

We follow the ideas of the proof of Lemma II.5.1 in [Chang 1981] to prove (4–9).
See [Dong 2005] and [Liu 2005b] for some similar computations.

Step 1. Under the condition (H∞), there holds

L = L−

µ (B1) ⊕ L+

µ (B2),

where L∗
µ(B) for ∗ = ±, 0 is defined in Section 3. In fact, it is clear that L−

µ (B1)∩

L+
µ (B2) = {0}. By ν∗

µ(B2) = νL(B2) = 0, we have L = L−
µ (B2) ⊕ L+

µ (B2). By
condition (H∞), we have i∗

µ(B1) = i∗
µ(B2) = r . Suppose ξ1, ξ2, · · · , ξr is a basis

in L−
µ (B1). Decompose ξ j by ξ j = ξ−

j + ξ+

j with ξ j ∈ L±
µ (B2). It is clear that

ξ−

1 , · · · , ξ−
r are linear independent, so it is a basis for L−

µ (B2). For any ξ ∈ L,
there holds ξ = ξ−

+ ξ+ with ξ±
∈ L±

µ (B2). Suppose ξ−
= a1ξ

−

1 + · · · + arξ
−
r .

Then

ξ =

r∑
j=1

a jξ j + (ξ+
−

r∑
j=1

a jξ
+

j ) = ξ1 + ξ2

with ξ1 ∈ L−
µ (B1) and ξ2 ∈ L+

µ (B2).

Step 2. For sufficiently small s > 0, from the structure of the symplectic group and
the definition of the Maslov-type index, we know that νL(B1 − s I ) = νL(B1) = 0,
and νL(B2+s I )=νL(B2)=0, and so iL(B1−s I )= iL(B1)= iL(B2)= iL(B2+s I ).
Denote the so-called deformation space by

DR = L−

µ (B1 − s I ) ⊕ {u ∈ L+

µ (B2 + s I ) | ‖u‖ ≤ R}.

For R > 0 and −a > 0 large, we have the deformation result

(4–10) Hq(L, fa; R) = Hq(DR, DR ∩ fa; R).

The proof of (4–10) is standard in the Morse theory [Bott 1982]. We only need to
use the negative flow to deform (L, fa) to (DR, DR ∩ fa). For any u = u1 +u2 ∈ L
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with u1 ∈ L−
µ (B1 − s I ) and u2 ∈ L+

µ (B2 + s I ), by the self-adjointness, we have

( f ′(u), u2 − u1) = −

∫ 1

0
dt
[
(3−1u, u2 − u1) − (N ∗′

(t, u), u2 − u1)
]

=

∫ 1

0
dt
[
(3−1u1, u1) − (3−1u2, u2)

]
+

∫ 1

0
dt
(∫ 1

0
dτ N ∗′′

(t, τu)(u1 + u2), u2 − u1

)
=

∫ 1

0
dt (3−1u1, u1) −

∫ 1

0
dt
(∫ 1

0
dτ N ∗′′

(t, τu)u1, u1

)
−

∫ 1

0
dt (3−1u2, u2) +

∫ 1

0
dt
(∫ 1

0
dτ N ∗′′

(t, τu)u2, u2

)
.

By (4–5) and (4–6), we have∫ 1

0
dt
(∫ 1

0
dτ N ∗′′

(t, τu)u1, u1

)
=

∫ 1

0
dt
∫ h(t,u)

0
dτ (N ∗′′

(t, τu)u1, u1) +

∫ 1

0
dt
∫ 1

h(t,u)

dτ (N ∗′′
(t, τu)u1, u1)

≤ c0‖u‖ +

∫ 1

0
dt ((B1(t) + µI − s I )u1, u1),

where h(t, u) = r1/|u(t)|. Similarly,∫ 1

0
dt
(∫ 1

0
dτ N ∗′′

(t, τu)u2, u2

)
≥

∫ 1

0
dt
∫ 1

h(t,u)

dτ (N ∗′′
(t, τu)u2, u2)

≥

∫ 1

0
dt ((B2(t) + µI + s I )u2, u2) − c‖u‖

for some c > 0. So by the last three relations, we have

( f ′(u), u2 − u1) ≥ c1‖u1‖
2
+ c2‖u2‖

2
− c3(‖u1‖ +‖u2‖).

Thus for large R with ‖u1‖ ≥ R or ‖u2‖ ≥ R, we have

(4–11) (− f ′(u), u2 − u1) < − 1.

We know from (4–11) that f has no critical point outside DR , and that − f ′(u)

points inward to DR on ∂ DR . So we can define the deformation by negative flow. In
fact, for any u =u1+u2 /∈ DR , let σ(θ, u)=eθu1+e−θu2, and du = log ‖u2‖−log R.
We define the deformation map η : [0, 1] × L → L by

η(θ, u1 + u2) =

{
u1 + u2, ‖u2‖ ≤ R,

σ (duθ, u), ‖u2‖ > R.
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The map η satisfies the properties

η(0, · ) = id, η(1, L) ⊂ DR, η(1, fa) ⊂ DR ∩ fa

η(θ, fa) ⊂ fa, η(θ, · )|DR = id|DR .

Thus the pair (DR, DR ∩ fa) is a deformation retract of the pair (L, fa).

Step 3. For large R, −a > 0, there holds

Hq(DR, DR ∩ fa) ∼= δq,r R.

In fact, similarly to the above computation, for large m > 0, we have∫ 1

0
dt N ∗(t, u(t))

=

∫ 1

0
dt
(

N ∗(t, 0) +

∫∫
[0,1]×[0,1]

dτ ds τ(N ∗′′
(t, τ su(t))u(t), u(t))

)

≤

∫
|u(t)|≥mr1

dt
∫∫

[0,1]×[0,1]

dτ ds τ(N ∗′′
(t, τ su(t))u(t), u(t)) + cm

≤

∫
|u(t)|≥mr1

dt
∫∫

|sτu(t)|≥r1, τ,s∈[0,1]

dτ ds τ(N ∗′′
(t, τ su(t))u(t), u(t))

+

∫
|u(t)|≥mr1

dt
∫∫

|sτu(t)|≤r1, τ,s∈[0,1]

dτ ds τ(N ∗′′
(t, τ su(t))u(t), u(t)) + cm

≤
1
2

∫ 1

0
dt ((B1(t) + µI )−1u(t), u(t)) + km‖u‖ + cm,

where cm and km are constants depending only on m and km → 0 as m → +∞. So
for the small s in the step 2 above, we can choose a large number m such that∫ 1

0
dt N ∗(t, u(t)) ≤

1
2

∫ 1

0
dt ((B1(t) + µI − s I )−1u(t), u(t)) + C for all u ∈ L

for some constant C > 0. Thus for any u = u1 + u2 with u1 ∈ L−
µ (B1 − s I ) and

u2 ∈ L+
µ (B2 + s I ) with ‖u2‖ ≤ R, there holds

f (u) ≤ −C1‖u1‖
2
+ C2‖u1‖ + C3,

where C j , j = 1, 2, 3 are constants and C1 > 0. It implies that f (u) → −∞ if
and only if ‖u1‖ → ∞ uniformly for u2 ∈ L+

µ (B2 + s I ) with ‖u2‖ ≤ R. In the
following we denote by Br ={x ∈ L| ‖x‖≤ r} the ball with radius r in L. Therefore
for −a1 >−a2 sufficiently large, there exist three numbers with R < R1 < R2 < R3
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satisfying

(L+

µ (B2 + s I ) ∩ BR3) ⊕ (L−

µ )(B1 − s I ) \ BR2) ⊂ fa1 ∩ DR3

⊂ (L+

µ (B2 + s I ) ∩ BR3) ⊕ (L−

µ )(B1 − s I ) \ BR1) ⊂ fa2 ∩ DR3 .

Recall that σ(θ, u)= eθu1+e−θu2. By definition, we have f (σ (0, u))= f (u)>a1

and f (σ (θ, u)) → −∞ as θ → ∞ if u = u1 + u2 ∈ DR3 ∩ ( fa2 \ fa1). It implies
that there exists θ0 = θ0(u) > 0 such that f (σ (θ0, u)) = a1. But by (4–11),

d
dθ

f (σ (θ, u)) ≤ −1 at any point θ > 0.

By the implicit function theorem, θ0(u) is continuous in u. We define another
deformation map η0 : [0, 1] × fa2 ∩ DR3 → fa2 ∩ DR3 by

η0(θ, u) =

{
u u ∈ fa1 ∩ DR3,

σ (θ0(u)θ, u), u ∈ DR3 ∩ ( fa2 \ fa1).

It is clear that η0 is a deformation from fa2 ∩ DR3 to fa1 ∩ DR3 . We now define

η̃(u) = d(η0(1, u)) with d(u) =

{
u, ‖u1‖ ≥ R1,

u2 +
u1

‖u1‖
R1, 0 < ‖u1‖ < R1.

This map defines a strong deformation retract:

η̃ : DR3 ∩ da2 →
(
L+

µ (B2 + s I ) ∩ BR3

)
⊕
(
L−

µ (B1 − s I ) ∩ {u ∈ L| ‖u‖ ≥ R1}
)
.

Now we can compute the homology groups

Hq(DR3, DR3 ∩ fa2; R)

∼= Hq(DR3, (L
+

µ (B2 + s I ) ∩ BR3) ⊕ (L−

µ (B1 − s I ) ∩ {u ∈ L| ‖u‖ ≥ R1}); R)

∼= Hq(L−

µ (B1 − s I ) ∩ BR3, ∂(L−

µ (B1 − s I ) ∩ BR3); R)

∼= δqr R.

From (4–8), (4–9), and (A.2) below, and by using Equation (4–1), we complete
the proof. �

Corollary 4.2. Let H satisfy the conditions (H0) and (H∞), and suppose B0(t) =

H ′′(t, 0) satisfies one of the twisted conditions:

(i) B1(t) < B0(t), there exists λ ∈ (0, 1) such that νL((1 − λ)B1 + λB0) 6= 0;

(ii) B0(t) < B1(t), there exists λ ∈ (0, 1) such that νL((1 − λ)B0 + λB1) 6= 0.

Then (1–1) possesses at least one nontrivial solution. Furthermore, if νL(B0) = 0
and in (i) we replace the second condition by

∑
λ∈(0,1) ν((1 −λ)B1 +λB0) ≥ n, or

in (ii) we replace the second condition by
∑

λ∈(0,1) ν((1 − λ)B0 + λB1) ≥ n, the
Hamiltonian system (1–1) possesses at least two nontrivial solutions.
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Proof. It follows from (2–3), the proof of Theorem 1.1 and (4–2). In the first
case, we have r = iL(B1) /∈ [iL(B0), iL(B0)+νL(B0)]. In the second case we have
|iL(B0) − iL(B1)| ≥ n. �

The proof of Theorem 1.1 in fact proves this:

Theorem 4.3. Let H satisfy conditions (H0) and (H∞). Suppose B0(t) = H ′′(t, 0)

satisfies the twisted conditions

iL(B1) /∈ [iL(B0), iL(B0) + νL(B0)].

Then the problem (1–1) possesses at least one nontrivial solution. Moreover, if
νL(B0) = 0 and |iL(B1)− iL(B0)| ≥ n, then (1–1) possesses at least two nontrivial
solutions.

Remark. The condition B1(t) < B2(t) in Theorem 2.4 can be replaced by B1(t) ≤

B2(t) for all t and B2 − B1 ≥ δ > 0 for some constant δ as an operator in L.
So the conditions in parts (i) and (ii) of Corollary 4.2 can be replaced by this
kind of condition. The condition J B1(t) = B1(t)J in (H∞) can be replaced by
J B0(t) = B0(t)J .

Appendix. Maslov-type index for symplectc paths with Lagrangian boundary
condition

We give a brief introduction to the Maslov-type index for symplectc paths with
Lagrangian boundary condition. The details can be found in [Liu 2007]. We denote
the symplectic group by

Sp(2n) =
{

M ∈ L(R2n) | MT J M = J
}
,

and denote the symplectic path space by

P(2n) = {γ ∈ C([0, 1], Sp(2n)) | γ (0) = I2n} .

We write a symplectic path γ ∈ P(2n), in the form

(A.1) γ (t) =

(
S(t) V (t)
T (t) U (t)

)
,

where S(t), T (t), V (t), U (t) are n × n matrices. The n vectors coming from the
rightmost columns of the above matrix are linearly independent and they span a
Lagrangian subspace of (R2n, ω0). In particular, at t = 0, this Lagrangian subspace
is L0 = {0} ⊕ Rn .

Definition A.1. We define the L0-nullity of any symplectic path γ ∈ P(2n) by

(A.2) νL0(γ ) ≡ dim kerL0(γ (1)) := dim ker V (1) = n − rankV (1)
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with the n × n matrix function V (t) defined in (A.1).

We define two subsets of P(2n) by

P(2n)∗L0
= {γ ∈ P(2n) | νL0(γ ) = 0},

P(2n)0
L0

= {γ ∈ P(2n) | νL0(γ ) > 0}.

We note that

rank
(

V (t)
U (t)

)
= n,

so the complex matrix U (t)±
√

−1V (t) is invertible. We define a complex matrix
function by

(A.3) Q(t) =
(
U (t) −

√
−1V (t)

) (
U (t) +

√
−1V (t)

)−1
.

It is easy to see that the matrix Q(t) is a unitary matrix for any t ∈ [0, 1]. We define

M+ =

(
0 In

−In 0

)
, M− =

(
0 Jn

−Jn 0

)
, Jn = diag(−1, 1, . . . , 1).

For a path γ ∈ P(2n)∗L0
, we first adjoin it with a simple symplectic path starting

from J = −M+, that is, we define a symplectic path by

γ̃ (t) =

{
I cos(π/2)(1 − 2t) + J sin(π/2)(1 − 2t), t ∈ [0, 1/2];

γ (2t − 1), t ∈ [1/2, 1].

then we choose a symplectic path β(t) in Sp(2n)∗L0
starting from γ (1) and ending

at M+ or M−. We now define a joint path by

γ̄ (t) = β ∗ γ̃ :=

{
γ̃ (2t), t ∈ [0, 1/2],

β(2t − 1), t ∈ [1/2, 1].

By the definition, we see that the symplectic path γ̄ starting from −M+ and ending
at either M+ or M−. As above, we define

(A.4) Q̄(t) =
(
Ū (t) −

√
−1V̄ (t)

) (
Ū (t) +

√
−1V̄ (t)

)−1
.

for γ̄ (t) =

(
S̄(t) V̄ (t)
T̄ (t) Ū (t)

)
. We can choose a continuous function 1̄(t) in [0, 1] such

that

(A.5) det Q̄(t) = e2
√

−11̄(t).

By the above arguments, we see that the number 1
π
(1̄(1)− 1̄(0)) ∈ Z and it does

not depend on the choice of the function 1̄(t).
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Definition A.2. For a symplectic path γ ∈ P(2n)∗L0
, we define the L0-index of γ

by

(A.6) iL0(γ ) =
1
π

(1̄(1) − 1̄(0)).

Definition A.3. For a symplectic path γ ∈ P(2n)0
L0

, we define the L0-index of γ

by

iL0(γ ) = inf
{
iL0(γ̃ ) | γ̃ ∈ P(2n)∗L0

, and γ̃ is sufficiently close to γ
}
.

We note that 3(n) = U (n)/O(n); this means that for any linear subspace L ∈

3(n), there is an orthogonal symplectic matrix

P =

(
A −B
B A

)
with A±

√
−1B ∈ U (n) such that P L0 = L . P is uniquely determined by L up to

an orthogonal matrix C ∈ O(n). It means that for any other choice P ′ satisfying
above conditions, there exists a matrix C ∈ O(n) such that

P ′
= P

(
C 0
0 C

)
.

See [McDuff and Salamon 1998, Lemma 2.31]. We define the conjugated sym-
plectic path γc ∈ P(2n) of γ by γc(t) = P−1γ (t)P .

Definition A.4. We define the L-nullity of any symplectic path γ ∈ P(2n) by

νL(γ ) ≡ dim kerL(γ (1)) := dim ker Vc(1) = n − rankVc(1),

The n × n matrix function Vc(t) is defined in (A.1) with the symplectic path γ

replaced by γc, that is,

γc(t) =

(
Sc(t) Vc(t)
Tc(t) Uc(t)

)
.

Definition A.5. For a symplectic path γ ∈ P(2n), we define the L-index of γ by

iL(γ ) = iL0(γc).

Theorem A.6. If γ ∈ P(2n)0
L , there is a family of paths γs ∈ P(2n)L depend

continuous on s ∈ [−1, 1] such that γ0 = γ , γs ∈ P(2n)∗L , s 6= 0 and

iL(γs) − iL(γ−s) = νL(γ ) for all s ∈ (0, 1],

and
iL(γ ) = iL(γ−s), s ∈ (0, 1].
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For a symmetric matrix function B : [0, 1] → Ls(2n), we consider the functional

f (z) =

∫ 1

0

( 1
2(−J ż, z) − (B(t)z, z)

)
dt, z ∈ WL ,

where WL = {z = (x, y)T
∈ W 1,2([0, 1], R2n) | z(0), z(1) ∈ L} ⊂ L2. By the

saddle point reduction methods (see [Amann 1979; Amann and Zehnder 1980;
Long 1993; 2002; Liu 2007]), there exists a finite-dimensional subspace X of
WL with dim X = 2d + n and an injection map X → WL , such that the function
a(x) = f (u(x)) is C2 and we have:

Theorem A.7. For any L ∈ 3(n),

m−(a) = d + iL(B) + n,

m0(a) = νL(B),

m+(a) = d − iL(B) − νL(B),

where m∗(a) for ∗ = +, 0, − are respectively the positive, null and the negative
Morse indices of the function a(x) at the origin.

Theorem A.8. For any symplectic path γ ∈ P(2n), there holds

iL0(γ ) =

n∑
j=1

E
(

θ j (1) − θ j (0)

2π

)
,

where E(a) = max{k ∈ Z | k < a} and λ j (t) = e
√

−1θ j (t) are the eigenvalues of Q(t)
defined in (A.3).
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