
Pacific
Journal of
Mathematics

ON KUMMER TYPE CONSTRUCTION OF SUPERSINGULAR
K3 SURFACES IN CHARACTERISTIC 2

ICHIRO SHIMADA AND DE-QI ZHANG

Volume 232 No. 2 October 2007



PACIFIC JOURNAL OF MATHEMATICS
Vol. 232, No. 2, 2007

ON KUMMER TYPE CONSTRUCTION OF SUPERSINGULAR
K3 SURFACES IN CHARACTERISTIC 2

ICHIRO SHIMADA AND DE-QI ZHANG

We show that every supersingular K3 surface in characteristic 2 with Artin
invariant at most 2 is obtained by the Kummer-type construction of Schröer.

1. Introduction

We work over an algebraically closed field k. A K 3 surface X is called supersin-
gular (in the sense of Shioda) if the rank of the Néron–Severi lattice NS(X) of X
attains the possible maximum of 22. Supersingular K 3 surfaces exist only when
char k is positive. The Artin invariant σ(X) of a supersingular K 3 surface X is
defined in [Artin 1974] by

disc NS(X) = −p2σ(X),

where p = char k > 0. It is known that σ(X) is a positive integer ≤ 10.
Let A be an abelian surface, and let ι : A → A be the involution x 7→ −x .

If char k 6= 2, then the minimal resolution of the quotient surface A/〈ι〉 is a K 3
surface, which is called the Kummer surface associated with A.

An abelian surface A in positive characteristic is called supersingular if A is
isogenous to a product of supersingular elliptic curves. Ogus [1979; 1983] proved
that if char k >2, the supersingular K 3 surfaces with Artin invariant ≤2 are exactly
the Kummer surfaces associated with supersingular abelian surfaces. (See also
[Shioda 1979].) On the other hand, Shioda [1974] and Katsura [1978] observed
that if char k = 2, then the minimal resolution of the quotient of a supersingular
abelian surface by the involution x 7→ −x is a rational surface.

Schröer [2007] presented a Kummer type construction of supersingular K 3 sur-
faces in characteristic 2. We assume that char k = 2 in this paragraph. Let C × C
be the self-product of the rational curve C with one ordinary cusp. We put

C = Spec k[u2, u3
] ∪ Spec k[u−1

] for the first factor,

C = Spec k[v2, v3
] ∪ Spec k[v−1

] for the second factor.
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Let r and s be constants in k such that (r, s) 6= (0, 0). Then the derivation

(1-1) (u−2
+ r)

∂

∂u
+ (v−2

+ s)
∂

∂v

defines a global vector field δ on C ×C satisfying δ[2]
= 0. Hence δ corresponds to

an action of the infinitesimal group scheme α2 on C × C . Let Xr,s be the minimal
resolution of the quotient surface (C × C)/α2.

Theorem 1.1 [Schröer 2007]. The surface Xr,s is a supersingular K 3 surface with
Artin invariant

σ(Xr,s) =

{
1, if r = 0 or s = 0 or r3

= s3,
2, otherwise.

The purpose of this paper is to prove:

Theorem 1.2. Let X ′ be a supersingular K 3 surface in characteristic 2 with Artin
invariant ≤ 2. Then there exist constants r, s ∈ k with (r, s) 6= (0, 0) such that X ′

is isomorphic to Schröer’s Kummer surface Xr,s .

Even though the moduli curve of marked supersingular K 3 surfaces with Artin
invariant ≤ 2 is constructed [Rudakov and Shafarevich 1981; Ogus 1983], it is
not separated. Hence the existence of the complete family of Schröer’s Kummer
surfaces of dimension 1 does not imply Theorem 1.2 immediately.

The main ingredient of the proof is the following structure theorem for Néron–
Severi lattices of supersingular K 3 surfaces:

Theorem 1.3 [Rudakov and Shafarevich 1981]. Let X and X ′ be supersingular
K 3 surfaces defined over the same algebraically closed field. If σ(X) = σ(X ′),
then the lattices NS(X) and NS(X ′) are isomorphic.

Indeed, the Néron–Severi lattice NS(X) of a supersingular K 3 surface X in charac-
teristic p is p-elementary ([Rudakov and Shafarevich 1981, Theorem in Section 8];
see also [Artin 1974]). If p = 2, then NS(X) is of type I [Rudakov and Shafarevich
1981, Proposition in Section 5]. Hence the classification theorem of even hyper-
bolic p-elementary lattices [Rudakov and Shafarevich 1981, Theorem in Section
1] implies Theorem 1.3.

We outline the proof of Theorem 1.2. First note that, by [Schröer 2007, Propo-
sition 6.2], if σ(Xr,s) = 2, then Schröer’s Kummer surface Xr,s is birational to a
purely inseparable double cover Yr,s of P2 defined by

w2
= x(y4

+ s2 y2) + y(x4
+ r2x2),

which has rational double points of type 4D4 +5A1. Let us assume, for simplicity,
that the given supersingular K 3 surface X ′ is of Artin invariant 2. We choose
one of Schröer’s Kummer surfaces X with Artin invariant 2 (for example, we put
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X := X1,s with s /∈ F4). Using the isomorphism between NS(X) and NS(X ′), we
can show that X ′ is also birational to a double cover Y ′ of P2 with rational double
points of type 4D4 +5A1. Using the notion of half-lines and splitting lines, we can
show that the covering morphism Y ′

→ P2 is purely inseparable, and then we can
determine the defining equation of Y ′. It turns out that the defining equation of Y ′

is equal to that of Yt,1 for some nonzero constant t ∈ k. Therefore X ′ is isomorphic
to Schröer’s Kummer surface X t,1.

A surface birational to a purely inseparable cover of P2 is called a Zariski
surface, and its basic properties have been studied in [Blass and Lang 1987].
In [Shimada 2004a; 2004b], we showed that every supersingular K 3 surface in
characteristic 2 is birational to a purely inseparable double cover of P2 with 21
ordinary nodes, and we studied the Néron–Severi lattice of such a surface. Using
the results obtained in [Shimada 2004b], we determined in [Shimada 2006] the
moduli curve of polarized supersingular K 3 surfaces with Artin invariant ≤ 2 and
with 21 ordinary nodes. Schröer [2007] showed that, as r and s varies, his Kummer
surfaces Xr,s form a smooth family over the projective line Proj k[

√
r ,

√
s]. It

would be an interesting problem to investigate the relation between the moduli
curve in [Shimada 2006] and Schröer’s projective line.

On the other hand, in [Shimada and Zhang 2007], we investigated supersingular
K 3 surfaces with 10 ordinary cusps. Such supersingular K 3 surfaces exist only
in characteristic 3. An example is obtained as a purely inseparable triple cover of
P1

× P1. Here, the proof that Y ′
→ P2 is purely inseparable uses an argument

developed in [Shimada and Zhang 2007].
The plan is as follows. In Section 2, we collect some definitions and facts from

the lattice theory. The very elementary Lemmas 2.4 and 2.5 play an important
role in the proof that Y ′ is purely inseparable over P2. In Section 3, we review
some properties of the Néron–Severi lattice of a K 3 surface. We then introduce
the notion of half-lines and splitting lines for a polarized K 3 surface of degree 2
in Section 4. After investigating the purely inseparable double cover Yr,s → P2

birational to Schröer’s Kummer surface Xr,s , we prove Theorem 1.2 in Section 6.

2. Preliminaries on lattices

A free Z-module 3 of finite rank with a nondegenerate symmetric bilinear form

(2-1) 3 × 3 → Z

denoted by (u, v) 7→ uv is called a lattice. Let 3 be a lattice. The dual lattice
3∨ of 3 is the Z-module Hom(3, Z). Then 3 is naturally embedded into 3∨ as a
submodule of finite index. The discriminant group of 3 is, by definition, the finite
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abelian group 3∨/3. There exists a unique symmetric bilinear form

(2-2) 3∨
× 3∨

→ Q

that extends (2-1). An overlattice of 3 is a submodule N of 3∨ containing 3 such
that the bilinear form (2-2) takes values in Z on N × N . If 3 is a sublattice of
a lattice 3′ with finite index, then 3′ is embedded into 3∨ in a natural way and
hence is regarded as an overlattice of 3.

We say that 3 is even if u2
∈ 2Z holds for every u ∈3. The signature (s+, s−) of

a lattice 3 lists the number of positive and negative eigenvalues of the intersection
matrix of 3. We say that 3 is negative-definite if s+ = 0 and that 3 is hyperbolic
if s+ = 1. By abuse of language, a positive definite lattice of rank 1 is also called
hyperbolic.

Let 3 be an even negative-definite lattice. A vector r ∈ 3 is called a root if
r2

= −2. We denote by Roots(3) the set of roots in 3. We define an equivalence
relation ∼ on Roots(3): r ∼ r ′ if there exists a sequence r0 = r, r1, . . . , rm−1, rm =

r ′ of roots in 3 such that riri+1 6= 0 for i = 0, . . . , m − 1. Let R1, . . . , Rk be the
equivalence classes of ∼. We call the decomposition

Roots(3) = R1 t · · · t Rk

the irreducible decomposition of Roots(3). Suppose that we are given a linear
form

α : 3 → R

such that α(r) 6= 0 for any r ∈ Roots(3). We put

(2-3) R+

i := { r ∈ Ri | α(r) > 0 }.

A root r ∈ R+

i is called decomposable if there exist r1, r2 ∈ R+

i such that r = r1+r2,
and r is called indecomposable if it is not decomposable. For the proof of the
following results, see [Bourbaki 1981] or [Ebeling 2002], for example.

Proposition 2.1. Let r be an element of R+

i . Then r can be written uniquely as a
linear combination of indecomposable elements of R+

i . Moreover the coefficients
are all nonnegative integers.

Proposition 2.2. Let 3i be the sublattice of 3 generated by the roots in Ri . Then
31, . . . , 3k form an orthogonal direct sum in 3. The indecomposable elements of
R+

i form a basis of the lattice 3i , and the intersection matrix of 3i in this basis is
a Cartan matrix of type ADE multiplied by −1.

The indecomposable elements of R+

i have the following characterization:

Corollary 2.3. Let ε1, . . . , εd be elements of R+

i such that every element of R+

i
is written uniquely as a linear combination of ε1, . . . , εd with nonnegative integer
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coefficients. Then {ε1, . . . , εd} is equals to the set of indecomposable elements of
R+

i .

Proof. Suppose that εi is decomposable. There exist r1, r2 ∈ R+

i such that εi =

r1 + r2. Since each of r1 and r2 is written as a linear combination of ε1, . . . , εd

with nonnegative integer coefficients, we obtain a contradiction to the uniqueness
of writing εi as a linear combination of ε1, . . . , εd with nonnegative integer coef-
ficients. Therefore each of ε1, . . . , εd is indecomposable.

Suppose that r ∈ R+

i is indecomposable. We can write r as a linear combination
of ε1, . . . , εd with nonnegative integer coefficients. Since each εi is indecom-
posable, the uniqueness of writing r as a linear combination of indecomposable
elements of R+

i with nonnegative integer coefficients implies that r is equal to one
of ε1, . . . , εd . �

Let τi be the ADE-type of the Cartan matrix of the intersection matrix of 3i given
in Proposition 2.2. We define the root type of 3 to be the formal sum τ1 +· · ·+τk .

We say that 3 is a root lattice if 3 is generated by Roots(3). For later use, we
present properties of root lattices of type A1 and D4.

Let 3 be the root lattice of type A1, and let a ∈ 3 be a root that generates 3.
We put a∨

:= −a/2, which generates 3∨. Then the discriminant group of 3 is
isomorphic to Z/2Z. The proof of the following is elementary:

Lemma 2.4. Let v ∈ 3∨ be a vector such that va ≥ 0. If v ≡ 0 mod 3, then we
have v2

= 0 or v2
≤ −2, and v2

= 0 holds if and only if v = 0. If v ≡ a∨ mod 3,
then we have v2

= −1/2 or v2
≤ −9/2, and v2

= −1/2 holds if and only if v = a∨.

Let 3 be the root lattice of type D4 generated by the roots d1, . . . , d4 whose inter-
section numbers are given by the Dynkin diagram in Figure 1. Let d∨

1 , . . . , d∨

4 be
the basis of 3∨ dual to d1, . . . , d4. We have

(2-4) [d∨

1 , d∨

2 , d∨

3 , d∨

4 ] = [d1, d2, d3, d4]


−1 −1/2 −1 −1/2

−1/2 −1 −1 −1/2

−1 −1 −2 −1

−1/2 −1/2 −1 −1

 .

The discriminant group of 3 is isomorphic to (Z/2Z) ⊕ (Z/2Z) and is generated
by d∨

1 mod 3 and d∨

4 mod 3.

Lemma 2.5. Let v ∈ 3∨ be a vector such that vdi ≥ 0 holds for i = 1, . . . , 4. If
v ≡ 0 mod 3, then we have v2

= 0 or v2
≤ −2, and v2

= 0 holds if and only if
v = 0. If v ≡ d∨

1 mod 3, then we have v2
= −1 or v2

≤ −3, and v2
= −1 holds if

and only if v = d∨

1 .
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Figure 1. The Dynkin diagram of type D4.

Proof. The first assertion is obvious. Suppose that v ≡ d∨

1 mod 3. Then we can
put

v = d∨

1 + x1d1 + x2d2 + x3d3 + x4d4,

where x1, . . . , x4 ∈ Z. From the condition vdi ≥ 0 for i = 1, . . . , 4, we obtain
inequalities:

(2-5)
1 − 2x1 + x3 ≥ 0, −2x2 + x3 ≥ 0,

x1 + x2 − 2x3 + x4 ≥ 0, x3 − 2x4 ≥ 0.

Using (2-4), we calculate

v2
= −1 − 2(x2

1 + x2
2 + x2

3 + x2
4 − x1 − x1x3 − x2x3 − x3x4)

= −1 − {(1 − 2x1 + x3)
2
+ (−2x2 + x3)

2
+ (x3 − 2x4)

2
+ (x3 − 1)2

− 2}/2.

Therefore v2 is a negative odd integer, and v2
= −1 holds if and only if two of the

four integers 1 − 2x1 + x3, −2x2 + x3, x3 − 2x4, x3 − 1 are ±1 and the other two
are 0. Combining this with the inequalities (2-5), we see that v2

= −1 holds if and
only if x1 = x2 = x3 = x4 = 0. �

3. The Néron–Severi lattice of a K3 surface

In this section, we work over an algebraically closed field of arbitrary characteristic.
Let X be an (algebraic) K 3 surface, and let NS(X) be the Néron–Severi lattice
of X , which is an even hyperbolic lattice. For a divisor D on X , we denote by
[D] ∈ NS(X) the class of D.

3A. The nef-cone. We put

Nef(X) := { v ∈ NS(X) ⊗ R | v[D] ≥ 0 for any effective divisor D on X }.

Let A be an ample divisor on X , and let C+(X) be the connected component of

{ v ∈ NS(X) ⊗ R | v2 > 0 }

that contains [A]. For a vector v ∈ NS(X), we put

〈v〉
⊥

R := { w ∈ NS(X) ⊗ R | vw = 0 }.
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Then the family of hyperplanes {〈r〉
⊥

R | r2
= −2} of NS(X)⊗ R is locally finite in

C+(X). It is well known and easy to prove that [A] /∈ 〈r〉
⊥

R for any vector r with
r2

= −2 and that Nef(X) is equal to the closure in NS(X) ⊗ R of the connected
component of

C+(X) \

⋃
〈r〉

⊥

R

that contains [A]. By the argument of Proposition 3 in [Rudakov and Shafarevich
1981, Section 3], we obtain:

Proposition 3.1. Let X and X ′ be two algebraic K 3 surfaces such that NS(X) and
NS(X ′) are isomorphic. Then there exists an isomorphism φ : NS(X)

∼
→ NS(X ′)

such that φ ⊗ R maps Nef(X) to Nef(X ′).

3B. Polarizations.

Proposition 3.2. Let H be a divisor on an algebraic K 3 surface X such that
[H ] ∈ Nef(X) and H 2 > 0. The following conditions are equivalent:

(i) The complete linear system |H | has no fixed components.

(ii) There are no vectors e ∈ NS(X) such that e[H ] = 1 and e2
= 0.

Proof. That (i) ⇒ (ii) follows from the proof that (4) ⇒ (1) in [Urabe 1988,
Proposition 1.7], and (ii) ⇒ (i) follows from [Nikulin 1991, Proposition 0.1]. �

Definition 3.3. A polarization of an algebraic K 3 surface X is a divisor H on X
satisfying [H ] ∈ Nef(X), H 2 > 0 and the conditions (i) and (ii) in Proposition 3.2.
The positive integer H 2 is called the degree of the polarization H . By [Nikulin
1991, Proposition 0.1], if H is a polarization of degree d , then |H | is base-point
free by Saint-Donat [1974, Corollary 3.2], and we have dim |H | = 1 + d/2.

A pair (X, H) of a K 3 surface X and a polarization H of X is called a polarized
K 3 surface.

Combining Propositions 3.1 and 3.2, we obtain the following:

Corollary 3.4. Let X and X ′ be two K 3 surfaces such that NS(X) and NS(X ′)

are isomorphic, and let H be a polarization of X. If φ : NS(X)
∼
→ NS(X ′) is an

isomorphism such that φ ⊗R maps Nef(X) to Nef(X ′), then φ([H ]) is the class of
a polarization H ′ of X ′.

A curve C on X is called a (−2)-curve on X if it satisfies the equivalent conditions:

(i) C is a smooth rational curve;

(ii) C is reduced irreducible with negative self-intersection;

(iii) C is irreducible and C2
= −2.
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Let (X, H) be a polarized K 3 surface. Then the complete linear system |H | de-
fines a morphism 8|H | from X to a projective space PN (N = 1 + H 2/2) that is
generically finite over the image. We denote by

(3-1) X
ρ

−→ Y
π

−→ PN

the Stein factorization of 8|H |; that is, ρ is birational, Y is normal, and π is finite.
The normal K 3 surface Y has only rational double points as its singularities, and
hence ρ is a contraction of an ADE-configuration of (−2)-curves [Artin 1962;
1966]. Let E be the set of (−2)-curves that are contracted by ρ. The classes [E]

of E ∈ E are determined by the following procedure. Let [H ]
⊥ be the orthogo-

nal complement of [H ] in NS(X). Since NS(X) is even hyperbolic and [H ]
2 is

positive, [H ]
⊥ is even and negative-definite. We can therefore consider the set

Roots([H ]
⊥) of roots in [H ]

⊥.

Lemma 3.5. Let r be an element of Roots([H ]
⊥). Then there exists a unique

effective divisor E such that r = [E] or r = −[E] holds. Moreover, the integral
component of E is a (−2)-curve.

Proof. By the Riemann–Roch theorem and the Serre duality, we see that either r
or −r is the class of an effective divisor. Replacing r with −r , if necessary, we
can assume that r is the class of an effective divisor E . Let E = F + M be the
decomposition of E into the sum of the fixed part F and the movable part M . Since
[H ]∈Nef(X), we have H F ≥0 and H M ≥0. Because H E =0, we have H M =0.
Since [H ]

⊥ is negative-definite and M2
≥ 0, we get M = 0. Therefore E is unique

and every irreducible component of E has negative self-intersection number. Thus
the reduced part of every irreducible component of E is a (−2)-curve. �

Let Roots([H ]
⊥) = R1 t· · ·t Rk be the irreducible decomposition of Roots([H ]

⊥)

defined in Section 2. We choose an interior point a of Nef(X) (for example, the
class of an ample divisor on X ), and let α : NS(X) → R be the linear form given
by α(x) := ax . By Lemma 3.5, we see that α(r) 6= 0 for any r ∈ Roots([H ]

⊥). We
thus can define R+

i by (2-3) and consider the indecomposable roots of R+

i . Note
that R+

i ⊂ Ri does not depend on the choice of the interior point a of Nef(X).

Proposition 3.6. Let Sing(Y ) be the set of singular points of Y . There exists a
bijection from the set {R1, . . . , Rk} to Sing(Y ) with the following property. Let
Pi ∈ Sing(Y ) be the point corresponding to Ri . Then the classes of (−2)-curves
contracted by ρ to Pi are exactly the indecomposable roots of R+

i .

Proof. Let r be an element of R+

i . By Lemma 3.5 and α(r) > 0, r is the class
of a unique effective divisor of the form a1 E1 + · · · + al El , where E1, . . . , El

are (−2)-curves and a1, . . . , al are positive integers. Since [H ] ∈ Nef(X) and
r ∈ [H ]

⊥, we have [Eν] ∈ [H ]
⊥ for ν = 1, . . . , l. In particular, we have Eν ∈ E
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for ν = 1, . . . , l. Let 3 j be the sublattice of [H ]
⊥ generated by the roots in R j for

j = 1, . . . , k. Since 31, . . . , 3k form a direct sum in NS(X), the uniqueness of
the effective divisor representing r ∈ 3i implies that [E1], . . . , [El] are all in Ri .
Since α([Eν]) > 0, we have [Eν] ∈ R+

i . Thus we have shown that every element
of R+

i is uniquely written as a linear combination of the classes of (−2)-curves in
R+

i with nonnegative integer coefficients. By Corollary 2.3, we see that r is the
class of a (−2)-curve in E if and only if r is indecomposable in R+

i . �

Let (X ′, H ′) be another polarized K 3 surface. Let

X ′ ρ′

−→ Y ′ π ′

−→ PN ′

be the Stein factorization of the morphism 8|H ′| defined by |H ′
|, and let E′ be the

set of (−2)-curves contracted by ρ ′.

Corollary 3.7. Suppose that there exists an isomorphism φ : NS(X)
∼
→ NS(X ′)

such that φ ⊗ R maps Nef(X) to Nef(X ′) and that φ([H ]) is equal to [H ′
]. Then

the ADE-type of Sing(Y ) coincides with that of Sing(Y ′). Moreover, there exist
bijections

φE : E
∼
→ E′ and φSing : Sing(Y )

∼
→ Sing(Y ′)

such that the following diagram is commutative:

(3-2)

NS(X)
φ

−→ NS(X ′)x x
E

φE
−→ E′y y

Sing(Y )
φSing
−→ Sing(Y ′) ,

where the up-arrows are given by E 7→ [E] ∈ NS(X) and E ′
7→ [E ′

] ∈ NS(X ′),
respectively, and the down-arrows are given by E 7→ ρ(E) ∈ Sing(Y ) and E ′

7→

ρ ′(E ′) ∈ Sing(Y ′), respectively.

3C. Polarizations with maximal rational double points.

Definition 3.8. We say that a polarized K 3 surface (X, H) has maximal rational
double points if the total Milnor number of Sing(Y ) is equal to rank NS(X)−1 or,
equivalently, if Roots([H ]

⊥) generates a root lattice of finite index in [H ]
⊥.

Let (X, H) be a polarized K 3 surface with maximal rational double points. Con-
sider the Stein factorization (3-1) of 8|H |. For P ∈ Sing(Y ), we denote by EP ⊂ E

the set of (−2)-curves that are contracted to P by ρ, by 3P ⊂ NS(X) the sublattice
generated by the classes [E] of the curves E ∈ EP , and by 1P the discriminant
group 3∨

P/3P of 3P . We also denote by 3H ⊂ NS(X) the sublattice of rank 1
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generated by [H ] and by 1H the discriminant group 3∨

H/3H of 3H , which is a
cyclic group of order equal to H 2. We then put

3 := 3H ⊕

⊕
P∈Sing(Y )

3P and 1 := 3∨/3.

We have natural decompositions

3∨
= 3∨

H ⊕

⊕
P∈Sing(Y )

3∨

P and 1 = 1H ⊕

⊕
P∈Sing(Y )

1P .

By the assumption, 3 is of finite index in NS(X), and hence NS(X) is an overlattice
of 3. Let v be a vector of NS(X). Using the direct-sum decomposition of 3∨ and
the natural embedding NS(X) ↪→ 3∨, we can define the H-component vH ∈ 3∨

H
and the P-components vP ∈ 3∨

P of v. We denote by v̄ ∈ 1 the class of v modulo
3. Then the H-component v̄H ∈ 1H and the P-components v̄P ∈ 1P of v̄ are also
defined.

4. Polarizations of degree 2 in characteristic 2

From now on, we assume that the base field k is of characteristic 2.

Let (X, H) be a polarized K 3 surface of degree 2. Then the Stein factorization
of 8|H | is of the form

X
ρ

−→ Y
π

−→ P2,

where π : Y → P2 is a finite double cover. We have h0(X, OX (m H)) = m2
+2 for

every m ≥ 1 by [Nikulin 1991, Proposition 0.1]. Therefore the finite double cover
π : Y → P2 is defined by the equation

(4-1) w2
+ w C(x0, x1, x2) + G(x0, x1, x2) = 0

in the total space of the line bundle V → P2 corresponding to the invertible sheaf
OP2(3), where w is a fiber coordinate of V , [x0 : x1 : x2] is a homogeneous coor-
dinate system of P2, and C and G are homogeneous polynomials of degree 3 and
6 that are regarded as sections of V and V ⊗2, respectively. If C 6= 0, then π is
separable, while if C = 0, then π is purely inseparable.

Definition 4.1. An irreducible curve F ⊂ X is called a half-line of (X, H) if
F H = 1 holds. A line L ⊂ P2 is said to be splitting in (X, H) if the proper
transform of L in X is nonreduced or reducible, or equivalently, if the scheme-
theoretic preimage π−1(L) ⊂ Y of L by π is nonreduced or reducible.

Let F be a half-line of (X, H). Then 8|H | induces an isomorphism from F to a
line L ⊂ P2, and this line L is splitting in (X, H). In particular, a half-line is a
(−2)-curve.
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Definition 4.2. If L ⊂ P2 is a line splitting in (X, H), then the proper transform of
L in X is written as F + F ′, where F and F ′ are half-lines of (X, H). These half-
lines are said to be lying over L . We say that L is of nonreduced type if F = F ′,
while L is of reduced type if F 6= F ′.

Lemma 4.3. Suppose that π is separable. Then the number of splitting lines of
nonreduced type is at most 3.

Proof. Let L be a splitting line of nonreduced type. We choose homogeneous
coordinates [x0 : x1 : x2] of P2 such that L is defined by x2 = 0. Putting x2 = 0 in
the defining Equation (4-1), we see that the curve defined by

(4-2) w2
+ w C(x0, x1, 0) + G(x0, x1, 0) = 0

in the total space of the line bundle V |L → L on L is nonreduced. Let γ (w, x0, x1)

be the left-hand side of (4-2). Since char k = 2, we have ∂γ /∂w = C(x0, x1, 0).
Therefore C(x0, x1, 0) is constantly equal to zero. Thus we have shown that the
defining equation of a splitting line of nonreduced type divides C(x0, x1, x2). Thus,
if C 6=0, then the number of splitting lines of nonreduced type is at most deg C =3.

�

Next we investigate the case where π is purely inseparable. Then π is given by
the equation

(4-3) w2
+ G(x0, x1, x2) = 0.

Note that every splitting line is now of nonreduced type.

Remark 4.4. Let 0(x0, x1, x2) be a homogeneous polynomial of degree 3. Then
the equations w2

= G and w2
= G + 02 define surfaces isomorphic over P2.

We have the following relation between splitting lines and rational double points of
Y . See [Artin 1977] or [Greuel and Kröning 1990] for the normal form of defining
equations of rational double points in characteristic 2.

Lemma 4.5. Let L ⊂ P2 be a line defined by `(x0, x1, x2) = 0.

(1) The line L is splitting in (X, H) if and only if there exist homogeneous poly-
nomials Q(x0, x1, x2) and 0(x0, x1, x2) of degree 5 and 3, respectively, such
that G = `Q + 02.

(2) Suppose that L is splitting in (X, H), and let Q be a polynomial of degree 5
such that G +`Q is a square of a cubic polynomial. We denote by T ⊂ P2 the
quintic curve defined by Q = 0. Let p be a point of L , and P the point of Y
such that π(P) = p. Then P is a smooth point of Y if and only if p /∈ T , and
P is an A1-singular point of Y if and only if T intersects L transversely at p.



390 ICHIRO SHIMADA AND DE-QI ZHANG

Proof. We can assume that `= x2. Since the curve defined by w2
+G(x0, x1, 0)=0

in V |L is nonreduced, we see that G(x0, x1, 0) is the square of a polynomial of
degree 3. Hence the claim (1) follows. Let (x, y) be an affine coordinate system of
P2 with the origin p such that L is defined by y =0. We write (4-3) as w2

=g(x, y).
Let gi j be the coefficient of x i y j in g. Then P is a smooth point of Y if and only if
g01 6= 0 or g10 6= 0, and P is an A1-singular point of Y if and only if g01 = g10 = 0
and g11 6= 0. Let q(x, y) be the inhomogeneous polynomial corresponding to Q,
and let qi j be the coefficients of x i y j in q . Then, up to a multiplicative constant,
we have g01 = q00, g10 = 0, g11 = q10. Therefore the claim (2) follows. �

Remark 4.6. The polynomials Q and 0 such that G = `Q+02 are not determined
uniquely by G and `. However, the homogeneous polynomial Q|L on the line L
is determined uniquely by G and `.

5. Schröer’s Kummer surfaces as Zariski surfaces

Let r and s be constants in k such that r 6= 0, s 6= 0 and r3
6= s3. Then Schröer’s

supersingular K 3 surface Xr,s , defined in the introduction, is of Artin invariant
2. By Proposition 6.2 of [Schröer 2007], the quotient surface (C × C)/α2 of the
α2-action on C × C defined by the vector field (1-1) contains an open subset U
isomorphic to

Spec k[a, b, c]/( c2
+ a(b4

+ s2b2) + b(a4
+ r2a2) ).

The singular locus of U consists of four D4-singular points coming from the fixed
points of the α2-action on the smooth part of C × C . Let

πr,s : Yr,s → P2

be the purely inseparable double cover defined by

w2
= [x0(x4

1 + s2x2
1 x2

2) + x1(x4
0 + r2x2

0 x2
2)]x2,

which is a projective completion of U . Then Yr,s is birational to Xr,s , and hence
there exists a morphism ρr,s : Xr,s → Yr,s that is the minimal resolution. The
pull-back of a line of P2 by πr,s ◦ ρr,s is a polarization Hr,s of degree 2 of Xr,s .
Then

Xr,s
ρr,s
−→ Yr,s

πr,s
−→ P2

is the Stein factorization of 8|Hr,s |. The singular locus of Yr,s consists of four
D4-singular points P(00), P(01), P(10), P(11) in U and five A1-singular points
Q(0), Q(1), Q(ω), Q(ω̄), Q(∞) lying on the line defined by x2 = 0. Here ω is
a primitive third root of 1, and ω̄ = ω2. These singular points are indexed so
that their images by πr,s are given in Table 1, where p(αβ) := πr,s(P(αβ)) for
αβ = 00, 01, 10, 11, and q(γ ) := πr,s(Q(γ )) for γ = 0, 1, ω, ω̄, ∞. It is easy to
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p(00) = [0 : 0 : 1]

p(01) = [0 : s : 1]

p(10) = [r : 0 : 1]

p(11) = [r : s : 1]

∣∣∣∣∣∣∣∣∣∣∣∣∣

q(0) = [1 : 0 : 0]

q(1) = [1 : 1 : 0]

q(ω) = [1 : ω : 0]

q(ω̄) = [1 : ω̄ : 0]

q(∞) = [0 : 1 : 0]

Table 1. The coordinates of the singular points of Yr,s .

see that the five lines listed below are splitting in (Xr,s, Hr,s):

L(∞) := {x2 = 0},

L(0∗) := {x0 = 0}, L(1∗) := {x0 + r x2 = 0},

L(∗0) := {x1 = 0}, L(∗1) := {x1 + sx2 = 0}.

To simplify the notation, we put

P := {00, 01, 10, 11}, Q := {0, 1, ω, ω̄, ∞}, L := {∞, 0∗, 1∗, ∗0, ∗1}.

Figure 2 gives the configuration of the splitting lines L(λ) (λ ∈ L) and the points
p(αβ) (αβ ∈ P) and q(γ ) (γ ∈ Q). For a splitting line L(λ) (λ ∈ L), we denote by
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Figure 2. The configuration of splitting lines.
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F(λ) the half-line of (Xr,s, Hr,s) lying over L(λ). By explicitly blowing up Yr,s at
their singular points, we see that the half-lines F(λ) and the exceptional divisors
of ρr,s : Xr,s → Yr,s intersect as in Figure 3. We denote the exceptional curves over
the D4-singular points P(αβ) (αβ ∈ P) as in Figure 4 and denote the exceptional
curves over the A1-singular points Q(γ ) (γ ∈ Q) by A(γ ). The polarized K 3
surface (Xr,s, Hr,s) has maximal rational double points. Consider the sublattice

(5-1) 3r,s := 3H ⊕

⊕
αβ∈P

3P(αβ) ⊕

⊕
γ∈Q

3Q(γ )

of NS(Xr,s) with finite index, as in Section 3C. The lattice 3H is of rank 1 gen-
erated by h := [Hr,s], and 3∨

H is generated by h∨
:= h/2. The lattice 3P(αβ)

is of rank 4 with basis d i (αβ) := [Di (αβ)] (i = 1, . . . , 4). We denote the basis
of 3∨

P(αβ) dual to d1(αβ), . . . , d4(αβ) by d1(αβ)∨, . . . , d4(αβ)∨. The relations
between d1(αβ), . . . , d4(αβ) and d1(αβ)∨, . . . , d4(αβ)∨ are given by (2-4). The
lattice 3Q(γ ) is of rank 1 generated by a(γ ) := [A(γ )], and 3∨

Q(γ ) is generated
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A(ω)
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F(0∗)

E
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E
E
E
E
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F(1∗)

Figure 3. The configuration of half-lines and exceptional curves.
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D1(αβ)

D4(αβ)

�
�

��
D2(αβ)

D3(αβ)F(α∗)

F(∗β)

Figure 4. The exceptional curves over P(αβ).

by a(γ )∨ := −a(γ )/2. From Figures 3 and 4, we see that the classes of half-
lines F(λ) (λ ∈ L) are

(5-2)

[F(∞)] = h∨
+ a(0)∨ + a(ω)∨ + a(1)∨ + a(ω̄)∨ + a(∞)∨,

[F(0∗)] = h∨
+ d1(00)∨ + d1(01)∨ + a(∞)∨,

[F(1∗)] = h∨
+ d1(10)∨ + d1(11)∨ + a(∞)∨,

[F(∗0)] = h∨
+ d4(00)∨ + d4(10)∨ + a(0)∨,

[F(∗1)] = h∨
+ d4(01)∨ + d4(11)∨ + a(0)∨.

We then put

(5-3) 1r,s := (3r,s)
∨/3r,s = 1H ⊕

⊕
αβ∈P

1P(αβ) ⊕

⊕
γ∈Q

1Q(γ ),

which is an F2-vector space of dimension 14. Since the discriminant of NS(Xr,s)

is −22σ(Xr,s) = −24, we see that NS(Xr,s)/3r,s ⊂ 1r,s is a subspace of dimension
5. It is easy to prove that the five elements

[F(λ)] := [F(λ)] mod 3r,s (λ ∈ L)

of NS(Xr,s)/3r,s are linearly independent. Therefore NS(Xr,s) is generated by the
classes h = [Hr,s], d i (αβ) = [Di (αβ)], a(γ ) = [A(γ )], and [F(λ)].

Remark 5.1. Suppose that r3
= s3. Then there exists c ∈ F×

4 = {1, ω, ω̄} such
that s = cr holds. The three points p(00), p(11) and q(c) on P2 are collinear.
Let M be the line passing through these points. Then M is a splitting line for
(Xr,cr , Hr,cr ). Let G be the half-line lying over M . By blowing up Yr,cr at the
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points P(00), P(11) and Q(c), we see that

[G] = h∨
+ d2(00)∨ + d2(11)∨ + a(c)∨.

Note that d2(αβ)∨ ≡ d1(αβ)∨ + d4(αβ)∨ mod 3P(αβ) by (2-4). Hence [G] :=

[G] mod 3r,cr is linearly independent from the set of vectors [F(λ)] (λ ∈ L) in
1r,cr . In particular, the linear subspace NS(Xr,cr )/3r,cr of 1r,cr is of dimension 6
generated by [F(λ)] (λ ∈ L) and [G], and the Artin invariant of Xr,cr is 1.

6. Proof of main theorem

Note that supersingular K 3 surfaces with Artin invariant 1 are isomorphic to each
other [Ogus 1983; Dolgachev and Kondō 2003]. Therefore it is enough to prove
Theorem 1.2 under the additional assumption that the Artin invariant of X ′ is 2.

We choose a Schröer’s Kummer surface X with σ(X) = 2. To fix the ideas, we
choose s ∈ k \ F4, put X := X1,s , and set

H := H1,s, Y := Y1,s, ρ := ρ1,s, π := π1,s, 1 := 11,s, 3 := 11,s .

Let X ′ be a supersingular K 3 surface with Artin invariant 2. Theorem 1.3 implies
that NS(X) and NS(X ′) are isomorphic. By Proposition 3.1, there exists an iso-
morphism φ : NS(X)

∼
→ NS(X ′) such that φ ⊗R maps Nef(X) to Nef(X ′). We fix

such an isomorphism φ once and for all. By Corollary 3.4, we have a polarization
H ′ of X ′ with degree 2 such that [H ′

] = φ([H ]). As before, let

X ′ ρ′

−→ Y ′ π ′

−→ P2

be the Stein factorization of 8|H ′|. By Corollary 3.7, there exist bijections φE :

E
∼
→ E′ and φSing :Sing(Y )

∼
→ Sing(Y ′) such that the diagram (3-2) is commutative.

For P ∈ Sing(Y ), we write P ′
∈ Sing(Y ′) instead of φSing(P), and for E ∈ E, we

write E ′
∈ E′ instead of φE(E). Therefore Sing(Y ′) consists of four D4-singular

points P(αβ)′ (αβ ∈ P) and five A1-singular points Q(γ )′ (γ ∈ Q). For example,
the (−2)-curves contracted to P(αβ)′ by ρ ′ are D1(αβ)′, D2(αβ)′, D3(αβ)′ and
D4(αβ)′. We then put

p(αβ)′ := π ′(P(αβ)′) and q(γ )′ := π ′(Q(γ )′).

We also set

(6-1) 3′
:= 3H ′ ⊕

⊕
αβ∈P

3P(αβ)′ ⊕

⊕
γ∈Q

3Q(γ )′

and

(6-2) 1′
:= (3′)∨/3′

= 1H ′ ⊕

⊕
αβ∈P

1P(αβ)′ ⊕

⊕
γ∈Q

1Q(γ )′
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as (5-1) and (5-3). Note that φ induces isomorphisms

φ3 : 3
∼
→ 3′ and φ1 : 1

∼
→ 1′

that are compatible with the direct-sum decompositions (5-1), (6-1), and (5-3),
(6-2).

Let L ⊂ P2 be a line splitting in (X, H), and let F be the half-line of (X, H)

lying over L . We can define a line L ′
⊂ P2 splitting in (X ′, H ′) and a half-line F ′

of (X ′, H ′) lying over L ′ as follows.

Claim 6.1. There exists a unique effective divisor D′ that represents φ([F]).

Proof. Since φ([F])2
= −2 and φ([F])[H ′

] = 1, there exists an effective divisor
D′ that represents φ([F]). Let D′

= 0′
+ M ′ be the decomposition of D′ into

the sum of the fixed part 0′ and the movable part M ′. Suppose that M ′
6= 0. If

M ′H ′
= 0, then M ′ 2 < 0 because [H ′

]
⊥ is negative-definite. Therefore we have

M ′H ′ > 0. Since 0′H ′
≥ 0, we have M ′H ′

= 1, which implies that 8|H ′| induces
an isomorphism from M ′ to a line on P2. Hence M ′ is a smooth rational curve,
which is a contradiction. �

Since D′H ′
= 1, there exists a unique irreducible component F ′ of D′ such that

F ′H ′
= 1. Then F ′ is a half-line of (X ′, H ′). We define L ′

⊂ P2 to be the image
of F ′ by ρ ′

◦ π ′.

Claim 6.2. Let F ′′ be a half-line for (X ′, H ′) lying over L ′. Then [F ′′] = [F ′]

holds in 1′, where [F ′′] = [F ′′
] mod 3′ and [F ′] = [F ′

] mod 3′.

Proof. The case where F ′
= F ′′ is obvious. Suppose that F ′

6= F ′′. Then F ′
+ F ′′

is the total transform of L ′ in X ′ minus a linear combination of curves in E′, and
hence [F ′

] + [F ′′
] ∈ 3′. Because 1′ is a 2-elementary abelian group, we obtain

[F ′′] = [F ′]. �

Claim 6.3. We have φ1([F]) = [F ′].

Proof. Since φ([F]) = [D′
], we have φ1([F]) = [D′]. Since D′

− F ′ is effective
or zero and (D′

− F ′)H ′
= 0, each irreducible component of D′

− F ′ is contracted
to a point by ρ ′. Therefore we have [D′

] − [F ′
] ∈ 3′, and hence [D′] = [F ′]. �

Now we have half-lines F(λ)′ and splitting lines L(λ)′ of (X ′, H ′) for each λ ∈ L.
By Claim 6.3, the elements [F(λ)′] of 1′ are distinct from each other. Hence, by
Claim 6.2, the lines L(λ)′ are distinct from each other.

Claim 6.4. Let P be a point of Sing(Y ). If π(P) ∈ L(λ), then π ′(P ′) ∈ L(λ)′.

Proof. If π(P) ∈ L(λ), then the P-component of [F(λ)] ∈ 1 is not zero by (5-2).
Hence the P ′-component of [F(λ)′] ∈ 1′ is not zero by Claim 6.3. Consequently,
there exists E ′

∈ E′

P ′ such that F(λ)′E ′
6= 0. Therefore the image L(λ)′ of F(λ)′

passes through π ′(P ′) ∈ P2. �
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Claim 6.5. The splitting line L(λ)′ is of nonreduced type for any λ ∈ L.

Proof. Let G ′ be an arbitrary half-line of (X ′, H ′) lying over L(λ)′. Then the class
g′

:= [G ′
] ∈ NS(X ′) satisfies:

(i) (g′)2
= −2; (ii) g′

[H ′
] = 1; (iii) g′

[E ′
] ≥ 0 for every E ′

∈ E′.

Suppose that L(λ)′ is of reduced type. Then there exists a half-line F ′′ lying over
L(λ)′ that is distinct from F(λ)′. Since [F ′′

][F(λ)′] ≥ 0, we have [F ′′
] 6= [F(λ)′].

By Claim 6.2, we have [F(λ)′] = [F ′′] in 1′. Consequently, it is enough to show
that there exists only one class g′ in NS(X ′) satisfying (i), (ii), (iii) above and

(iv) (g′) = [F(λ)′] = φ1([F(λ)]),

where the second equality follows from Claim 6.3. We denote by g′

H ′ and g′

P ′ the
H ′- and P ′-components of g′, respectively, where P ′

∈ Sing(Y ′). By (ii), we have
g′

H ′ = [H ′
]/2. Combining this with (i), we have

(6-3)
∑
αβ∈P

(g′

P(αβ)′)
2
+

∑
γ∈Q

(g′

Q(γ )′)
2
= −5/2.

The case where λ = ∞. By (iii), (iv), (5-2) and Lemmas 2.4, 2.5, we have

(g′

P(αβ)′)
2
= 0 or ≤ −2 and (g′

Q(γ )′)
2
= −1/2 or ≤ −9/2.

Combining this with (6-3), we have

(g′

P(αβ)′)
2
= 0 and (g′

Q(γ )′)
2
= −1/2.

By (iii) and Lemmas 2.4, 2.5 again, we have

g′

P(αβ)′ = 0 and g′

Q(γ )′ = −[A(γ )′]/2.

Thus the uniqueness of g′ is proved.
The case where λ = 0∗. By (iii), (iv), (5-2) and Lemmas 2.4, 2.5, we have

(g′

P(αβ)′)
2
= −1 or ≤ −3, if αβ = 00 or 01,

(g′

P(αβ)′)
2
= 0 or ≤ −2, if αβ = 10 or 11,

(g′

Q(γ )′)
2
= −1/2 or ≤ −9/2, if γ = ∞,

(g′

Q(γ )′)
2
= 0 or ≤ −2, if γ 6= ∞.

Combining this with (6-3), we have

(g′

P(00)′)
2
= (g′

P(01)′)
2
= −1,

(g′

P(10)′)
2
= (g′

P(11)′)
2
= 0,

(g′

Q(∞)′)
2
= −1/2,

(g′

Q(γ )′)
2
= 0, for γ 6= ∞.
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By (iii) and Lemmas 2.4, 2.5 again, we have

g′

P(00)′ = δ1(00),

g′

P(01)′ = δ1(01),

g′

P(10)′ = g′

P(11)′ = 0,

g′

Q(∞)′ = −[A(∞)′]/2,

g′

Q(γ )′ = 0, for γ 6= ∞,

where

δ1(αβ) = −[D1(αβ)′] − [D2(αβ)′]/2 − [D3(αβ)′] − [D4(αβ)′]/2.

See (2-4). Thus the uniqueness of g′ is proved.
The other cases λ = 1∗, ∗0, ∗1 can be treated in the same way. �

We have five distinct splitting lines L(λ)′ (λ ∈ L) for (X ′, H ′), which are of non-
reduced type by Claim 6.5. By Lemma 4.3, we see that π ′

: Y ′
→ P2 is purely

inseparable. By Claim 6.4, the configuration of the lines L(λ)′ and the points
p(αβ)′, q(γ )′ are exactly the same as the configuration depicted in Figure 2 with
superscript prime (′) being put to everything.

There exists a homogeneous coordinate system [x : y : z] of P2 such that

q(∞)′ = [0 : 1 : 0],

q(1)′ = [1 : 1 : 0],

q(0)′ = [1 : 0 : 0],

p(00)′ = [0 : 0 : 1],

p(10)′ = [1 : 0 : 1].

We put
p(01)′ = [0 : t : 1],

where t is a nonzero constant. Then we have p(11)′ = [1 : t : 1] by Figure′ 2. Let

w2
= G(x, y, z)

be the defining equation of Y ′, where G is a homogeneous polynomial of degree
6, and let Glmn (l +m +n = 6) be the coefficient of x l ymzn in G. By Remark 4.4,
we can assume

Glmn = 0 if l ≡ m ≡ n ≡ 0 mod 2.

Using Lemma 4.5(1), we obtain:

G015 = G033 = G051 = 0, because L(0∗)′ = {x = 0} is splitting;

G105 = G303 = G501 = 0, because L(∗0)′ = {y = 0} is splitting;

G150 = G330 = G510 = 0, because L(∞)′ = {z = 0} is splitting.

Therefore
G(x, y, z) = xyz C(x, y, z),
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where C is a homogeneous polynomial of degree 3. By Lemma 4.5(2), the line
L(0∗)′ = {x = 0} and the quintic curve defined by yz C(x, y, z) = 0 intersect
transversely at q(∞)′ and with multiplicity ≥ 2 at p(00)′ and p(01)′. Therefore
there exists a constant A such that yzC(0, y, z) = Ay2z(y + t z)2. In particular, we
obtain

G132 = G114 = 0 and G123 = t2G141.

By Lemma 4.5(2), the line L(∗0)′ = {y = 0} and the curve xz C(x, y, z) = 0 inter-
sect transversely at q(0)′ and with multiplicity ≥ 2 at p(00)′ and p(10)′. Therefore
there exists a constant B such that xzC(x, 0, z) = Bx2z(x + z)2. In particular, we
obtain

G312 = G114 = 0 and G213 = G411.

By Lemma 4.5(2), the line L(∞)′ = {z = 0} and the curve xy C(x, y, z) = 0
intersect transversely at the five points q(γ )′ (γ ∈ Q). In particular, the curve
xy C(x, y, z) = 0 passes through q(1)′, and hence we obtain

G141 + G231 + G321 + G411 = 0.

Combining these, we see that Y ′ is defined by

w2
= xyz(t2ayz2

+ dxz2
+ ay3

+ bxy2
+ cx2 y + dx3),

where a, b, c, d are constants such that a+b+c+d = 0. Because L(1∗)′ ={x = z}
is splitting, the polynomial yz2(t2 yz2

+ay3
+bzy2

+cz2 y) of y and z is the square
of a cubic polynomial. Therefore b = 0. Because L(∗1)′ = {y = t z} is splitting,
the polynomial t xz2(dxz2

+ bt2xz2
+ ctx2z + dx3) of x and z is the square of a

cubic polynomial. Therefore c = 0. Because a + b + c + d = 0, we have a = d .
Therefore Y ′ is defined by

w2
= xyz(t2 yz2

+ xz2
+ y3

+ x3).

Hence Y ′ is isomorphic to Schröer’s normal K 3 surface Yt,1, and hence X ′ is iso-
morphic to Schröer’s Kummer surface X t,1.

Remark 6.6. In [Pho and Shimada 2006], it is shown that every supersingular K 3
surface in characteristic 5 with Artin invariant ≤ 3 is obtained as a double cover of
the projective plane with the branch curve defined by y5

− f (x) = 0, where f (x)

is a polynomial of degree 6, and hence it is unirational.
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