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In the first part of this paper the projective dimension of the structural
modules in the BGG category O is studied. This dimension is computed for
simple, standard and costandard modules. For tilting and injective modules
an explicit conjecture relating the result to Lusztig’s a-function is formu-
lated (and proved for type A). The second part deals with the extension
algebra of Verma modules. It is shown that this algebra is in a natural way
Z2-graded and that it has two Z-graded Koszul subalgebras. The dimension
of the space Ext1 into the projective Verma module is determined. In the
last part several new classes of Koszul modules and modules, represented
by linear complexes of tilting modules, are constructed.

1. Introduction

The Bernstein–Gelfand–Gelfand category O [Bernstein et al. 1976] associated with
a triangular decomposition of a semisimple complex finite-dimensional Lie algebra
is an important and intensively studied object in modern representation theory. It
has many very beautiful properties and symmetries. For example it is equivalent
to the module category of a standard Koszul quasi-hereditary algebra and is Ringel
self-dual. Its principal block is even Koszul self-dual. Powerful tools for the study
of the category O are Kazhdan–Lusztig’s combinatorics, developed in [Kazhdan
and Lusztig 1979], and Soergel’s combinatorics, worked out in [Soergel 1990].
These two machineries immediately give a lot of information about the numerical
algebraic and homological invariants of simple, projective, Verma and tilting mod-
ules in O respectively. However, many natural questions about such invariants are
still open. The present paper answers some of them.

We start with a description of notation and preliminary results in Section 2. The
rest is divided into three parts. The first part of this is Section 3, which is dedicated
to the study of homological dimension for structural modules in the principal block
O0 of O. By structural I mean projective, injective, simple, standard (Verma), co-
standard (dual Verma), and tilting modules respectively. In some cases the result
is rather expected. Some estimates go back to the original paper [Bernstein et al.
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1976]. For simple and standard modules the result can be deduced from Soergel’s
Koszul self-duality of O. However, to my big surprise I failed to find more ele-
mentary arguments in the available literature. Here I present an explicit answer for
simple, standard and costandard modules, and a proof, which does not even uses the
Kazhdan–Lusztig conjecture. However, the shortest “elementary” argument I could
come up with uses some properties of Arkhipov’s twisting functors, established in
[Andersen and Stroppel 2003]. Things become really interesting when one tries to
compute the projective dimension of an indecomposable tilting module. Although
the projective dimension of the characteristic tilting module in O0 is well-known
(see [Mazorchuk and Ovsienko 2004], for example), it seems that nobody has tried
to determine the projective dimension of an indecomposable tilting module. A
very surprising conjecture based on several examples and Theorem 11, which says
that the projective dimension of an indecomposable tilting module is a function,
constant on two-sided cells, suggests that this dimension is given by Lusztig’s a-
function from [Lusztig 1985]. This conjecture is proved here for type A (Theorem
16), which might be considered as a good evidence that the result should be true in
general. However, I do not know how to approach this question in the general case
and my arguments from type A certainly can’t be transfered. The determination of
the projective dimension for injective modules reduces to that of tilting modules.
As a bonus we also give a formula for the projective dimension of Irving’s shuffled
Verma modules in Proposition 19.

In Section 4 we study the extension algebra of standard modules in O0. This is an
old open problem, where really not that much is known. The only available conjec-
ture about the numerical description of such extensions, formulated in [Gabber and
Joseph 1981, Section 5], is known to be false ([Boe 1992]), and the only explicit
partial results I was able to find are the ones obtained in [Gabber and Joseph 1981;
Carlin 1986]. Here I follow the philosophy of [Drozd and Mazorchuk 2007], where
it was pointed out that the extension algebra of standard modules is naturally Z2-
graded. This Z2-grading is obtained from two different Z-gradings: the first one
which comes from the category of graded modules, and the second one which
comes from the derived category. Koszul self-duality of O0 induces a nontrivial
automorphism of this Z2-graded algebra, which swaps the Z-graded subalgebras
of homomorphisms and linear extensions, see Theorem 22. This allows one to
calculate linear extensions between standard modules, in particular, to reprove the
main result from [Carlin 1986]. A surprising corollary here is that by far not all
projectives from the linear projective resolution of a standard module give rise to a
nontrivial linear extension with the standard module, determined by this projective.
In [Drozd and Mazorchuk 2007] it was shown that in the multiplicity free case the
extension algebra of standard modules is Koszul (with respect to the Z-grading,
which is naturally induced by the Z2-grading mentioned above). I do not think
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that this is true in the general case since I do not believe that the extension algebra
of standard modules is generated in degree 1. However, I think it is reasonable to
expect that the subalgebra of this extension algebra, generated by all elements of
degree 1, is Koszul. To support this it is shown that the Z-graded subalgebra of
all homomorphisms between standard modules is Koszul, see Proposition 28. As
the last result of Section 4 I explicitly determine the dimension of the Ext1 space
from a standard module to a projective standard module, see Theorem 32. From
my point of view, the answer is again surprising.

In [Mazorchuk and Ovsienko 2005; Mazorchuk et al. 2006] one finds an ap-
proach to Koszul duality using the categories of linear complexes of projective or
tilting modules. For the category O0 this approach can be used to get quite a lot of
information, see [Mazorchuk 2005; Mazorchuk and Ovsienko 2005; Mazorchuk
et al. 2006]. In particular one can prove the Koszul duality of various functors
and various algebras, associated to O0. A very important class of modules for
Koszul algebras is the class of the so-called Koszul modules. These are modules
with linear projective resolutions. Such modules have a two-folded origin, namely,
they are both modules over the original algebra and over its Koszul dual (via the
corresponding linear resolution). In Section 5 it is shown for several natural classes
of modules from O0 that they are either Koszul or can be represented in the derived
category by a linear complex of tilting modules (which roughly means that they
correspond to Koszul modules for the Ringel dual of O0). The latter property seems
to be more “natural” for the category O0. For example, while only the simple and
the standard modules are Koszul, it turns out that all simple, standard, costandard
and shuffled Verma modules are represented by linear complexes of tilting modules
(for the latter statement see Theorem 35). As an extension of this list we also show
that some structural modules from the parabolic subcategories also have at least
one of these properties, when considered as objects in the original category O0.

2. Notation and preliminaries

Let g denote a semisimple finite-dimensional Lie algebra over C with a fixed tri-
angular decomposition, g = n− ⊕ h ⊕ n+. Let O denote the corresponding BGG-
category O, defined in [Bernstein et al. 1976]. Let O0 denote the principal block of
O, that is the indecomposable direct summand of O, containing the trivial module.
Let W be the Weyl group of g which acts on h∗ in the usual way w(λ) and via the
dot-action w · λ. The category O0 contains the Verma modules M(w · 0), w ∈ W .
For w ∈ W we set 1(w)= M(w ·0) and let L(w) denote the unique simple quotient
of 1(w). Further, P(w) is the indecomposable projective cover of L(w) and I (w)

is the indecomposable injective envelope of L(w). We set L =
⊕

w∈W L(w) and
analogously for all other structural modules.



316 VOLODYMYR MAZORCHUK

The category O0 is a highest weight category in the sense of [Cline et al. 1988],
in particular, associated to L(w) we also have the costandard module ∇(w), and
the indecomposable tilting module T (w) (see [Ringel 1991]). If ? is the standard
duality on O, we have ∇(w) ∼= 1(w)? and T (w) ∼= T (w)?. For w ∈ W by l(w) we
denote the length of w. Let w0 denote the longest element of W . By ≤ we denote
the Bruhat order on W .

If X• is a complex and n ∈ Z, by X•
[n] we will denote the n-th shifted complex,

that is the complex, satisfying (X•
[n])i ∼= Xi+n for all i ∈ Z. We also use the

standard notation Db(A), L F and R F to denote the bounded derived category, and
the left and right derived functors respectively.

Let A =EndO(P)op be the associative algebra of O0. This means that O0 is equiv-
alent to the category A−mod of finitely generated left A-modules. This algebra is
Koszul ([Soergel 1990, Theorem 18]) and we denote by A the associated positively
graded algebra. Denote by A-gmod the category of all finitely generated graded
left A-modules. For w ∈ W we denote by L(w) the standard graded lift of L(w),
concentrated in degree 0; and by P(w) and I(w) the corresponding lifts of P(w)

and I (w) respectively such that the maps P(w)� L(w) and L(w)↪→ I (w) become
homogeneous of degree 0. Further we fix graded lifts 1(w) and ∇(w) such that the
obvious maps P(w) � 1(w) and ∇(w) ↪→ I (w) become homogeneous of degree
0. Finally, we fix the graded lift T(w) such that the map 1(w) ↪→ T (w) becomes
homogeneous of degree 0. In general, we will try to follow the conventions of
[Mazorchuk et al. 2006, Introduction] and refer the reader to that paper for details.
In particular, a graded lift of a module, M , will be usually denoted by M. For k ∈ Z

we denote by 〈k〉 the functor of shifting the grading as follows: if M =
⊕

i∈Z Mi

then M〈k〉i = Mi+k . A complex X• of graded projective (respectively injective or
tilting) modules is called linear provided that Xi

∈ add(P〈i〉) (respectively I〈i〉
and T〈i〉) for all i ∈ Z. By LC(P) (respectively LC(I) or LC(T)) we denote the
category, whose objects are all linear (bounded) complexes of projective (respec-
tively injective and tilting) modules, and morphisms are all possible morphisms
of complexes of graded modules. For general information about the categories
of linear complexes and their applications, see [Mazorchuk and Ovsienko 2005;
Mazorchuk et al. 2006].

For w ∈ W let θw : O0 → O0 denote the indecomposable projective functor
corresponding to w, see [Bernstein and Gelfand 1980, Theorem 3.3]. This functor
is a direct summand of the endofunctor on O given by tensoring with certain finite-
dimensional g-module. The functor θw is exact and both left and right adjoint to
the functor θw−1 . In particular, if s ∈ W is a simple reflection, then θs is the (self-
adjoint) translation functor through the s-wall (see [Gabber and Joseph 1981, Sec-
tion 3]). We have θw P(e) ∼= P(w) by [Bernstein and Gelfand 1980, Theorem 3.3]
and θwT (w0) ∼= T (w0w) by [Collingwood and Irving 1989, Theorem 3.1]. By



SOME HOMOLOGICAL PROPERTIES OF THE CATEGORY O 317

[Stroppel 2003a, Section 8] the functor θw is gradable, which means that it lifts
to an endofunctor on A-gmod. For the graded situation we fix the standard graded
lift of θw, which is uniquely (up to isomorphism) determined by the condition
θwP(e) ∼= P(w).

For w ∈ W let Tw : O0 → O0 denote the corresponding Arkhipov’s twisting
functor, see [Arkhipov 2004; Andersen and Stroppel 2003]. This functor will often
be our main technical tool. Basically, the functor Tw is tensoring with a certain
U (g)-U (g) bimodule, originally studied in [Arkhipov 1997]. The functor Tw is
right exact and we denote by Gw−1 : O0 → O0 the right adjoint of Tw. The functor
Gw−1 is isomorphic to Joseph’s completion functor defined in [Joseph 1982], see
[Khomenko and Mazorchuk 2005, Corollary 6]. We will need the following prop-
erties of Tw, which were established in [Andersen and Stroppel 2003] (here x lies
in W and s is a simple reflection):

I. LTw is a self-equivalence of Db(O) with inverse RGw−1 .

II. Tw is acyclic on Verma modules.

III. Ts1(x) ∼= 1(sx), if sx > x .

IV. Ts∇(x) ∼=

{
∇(x) if sx > x,

∇(sx) otherwise.
.

V. Li Ts = 0 for i 6= 0, 1.

VI. L0Ts L(x) 6= 0 if and only if sx < x .

VII. L1Ts L(x) ∼=

{
L(x) if sx > x,

0 otherwise.
.

VIII. Twθw′
∼= θw′Tw for all w′

∈ W .

The functor Gw−1 has dual properties. The functor Tw is gradable by [Stroppel
2005] and we fix the standard graded lift of Tw, which is uniquely determined by
the condition Tw1(e) ∼= 1(w).

3. Projective dimensions of structural modules in O0

As we already mentioned, the category O0 is a highest weight category. All simple,
standard, costandard, projective, injective and tilting modules play various impor-
tant roles in this structure. Our first natural question is to determine the projective
dimension of all these (indecomposable) structural modules. We will write p.d.(M)

for the projective dimension of a module, M , and denote by gl.dim. the global (or
homological) dimension of an algebra or its module category. As an obvious result
here one can mention p.d.(P(w)) = 0 for all w ∈ W .

3.1. Standard and simple modules. It turns out that determining the projective
dimension of standard and simple modules in O0 is the easiest part of the task.
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Actually, first estimates for these dimensions were already obtained in the original
paper [Bernstein et al. 1976] (the proof is very short, so we include it for the sake
of completeness).

Proposition 1 [Bernstein et al. 1976, Section 7].

(i) p.d.(1(w)) ≤ l(w).

(ii) p.d.(L(w)) ≤ 2l(w0) − l(w).

(iii) gl.dim.O0 ≤ 2l(w0).

Proof. Obviously, p.d.(1(e)) = 0 since 1(e) = P(e). As we have already men-
tioned, O0 is a highest weight category with respect to the Bruhat order on W . In
particular, this means that the kernel of the natural projection P(w) � 1(w) has
a filtration with subquotients 1(w′), l(w′) < l(w). Hence

p.d.(1(w)) ≤ max
w′:l(w′)<l(w)

{p.d.(1(w′))} + 1,

which implies (i) by induction.
Since 1(w0) = L(w0), the formula of (ii) for w = w0 is just a special case of

(i). Consider now the short exact sequence X ↪→ 1(w) � L(w). Then X has a
filtration with subquotients of the form L(w′), l(w′) > l(w). Hence one obtains

p.d.(L(w)) ≤ max
w′:l(w′)>l(w)

{p.d.(L(w′))} + 1,

which implies (ii) by induction.
(iii) is an immediate corollary from (ii). �

Further, in the last remark in [Bernstein et al. 1976] it is mentioned that one can
show that gl.dim.O0 = 2l(w0). The shortest argument I know, which does this, is
the following:

Proposition 2. p.d.(L(e)) ≥ 2l(w0), in particular, gl.dim.O0 = 2l(w0).

Proof. Consider the BGG-resolution

0 → Ml(w0) → Ml(w0)−1 → · · · → M1 → M0 → L(e) → 0

of L(e), see [Bernstein et al. 1975, Theorem 10.1], and let M• be the corresponding
complex of (direct sums of) Verma modules, whose only nonzero homology is
H0(M•) ∼= L(e). Every nonzero map f : 1(w0) → ∇(w0) induces a nonzero map
f : M•

→ (M•)?[2l(w0)]. Since dim HomO(1(w), ∇(w′))= δw,w′ by [Ringel 1991,
Section 3], it follows that f is not homotopic to 0. Since ExtiO(1(w), ∇(w′)) = 0
for all i > 0 by [Ringel 1991, Theorem 4], from [Happel 1988, Chapter III(2),
Lemma 2.1] it follows that Ext2l(w0)

O (L(e), L(e)) 6= 0. Thus we get p.d.(L(e)) ≥

2l(w0). The latter and Proposition 1(iii) imply gl.dim.O0 = 2l(w0). �
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Now we show that the estimates in parts (i) and (ii) of Proposition 1 are in
fact the exact values. Already this becomes slightly tricky, especially for simple
modules. Here we present a uniform approach, which works for both standard
and simple modules, and is based on certain properties of the so-called twisting
functors on O0. Some other approaches will be discussed in remarks at the end of
this subsection. We start with the case of standard modules since the proof is more
direct in this case.

Proposition 3. Extl(w)
O (1(w), L(e)) 6= 0, in particular, p.d.(1(w)) = l(w).

Proof. We do induction on l(w). If w = e the statement is obvious. If s is a simple
reflection such that l(sw) > l(s), we have

Extl(sw)
O (1(sw), L(e)) =

HomDb(O)(1(sw), L(e)[l(sw)]) = (by III)

HomDb(O)(Ts1(w), L(e)[l(sw)]) = (by II)

HomDb(O)(LTs1(w), L(e)[l(sw)]) = (by I)

HomDb(O)(1(w), RGs L(e)[l(sw)]) = (by the dual of VII)

HomDb(O)(1(w), L(e)[l(sw) − 1]) =

HomDb(O)(1(w), L(e)[l(w)]) =

Extl(w)
O (1(w), L(e)) 6= 0

by induction. The statement now follows from Proposition 1(i). �

Remark 4. Another way to prove the formula for the projective dimension of stan-
dard modules from Proposition 3 is to use [Soergel 1990, Theorem 18], [Ágoston
et al. 2003, Proposition 2.7] and [Irving 1985, 3.5]. A disadvantage in this case
is the fact that so far there is no purely algebraic proof of [Soergel 1990, Theo-
rem 18], whereas the results from [Andersen and Stroppel 2003] used in the proof
of Proposition 3 can be proved algebraically.

Remark 5. Yet another way to prove the formula for the projective dimension
of standard modules from Proposition 3 is to observe, using translation functors,
that p.d.1(w0) coincides with the projective dimension of the characteristic tilting
module in O0. Then [Mazorchuk and Ovsienko 2004, Corollary 2] and Proposition
2 imply p.d.(1(w0)) = l(w0). For any w ∈ W and a simple reflection s ∈ W such
that l(ws) > l(w) there is a short exact sequence 1(ws) ↪→ θs1(w) � 1(w).
Since θs is exact and maps projectives to projectives, we have p.d.(θs1(w)) ≤

p.d.(1(w)). This implies p.d.(1(ws)) ≤ p.d.(1(w))+1 and the second statement
of Proposition 3 follows by induction from the extreme cases w = e and w = w0

for which it is already established.

Now we move to the case of simple modules.
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Proposition 6. Ext2l(w0)−l(w)
O (L(w), L(e)) 6= 0. In particular,

p.d.(L(w)) = 2l(w0) − l(w).

Proof. Again the second statement follows from the first statement and Proposition
1(ii). Since L(w0) = 1(w0), in the case w = w0 the first statement follows from
Proposition 3. Now we use the inverse induction on l(w). Let s ∈ W be a simple
reflection such that l(sw) < l(w). Let m = 2l(w0) − l(w). Now we can compute:

Extm+1
O (Ts L(w), L(e)) =

HomDb(O)(Ts L(w), L(e)[m + 1]) = (by II)

HomDb(O)(LTs L(w), L(e)[m + 1]) = (by I)

HomDb(O)(L(w), RGs L(e)[m + 1]) = (by the dual of VII)

HomDb(O)(L(w), L(e)[m]) = ExtmO (L(w), L(e)).

From the inductive assumption we thus get Extm+1
O (Ts L(w), L(e)) 6= 0. From [An-

dersen and Stroppel 2003, Lemma 2.1(3)] and the right exactness of Ts it follows
that all composition subquotients of Ts L(w) are either of the form L(sw) or of
the form L(w′), where l(w′) > l(sw). From the inductive assumption we have
p.d.(L(w′)) ≤ m < p.d.(X), which implies p.d.(L(sw)) = p.d.(X) = m + 1. This
completes the proof. �

Remark 7. Another way to prove the second statement of Proposition 6 is to use
[Soergel 1990, Theorem 18], reducing the question to the Loewy length of some
projective module in O0. This Loewy length can then be estimated using the results
from [Irving 1985].

3.2. Costandard modules. An easy corollary from Proposition 6 is the following
formula for projective dimensions of costandard modules:

Proposition 8. p.d.(∇(w)) = 2l(w0) − l(w).

Proof. For w =w0 we have ∇(w0)= L(w0) and the statement follows from Propo-
sition 6. Now we use the inverse induction on l(w). Let s be a simple reflection
such that l(ws)< l(w). There is a short exact sequence ∇(w) ↪→θs∇(w)�∇(ws).
Since θs is exact and preserves projectives, we have p.d.(θs∇(w)) ≤ p.d.(∇(w)),
which implies p.d.(∇(ws)) ≤ p.d.(∇(w)) + 1 = 2l(w0) − l(ws). On the other
hand, for the short exact sequence L(ws) ↪→ ∇(ws) � X we have that all sim-
ple subquotients of X have the form L(w′), where l(w′) > l(ws). Hence, by
the inductive assumption, we have p.d.(X) < 2l(w0) − l(ws), which implies that
p.d.(∇(ws)) = p.d.(L(ws)). The claim follows. �
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Remark 9. Another way to prove Proposition 8 is to use twisting functors and the
results of [Andersen and Stroppel 2003], analogously to the proofs of Propositions
3 and 6.

Remark 10. It is worth mentioning that all the results so far are obtained without
using the Kazhdan–Lusztig conjecture (Theorem).

3.3. Injective and tilting modules. We are now left to consider the cases of in-
jective and tilting modules. It turns out that these are by far more complicated
than the others. Firstly, we will be forced to use the Kazhdan–Lusztig conjecture.
Secondly, we will not be able to obtain a description so explicit as above in all
cases, and even in the cases when an explicit description is obtained, the result is
formulated in terms of Kazhdan–Lusztig’s combinatorics. To shorten our notation
for w ∈ W we set

t(w) := p.d.(T (w)), i(w) := p.d.(I (w)).

Our main observation about t(w) and i(w) is the following:

Theorem 11. (a) Both t and i are constant on the right cells of W .

(b) Both t and i are constant on the left cells of W .

(c) Both t and i are constant on the two-sided cells of W .

Proof. Statement (c) follows immediately from (a) and (b).

Proof of (a). As a consequence of the Kazhdan–Lusztig conjecture, for w ∈ W
and a simple reflection, s ∈ W , we have (see [Irving 1990, Corollary 5.2.4], for
instance):

(1) θsθw =

{
θw ⊕ θw if ws < w,

θws ⊕
⊕

y<w,ys<y µ(y, w)θy if ws > w,

where µ(y, w) is Kazhdan–Lusztig’s µ-function (see [Irving 1990, 2.1] or [Kazh-
dan and Lusztig 1979]).

By [Bernstein and Gelfand 1980, Theorem 3.3] we have θw P(e) ∼= P(w) and
hence θw I (e) ∼= I (w) since θw obviously commutes with ?. Now let w ∈ W and a
simple reflection s ∈ W be such that ws >w. Since θs is exact and sends projectives
to projectives, applying θs to the projective resolution of I (w) = θw I (e) and using
(1) we obtain that i(ws) ≤ i(w) and i(y) ≤ i(w) for all y such that y < w, ys < y
and µ(y, w) 6= 0. In particular, it follows that i is monotone with respect to the
right preorder on W (see [Björner and Brenti 2005, 6.2], for instance, for details)
and thus i must be constant on the right cells.

Since x 7→ w0x is a bijection on the right cells (see [Björner and Brenti 2005,
Corollary 6.2.10], for example), we have that for t the arguments are just the same
as for i, as soon as one makes the obvious observation that θwT (w0) ∼= T (w0w).
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Proof of (b). Statement (b) is the “left hand-side version” of (a). We would
like to prove it using analogous arguments, however, for this we will need a “right
hand-side version” of (1), namely:

Lemma 12.

(2) θwθs =

{
θw ⊕ θw if sw < w,

θsw ⊕
⊕

y<w,sy<y µ(y, w)θy if sw > w,

Proof. Let H denote the Hecke algebra of W equipped with the standard basis
(Hw)w∈W . Then there is a unique antiautomorphism σ of H satisfying σ(Hs)= Hs

for any simple reflection s. Now (2) is obtained from (1) by applying σ . �

Let s ∈ W be a simple reflection and w ∈ W . Applying θw to the short exact
sequence 1(sw0) ↪→ T (sw0) � 1(w0) and observing that 1(sw0) = Gs1(w0)

(the dual of IV) and Gsθw = θwGs (the dual of VIII), we get

(3) GsT (w0w) ↪→ θwθs T (w) � T (w0w).

We claim that p.d.(GsT (w0w))≤p.d.(T (w0w)). Indeed, set p.d.(T (w0w))=m.
Then for all i > m we have

ExtiO(GsT (w0w), L) =

HomDb(O)(GsT (w0w), L[i]) = (by the dual of II)

HomDb(O)(RGsT (w0w), L[i]) = (by I)

HomDb(O)(T (w0w), LTsL[i]).

The length of a minimal projective resolution of T (w0w) is m. By V, the nonzero
homology of LTsL[i] can occur only in positions −i or −i − 1. Since i > m it
follows from [Happel 1988, Chapter III(2), Lemma 2.1] that

HomDb(O)(T (w0w), LTsL[i]) = 0

and thus that p.d.(GsT (w0w)) ≤ p.d.(T (w0w)).
From the previous paragraph and the short exact sequence (3) we derive the

inequality p.d.(θwθs T (w0)) ≤ p.d.(T (w0w)). Now from (2) it follows that

p.d.(T (w0 y)) ≤ p.d.(T (w0w))

for each y such that y < w, sy < y such that µ(y, w) 6= 0. In particular, it follows
that t is monotone with respect to the left preorder on W (see [Björner and Brenti
2005, 6.2], for instance, for details) and thus t must be constant on the left cells.
Again, for i the proof is analogous. �

Example 13. If g is of type A2, we have W = {e, s, t, st, ts, sts = tst} with the
following decomposition into two-sided cells: {e}∪{s, t, st, ts}∪{sts}. One easily
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computes the following table of values for t and i:

w e s t st ts sts
t(w) 0 1 1 1 1 3
i(w) 6 2 2 2 2 0

Example 14. If g is of type B2, we have W = {e, s, t, st, ts, sts, tst, stst = tsts}
with the following decomposition into two-sided cells:

{e} ∪ {s, t, st, ts, sts, tst} ∪ {stst}.

One easily computes the following table of values for t and i:

w e s t st ts sts tst stst

t(w) 0 1 1 1 1 1 1 4

i(w) 8 2 2 2 2 2 2 0

There is a well-known integral function on W , constant on two-sided cells,
namely Lusztig’s function a : W → Z, defined in [Lusztig 1985]. If w ∈ W
is an involution, then a(w) = l(w) − 2δ(w), where δ(w) is the degree of the
Kazhdan–Lusztig polynomial P1,w, which, together with the property of being
constant on two-sided cells, completely determines a, since every two-sides cell
contains a (distinguished) involution, see [Lusztig 1985; Lusztig 1987] for details.
In particular, if WS is a parabolic subgroup of W and wS

0 is the longest element
in WS , we have a(wS

0 ) = l(wS
0 ). Comparing the values of a with Example 13 and

other examples leads to the following conjecture:

Conjecture 15. For all w ∈ W we have

(a) t(w) = a(w);

(b) i(w) = 2a(w0w).

Theorem 16. Conjecture 15 is true if g = sln .

Proof. We start by proving Conjecture 15(a).
First we observe that in the case g = sln every two-sided cell of W contains

an element of the form wS
0 , where WS is a parabolic subgroup of W . Indeed,

from [Björner and Brenti 2005, Theorem 6.5.1] we have that there is a bijection
between the two-sided cells of Sn and partitions of n. Using [Björner and Brenti
2005, Theorem 6.5.1] and [Sagan 2001, Theorem 3.6.6] one gets that the two-
sided cell of W ∼= Sn , corresponding to the partition λ ` n, consists of all w ∈ Sn ,
which correspond to standard tableaux of shape λ via the Robinson–Schensted
correspondence. Now if wS

0 is the longest element in some parabolic subgroup
of type λ, a direct calculation shows that the Robinson–Schensted correspondence
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associates with wS
0 the partition, which is conjugate to λ. As a corollary we get

that every two-sided cell indeed contains some wS
0 .

Fix now some two-sided cell, say C, and assume that it contains wS
0 for some

S. Because of the properties of a, listed above, Conjecture 15(a) would follow if
we would prove that p.d.(T (wS

0 )) = l(wS
0 ). Assume further that WS corresponds

to the partition λ. From [Björner and Brenti 2005, Theorem 6.2.10] and [Sagan
2001, Theorem 3.2.3] we get that C also contains an element of the form w0w

S′

0 ,
where S′ corresponds to the conjugate λ′ of λ.

Perform the decomposition

θ
wS′

0
= θout

wS′

0
θon
wS′

0
,

where the term on the right is the translation onto the “most singular” S′-wall and
the one on the left is the translation out of this wall. Let further the wS′

0 -singular
block Oµ be the image of θon

wS′

0
, applied to O0. Finally, let X denote the simple

Verma module in Oµ. Then

θon
wS′

0
T (w0w

S′

0 ) ∼= X⊕|WS′ | and θout
wS′

0
X ∼= T (w0w

S′

0 ).

Since translation functors are exact and preserve projectives, p.d.(T (w0w
S′

0 )) =

p.d.(X).
The Koszul dual of Oµ is the regular block of the S′-parabolic category Op,

see [Beilinson et al. 1996, Theorem 3.10.2]. In particular, via the Koszul duality
p.d.(X) becomes equal to m − 1, where m is the Loewy length of the projective
generalized Verma module in O

p
0. By [Irving and Shelton 1988, Corollary 3.1],

since wS′

0 corresponds to the partition λ′, m − 1 is equal to length of the longest
element in some parabolic subgroup of W corresponding to the partition conjugate
to λ′, that is to λ. We finally get that

t(wS
0 ) = t(w0w

S′

0 ) = p.d.(X) = l(wS
0 ).

Now we prove Conjecture 15(b) using Conjecture 15(a). In fact, after Conjecture
15(a) is proved, one has only to show that i(wS

0 )= 2t(w0w
S
0 ). We again decompose

θwS
0

= θout
wS

0
θon
wS

0
. We have the singular simple Verma module X such that θout

wS
0

X ∼=

T (w0w
S
0 ) (and θon

wS
0
T (w0w

S
0 ) ∼= X⊕|WS |). We also have the singular dominant dual

Verma module Y such that θout
wS

0
Y ∼= I (wS

0 ) (and θon
wS

0
I (wS

0 ) ∼= Y ⊕|WS |). In particular,

we have p.d.(T (w0w
S
0 ))=p.d.(X)=m and p.d.(I (wS

0 ))=p.d.(Y )=n. So we have
to show that n = 2m. Taking the Koszul dual we get that m + 1 equals the Loewy
length of the projective standard module in some regular block of the parabolic
category Op.
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Let Z denote the simple socle of Y . Then the projective dimension of Z equals,
via Koszul duality, to x − 1, where x is the Loewy length of some projective-
injective module in O

p
0. By [Mazorchuk and Stroppel 2005a, Theorem 5.2(1)], all

projective-injective modules in O
p
0 have the same Loewy length. By [Mazorchuk

and Stroppel 2005a, Theorem 5.2(2)], the projective generator of O
p
0 is a submodule

of a projective-injective module in O
p
0. It follows that projective-injective modules

in O
p
0 have the maximal possible Loewy length. Thus p.d.(Z) equals the global

dimension of O
p
0. Since Z is in the socle of Y and has the maximal possible

projective dimension, from the long exact sequence in homology it follows that
n = p.d.(Y ) = p.d.(Z) = x − 1. Now n = x − 1 = 2m follows from [Irving and
Shelton 1988, Corollary 3.1]. This completes the proof. �

Remark 17. The main difficulty to extend the above arguments to the case of
arbitrary g seems to be the fact that, in general, not every two-sided cell contains
some element of the form wS

0 . In fact, Jian-yi Shi has informed me that in type D4

some two-sided cell with a-value 7 does not contain any such element. I do not
know how to estimate the values of t and i on elements of such cells. In the general
case I can not even prove that t(s) = 1 for a simple reflection s ∈ W .

Remark 18. The functor T = Tw0 is exactly the version of Arkhipov’s functor used
in [Soergel 1998] to establish Ringel’s self-duality of O. In particular, TP(w) ∼=

T (w0w) for all w ∈ W . Using I, for every w ∈ W and i ∈ Z we have

HomDb(O)(T (w0w), L[i]) = HomDb(O)(LTP(w), L[i])

= HomDb(O)(P(w), RGL[i]).

This shows that Conjecture 15 is closely connected to the understanding of RG
applied to simple modules, that is to the understanding of the homology of the
complex GI•, where I• is an injective resolution of L . We remark that I• is a
projective object in LC(I); and GI• is a projective object in the category LC(T);
see [Mazorchuk et al. 2006, Proposition 11]. These categories will appear later on
in the paper, where we will also try study the connection mentioned above in more
details.

3.4. Shuffled Verma modules. There is a very special class of modules in O0,
called shuffled Verma modules, which were introduced in [Irving 1993] as modules,
corresponding to the principal series modules. Using [Andersen and Lauritzen
2003, Section 3] for x, y ∈ W we define the corresponding shuffled Verma module

1(x, y) = Tx1(y)

(as these modules are defined using the twisting functors, sometimes they are also
called twisted Verma modules, however, we will use the name shuffled Verma mod-
ules as in the original paper [Irving 1993]). In particular, using III and IV for any
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w ∈ W we have

1(e, w) ∼= 1(w), 1(w, w0) ∼= ∇(ww0),

1(w, e) ∼= 1(w), 1(w0, w) ∼= ∇(w0w).

For shuffled Verma modules we have the following statement, which includes
Propositions 3 and 8 as special cases:

Proposition 19. For x, y ∈ W we have p.d.(1(x, y)) = l(x) + l(y).

Proof. First let us prove that p.d.(1(x, y)) ≤ l(x) + l(y) by induction on l(x).
If x = e, the statement follows from Proposition 8. Let now x = sz, where s
is a simple reflection and l(z) < l(x). Since 1(x, y) = Ts1(z, y), we have for
i > l(x) + l(y)

(4)

ExtiO(Ts1(z, y), L) =

HomDb(O)(Ts1(z, y), L[i]) = (by II)

HomDb(O)(LTs1(z, y), L[i]) = (by I)

HomDb(O)(1(z, y), RGsL[i]).

By the induction assumption we know that the projective resolution of 1(z, y) has
length at most l(x) + l(y) − 1. By the dual of V, nonzero homology of RGsL[i]
can occur only in positions −i, −i +1 < −(l(x)+ l(y)−1). Hence, using [Happel
1988, Chapter III(2), Lemma 2.1], we get

HomDb(O)(1(z, y), RGsL[i]) = 0.

Now it is enough to observe that Extl(x)+l(y)

O (1(x, y), L(e)) 6= 0. We use in-
duction on l(x) + l(y). If l(x) = 0, this is proved in Proposition 3. If l(x) > 1
this follows from the inductive assumption and (4) using VII. This completes the
proof. �

Remark 20. Twisted tilting modules Tx T (y), x, y ∈ W , were studied in [Stroppel
2003b]. One can also consider the twisted projective modules Tx P(y), x, y ∈ W
(for x = w0 the latter coincide with the usual tilting modules). It is a natural
question to determine the projective dimension of these modules. However, this
question seems to be even more complicated than the corresponding question for
the usual tilting modules. The main reason is that, in contrast to the usual tilting
modules, for twisted tilting or twisted projective modules the function of projective
dimension will be constant only on the appropriate right cells, but not on the two-
sided cells in the general case.
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4. On the extension algebra of standard modules

4.1. Setup for Koszul quasi-hereditary algebras. Let k be an algebraically closed
field. Let A =

⊕
i∈Z Ai be a positively graded k-algebra, that is, one satisfying

dim Ai = 0 for all i < 0; dim Ai < ∞ for all i ; and A0 =
⊕

λ∈3 keλ, where
1 =

∑
λ∈3 eλ is a fixed decomposition of 1 into a sum of pairwise orthogonal

primitive idempotents. We denote by A ! the quadratic dual of A; see [Mazorchuk
and Ovsienko 2005, Section 6], for example.

Let A-fgmod denote the category of all graded A-modules with finite-dimensional
graded components. Morphisms in this category are homogeneous maps of degree
0 between graded modules. Under our assumptions, this category contains several
natural classes of modules. To each λ ∈ 3 there correspond the graded projective
module P(λ) = Aeλ, its simple quotient S(λ), and the injective hull I(λ) of S(λ).
Assume further that A is quasi-hereditary with respect to some order ≤ on 3.
Then we also have the corresponding graded standard module 1(λ), the graded
costandard module ∇(λ), and the graded tilting modules T(λ), (see for example
[Zhu 2004]). As before we set P =

⊕
λ∈3 P(λ) and analogously for all other types

of modules. We have that the canonical surjections P(λ) � 1(λ) � S(λ) and
T(λ)�∇(λ), and the canonical injections S(λ) ↪→∇(λ) ↪→I(λ) and 1(λ) ↪→T(λ)

are morphisms in A-fgmod. As before 〈k〉 denotes the shift of grading.
Denote by LC(P) (resp. LC(I) and LC(T)) the category, whose objects are all

complexes X• such that Xi
∈ add(P〈i〉) (resp. add(I〈i〉) and add(T〈i〉)) for all i , and

morphisms are all morphisms of complexes. The complexes from LC(P), LC(I)

and LC(T) are called linear. From the positivity of the grading it follows that the
only homotopy between two objects of LC(P) is the trivial one. The grading on
A automatically induces a grading on the Ringel dual R(A) = EndA(P)op. If this
grading is positive (which is not true in general), then the only homotopy between
two objects of LC(T) is the trivial one (see [Mazorchuk and Ovsienko 2005, Sec-
tion 6]). The category LC(P) is equivalent to A ! -fgmod and the category LC(T)

is equivalent to R(A) ! -fgmod; see [Mazorchuk and Ovsienko 2005, Section 6], for
example.

Assume now that both the minimal titling coresolution and the minimal pro-
jective resolution of 1 as well as the minimal tilting resolution and the minimal
injective coresolution of ∇ are linear. In particular, this implies that A is standard
Koszul in the sense of [Ágoston et al. 2003]. Hence the algebra R(A) ! is quasi-
hereditary. Certainly R(A) ! inherits a grading. Finally, we assume that the induced
grading on R(R(A) !) is positive; in other words, we assume that A is balanced in
the sense of [Mazorchuk and Ovsienko 2005, Section 6].

4.2. Bigraded extension algebra of standard modules. Consider the full subcat-
egory of Db(A-fgmod), whose objects are 1(λ)〈i〉[ j], where λ ∈ 3, i, j ∈ Z. The
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group Z acts freely on this category by shifting the position in the complex. This in-
duces the usual Z-grading on the Yoneda Ext-algebra Ext∗A(1). However, this grad-
ing is not positive in general since there usually exist nontrivial homomorphisms
between different standard modules, which implies that the zero component of the
Yoneda algebra (with respect to the above Z-grading) is not semisimple. Hence we
refine the picture by introducing an additional grading. The group Z2 acts freely on
the above category by shifting the grading and the position in the complex. This in-
duces a canonical Z2-grading on the Yoneda Ext-algebra Ext∗A(1); see [Drozd and
Mazorchuk 2007], for example. This Z2-graded algebra has two natural Z-graded
subalgebras. The first one the Z-graded algebra End∗

A(1) of all homomorphisms
between graded standard modules obtained in the following way: Consider the full
subcategory of Db(A-fgmod), whose objects are 1(λ)〈i〉, where λ ∈ 3, i ∈ Z. The
group Z acts freely on this category by shifting the grading. End∗

A(1) is the Z-
graded algebra obtained as the quotient of this action. The second subalgebra is the
Z-graded algebra Lext∗A(1) of all linear extensions defined in the following way:
Consider the full subcategory of Db(A-fgmod), whose objects are 1(λ)〈i〉[−i],
where λ ∈ 3, i ∈ Z. The group Z acts freely on this category via 〈i〉[−i], i ∈ Z.
Lext∗A(1) is the Z-graded algebra obtained as the quotient of this action. Our main
general result in this section is the following fairly obvious observation, which,
however, will have some interesting applications to the category O.

Proposition 21. Let A be balanced. Then the Yoneda extension algebras of stan-
dard modules for A and R(A) ! are canonically isomorphic as Z2-graded algebras.
This isomorphism induces the following isomorphisms of Z-graded subalgebras:

End∗

A(1) ∼= Lext∗R(A) ! (1),

Lext∗A(1) ∼= End∗

R(A) ! (1).

Proof. Since A is balanced, then both A and R(A) are quasi-hereditary and Koszul.
The Ringel and Koszul dualities induce equivalences between the corresponding
bounded derived categories of graded modules. By [Mazorchuk and Ovsienko
2005, Theorem 9], standard modules for A and R(A) ! can be identified via these
dualities. The first part of the claim follows. The second part follows from the
identification of standard modules given in the theorem just cited. �

4.3. Applications to the category O. Proposition 21 can immediately be applied
to the graded algebra A of the principal block of the category O. Namely, in the
notation of Section 2 we have:

Theorem 22. (a) There is a nontrivial automorphism of the Z2-graded algebra
End∗

A(1), which swaps End∗

A(1) and Lext∗A(1). In particular, the Z-graded
algebras End∗

A(1) and Lext∗A(1) are isomorphic.
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(b) ExtiA(1(x), 1(y)〈 j〉) ∼= Exti+ j
A (1(w0x−1w0), 1(w0 y−1w0)〈− j〉) for all el-

ements x, y ∈ W .

Proof. A is both Koszul self-dual, by [Soergel 1990, Theorem 18], and Ringel self-
dual, by [Soergel 1998, Corollary 2.3]. Hence the first statement follows directly
from Proposition 21. The second statement follows by tracking the correspondence
induced by these self-dualities on primitive idempotents and [Mazorchuk et al.
2006, Theorem 21(ii)]. �

The latter statement has some interesting corollaries. The first one describes the
linear extensions between standard modules:

Corollary 23. For x, y ∈ W , we have:

ExtiA(1(x), 1(y)〈−i〉) ∼=

{
C if x ≥ y and l(x) − l(y) = i,
0 otherwise.

Proof. Theorem 22 reduces the statement to the analogous statement for homo-
morphisms between Verma modules. We know that the positive grading on A
induces a positive grading on Verma modules. Furthermore, we also know when
homomorphisms between Verma modules do exist, and that the homomorphism
space between Verma modules is at most one-dimensional; see [Dixmier 1996,
Section 7]. Moreover, all Verma modules have the same simple socle. So, to get
the explicit formula above one has to compare the lengths of their graded filtrations,
which can be done using, for example, [Stroppel 2003a, Section 5]. �

Remark 24. From Corollary 23 it follows that the assertions of [Mazorchuk and
Ovsienko 2005, Theorems 6,7] require some additional assumptions, for example
it is sufficient to make [Drozd and Mazorchuk 2007, Assumptions (I)–(IV)].

Another corollary is the following result of Carlin [1986, (3.8)]:

Corollary 25. For x, y ∈ W , x ≥ y, we have Extl(x)−l(y)

A (1(x), 1(y)) ∼= C.

Proof. Since A is quasi-hereditary with respect to the Bruhat order on W , the
projective modules, occurring at the position l(y) − l(x) in the minimal (linear)
projective resolution of 1(x), have indexes w such that l(w) ≤ l(y). At the same
time all simple modules in the radical of 1(y) have indexes u such that l(u)> l(y).
Hence any nonzero element in the space Extl(x)−l(y)

A (1(x), 1(y)) must belong to
Extl(x)−l(y)

A (1(x), 1(y)〈l(y) − l(x)〉). The statement follows from Corollary 23.
�

Remark 26. Using the parabolic-singular Koszul duality from [Beilinson et al.
1996; Backelin 1999; Stroppel 2005], one obtains that the extension algebras of
standard modules for parabolic and corresponding singular blocks (respectively,
pairs of corresponding parabolic-singular blocks) are also isomorphic as bigraded
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algebras. This isomorphism again swaps the subalgebra of homomorphisms with
the subalgebra of linear extensions.

4.4. Several graded subalgebras of the extension algebra of standard modules.
We continue to study the Z2-graded extension algebra Ext∗A(1) of the block O0.
From the quasi-heredity of A we immediately obtain the following vanishing con-
dition: ExtiA(1, 1〈 j〉) 6= 0 implies i ≥ 0 and j ≥ −i . Hence we obtain a natural
positive Z-grading on E := Ext∗A(1) (in the sense of [Mazorchuk et al. 2006, 2.1]):

Ek =

⊕
2i+ j=k

ExtiA(1, 1〈 j〉), k ∈ Z.

In particular, both End∗

A(1) and Lext∗A(1) become Z-graded subalgebras of E in
the natural way.

Remark 27. The natural Z-grading on E given by the degree of the extension
is not positive since the zero component of this grading (the subalgebra of all
homomorphisms) is not a semisimple subalgebra in the general case.

Our first result here is the following Koszulity statement for the subalgebra of
all homomorphisms.

Proposition 28. The algebra End∗

A(1) is Koszul.

Proof. First I claim that, as a Z-graded algebra, the algebra End∗

A(1) is isomorphic
to the incidence algebra of the poset W with respect to ≤. Let us describe End∗

A(1)

via some quiver with relations. For x, y ∈ W , x ≥ y, we have a unique up to
scalar injection 1(x) ↪→ 1(y). In particular, we can identify each 1(w), w ∈ W ,
with the corresponding submodule of 1(e). For each w ∈ W let vw denote some
generator of 1(w), which we fix. If x, y ∈ W , x ≥ y, let ϕx,y : 1(x) → 1(y)

denote the homomorphism, such that ϕx,y(vx) = vy . Then, by [Dixmier 1996,
Theorem 7.6.23], the arrows in the quiver of End∗

A(1) are ϕx,y such that x = sy,
where s is a reflection (not necessarily simple). From the definition of ϕx,y we have
that these arrows obviously satisfy all relevant commutativity relations. Hence
End∗

A(1) is a quotient of the incidence algebra of the poset (W, ≥). It follows that
the two algebras coincide because they obviously have the same dimension.

By [Verma 1971], the Möbius function of the poset (W, ≥) equals (−1)l(x)−l(y),
x ≥ y. Hence, the Koszulity of the corresponding incidence algebra follows from
[Yuzvinsky 1981, Theorem 1]. This completes the proof. �

In [Drozd and Mazorchuk 2007] it is shown that in the multiplicity-free cases
the Z-graded algebra E is Koszul with respect to the positive grading introduced
above. This and Proposition 28 motivate the following conjecture:

Conjecture 29. The subalgebra of E generated by E0 and E1 is Koszul.
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4.5. Some remarks on extensions between Verma modules. The description of
the algebra E, and even of the dimensions of the spaces ExtiA(1(x), 1(y)〈 j〉) seems
to be a very complicated problem, see [Gabber and Joseph 1981; Carlin 1986; Boe
1992] (I even do not know if E0 and E1 generate the whole E in general, I do believe
that they do not). A very easy observation reduces this problem to the description
of certain properties of the functor LTx :

Proposition 30. Let x, y ∈ W and i, j ∈ Z. Then

dim ExtiA(1(x), 1(y)〈 j〉) =
[
Ri Gx−11(y)〈 j〉 : L(e)

]
= [Li Tx−1∇(y)〈− j〉 : L(e)].

Proof. We compute

ExtiA(1(x), 1(y)〈 j〉) =

HomDb(A)(1(x), 1(y)〈 j〉[i]) = (by III)

HomDb(A)(Tx1(e), 1(y)〈 j〉[i]) = (by II)

HomDb(A)(LTx1(e), 1(y)〈 j〉[i]) = (by VII)

HomDb(A)(1(e), RGx−11(y)〈 j〉[i]) = (1(e) – projective)[
Ri Gx−11(y)〈 j〉 : L(e)

]
= (by duality)[

Li Tx−1∇(y)〈− j〉 : L(e)
]
. �

Remark 31. Since the twisting and the shuffling functors are both auto-equiv-
alences of Db(O0) (see [Andersen and Stroppel 2003, Corollary 4.2] and [Ma-
zorchuk and Stroppel 2005b, Theorem 5.7]), we have

ExtiA(1(sx), 1(sy)) = ExtiA(1(x), 1(y)) if sx > x, sy > y;

ExtiA(1(xs), 1(ys)) = ExtiA(1(x), 1(y)) if xs > x, ys > y.

Since both the twisting and the shuffling functors are gradable, the above formula
admits a natural graded analogue. In many cases, but not in all, this formula can be
applied to reduce extensions to the case of extensions into the projective standard
module. In particular, the latter extensions deserve special attention.

We will present one application of the above technique, which gives (from my
point of view) a fairly unexpected description of the Ext1-space into the projective
standard module. For x ∈ W with a fixed reduced decomposition x = s1 · · · xk we
denote by l(x) the number of different simple reflections occurring in this reduced
decomposition (for example l(sts) = 2 if s and t do not commute). Since any
two reduced decompositions can be obtained from each other by applying braid
relations only, it follows that l(x) does not depend on the reduced decomposition
of x .
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Theorem 32.

dim Ext1A(1(x), 1(e)〈 j〉) =

{
l(x) if j = l(x) − 2,

0 otherwise.

Proof. We start with a special case:

Lemma 33. The statement of Theorem 32 is true in the case x = w0.

Proof. Let 1(e) ↪→ X � 1(w0) be a nonsplit extension. Since 1(w0) is simple
and 1(e) has simple socle L(w0) it follows that X has simple socle L(w0). In
particular, X ↪→ P(w0). Since both 1(e) and 1(w0) have central characters it
follows that X is annihilated by the second power of the corresponding maximal
ideal of the center. By [Backelin 2001, Proposition 2.12], this means that X is a
submodule of the submodule Y ⊂ P(w0), which is uniquely determined via

1(e) ↪→ Y �
⊕

s:l(s)=1

1(s).

Since each 1(s) has simple socle 1(w0) and no other occurrences of 1(w0) in the
composition series, we have that X is even a submodule of the submodule Z of Y
such that 1(e) ↪→ Z � 1(w0)

⊕k , where k = |{s : l(s) = 1}|. Since Z has simple
socle, it follows that

dim Ext1A(1(w0), 1(e))

equals the number of simple roots, which obviously equals l(w0). The necessary
statement follows by tracking the grading, using [Stroppel 2003a; 2005]. �

Now we go to the general case. Our strategy is first to establish a lower bound
and then prove that it is in fact the real value. As already done in Lemma 33, it
is easier to prove the ungraded version and then just track the necessary grading
using [Stroppel 2003a; 2005].

Set y = x−1 and observe that l(x)= l(y). Now consider the short exact sequence

(5) 0 → 1(w0) → P(w0) → Coker → 0.

Note that P(w0) is injective. Let α denote the natural transformation from ID to
Gy given by [Khomenko and Mazorchuk 2005, 2.3]. Observe that α is injective
on all modules from (5) since they all have Verma flags (this follows, for example,
from the dual of [Andersen and Stroppel 2003, Proposition 5.4]). Further note
that α is an isomorphism on both 1(e) and P(w0) because of the projectivity of
these two modules (by the dual of [Khomenko and Mazorchuk 2005, Corollary 9]).
Now, applying Gy to (5) yields to the following commutative diagram with exact
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columns and rows:

1(e) � � //

o

��

P(w0) // //

o

��

Coker
� _

αCoker

��
Gy1(e) � � // Gy P(w0)

f // Gy Coker // //

����

R1Gy1(e)

X

From this diagram we see that the heads of the image of both f and αCoker are
isomorphic to L(w0) and that the multiplicity of L(w0) in both X and R1Gy1(e)
is 0. This implies that the kernel of both f and αCoker is the trace of P(w0) in
Gy Coker, in particular, X = R1Gy1(e).

Let now Y =
⊕

s:l(s)=1 1(s). Then we have the following short exact sequence:
Y ↪→ Coker � Coker′, where again all modules have Verma flags. Applying Gy

and using the Snake Lemma gives the following commutative diagram with exact
rows and columns:

(6) Y � � //
� _

αY

��

Coker
� _

αCoker

��

// // Coker′
� _

αCoker′

��
Gy M � � //

����

Gy Coker

����

// Gy Coker′

Z � � // R1Gy1(e)

Let S1 denote the set of all simple roots which appear in a reduced expression of
y, and let S2 denote the set of all other simple roots. From the dual of [Andersen
and Stroppel 2003, Theorem 2.3] we get

Z ∼= 1(e)⊕|S1| ⊕

⊕
s∈S2

1(s).

In particular, we obtain that [Z : L(e)] = |S1| and hence [R1Gy1(e) : L(e)] ≥ |S1|

because of the third row of (6). This is our lower bound.
Now to prove that this lower bound gives the exact value, we write Gw0 = GzGy ,

where z = w0x and note that the natural transformation from ID to Gw0 can be
obviously written as the composition of the natural transformation from ID to Gy

with the natural transformation from ID to Gz , the latter being restricted to the
image of Gy . This implies that the diagram (6) can be extended to the following
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commutative diagram with exact rows and columns:

Y � � //
� _

��

w�

��

Coker // //
� _

��

u�

��

Coker′� _

��

t�

��
Gw0Y � � //

				

Gw0 Coker







// Gw0 Coker′

				

GyY � � //

����

/�

??�������������
Gy Coker

����

//
/�

??�������������
Gy Coker′

����

/�

??������������

Z ′ �
� // R1Gw01(e) // M ′

Z � � //
/�

??�������������
R1Gy1(e) //

/�

??������������
M

/�

??�������������

Assume now that there is an extra occurrence of L(e) in R1Gy1(e). This occur-
rence gives us a homomorphism from 1(e) to R1Gy1(e), which induces a nonzero
homomorphism from 1(e) to M . Since M embeds into M ′ and the diagram com-
mutes, our homomorphism defines a homomorphism from 1(e) to R1Gw01(e),
which induces a nonzero homomorphism from 1(e) to M ′. On the other hand we
know that [R1Gw01(e) : L(e)]= l(w0) by Lemma 33. From the previous paragraph
we also know that [Z ′

: L(e)] = l(w0). This gives us a contradiction and completes
the proof for the ungraded case. As we have mentioned above, the graded version
follows easily just tracking the grading. �

Remark 34. Combined with Theorem 22(b), Theorem 32 gives information about
some higher Ext-spaces, namely

dim Ext1+ j
A (1(x), 1(e)〈− j〉) =

{
l(x) if j = l(x) − 2,

0 otherwise.

5. Modules with linear resolutions

The category LC(P) realizes the category of graded modules over the Koszul dual
of A (which is isomorphic to A by [Soergel 1990, Theorem 18]). Verma modules
over A have linear projective resolutions. These resolutions, in turn, are costandard
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objects in the category LC(P). In other words, this means that costandard mod-
ules are Koszul dual to standard modules (but not vice versa). Analogously, since
the Ringel dual of A is isomorphic to A as well by [Soergel 1998, Corollary 2.3],
costandard modules are also Ringel dual to standard modules (but not vice versa).

The category LC(T) realizes the category of graded modules over the Ringel
dual of the Koszul dual of A (which is isomorphic to A by above). Since the
algebra A is standard Koszul (see [Ágoston et al. 2003, Section 3]), standard A-
modules admit linear tilting coresolutions and costandard A-modules admit linear
tilting resolutions, see [Mazorchuk and Ovsienko 2005, Theorem 7]. In an analogy
to the previous paragraph, from this one obtains that both standard and costan-
dard modules are Koszul–Ringel self-dual. From [Mazorchuk and Ovsienko 2005,
Theorem 9] it also follows that simple and tilting A-modules are Koszul–Ringel
dual to each other (now in the symmetric way). A natural question then is: Which
other classes of modules can be represented by linear complexes of tilting modules?
(Such modules then in some sense “live” in the category LC(T)). In this section we
present several classes of such modules. In particular, quite surprisingly it turns our
that all shuffled Verma modules have the above property. In what follows we will
use the term tilting linearizable modules for those modules, which are isomorphic
to some linear complexes of tilting modules in Db(A-fgmod).

5.1. Shuffled Verma modules. To start with we have to define graded lifts of shuf-
fled Verma modules. Let Tw : A-gmod → A-gmod be the graded lift of Tw, see
[Stroppel 2005] or [Frenkel et al. 2006, page 28]. We define the graded lifts of
shuffled Verma modules as follows:

1(x, y) = Tx1(y).

Theorem 35. For every x, y ∈ W the module 1(x, y) is tilting linearizable.

Remark 36. The motivation for this statement is a compilation of several re-
sults. [Mazorchuk and Ovsienko 2005, Theorem 9] and [Mazorchuk and Ovsienko
2005, Corollary 14] say that in the category LC(T) ∼= A-gmod (which is a kind
of “Koszul–Ringel dual” to A-gmod) standard and costandard A-modules remain
standard and costandard respectively, and simple and tilting modules interchange.
According to [Andersen and Lauritzen 2003], shuffled Verma modules can be
equivalently described using twisting and shuffling functors, the latter being Koszul
dual to each other by [Mazorchuk et al. 2006, 6.5]. So it becomes natural to ask
whether the set of shuffled Verma modules might be “Koszul–Ringel self-dual”.
The proof of Theorem 35, presented below, shows that this is indeed the case.
Observe that it is very easy to see on examples that this class is neither “Ringel
self-dual” nor “Koszul self-dual” in general.



336 VOLODYMYR MAZORCHUK

Proof. The idea of the proof of Theorem 35 is to compile the results mentioned in
Remark 36. The problem is to extend the “Koszul duality” of shuffling and twisting
functors from [Mazorchuk et al. 2006, 6.5] to the “Koszul–Ringel duality” of these
functors. For this we will need some notation.

Let K : Db(A-gmod)→ Db(LC(P)) denote the Koszul duality functor from [Ma-
zorchuk et al. 2006, 5.4] (restricted to bounded complexes). Essentially this functor
is given by taking the inner Hom-functor with a direct sum of all indecomposable
projective objects from Db(LC(P)).

By [Andersen and Stroppel 2003, Theorem 2.2; 1998, Theorem 6.6], the functor
Tw0 : Db(LC(P)) → Db(LC(T)) is an equivalence, which sends indecomposable
projective objects from LC(P) to the corresponding indecomposable projective
objects from LC(T). This allows us to define the Koszul–Ringel duality functor
K : Db(A-gmod) → Db(LC(T)) as follows: K = LTw0 K.

By [Mazorchuk et al. 2006, 6.4], translation and Zuckerman functors on A-gmod
and LC(P) respectively are Koszul dual to each other with respect to the Koszul du-
ality K. Since LTw0 commutes with translation functors by [Andersen and Stroppel
2003, Theorem 3.2], it follows that translation and Zuckerman functors on A-gmod
and LC(T) respectively are Koszul–Ringel dual to each other with respect to the
Koszul–Ringel duality K. Now, repeating the arguments from the proof of [Ma-
zorchuk et al. 2006, Theorem 39] one shows that twisting and shuffling functors on
A-gmod and LC(T) respectively are Koszul–Ringel dual to each other with respect
to the Koszul–Ringel duality K. This means that for any w ∈ W we have

(7) LTw
∼= K

−1
LCw−1 K,

where Cw−1 denotes the corresponding shuffling functor; see [Irving 1993] and
[Mazorchuk and Stroppel 2005b, 5.1].

The rest is now easy. Verma modules in A-gmod and LC(T) correspond via
K by [Mazorchuk and Ovsienko 2005, Theorem 9]. Verma modules are acyclic
for twisting functors by II and for shuffling functors by [Mazorchuk and Stroppel
2005b, Proposition 5.3]. Hence from (7) for x, y ∈ W we have

1(x, y) = Tx1(y) = K
−1

Cw−1 K1(y).

Now, since the functor Cw−1 is defined already on LC(T), it follows that its value
on K

−1
1(y)∈ LC(T) is again an object from LC(T). The necessary claim follows.

�

5.2. Standard modules in O
p
0 . Let now p ⊃ h⊕n+ be a parabolic subalgebra and

W p the corresponding parabolic subgroup of W . Let O
p
0 denote the full subcategory

of O0, consisting of U (p)-locally finite modules. Then simple objects of O0 have
the form L(w), where w is the shortest representative in a coset from W p

\ W . We
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will denote the set of such representatives by W (p). Let Ap denote the quotient
of A such that O

p
0 is equivalent to the category of Ap-modules. Then Ap is quasi-

hereditary ([Rocha-Caridi 1980]) and inherits a positive grading Ap for A, with
respect to which it is standard Koszul ([Beilinson et al. 1996; Ágoston et al. 2003]).
To indicate object of Ap we will add the superscript p to the standard notation.
As Ap is standard Koszul, the standard modules 1p(w), w ∈ W (p), have linear
projective resolutions over Ap. They also have linear tilting coresolutions over Ap.
Surprisingly enough, these properties are preserved if one makes the step from Ap

to A.

Proposition 37. Let w ∈ W (p). Then, considered as an A-module, the module
1p(w) has a linear projective resolution and is tilting linearizable.

Proof. The module 1p(w) is obtained via parabolic induction (from p to g) from
a simple finite-dimensional p-module. This simple finite-dimensional p-module
has a BGG-resolution (over the Levi factor of p), which is obviously linear. The
parabolic induction then maps this BGG-resolution to a linear resolution of 1p(w)

by standard modules over A. Each standard A-module has a linear projective resolu-
tion and a linear tilting coresolution. These resolutions can be glued in the standard
way to obtain linear projective resolution of 1p(w) and a linear complex of tilting
modules isomorphic to 1p(w) respectively. �

Remark 38. I do not see any immediate connection between the linear projective
resolutions of 1p(w) as Ap- and A-modules.

Remark 39. Applying Tw0 to the Verma resolution of 1p(e) constructed in the
proof of Proposition 37 one obtains that LTw01

p(e) ∼= L(w
p
0w0)[l(w

p
0)]. This

allows one to compute the images of the simple modules L(w
p
0w0) under the (de-

rived) Ringel duality functor HomA(T, −). It is not clear how to compute these
images for other L(x). This question reduces to understanding the homology of
the tilting objects in LC(P) or of the projective objects in LC(T).

Remark 40. Dually, costandard modules in a regular parabolic block admit a
linear injective coresolution, when viewed as modules in the regular block of O.
Moreover, they are also tilting linearizable.

5.3. Projective modules in O
p
0 .

Proposition 41. Let w ∈ W (p). Then, considered as an A-module, the module
Pp(w) has a linear projective resolution.

Proof. The module Pp(w) is obtained from P(w) by applying the p-Zuckerman
functor. In a way analogous to [Mazorchuk et al. 2006, 6.4], one shows that the p-
Zuckerman functor is Koszul dual to the translation functor through the W p-wall.
The latter functor preserves LC(P). Hence, translating the simple object P(w) of
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LC(P) through the W p-wall we will get a linear complex of projective modules,
which has only one nonzero homology, namely the one in the position 0, which is,
moreover, isomorphic to Pp(w). The statement is proved. �

Remark 42. Dually, injective modules in a regular parabolic block of O admit
linear injective coresolutions when viewed as modules in O.

5.4. Tilting modules in O
p
0 .

Proposition 43. Let w ∈ W (p). Then, considered as an A-module, the module
Tp(w) is tilting linearizable.

Proof. Apply LTw0 to the linear projective resolution of Pp(x), x ∈ W (p), con-
structed in Proposition 41, and follow the arguments of [Mazorchuk and Stroppel
2005a, Proposition 4.4]. �

Remark 44. From Propositions 41 and 43 it follows that projective tilting modules
in O

p
0 both admit a linear projective resolution in O and are tilting linearizable.

However, one has to note that a module in O
p
0, which is at the same time projective

and tilting, has in the general case different graded lifts as a projective and as a
tilting module.

5.5. Some other classes of modules. There are some other classes of modules,
which are known to have linear projective resolutions (respectively, which are tilt-
ing linearizable). In [Mazorchuk 2005, Proposition 4.1] it is shown that modules,
obtained by translating standard modules in singular blocks out of the wall, admit
linear projective resolutions. It is not difficult to show that they are also tilting
linearizable. In [Mazorchuk 2005, Theorem 8.1 and Corollary 8.1] it is shown that
one more class of modules (the “wrong-sided” analogue of modules, obtained by
translating standard modules in singular blocks out of the wall) admits both a linear
projective resolution and a linear tilting coresolution.

The algebra A is an A-A bimodule and thus can be considered as an object of
the category O0 for the Lie algebra g × g — this realization was used in [Backelin
2001]. The hereditary chain of the quasi-hereditary algebra A is, by definition, a
bimodule Verma flag for A. From the natural grading on A we get that the heads of
all the Vermas occurring in this flag are concentrated in degree 0. Hence, we can
glue linear projective resolutions (or linear tilting coresolutions) of these Verma
modules in the standard way to obtain a linear projective resolution (resp. a linear
tilting coresolutions) of the bimodule A. As a corollary one immediately obtains
a formula for computing Hochschild cohomology of A with coefficients in semi-
simple modules.
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