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We study self-similar local regular Dirichlet, or energy, forms on a class of
fractal NV-gaskets, which are generalizations of polygaskets. This is directly
related to self-similar diffusions and resistor networks (electrical circuits).
We prove existence and uniqueness, and also obtain explicit formulas for
scaling factors and resistances (transition probabilities). We also study as-
ymptotic behavior of these quantiles as the number of ‘“sides” NV of an N-
gasket tends to infinity.

Introduction

This paper is part of a relatively new, but now well-established, field of analysis
and probability on fractals, see [Kigami 1993; 1994; 2001; Barlow 1998; Strichartz
1999a; 2006; Mosco 2002; Adams et al. 2003; Stanley et al. 2003; Meyers et al.
2004; Teplyaev 2004; > 2007; Bajorin et al. > 2007], and references therein for a
sample of mathematical literature on the analysis on fractals. Furthermore, many
of the questions addressed here are related to the general Dirichlet form theory; for
further information on this subject the reader can refer to the now classical books
[Bouleau and Hirsch 1991; Fukushima et al. 1994]. To be more precise, we are
interested in local regular self-similar Dirichlet, or energy, forms on a subclass of
finitely ramified self-similar fractals. Nonlocal Dirichlet forms on fractals have
been also extensively studied, see for instance [Zdhle 2005; Hansen and Zihle
2006] and references therein.

Roughly speaking, self-similar fractals are objects that can be divided, with
infinite detail, into smaller objects of similar shape. A snowflake is a classic ex-
ample. The properties and physical applications of various types of these objects
have been the subject of many studies in physics, of which we mention only a
few [Gefen et al. 1983; Alexander 1984; Rammal and Toulouse 1983; Rammal
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1984; Stinchcombe 1989]. Fractal antennas were studied and successfully tested,
in particular, in wireless devices [Puente-Baliarda et al. 1998; Hohlfeld and Cohen
1999; Musser 1999].

One particular type of self-similar fractal objects, known as polygaskets, are
formed by dividing a regular polygon into smaller regular polygons of the same
shape, arranged in a circular pattern [Strichartz 1999a; 1999b; 2000; 2006; Adams
et al. 2003; Tyson and Wu 2005; 2006]. If a polygasket is finitely ramified (that is,
point connected), then it belongs to the class of so-called nested fractals [Lindstrgm
1990; Metz 1996; Strichartz 2006]. The N-gaskets belong to the larger class of
so-called p.c.f. self-similar sets [Kigami 1993; 2001], and are generalizations of
finitely ramified polygaskets.

In this study we consider self-similar fractal resistor networks (electrical cir-
cuits) or, equivalently, a self-similar energy (Dirichlet) form on an N-gasket. Us-
ing a combination of various methods of mathematical analysis, some of which
come from electric engineering (see the Appendix), we construct networks with
the property that every resistor in a network of a given order is a scalar multiple
of the corresponding resistor in the next-order network, this scalar being constant
across the fractal. This allows to translate the resistance of these fractal electrical
networks into conventional, easily manipulated networks. We prove existence and
uniqueness, up to a multiplicative constant, of a self-similar resistance (Dirichlet,
energy) form on any N-gasket. In general this is a difficult and delicate question
[Metz 1993; 1996; 2003; Sabot 1997; Hambly et al. 2006; Peirone 2006]. We
derive explicit formulas which uniquely determine all the resistances and scaling
constant for every N-gasket. Furthermore, we explore the behavior of these con-
stants as certain parameters tend to infinity, thus capturing the general properties
of the current flow in an N-gasket with large N.

This paper is organized as follows. In Section 1, we define N-gaskets and state
our main objectives. In Section 2, we transform the self-similar structure of an
N-gasket to simplify the problem and make available some ideas from electrical
engineering. In Section 3, we compute the resistance scaling factor ¢, which is
one of our main results, and also the resistances in the transformed network. In
Section 4, we use the results of the previous sections to compute the resistances in
the original problem. In Section 5 we study various asymptotic behaviors of the
resistance scaling factor ¢ and of resistances, as the parameters of an N-gasket ap-
proach infinity. In particular, we compute the asymptotic dimension in the effective
resistance metric and the asymptotic spectral dimension in Corollary 5.8. In the
Appendix, we describe briefly the relevant electrical circuits formalism, prove an
auxiliary result used in the main body of the paper, relate our results to the theory
of random walks, and give some related references.
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1. Definitions and examples

An N-gasket is a self-similar fractal F which is a compact metric space made of
N scaled copies F1, ..., Fy of itself, that is,

N
F=JF;
j=1

These copies F; are called depth-1 cells, or 1-cells for short. The self-similarity
means that there are contractive homeomorphisms

Y;j:F—F; foreachj=1,...,N.

By definition, the boundary of the N -gasket consists of N points vy, ..., vy, one
in each 1-cell, with the property ¥;(v;) = v;. The boundary of the k-th scaled copy
Fy of an N-gasket consists of points v 1, . .., v,y numbered so that v, ; =Y (v;).

In particular, v = vg k.

Notation 1.1. When numbering cells in an N-gasket we always use cyclic notation
modulo N, that is Fy11 = F1, vy4+1 = v efc.

Up to a homeomorphism, an N-gasket is defined by three numbers Ni, N;, N3
with N1 4+ N, 4+ N3 = N. The most important property of an N-gasket is that

Fr NV Fi1 = Vi gans Fi N F_1 = Vg k+N=N>>

and the depth-1 cells are otherwise disjoint (note that we use cyclic notation as in
Notation 1.1). Thus, we have identifications vi x+n; = Vk+1,k+1+N—N,. This means
that each k-th scaled copy Fj, of the N-gasket is connected to the other scaled copies
via its boundary points U}v3 i and vy Nyko if We denote vy j = v;.. Thus, we will
sometimes call an N-gasket with these connectivity properties the (N, Ny, N3)-
gasket. In Figure 1, one can see that the Sierpifski gasket is a (1, 1, 1)-gasket,
the pentagasket is a (1, 2, 2)-gasket, and the hexagasket is a (2, 2, 2)-gasket. The
so-called fractal cut square and the fractal red cross in Figure 2 are respectively a
(2,1, 1)-gasket and a (1, 1, 2)-gasket.

From the general theory [Kigami 1993; Hveberg 2005], an N-gasket exists for
any triple (N, N3, N3) of positive integers with N = N + N, + N3. An N-gasket
can be easily constructed as a factor space of the one-sided shift space {1, ..., N}V,
as in [Kigami 1993, Appendix]. Moreover, an N-gasket is defined uniquely up to
a homeomorphism by the triple (N1, N2, N3), except that an (N, N, N3)-gasket
and an (Np, N3, N,)-gasket are homeomorphic via the obvious “reflection” map.

Note that any polygasket, and any nested fractal in general, has by definition a
dihedral symmetry group. It is easy to see from the definition that for any N-gasket
there is a homeomorphism p such that p o /; = ¥, o p. In particular, p(F;) =
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Figure 1. Examples of polygaskets: Sierpinski gasket, pentagas-
ket, and hexagasket, which are respectively a (1, 1, 1)-gasket, a
(1,2, 2)-gasket, and a (2, 2, 2)-gasket.

Figure 2. Examples of 4-gaskets: fractal cut square and fractal
red cross, which are respectively a (2, 1, 1)-gasket and a (1, 1, 2)-
gasket.

Fii1, p(vj) = vj41, and {,0"‘},]2’:1 is a cyclic group of N elements isomorphic to
Zny = Z/NZ. Without loss of generality, we can assume that p is an isometry.
An N-gasket can be embedded in R? so that this isometry is a rotation by 27/ N.

Thus, we have:

Proposition 1.2. An N-gasket has the dihedral symmetry group Dy if and only if
Ny = N3. Otherwise the symmetry group is the cyclic group Zy of N elements.

We will denote the symmetry group of an N-gasket by 4.

We are interested in the existence and uniqueness, up to a multiplicative con-
stant, of a self-similar local regular %-invariant resistance (Dirichlet, energy) form
‘€ on any N-gasket. By the general results [Kigami 1993; 2001; Metz 1996; 2003;
Sabot 1997; Barlow 1998; Hambly et al. 2006; Strichartz 2006], it is enough to
prove the existence and uniqueness of a scaling constant ¢ and resistances Ry,
k=1,..., N —1, such that the following property holds.
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First, consider a resistor network with vertices {vi}[N: | such that each pair v;
and v; is connected by a resistance R;. We will call this network the 0-depth
network. Note that we use cyclic notation modulo N for indices. Let R, be the

effective resistance between v; and v; 4, which obviously does not depend on i, in
N

ij=1
such that each pair v; ; and v; ;4 is connected by a resistance Ry, and pairs of

this 0-depth network. Second, consider a resistor network with vertices {v; ;}

distinct vertices in different 1-cells are not directly connected. We will call this
network the 1-depth network. Note we have identified the vertices v x4, and
Vk+1,k+14+N—N,- Let R} be the effective resistance between v; and v; in this
second 1-depth network, which again does not depend on i. These two networks
are illustrated in Figures 3 and 4. The existence and uniqueness of a self-similar
local regular %-invariant resistance (Dirichlet) form € on F is equivalent to the
existence and uniqueness of a resistance scaling constant ¢ and resistances Ry,
k=1,..., N—1, such that
(1-1) R =cR, forallk=1,...,N.

In other terms, let Vy = {vi}f\/:1 cV= {v,-h,-}f?/j:l.
define finite-dimensional 4-symmetric Dirichlet forms

On Vy, V|, we respectively

1
Eo(f. )= () = fw)),
i#gj '
N 1
G =) ) @) —gwe)’
k=1i#j ')

Then our main equation, which is equivalent to (1-1), is
(1—2) %QZCTI‘VO%L

that is, € is the same as the trace of ¢é; on Vj. The trace of Dirichlet forms on
subsets is defined in the Appendix.

Gt U1
3 |R2 Ry
V4 1) V4 U2
U3 U3

Figure 3. The 0-depth and 1-depth networks in the fractal cut square.
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U1 V1

V4 1%) V4 1%}

U3 U3

Figure 4. The 0-depth and 1-depth networks in the fractal red cross.

Equations (1-1) and (1-2) allow us to define a local regular self-similar Dirichlet
form on F by

N
€S )= lim "D G oY, 0 Vs [ OV, 0 V)
Wi,..., Wy=1

for any f in the domain of the form. The reader can find the general theory of
Dirichlet forms in [Bouleau and Hirsch 1991; Fukushima et al. 1994] and the theory
of self-similar Dirichlet forms on fractals in [Barlow 1998; Kigami 2001; Strichartz
2006]. According to this theory, on F there exists a densely defined self-adjoint
operator A, called the Dirichlet self-similar Laplacian on F, such that

€(f, f) = /F FAf du

for any function in the domain of A that vanishes on the boundary of F. Here u
is the unique self-similar balanced probability measure on F' that has

/Ffdu=%i2::/Ffowidu

for any bounded Borel-measurable function f.
To any resistance form there corresponds the so-called effective resistance metric

(u(p) —u(q))’
€(u, u)

This metric is studied in detail in [Kigami 1994; 2001]. In particular, it is not
self-similar, but asymptotically self-similar with scaling constant c. The effective
resistance metric is not related to a particular embedding of the fractal into R”, but
rather to its intrinsic structure.

Reit(p, q) = Supi cu € Dom€,€(u,u) > 0}.

Remark 1.3. The resistance scaling constant ¢ is important, in particular, be-
cause it allows to compute the Hausdorff dimension of the fractal with respect to
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the effective resistance metric. According to [Kigami and Lapidus 1993; Kigami
1994; 2001], the Hausdorff dimension of the N -gaskets with respect to the effective

resistance metric is
log N

T~ Jogc’

Note that this dimension has no relation with the embedding of the fractals into
R? in Figures 1 and 2, and it does not correspond to the “usual” dimension of self-
similar fractals in R". It rather depends on the “inner” structure of the fractal and
on how parts of the fractal are connected.

By definition, the spectral dimension of the Laplacian is equal to

1
do—2 tim 220G
x—o00 log(x)

if the limit exists, where p(x) is the eigenvalue counting function of the Lapla-
cian. The spectral dimension is not a dimension in the usual sense of topology or
geometric measure theory, but just the exponent that determines the growth rate
of the eigenvalue counting function of the Laplacian. However, it is called dimen-
sion because, for the usual Laplacian on a compact Riemannian d-dimensional
manifold or a domain in R?, the spectral dimension is equal to the topological
and metric dimension d. According to [Kigami and Lapidus 1993; Kigami 2001],
for the standard Laplacian on a p.c.f. self-similar set we can compute the spectral
dimension by the formula

_2dy _ 2logN
~dy+1  log(Nc)
According to [Strichartz 2003; 2006], this formula shows that the Laplacian is an

operator of order dy + 1.
Note that the spectral dimension dy is not equal to the Hausdorff dimension dy

ds

unless both are one. These dimensions for any N-gasket can be computed using
Theorem 3.2, and their asymptotic behaviors under different assumptions are given
in Corollary 5.8.

2. Transformed N-gaskets

The equivalent Equations (1-1) and (1-2) can be considered a nonlinear (N — 1)-
dimensional eigenvalue problem, which is difficult to solve in general [Metz 1996;
2003; Sabot 1997; Hambly et al. 2006]. To achieve our results we have to change
self-similarity structure of F and apply various transformations to the networks
involved.

We define

vi=p"toy
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and note that by definition ¥;(F) = F; and v¥;(vx) = v;44—1. This means

Y (V1) = g, Vi (UN3+1) = Uk k+N3» Yk (UN=Ny+1) = Vk k+N—N;-

It is important that the vertices on the left side of these three formulas do not depend
on k. Thus, we can consider the three vertices vy, Vy,+1, UN—nN,+1 as the boundary
of F if we use the self-similar structure of contractions i/~/1, R %v. For simplicity
we will let

q1 =11, q2 = UN3+1, 43 = UN—Ny+1-

Based on this construction, it is enough to begin with the network of three
vertices q1, g2, g3 and three resistances Ry, ;. between them. We transform this
network into another network of four vertices and three resistances ry, r, r3 by
the well-known basic technique from elementary circuit theory known as the A-Y
transform given by

R‘]j»‘]jJrlR‘Ij»‘ijl
ququ + RLIMB + RL]Zs‘B

(2-3) ri=

and illustrated in Figure 5.
As the first consequence of these transformations we obtain:

Lemma 2.1. Foreachk =1,..., N — 1, we have R, = Ry_y.

Note that these symmetries of the resistances do not correspond to any symme-
tries of the N-gasket if Ny # N3. Also note that ro # r3 if Ny # Na.

Proof of Lemma 2.1. One can see that in Figure 8 (see also Figures 6 and 7 as
examples) the resistances rp and r3 are connected in pairs to form a resistances
rp + r3. Therefore in the network shown in Figure 8 on the right hand side, the
resistance between v; and v; 1 is the same as the resistance between v; and v;_g.

This implies Ry = Ry fork=1,..., N —1. Il
q1 q1
r
R(IIJB qu}z
r3 )
q3 Ry, .0 q2 3 q2

Figure 5. Illustration for the A-Y transform (2-3).
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a1 a1
b

r

mn 3
3 mn
93 e 02 q3 e 11| | "l oq2
r3 r %) r3
3 ¥

Figure 6. The transformed 0-depth and 1-depth networks in the
fractal cut square.

3. Computations in a transformed N-gasket

Theorem 3.1. Initial resistances ry, r», r3 correspond to a self-similar energy form
on the (N1, N2, N3)-gasket if and only if there is a constant ¢ such that

Ny N

(3-4) cr=ri+ jv 3 (2 +713),
NN

(3-5) cry=ri + ;v 3 413),
NN,

(3-6) cr3=ri+ N (ro +r3).

Proof. The network in Figure 8 is the same as the network in Figure 9 if we are
concerned with the effective resistances between the three points g1, g2, g3. In
the latter network we do the A-Y transform (2-3) with the triangle of resistances
N3(rp +1r3), No(rp +r3), and Nj(r2 + r3). Thus, the result follows from (1-1) and
(2-3). O

oq1

ry

2

[ ] q2

Figure 7. The transformed 0-depth and 1-depth networks in the
fractal red cross.
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q1
r
)
93 3 - g3e 1 \3 .
r3 ’
2
1
q2 q2
Figure 8. The transformed O-depth and 1-depth networks for
large N.

qi

Vs

N3(rp +1r3)

q3

N
1(ra+713) \rl
q92

Figure 9. Illustration for the proof of Theorem 3.1.

Theorem 3.2. Let s = N + Ni{N3 + N1 N». Then,

5 ++/52+ (2N2N3 — N1 N3 — N{N)4N
Cc = .
2N

(3-7)

Proof. By (3-4) we have

1 NaN3(ra+13)
R N '
which we then plug into (3-5) and (3-6) and obtain

I NyN3(ra+r3)  NiN3(rp+r3)
cry = + )
c—1) N N

I NyN3(ra+r3) NiNa(rp+r3)

(c—1) N N

ri

cr3 =
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Then, by adding these two lines and dividing by r, 4 r3, we obtain a quadratic
equation for c:

Nc? — (N + Ny{N3 + NyNa)c + Ny N3+ Ni Ny — 2N, N3 = 0.

This implies the result since it is easy to see that ¢ > 1, which also follows from
the general theory [Kigami 2001]. g

This result is simplified in the next situation.
Corollary 3.3. If Ny = N, = N3 =n, thenc = 1+ 2n/3.

The case n = 1 corresponds to the Sierpifiski gasket, and n = 2 corresponds to
the hexagasket, see Example 3.7 and Figure 1 . The larger values of n do not
correspond to self-similar fractals in R2, but any (n, n, n)-can be constructed as an
abstract metric space.

Now that we have solved for ¢, we can find values for r;, rp, r3. Note that
the resistances are defined up to a scalar multiplier, and so we have to choose a
normalization. The simplest answer is obtained with the normalization r{ = 1, and
also we obtain the formulas with normalizations r, +r3=1landri+r+r; =1
as corollaries.

Theorem 3.4. For any normalization, we have for the c is given by (3-7) that
N
(3-8) n="(1+e=Dh),
C N2

r1 Ny
(3-9) r3:?(1+(c—l)ﬁ3).

Proof. Using Equation (3-4), we get rp +r3 = N(c — 1)r; /(N2 N3), and so, from
(3-5) and (3-6),

—1 N(c—1
cr2=r1+(]Cle2)r1, Cr3=r1+—]i]clN3)r1. ]
Corollary 3.5. When ry + r3 = 1, we have for the ¢ of (3-7) that
N, N3
3-10 =—,
(3-10) r Ne—D
NoN3+ N{N3(c—1
(3-11) V2 3+ N1N3(c )’
Nc(c—1)
NoN3+ NiNy(c—1
(3-12) V2 3+ N1N2(c ).
Nc(c—1)

Proof. Using Equation (3-4) and r, +r3 = 1 we obtain cry =ry + N> N3 /N, which
is (3-10). Then (3-11) and (3-12) follows from (3-5) and (3-6), again using the
normalization r, +r3 = 1. ]
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Corollary 3.6. When r1 +ry +r3 = 1 we have

B NN
"~ N(c—1)+ NoN3’

r

where c is given by (3-7), and ry, r3 can be computed by (3-8) and (3-9).

Proof. If ry +r3 = 1 — ry then (3-4) immediately implies the result. O
Example 3.7.  « For the Sierpiriski gasket in Figure 1, whichisa (1, 1, 1)-gasket,
we have
5
c= 3 and r;=rp=rs.

« For the pentagasket in Figure 1, which is a (1, 2, 2)-gasket, we have

944161 /161 —1
C=1—O and

rp=r3=——r9.

16

For the hexagasket in Figure 1, which is a (2, 2, 2)-gasket, we have

c=§ and ri=ry=rs3.

For the fractal cut square in Figure 2, which is a (2, 1, 1)-gasket, we have

242
2

Cc

and ) =r3= \/51’1.
« For the fractal red cross in Figure 2, which is a (1, 1, 2)-gasket, we have

74+ +/65 24/65—5
:T and rp, =rp, m:Tr

C 1-

4. Resistances of the N-gasket using matrix computations

Having computed the resistance scaling factor ¢ as well the resistances ry, 2, r3,
we are now interested in the resistances R, between points v and vi,,. Note that
the A-Y transform allows to compute effective resistances between points vx and
Vk+m, but does not allow to compute R,,. Instead we use a method where we first
compute certain harmonic functions, and then the resistances (see the Appendix).

Notation 4.1. Let ji, ..., jy be the junction points between resistances ry, ry, 3,
as indicated in Figure 10. In particular, each point jj is connected to the boundary
point v by a resistance ry. Let h be a harmonic function with boundary values
h(vi) =1 and h(vy) =0 for k =2,..., N. Then we define Ji, = h(ji) for each
k=1,...,N.
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Lemma 4.2. If k # 1 then

=0

1
Ji—+ ((Jx = Jig1) + Uk — Jig1))
r rp+r3

and

=0.

+ (= J
r+r3 1 N)r2+r3

1
(N—D—+1— D)
r
Proof. These are the equations of a harmonic function.

We then rewrite the above equations:

Lemma 4.3. Let

4-13) c=24 210
ri

where

r+r3 1 N> + N3
4-14 :-(1 —1N—>
(4-14) . - +(c )1N2N3
and c is given by (3-7). Then

rn+r
(4-15) Iy=h=—htali =T
1

and,ifk=0,...,N —1,

(4-16)

UN—N+1 = (g3

A
I d
- >Ny 11
Iy
g2 = UN3+1

Figure 10. Notation 4.1 for the junction points in the transformed
1-depth network.

27
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Proof. These are just transformed equations of the previous lemma. Note that
J> = Jn since the harmonic function is unique and the network in Figure 10 is
symmetric around j;. More exactly, resistances r, and r3 are not symmetrically
placed, but in this set-up we are interested only in the joint resistance rp + r3
between each pair of points ji and jry1 (see also Lemma 2.1). Note that Jy is
the same as J; by Notation 1.1. U

Next, we will find the powers of the matrix

(4-17) M:[O 1].

—1z
Lemma 4.4.

k=1 k-1 K ak
“18) t 1 |:A Mok ok ]

=5 _5 k k k1 o k+1
Ay — A AL =L AT =T
in which Ao, h_ are the eigenvalues of M:

_zEV2 -4

4-19) At >

Note that both A, and A_ are real, since z > 2.

Proof. First, we find the eigenvectors of the matrix M, that is we solve for MV, =
A+Vyand MV_ = A_V_. Then we can find M¥ = CD*C~! where

A0
(4-20) D=[ 0+ )J‘_:|

and C = [V, V_] is the matrix made from the eigenvectors of the matrix M. The
matrix C is not unique, and the easiest way to write it is

11
(4-21) C= [M x_}
and
1 1
4-22 Cl=— .
(4-22) ,\+—x_[ At —1]
Thus,

k
k] Lo oqp-2 1]
Ay — A | Ap A 0 Ak Ay —1
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Simplifying this equation, we get

|
Ay —A_ [ AT AT Ar —1
1 —MA_4+agak Ak -k
Ty = [ Sy SRS W Ly S L ] '
Noting that A A_ =1, the lemma is proved. g

From the previous two lemmas we obtain a corollary. Remember that in our
notation Jyy; = Ji.

Corollary 4.5. Fork=2,...,N+1,

1

4-23 Ji=——
(4-23) E= o

(G2 =25+ =)
Theorem 4.6.

m+r AN )N
(4-24) Ji= ( - 3)( N_1 N—1 +N N )
r 208 AT L N =Nz =200 — A0)

and

(4-25) 5= %(zll _

where z, (ro +1r3)/r1, and A+ are given by formulas (4-13), (4-14), (4-19).

r2+43)

"

Proof. Equation (4-25) follows from (4-15). Then, given that MV ~! = [ A B ],

C D
JN _ A B J1
Iny1 ] LC D] L]
However, we know that Jyy1 = J;. So after matrix multiplication we get that
J1 = CJy 4+ DJ,. Substitution of J, gives

we have

1 r2+r3 . r+r3 D
L=CJ —D(J— ) thatis, Ji = .
! 1—1—2 “i r ais ! ri 2C+zD-2
Then (4-24) follows from (4-18). O

Remark 4.7. Note that the values J; are important since they allow to compute
so-called harmonic matrices, that is, transformations / — hot; acting on the space
of harmonic functions [Kigami 2001; Strichartz 2006; Teplyaev > 2007].

Recall that, by definition, R,, are the resistances between the boundary points
v; and v, 41 in the N-gasket. The set of these resistances is defined uniquely up to
a constant multiplier. It seems the most convenient to normalize these resistances
so that Ry = 1.
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Lemma 4.8. Up ro a multiplicative constant, which depends on the normalization,
we have R, = r1/Jyu+1, where the Jy, 41 is defined by (4-23).

Proof. According to Notation 4.1, the harmonic function £ of this section is the
same as the harmonic function & considered in the Appendix if y = v;. Moreover,
by definition R,, is the resistance between v; and v, in the network, which is

the trace of the network in Figure 10 on the boundary {vy, ..., vy}. Therefore
1/R, = C{)],Umﬂ in the notation of Theorem A.10. Therefore, by Theorem A.10
with x = v,,+1, we have

1

o Cv ] h(jm-‘r]) = —JIm+1-
Rm m—+1sJm+1 r

Note that in this case the sum in the second formula in Theorem A.10 has only one
nonzero term with p = j,, 4. O

Theorem 4.9. If the normalization of resistances is such that Ry = 1, then

g — A
(4-26) R = ,
Ay ﬁ(m“ —a)
b

where L1, J1, and J are given by formulas (4-19), (4-24), and (4-25).

Proof. According to Lemma 4.8, we have

.
(4-27) R,, = const——,

m+1

where Jy,41 is given by (4-23) and const is a normalization constant. We choose
this constant by the condition R; = 1. O

5. Asymptotic behavior

Here we study the asymptotics of the resistances R, and the resistance scaling fac-
tor ¢ as N1, N,, N3 tend to infinity. More precisely, we assume that Ny (n), Na(n),
N3(n) depend on a parameter #n in a given way and consider various asymptotics
as n — oo. Our main result in this section is:

Theorem 5.1. Assume that
Ni(n) =an+o(n)ps00, No(n) =pn+om)pseo, N3(n) =yn+om)n-oo,

where a, B, y are positive constants. Then we have the limits

(5-28) lim < _ 2Pt V)
n—o0o n a+B+y
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and
(5-29) nlirgo Riu(n) = Rin.co = k'f,‘c;l,
where
2 4
(5-30) Agoo = W% and  Zoo = 2+a—ﬂﬁ+ Y.
14

(Note that the set of resistances {R,,(n)} is defined up to a scalar multiplier, and
for convenience we use the normalization with Ry(n) = 1.)

Note also that in our notation R_; = Ry_1, R_» = Ry_», etc.
Proof. Formula (5-28) follows from (3-7) since

N@) = (@+B+yn+om)se, and s@) =ayn®+apn’+0(n) o
Then from, (3-10) and (4-13), we obtain, with the normalization r, 4+ r3 = 1, the
limits

By . af +2By +ay
— =1 and lim z(n)=F— T =
a(B+y) n—00 By

Hence we also have the limits

lim 7‘1(71) = 00
n— o0

Zoo £ +/25 —4
2

lim A4 (n) = = A+ 00
n—oo
Moreover,
. a(p +
lim Ji(n) = M = J1,00,
n—00 IBV Zgo —4

mhmm=“w+”( : -4)=Amhm=hm,
n—00 2By 2%, —4

which imply lim,_, » Jr(n) = )&foll J1,00 for k > 0; recall that in our notation
Jo=Jn, J_1 = Jy_1 etc. Then (5-29) follows from (4-27). O

Remark 5.2. We use a specific normalization for the resistances. With the nor-
malization r, +r3 = 1, we have

2.,2 /.2 —4
lim Rm(n):M)J’”'
n—oo

for m > 0. The formula

|—1

lim R, (n) = A"
n—o00 ’

Rl,oo

is also true for normalizations r; =1 and r{ +r, +r3 = 1.
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Corollary 5.3. Assume that Ny = N = N3 = n — o0. Then, with normalization
Ry =1, we have the limits

im S22 aid lim Ryt = (24 v3)"
3 n—oo

n—oo n

Corollary 5.4. Assume that the N-gasket F is a polygasket. Then, with normal-
ization R; = 1, we have the limits

im S 1 and lim R = (342v3)"
n—oo

n—oo n

Proof. 1t is easy to obtain from elementary geometry [Strichartz 1999b; 2000;
2006; Tyson and Wu 2005] that an N-gasket is a polygasket if and only if N is
not divisible by 4 and N, = N3 =[N /4] + 1, where [-] means the integer part of a
number. U

Theorem 5.5. Assume that
Ni(n)=a, No(n)=pn+oM)ps, N3(n)=yn+omn),-c,

where a, B, y are positive constants. Then, for any nonzero n, k, we have the limits

lim c(n) _ | By lim Ry (n) _
n— 00 ﬁ ﬂ+y’ n— 00 Rk(n) )

Proof. The first limit follows from (3-7) since

Nmn)=B+yn+on)h-x and sr)=(a+DH(B+y)n+on)-c-
Then from (4-14) we obtain

. ra(n) +r3(n)
im ———— 2~ —

0, which implies lim z(n) =2.
n— 00 ri(n) n— 00
Hence we also have lim,,_, oc A4+ (1) = 1. This implies the second limit. Ol

Theorem 5.6. Assume that
Ni(n)=an+oMm)psco, MNo(n) =pn+on)p-, Ni3(n)=y,

where o, B, y are positive constants. Then, if |m| > |k| > 0, we have the limits

and lim R () =

. c(n)  ap
o oo Re(n)

li

n—oo n _a—}—ﬁ’

Proof. The first limit follows from (3-7) since

Nn)=(@+B)n+o0m)ys0 and s(n)=apn’+on*) oo
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Then we have the second limit after applying (4-14) to obtain

nmFst) _ @ . 0
ri(n) 14

The case
Ni(n) =an+om)p-, No(m)=p, Ni(n)=yn+on)-c
can be treated analogously.

Theorem 5.7. Assume that
Nl(n):an'i'o(n)n%oo’ NZ(n) :13’ Ns(n) :V,

where o, B, y are positive constants. Then, if |m| > |k| > 0, we have the limits

. . Ry(n)
lim c(n)=B+y and lim =0
n—00 n—o00 Rk(n)

Proof. The first formula follows from (3-7) since
Nn)=an+om)p-o and sn)=(1+y+Ban+on)y-c.
Then we have the second limit after applying (4-14) to get lim,,_, o z(n) = co. U

Corollary 5.8. For any value of the parameter n we denote the spectral dimension
of the Laplacian on the N-gasket by ds(n) and the Hausdorff dimension of the N -
gasket with respect to the effective resistance metric by dg(n), as in Remark 1.3.
Then

(1) With the assumptions of Theorem 5.1 or 5.6, we have
Iim dy(n) =ds(n) =1,
n—oo
(ii) With the assumptions of Theorem 5.5, we have
) _ 4
lim dy(n) =2 and lim ds(n) = =;
n—oo n—oo 3
(iii) With the assumptions of Theorem 5.7 we have
lim dg(n) = o0 and lim ds(n) =2.
n—o00 n—oo

Note that formula of (i) applies, in particular, to polygaskets with the number of
sides in the corresponding polygon approaching infinity.
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Appendix: Resistor networks, harmonic functions, traces of Dirichlet forms
and random walks

We recall some basic facts of resistor networks (electrical circuits) and their rela-
tion to the finite dimensional Dirichlet forms and to random walks. The classical
reference on the relation between random walks and discrete potential theory is
[Dynkin and Yushkevich 1969]. A newer reference more relevant to the electrical
circuits formalism is [Doyle and Snell 1984]. As an expository remark we note
that there exists a different use of probabilistic techniques in analysis on fractals,
based on Martin and Poisson boundaries; see [Denker and Sato 2002; Koch and
Denker 2005] and references therein.

For a single resistor, Ohm’s Law is that the voltage V, the current / and the
resistance R are related by V = I R. In addition, the resistor dissipates energy at
the rate of

E=VI

In terms of the conductance C = 1/R, we have
(A-1) E=CV>2
In a resistor network, we have

« the Voltage Law: the total change of voltage over a closed loop is zero;

« the Current Law: at an inner junction point, the same amount of current flows
in as out.

These laws imply two basic rules for resistances. If there are two consecutively
connected resistances R; and R», also called series resistors, then the total resis-
tance is R; + R,. If there are two parallel resistances R; and R, then the total
resistance is Ry Ry/(R; 4+ Ry). Thus if there are two parallel conductances C; and
C», then the total conductances is C| + C,. Another rule is the A-Y transform
(2-3).

In a network we denote V (x, y) the voltage change from x to y. Then the
Voltage Law implies that there is a function U (x), called the electric potential,
such that V(x,y) = U(x) — U(y) for any two points x, y in the network. The
potential is unique up to an additive constant. An easy construction of a potential
is as follows. Assign some potential Uy to some xg. Then for another x consider a
path xo, x1, ..., X, such that x; and x;; are connected. Then define

Ux)=Uy+ V(xo,x1)+V(x,x2)+---+V(x,_1, X).

The Voltage Law implies that U (x) is the same for different paths from xq to x.
The conductance between any two junction points x and y in the network is
denoted by C, , > 0. The conductance Cy , is zero by definition if the points x
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and y are not directly connected. For a given function f defined on junction points
of the network, we define its energy by

L )= Cay(fX) = )

X,y

Note that, according to (A-1), if f = U is a potential, then the energy € is the same
as the total electrical energy, which is the sum of energies (A-1) over all resistors
in the network.

From now on we will denote the set of junction points in the network by V,
which should not be confused with the voltage mentioned in the beginning of this
section. Also, from now on the junction points will be called vertices.

Definition A.9. A function h is called harmonic at p if

Y Cpqgh(p) —h(g)) =0.

qeVv
We call h a harmonic function if it is harmonic at every inner vertex.

It is an easy consequence of Ohm’s Law and the Current Law that any electric
potential function U (x) is a harmonic function.

We always assume that a network is connected in that for any vertices x and y
there is a path x = xo, x1, ..., x, = y such that each pair x; and x; is connected
by a positive conductance.

It is easy to see from the connectedness of the network, the definition of a
harmonic function, and the positivity of conductances that the Strong Maximum
Principle holds for any harmonic function: a harmonic function can not have a
local maximum or minimum at an inner vertex. From this principle one can obtain
another important fact about harmonic functions: for any set of boundary values
there exists a unique harmonic function with these values. In other terms it means
the following. Let Vi, denote the set of inner vertices and 0V denote its com-
plement in V. Naturally dV is called the boundary. Then the unique harmonic
extension property is that for any function g on the boundary 9V there is a unique
harmonic function £ such that g = h | v+ 1o prove the unique harmonic extension
property notice that the equations defining a harmonic function are linear, the num-
ber of equations is the same as the number of variables, and the only solution of
the homogeneous system is zero by the Strong Maximum Principle.

To get the formula for the harmonic extension, define &, (x) for each y € 9V as
the unique harmonic function such that 4,(y) = 1 and h,(x) = O for every other
x € dV. Then the harmonic extension formula is

h(x)= Y h(y)hy(x) forany xeV.
yedV
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The last principle is the Minimal Energy Principle: the harmonic function has
the minimal energy among the functions with given boundary values. This prin-
ciple is proved directly by minimizing the energy. The Minimal Energy Principle
implies that the Effective conductance between p and q is

E(h, h)
(h(p) = h(g))*’

where £ is any nonconstant harmonic function in the network with the boundary
values given at 0V = {p, q}. The effective resistance is the reciprocal of the effec-
tive conductance. Note that here and in other situations the notion of the boundary
dV of a finite set V is flexible, and can depend on a particular function and on
other considerations.

The trace of the resistance form € on the boundary 9V is defined as the unique
resistance form Tryy € such that for any function g on 3V we have

Ceffect (p s Q) =

Tryy €(g, g) = €(h, h),

where £ is the unique harmonic extension of g. The next theorem is the main result
of this section.

Theorem A.10.

Tray 6(8.8) = Y Ch,(g(x)—g(y)% where Cl = hy(p)Cx.p.
x,yedV peVv

Note that the strong maximum principle implies that &, (p) > 0 and so C y = 0.

Proof. For any function 7 we have

E(h,hy= Y Cyp(h(x) —h(p))®

x,peV
= Z Cy,p((h(x)(h(x) — h(p)) + h(p)(h(p) — h(x)))
x,peV
=2 Z h(x) Cx p(h(x) —h(p)).
x,peV

Let & be the unique harmonic extension to V of a function g defined on dV. Then
ZpEV Cy,p(h(x) —h(p)) = 0if x is not a boundary point. Therefore

Eh,)=2 Y hx)Cyph(x)—h(p)).
xedV,peV

For any p € V we have Zy cav Iy (p) =1, because a function that is identically
one on dV has a unique harmonic extension that is identically one on V. Using
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this and i (x) = ZyeZ)V h(y)hy(x), we obtain

€h,h)=2 Y h(x)Cyp Y hy(p) (h(x) —h(y))

xedV yedV
pevV

=2 ) h() (hx) =h() ) Cxphy(p)

x,yedV pev

= Y (h@) (h(x) =h(3) +h() (h(y) —h(x))) Y Cr phy(p)
x,yedV pevV

= Y @@ =g Y Cuphy(p). m
x,yedV pev

It is well known that Dirichlet forms, resistor networks and symmetric random
walks lead to essentially the same harmonic analysis on a finite set V (see for
instance [Doyle and Snell 1984]). It is clear that Dirichlet forms and resistor net-
works are in one-to-one correspondence. A random walk X,,, n =0,1,2,..., is
defined through its transition probabilities p(x, y), x, y € V, which means that
X,4+1 =y with probability p(x, y) if X,, = x. We next assume that, for x # y,

x,y

P(X,y)ZZ—

zeV Cx,z

In this situation we say that the resistor network and the random walk are equiva-
lent. We call any random walk so defined symmetric. The symmetric random walks
are in one-to-one correspondence with Dirichlet forms up to a constant multiple.

We assume that €(f, f) = 0 if and only if f is constant. This means that the
random walk X, can reach any point with positive probability in a finite number of
steps. In terms of the resistor network, this means that the network does not have
more than one connected component.

Let P.{-} denote the probability distribution of the random walk X,, that starts
at Xo = x, thatis Py {Xo =x} =1, and let E, denote the expectation with respect
to P.{-}. Then a function A is harmonic at x € V if and only if h(x) = E h(X) =
Zy cv P(x, ¥)h(y). Moreover, h(x) can be expressed through its boundary values:
Let T be the first time X, reaches 0V, that is t = min{n : X, € dV}. Then
h(x) = Exh(X;) for any x € V. This expression depends only on the values of 4
on dV, since X; € 3V with probability one. In particular, h,(x) = P {X; = y}.

Let p'(x, y) = Py{Xy; =y}, where 7, is the first time X, reaches dV\{x}, that
is 7, = min{n : X,, € 3V \{x}}. In other words, the random walk X, that starts at
x € dV iskilled at 9V \{x}. Then p’(x, y) is the probability that this walk is killed
at y. Then it is easy to see from the Markov property that the p’(x, y) are the
transition probabilities of the random walk on 9V that corresponds to the Dirichlet
form Tryy €. This is the relation used in [Lindstrgm 1990; Barlow 1998] to define
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self-similar diffusion on the fractals. One can obtain other relations between ran-
dom walks and resistance forms. For instance, ¢ = 1/(1 — p}), where p/ is the
probability that the random walk X, that starts at x € 3V returns to x before it is
killed when it hits d V'\ {x}.
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