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EXTREMAL SOLITONS AND EXPONENTIAL C∞

CONVERGENCE OF THE MODIFIED CALABI FLOW ON
CERTAIN CP1 BUNDLES

DANIEL GUAN

For a certain class of completions of C∗-bundles, we show that the existence
of Calabi extremal metrics is equivalent to geodesic stability of the Kähler
class, and we prove the exponential C∞ convergence of the modified Calabi
flow whenever the extremal metric exists, assuming that the manifold has
hypersurface ends. In particular, we solve the problem of convergence of
the modified Calabi flow on the almost homogeneous manifolds with two
hypersurface ends which we dealt with in a 1995 Transactions paper. As
a byproduct, we found a family of Kähler metrics, called extremal soli-
ton metrics, interpolating the extremal metrics and the generalized quasi-
Einstein metrics. We also proved the existence of these metrics on compact
almost homogeneous manifolds of two ends. For the completions of the C∗-
bundles we consider in this paper, we define what we call the generalized
Mabuchi functional; the existence of extremal soliton metrics on these man-
ifolds is again equivalent to the geodesic stability of the Kähler class with
respect to this functional.

1. Introduction

It was shown in [Guan 1993; 1995a] that in every Kähler class of a compact almost
homogeneous manifold with two ends there is a unique Calabi extremal metric,
and also that there is a unique extremal metric in a given Kähler class on certain
completions of a C∗-bundle if a certain function 8 defined on the bundle there
is positive. In [Guan 2003] we showed that the existence of this unique extremal
metric is equivalent to the geodesic stability of the Kähler class. It is natural to ask:

If the Kähler class is geodesically stable, does the modified Calabi
flow converge pointwise to the extremal metric?

The answer is yes, and we show it in this paper for manifolds with hypersurface
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ends. (We shall treat in a later article the case of ends of higher codimension, which
is technically more involved.) Specifically, we prove:

Theorem A. Let a compact, almost homogeneous manifold with two hypersurface
ends be given. For any given initial metric fixed by a maximal compact Lie sub-
group of the automorphism group and any positive integer k, the modified Calabi
flow converges exponentially in the Ck norm to a unique extremal metric.

We also explain how the positivity of the function 8 of [Guan 1995a] is equiv-
alent to geodesic stability, and how the convergence of the modified Calabi flow is
natural in this case.

Similar questions for Riemann surfaces have been solved by Chruściel [1991]
and reproved in [Chen 2001; Struwe 2002]. See also [Chang 2000; 2001] and
references therein. (The second of these papers dealt with a conformal version of
the surface Calabi flow, which in general is not the same as the usual Calabi flow.)
Our manifolds are the first examples in higher dimensions that are not related to
conformal geometry.

In Section 2 we define the class of completions of C∗-bundles on which we shall
prove the existence of the extremal metrics. A Kähler metric is extremal if

R − HR = φ,

where R is the scalar curvature, HR is the averaged scalar curvature and φ is the
potential function of a holomorphic vector field.

To interpolate extremal metrics and the quasi-Einstein metrics of [Guan 1995b],
which are a kind of Kähler-soliton metrics as a generalization of Ricci-soliton
metrics, we define extremal solitons. A Kähler metric is an extremal soliton if

R − HR = φ1 + 1φ2,

where 1 is the Laplacian and φ1, φ2 are potential functions of holomorphic vector
fields. Recall too that a Kähler metric is a quasi-Einstein metric or Kähler-soliton if

R − HR = 1φ,

where φ is the potential function of a holomorphic vector field. When the Kähler
class is the Ricci class or the negative Ricci class, we have exactly the Kähler Ricci-
soliton. Kähler Ricci-solitons were first studied by H. D. Cao [1996], Koiso [1987;
1990] and Tian, which was motivated by Hamilton’s similar work on Ricci-solitons
in the Riemannian case. (In that direction, there are some interesting results in
[Koiso 1990; Guan 1995b; Tian and Zhu 2002].)

Still in Section 2 we consider the existence of extremal solitons. This generalizes
the results in [Guan 1995a; 1995b]. We prove there:
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Theorem B. There is a family of extremal soliton metrics in every Kähler class on
a compact almost homogeneous manifolds with two ends, which interpolates the
extremal metric and the generalized quasi-Einstein metric we obtained before.

Even for extremal metrics and quasi-Einstein metrics the results are more gen-
eral than those in [Guan 1995a] and are relatively new, but the methods are the
same and we just use a more general setting. In Section 2 the manifold need not
be a CP1 bundle.

In Section 3 we explain the equivalence between the existence of Calabi extremal
metrics and geodesic stability. Detailed calculations can be found in [Guan 2003,
p. 279–280]. We also calculated the modified Mabuchi functional for the manifolds
under consideration.

Moreover, we define a new functional, as a generalization of the modified Mabu-
chi functional. We call it the generalized Mabuchi functional and obtain:

Theorem C. There is an extremal soliton metric in a given Kähler class on the
manifold with respect to two given holomorphic vector fields if and only if the
generalized Mabuchi functional is geodesically stable.

In Section 4 we deal with the short time existence of the modified Calabi flow
for the compact Kähler manifold. We apply a linearization method there.

It turns out that there are two kind of curvature flow equations for extremal
soliton metrics. The first one, which we used around 1993, is the modified Ricci
flow

∂

∂t
log det g = −R + HR + φ1 + 1φ2,

where g is the Kähler metric. This is a quasi-second-order fourth-order heat equa-
tion. It has fourth-order derivatives of the potential function of the Kähler metric,
just as those in the equation of the metrics with constant scalar curvatures.1

One might regard the major terms as a heat equation for log(det gt/ det g0).
That was the motivation for our considering this equation back in 1992; see [Guan
1995b].2 However, I could only solve the equation for metrics assuming a certain
condition; the condition can be checked to hold for many concrete cases, but I
could not prove it for all of our cases (see Section 11). Then I started to look at the
modified Calabi flow (see below). Although the modified Ricci flow has a fourth-
order equation, it behaves more like a second-order heat equation. One might apply
the maximal principle. But the Calabi functional might not be decreasing under this
flow; for instance, an extremal metric with a nonzero φ in the Ricci class might

1This flow was recently used by Simanca [2005] to the extremal metrics. However, there are
some serious mistakes in his paper. For example, Proposition 3.10 there is not correct. See the end
of our last section for counterexamples on the simplest manifold CP1.

2I also gave a talk on this matter in 1996, invited by Professor Paul Yang; see again [Guan 1995b].
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achieve the minimal of the Calabi functional and yet not be a stationary metric
of the Ricci flow even up to an action of a one-parameter group of holomorphic
automorphisms (again, see the end of Section 11).

The second equation is the modified Calabi flow, also called the Calabi–Robin-
son–Trautment equation:

∂

∂t
F = R − HR − φ1 − 1φ2,

where F is the Kähler potential. This is a fourth-order heat flow equation.
From Sections 5 to 10 we show the convergence of the modified Calabi flow

to the extremal metrics for the special case in the second section that the ends
are hypersurfaces. Because of our setting for the problem we have to deal with
weighted Sobolev inequalities, which seems a little more complicated than those
in [Chruściel 1991]. We believe that this is the first step toward the similar problem
for the toric manifolds we dealt with in [Guan 1999]. From our argument one sees
that the convergence is very natural, compared to the more complicated situation
for the modified Ricci curvature flow in [Koiso 1987; 1990; Guan 1995b; ≥2007b].
We apply our formula of modified Mabuchi functional where the geodesic stability
is hidden.

We also use a family of higher-order Calabi functionals which are essential for
our higher order estimates.

In the last section we compare the modified Calabi flow with the modified Ricci
flow and explain why we think that the modified Calabi flow is more natural.

2. Existence of the extremal solitons on certain completions of line bundles

Our results can be regarded as a continuation of [Koiso and Sakane 1986; 1988;
Koiso 1990; Guan 1993; 1995a; 1995b; 1999; 2003]. For the reader unfamiliar
with those papers we state, without detailed proof, several lemmas and Theorem
2.10 below, which mostly can be found in [Guan 1995a] (Lemmas 2.2 and 2.3 are
from [Guan 1999]).

Let p : L → M be a holomorphic line bundle over a compact complex Kähler
manifold M and h a hermitian metric of L . Let L0 be the open complement of the
0-section of L and let s ∈ C∞(L0)R be defined by s(l) = log |l|h (l ∈ L0), where
| |h is the norm defined by h. Now consider a function τ = τ(s) ∈ C∞(L0)R

depending only on s and monotonically increasing with respect to s.
Let J̃ be the complex structure of L and J that of M . Consider a Riemannian

metric on L0 of the form

(1) g̃ = dτ 2
+ (dτ ◦ J̃ )2

+ g,
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where g(l) = p∗gτ(s(l))(m), with m = p(l) ∈ M and gτ a one-parameter family of
Riemannian metrics on M . Define a positive function u on L0 depending only on
τ by u(τ )2

= g̃(H, H), where H is the real vector field on L0 corresponding to
the R∗ action on L0.

Lemma 2.1 [Koiso and Sakane 1986; 1988; Guan 1995a, p. 2257]. Suppose that
the range of τ contains 0. Then g̃ is Kähler if and only if g0 is Kähler and gτ =

g0 − UB, where B is the curvature of L with respect to h and U =
∫ τ

0 u(τ ) dτ .

The following assumptions are made throughout this paper:

(1) L̂ is a compactification of L0 and g̃ is the restriction of a Kähler metric of L̂
to L0.

(2) The range of τ contains 0.

(3) The eigenvalues of B with respect to gτ are constant on M .

(4) The traces of the Ricci curvature r of g on each eigenspace of B are constant.
These constants are called the trace eigenvalues.

Condition (4) here is much more general than what’s in [Guan 1993; 1995a],
where we just require that the eigenvalues of r be constants.

Our results cover some results which appeared in recent years: for example,
when g has a constant scalar curvature and B has only one eigenvalue.

Let (z1, . . . , zn) be a system of holomorphic local coordinates on M , where
n = dimC M . Using a trivialization of L0, we take a system of holomorphic local
coordinates (z0, . . . , zn) on L0 such that ∂/∂z0

= H −
√

−1 J̃ H .
Here we notice that z0 corresponds to w1 in [Guan 1999, p. 552], and s can be

regarded as Re(z0) near the point under consideration. So s corresponds to x1 in
[Guan 1999]. As in [Guan 1995a], we let ϕ = u2 as a function of U ; we also let
F be the Kähler potential as in [Guan 1999, p. 552]. Then, by comparing [Guan
1995a, Lemma 2] (or Lemma 2.5 below) with [Guan 1999, p. 552], we have

∂2 F
∂s2 = g̃00̄ = 2ϕ.

(The map F we used in [Guan 1999] is one-quarter of the usual potential func-
tion in the Kähler geometry. The difference might cause a constant factor in the
calculations, e.g., for Lemma 2.2 and the Calabi flow equation, but does not affect
our conclusions.)

The preceding equation yields:

Lemma 2.2. 2ϕ = ∂2 F/∂s2.
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From H = 2−1 ∂

∂s
we have 1

4

(dτ

ds

)2
= ϕ and dτ

ds
= 2u. Hence

U =

∫ τ

0
udτ =

∫ s

s(0)

2u2ds =

∫ s

s(0)

∂2 F
∂s2 ds,

so ∂ F/∂s = y1 up to a constant as in [Guan 1999, p. 552]. This leads to:

Lemma 2.3. U is the Legendre transformation of s.

Here we use the Legendre transformation in [Guan 1999] instead of the moment
map in [Guan 1995a] since we need the new insight in later sections.

Remark 2.4. We shall see in [Guan ≥ 2007c; 2006; ≥ 2007a] that the function
U here, the Legendre transformation in [Guan 1999] and the miraculous function
U from [Guan and Chen 2000; Guan 2003; 2006] are special cases of the parallel
coordinates along the curves in the Mabuchi moduli space of Kähler metrics on
compact almost homogeneous manifolds with actions of reductive groups.

Let X̂ i , X̂ ī (0 ≤ i ≤ n) be the partial derivatives ∂/∂zi , ∂/∂ z̄i on L0 and
X i , X ī (1 ≤ i ≤ n) the partial derivatives ∂/∂zi , ∂/∂ z̄i on M .

Lemma 2.5 [Koiso and Sakane 1986; 1988; Guan 1995a, Lemma 2]. We have

g̃00̄ = 2u2, g̃0ī = 2u X̂ īτ, g̃i j̄ = gi j̄ + 2X̂ iτ · X̂ j̄τ,

where 1 ≤ i, j ≤ n. For the point P ∈ L0 considered, we can choose a local
coordinate system around m = p(P) ∈ M such that (∂/∂zi )τ = 0 at m, making
X̂ iτ = X̂ j̄τ = 0 at P. Then if f is a function on L0 depending only on τ , we have

X̂0 X̂ 0̄ f = u d
dτ

(
u d f

dτ

)
, X̂ i X̂ 0̄ f = 0, X̂ i X̂ j̄ f = −

1
2 u Bi j̄

d f
dτ

,

if f is a function on L0 depending only on t. The Ricci curvature at this point is

r̃00̄ = −u d
dτ

(
u d

dτ
log(u2 Q)

)
, r̃0ī = 0, r̃i j̄ = p∗r0 i j̄ +

1
2 u d

dτ
log(u2 Q) · Bi j̄ ,

where Q = det(g−1
0 · gτ ). In particular, we have the scalar curvature

(2) R̃ =
1

Q
−

1
2Q

d
dU

( d
dU

Qϕ
)

,

where ϕ = u2 as a function of U and 1(U ) = Q
∑

i, j r0 i j̄ g
i j̄
τ(U ). We also have

ϕ′(min U ) = 2 and ϕ′(max U ) = −2.

Lemma 2.6 [Futaki et al. 1990; Mabuchi 1987; Guan 1995a, Lemma 3]. We can
regard U as a moment map corresponding to (g̃, J̃ H) and gτ as the symplectic
reduction of g̃ at U (τ ). Furthermore, g̃ is extremal if and only if R̃ = a + bU for
some a, b ∈ R.



EXTREMAL SOLITONS AND MODIFIED CALABI FLOW 97

Set M0 = U−1(min U ) and M∞ = U−1(max U ). These are complex submani-
folds, since they are components of the fixed point set of H −

√
−1 J̃ H , which is

semisimple. Let D0 and D∞ be the codimensions of M0 and M∞ in L̂ .

Lemma 2.7 [Guan 1995a, Lemma 4]. Suppose there is another Kähler metric g̃∨

on L̂ in the same Kähler class, which is of form (1) on L0. Let

τ∨, g∨, U∨, Q∨, 1∨, ϕ∨, u∨

be the corresponding metric and functions of s. There is a unique corresponding
τ∨ such that g∨

0 = g0. In this case, min U∨
= min U (or max U∨

= max U ) and
Q∨

= Q, 1∨
= 1 hold. So we may write D = max U and −d = min U. Then

Q(U ) =

(
1 +

U
d

)D0−1
Q−d

(
or Q(U ) =

(
1 −

U
D

)D∞−1
Q D

)
,

where Q−d (or Q D) is a polynomial of U such that Q−d(−d) 6= 0 (or Q D(D) 6= 0)

and

1(U ) = D0(D0 − 1)
1
d

(
1 +

U
d

)D0−2
Q−d mod

(
1 +

U
d

)D0−1

(
or 1(U ) = D∞(D∞ − 1)

1
D

(
1 −

U
D

)D∞−2
Q D mod

(
1 −

U
D

)D∞−1)
.

Proof. Set g̃ − g̃∨
= i ∂̂ ¯̂

∂φ. Then

g̃∨

i j̄ = g̃i j̄ +
1
2 u dφ

dτ
Bi j̄ = (g0)i j̄ −

(
U −

1
2 u dφ

dτ

)
Bi j̄

for 1 ≤ i, j ≤ n. So at min U (or max U ) we have g̃i j̄ = g̃∨

i j̄
, meaning there is

τ0 such that g∨

τ∨(τ0)
= g0. By choosing τ∨ such that τ∨(τ0) = 0, one sees that

min U∨
= min U and maxU∨

= max U , as desired.
The last statement follows from the fact that the scalar curvature R̃ is finite on

both M0 and M∞. �

To proceed, we will need normalization. By rescaling we have the following.

Lemma 2.8 [Guan 1995a, Lemma 5]. For any given a1 ∈R, g̃ is an extremal soliton
if and only if g̃∨

= a2
1 g̃ is an extremal solution. We can choose U∨

= a2
1U +a2 for

any a2 ∈ R, allowing us to assume that max U −min U = 2 and min U = −1, then
max U = 1.

For example, if L̂ = CPn+1, then M0 is a point, M∞ = M = CPn . In this case
L̂ is the one point completion (compactification) of the hyperplane line bundle L
over M with M∞ as the zero section. The anticanonical line bundle is (n + 1)L .
Therefore r0,i i = n + 1 and Q = (1 + U )n . The Kähler metric at U = 0 is the
curvature of L , and therefore 1 = n(n + 1)(1 + U )n−1.
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From Lemma 2.6, it can be seen that, if g̃ is an extremal soliton metric, then

(3) R̃ = a + bU + c1̃, U

for some a, b, c ∈ R with a φ2 = cU + d .
By Lemma 2.5 we have

1̃ f = g̃ᾱβ X̂ ᾱ X̂β f

= g̃0̄0 X̂ 0̄ X̂0 f + g̃ā0 X̂ ā X̂0 f + g̃0̄a X̂ 0̄ X̂a f + g̃āb X̂ ā X̂b f

=
1

2u2 (X̂ 0̄ X̂0 f ) + 0 + 0 + g̃āb(X̂ ā X̂b f )

=
1

2u2 u d
dτ

(
u d

dτ
f
)

+ gāb
τ

(
− 2−1u d f

dτ
Bbā

)
=

1
2

d
dU

(
ϕ(U )

d
dU

f
)

−
1
2ϕ(U )

( d
dU

f
)

gāb
t Bbā

=
1
2

d
dU

(
ϕ

d
dU

f
)

+
1
2ϕ

( d
dU

f
) 1

Q
d

dU
Q =

1
2Q

d
dU

(
ϕQ d

dU
f
)
,

from which we get

1̃φ2 =
1

2Q
d

dU

(
ϕQ d

dU
(cU + d)

)
=

c
2Q

d
dU

(ϕQ)

= R̃ −

∫ 1
−1 R̃Q dU∫ 1
−1 Q dU

=
1

Q
−

1
2Q

d
dU

( d
dU

Qϕ
)

− (a + bU ).

Let m =
∫ 1
−1 R̃Q dU/

∫ 1
−1 Q dU , α =

∫ 1
−1 Q dU and β =

∫ 1
−1 U Q dU . Then∫ 1

−1
R̃Q dU =

∫ 1

−1

(
1 − 2−1 d

dU

( d
dU

Qϕ
))

dU

= δ −
1
2

d
dU

(Qϕ)

∣∣∣1

−1
= δ −

1
2

(
Q d

dU
ϕ + ϕ

d
dU

Q
)∣∣∣1

−1

= δ −
1
2

(
Q(1) · (−2) − Q(−1) · 2

)
= δ + Q(1) + Q(−1),

where δ =
∫ 1
−1 1 dU . Therefore, m =

(
δ + Q(−1) + Q(1)

)
/α.

Hence

(4) cϕQ = −
d

dU
(Qϕ) − 2

∫ U

−1
(a + bx)Q(x) dx + 2

∫ U

−1
1(x) dx + c1.

If U = −1, we have 0 = −2Q(−1) − 0 − 0 + c1, that is, c1 = 2Q(−1).
If U = 1, we have 0 = 2Q(1) − 2aα − 2bβ + 2δ + 2Q(−1). Therefore, a =

m − bβ/α.
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Moreover,

(5) Qϕ =e−cU
( ∫ U

−1

( ∫ y

−1

(
−2(a+bx)Q(x)+21(x)

)
dx+2Q(−1)

)
ecydy+f

)
,

with a constant f . We denote the right-hand side by 8(U ).
If U = −1, we have 0 = ea(0 + f ), so f = 0. If U = 1, we have

(6) 0 =

∫ 1

−1

( ∫ y

−1

(
−2(a + bx)Q(x) + 21(x)

)
dx + 2Q(−1)

)
ecydy.

Set

(7) p(U ) =

∫ U

−1
2
(
1(x) − (a + bx)Q(x)

)
dx + 2Q(−1).

Then (4) yields

p(U ) =

∫ 1

U
2
(
(a + bx)Q(x) − 1(x)

)
dx − 2Q(1).

By the last statement of Lemma 2.7, we know that p(U ) is nonnegative near −1
and nonpositive near 1. Since the right-hand side of (6) goes to −∞ (or +∞)
when c goes to +∞ (or −∞), there is at least one solution c. We pick the smallest
such c. We therefore have:

Lemma 2.9. For any b, there is a solution c for (6).

Theorem 2.10 [Koiso and Sakane 1986, Guan 1995a, Lemma 6]. There is an
extremal soliton metric in the Kähler class of g̃ for a given b provided that ϕ0(U )=

8(U )/(QecU ) is positive on (−1, 1).

If we let b = 0 we have the (generalized) quasi-Einstein metric, as in [Guan
1995b].

To obtain an extremal metric we just let c = 0 and solve (6) to find a and b as we
did in [Guan 1995a, p. 2259] (see Lemma 2.6 there). Let c=0, δ1 =

∫ 1
−1 x1dx, γ =∫ 1

−1 x2 Qdx , then (6) becomes

0 =

∫ 1

−1

∫ y

−1
((a + bx)Q(x) − 1(x)) dx dy − Q(−1)

=

∫ 1

−1

∫ 1

x
((a + bx)Q(x) − 1(x)) dy dx − Q(−1)

=

∫ 1

−1
(1 − x)((a + bx)Q − 1) dx − Q(−1)

= aα+bβ −aβ −bγ −δ+δ1 − Q(−1) = mα+δ1 − Q(−1)−aβ −bγ −δ

= mα + δ1 − Q(−1) − mβ +
b
α

(β2
− αγ ) − δ.
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The coefficient of b cannot be zero since

αt2
+ 2βt + γ =

∫ 1

−1
(t + U )2 Q dU > 0

for any t . Therefore, there is a unique solution of b.

Lemma 2.11 Guan 1993: 1995a; 1995b]. Let the Ricci curvature r have nonneg-
ative trace eigenvalues. For b fixed, the function 8 as above is always positive in
(−1, 1), and the solution c in Lemma 2.9 is unique.

Proof. Assume r has no negative trace eigenvalues (we will consider a more relaxed
condition in Corollary 2.13). Since the derivative of QϕecU is p(U )ecU , we have
that

d
dU

(e−cU d
dU

(QϕecU )) = 21(U ) − 2(a + bU )Q(U ).(8)

Diagonalizing B, we see that Q is a product of polynomials of degree 1. Let

−a−1
1 < · · · < −a−1

p < b−1
1 < · · · < b−1

q ,

denote the distinct roots of Q for which some corresponding Ricci curvature ri ī is
nonzero, where ai , b j are positive. Set

S(U ) = U
p∏

i=1
(1 + aiU )

q∏
j=1

(1 − b jU ), P(U ) = U Q(U )/S(U ),

9(U ) =

(
d

dU

(
e−cU d

dU
(
(Qϕ)(U )ecU )))/

P(U ).

Then 9 is a polynomial of degree p +q and 9(a) = −ka S′(a) for some root a of
S(U )/U , where ka ∈ R+ since r is nonnegative. We can see that S′(a) is nonzero
and that its sign is opposite the sign of S′ at the roots before a and after a (if
they exist). Because S′(0) > 0, we have S′(−a−1

p ) < 0 and S′(b−1
1 ) < 0, that is,

9(−a−1
p ) > 0 and 9(b−1

1 ) > 0. Now there are p −1 (or q −1) zero points of 9 in
(−a−1

1 , −a−1
p ) (or in (b−1

1 , b−1
q )) if p, q are not zero (one may also check the case

of q =0 or p =0). If ϕ has nonpositive points in (−1, 1), then in (−1, 1), Qϕ has at
least two maximal and one minimal points, since ϕ(−1)=ϕ(1)= 0, ϕ(−1+ε)> 0
and ϕ(1 − ε) > 0 for ε small enough. So there are at least 4 zero points of 9 in
(−a−1

p , b−1
1 ). The polynomial 9 has at least (p−1)+(q −1)+4 = p+q +2 zero

points, i.e., 9(U ) = 0, Qϕ = c1 + c2e−cU . But ϕ(−1) = ϕ(1) = 0, hence Qϕ = 0,
which is a contradiction. This proves that 8 is positive on (−1, 1).

To show the uniqueness of c we only need to prove that the function p(U ) in
(7) has only one zero in (−1, 1). If p(U ) has two zeros in (−1, 1), it has at least
three, since it is nonnegative near −1 and nonpositive near 1. So 9 has at least
four zeros in (−a−1

p , b−1
1 ), a contradiction. �
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Corollary 2.12 [Guan 1995a; 1995b]. For every Kähler class of a compact almost
homogeneous manifold with two ends, there exists an extremal soliton metric for
any given b. In particular, there is always an extremal metric and a (generalized)
quasi-Einstein metric.

Proof. By [Huckleberry and Snow 1982, Theorem 3.2], every compact Kähler
almost homogeneous space is a completion of a C∗-bundle over a product of a torus
A and a C-space N with two homogeneous Kähler spaces as two ends. Hence a
maximal compact subgroup of the identity component of the automorphism group
of this manifold is G = A × S × S1, where A is also the Albanese torus and S is a
maximal compact subgroup of the identity component of the automorphism group
of N . If g is any Kähler metric, gG =

∫
h∈G h∗g dm is a Kähler metric of form (1),

where m is Haar measure on G; clearly gG is invariant under G. Also the Ricci
curvature of A × N is nonnegative. Now the condition in our assumption follows
from the property of invariant cohomology (1, 1) classes for such manifolds; see
[Dorfmeister and Guan 1991, p. 326, proof of the Proposition]. �

If b = 0 we can show more. Say that the trace eigenvalues are nonnegative on
one side if they are nonnegative for all −a−1

i or for all b−1
j in the proof of the

Lemma 2.11.

Corollary 2.13 [Guan 1995a; 1995b]. If the trace eigenvalues only change sign
once and are nonnegative on one side, there is a (generalized) quasi-Einstein
metric. In particular, the completion of the Hodge line bundle over a Hodge
manifold with a constant scalar curvature admits a (generalized) quasi-Einstein
metric.

Proof. In the proof of Lemma 2.11, if b = 0, the polynomial p′ is one degree
lower. By ignoring the root at which the trace eigenvalue is negative and changing
the sign, the proof still goes through. By the argument in the proof of the [Koiso
and Sakane 1986, p. 177, Theorem 5.4], we have our corollary. �

3. Geodesic stability

For any Kähler manifold X with a given Kähler form ω0, any Kähler form in the
same Kähler class can be written as

ω = ω0 + i∂∂̄ f.

Therefore, a curve of Kähler forms corresponds to a family of functions ft . The
tangent corresponds to ḟ , which is also a function on X . The Mabuchi metric is

gK ( f1, f2) =

∫
X

f1 f2ω
n.(9)
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The Mabuchi metric to be considered as an infinite version of the Riemann
metric, in [Guan 2003, p. 279–280] we found that on the manifolds considered in
the previous section, the existence of the extremal metric is equivalent to a certain
stability, which we called geodesic stability, of the Kähler class.

In [Guan 1999], we found that the geodesics of the Mabuchi metric come from
linear paths of the Legendre transformation of the pair (F, s). The Legendre trans-
formation of (F, s) is (G, U ), where G(s) = s Fs − F , which can be considered as
a function of U .

For a family of Kähler metrics in a given Kähler class, we consider G as a
function of U and a time t . Let Ġ(t, U ) and G̈(t, U ) be the first and second partial
derivatives with respect to t . Then:

Lemma 3.1 [Guan 1999, p. 552]. The geodesic equation is G̈(t, U ) = 0.

Under the Legendre transformation, we always have (∂ F/∂t)(t, s)=−Ġ(t, U ).
Since along the geodesics we have

2ϕ =
∂2 F
∂s2 =

(
∂2G
∂U 2

)−1

(see Lemma 2.2), we conclude that (ϕ)−1
= 2∂2G/∂U 2 is linear.

In [Guan and Chen 2000, p. 819] we saw that the modified Calabi flow is the
gradient flow of the modified Mabuchi functional

M(ω0, ω1) = −

∫ b

a

∫
X

ḟ (R − HR − φE)ωn
t dt,(10)

where φE is the function corresponding to the extremal vector field E in [Futaki
and Mabuchi 1995]. In our case, φE = a +bU − HR for the values a, b in (3) with
c = 0.

For a Ricci-soliton metric, Tian and Zhu obtain a modified Futaki invariant

FE(Y ) =

∫
X

Y (h − φE)eφE ωn,

where h satisfies Ricci(ω) − ω = ∂∂̄h. This actually comes from a generalized
Mabuchi functional

ME(ω0, ω1) =

∫ 1

0

∫
X
(∇ ḟ , ∇(h − φE))eφE ωndt.

Here we shall use a generalized Mabuchi functional with two given potential
functions φ1, φ2 of holomorphic vector fields E1, E2:

ME1,E2(ω0, ω1) =

∫ 1

0

∫
X
(∇ ḟ , ∇(γ − φ2))eφ2ωndt,
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where γ satisfies R − HR − φ1 = 1γ .
For the case of an extremal metric, we calculated in [Guan 2003, p. 280] the

derivative of the modified Mabuchi functional along a geodesic. This leads to:

Lemma 3.2. The generalized Mabuchi functional is independent of the path which
we choose and is convex along the geodesics. If we formally set

1
2 ME1,E2(ϕ) =

∫ 1

−1
(G − 1 − ln G)eφ2 Q dU,(11)

where G = ϕ0/ϕ (see Theorem 2.10 for the definition of ϕ0), then

ME1,E2(ω0, ω1) = ME1,E2(ϕ1) − ME1,E2(ϕ0).

Proof. First we assume the existence of an extremal soliton and deal with the
extremal metric case. The derivative of the modified Mabuchi functional along the
geodesic is ∫ 1

−1
h′′Q(ϕ0

− ϕ) dU,

where ϕ = 1/((ϕ0)−1
+ th′′). Integrating over t , we obtain our formula.

In general, if there is an extremal soliton, we deduce from the equality

R − HR − φ1 =
1

Q
−

1
2Q

(ϕQ)′′ − a − bU

that∫
X
(∇ ḟ , ∇(γ − φ2))eφ2ωn

=

∫
( ḟ )′ϕQ

(
1

ϕQ

( ∫ U

−1
(21 − 2(a + bU )Q) dU − (ϕQ)′ − cϕQ

))
ecU dU

=

∫
(Ġ)′(−p(U )ecU

+ (ϕQecU )′) dU =

∫
(Ġ)′((ϕQecU )′ − (ϕ0 QecU )′) dU

= −

∫
(Ġ)′′(ϕ − ϕ0)QecU dU = −

1
2

∫
∂

∂t
(ϕ−1)(ϕ − ϕ0)QecU dU

=
1
2

∫
ϕ̇ϕ−2(ϕ − ϕ0)QecU dU.

Then we integrate with respect to t , and get our desired formula.
The formula implies that the functional is independent of the path chosen. It is

also clear that the second derivative of the functional is∫ (
∂

∂t
(ϕ−1)

)2

ϕ2 QecU dU > 0. �
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Corollary 3.3. For any given E1, E2 there is at most one extremal soliton metric
of the given form.

For the case of extremal metric, we notice that the formula of [Guan 2003,
p. 280] is true even if ϕ0 in Theorem 2.10 is not positive everywhere on (−1, 1).
In general we have a similar formula∫ 1

−1
h′′(ϕ0

− ϕ)QecU dU

for the slope of the generalized Mabuchi functional; this follows from our calcu-
lation above and the fact that h = Ġ and Ġ ′′

= h′′. If we fix a metric with a given
function ϕ0, along the geodesic connecting ϕ0 and ϕ, we have ϕ = ((ϕ0)

−1
+th′′)−1.

The maximal geodesic ray cannot be infinite if h′′ < 0 at some point, and the limit
of the slope is +∞.

If h′′
≥ 0, we have an infinite geodesic ray with

∫ 1
−1 h′′ϕ0 QecU dU as the limit

of the slope, which is finite. We call it the generalized Futaki invariant F(h) along
the given maximal geodesic ray. Regarding it as a functional of h′′ we see that ϕ0

is positive on (−1, 1) if and only if F(h) ≥ C
∫ 1
−1 |h′′

|ϕ0 Q dU for some positive
number C and all h with nonnegative h′′. We name this last condition geodesic sta-
bility. Thus the existence of the extremal metrics is equivalent to geodesic stability.
Similar results are also true for extremal solitons.

Here we would like to explain the stability a little bit more. If the solution ϕ0

exists, the norm
∫ 1
−1 |h′′

|ϕ0 Q dU is equivalent to the norm∫ 1

−1
|h′′

|(1 + U )D0(1 − U )D∞dU.

Therefore:

Theorem 3.4 [Guan 2003, p. 280]. For the manifolds in Section 2, a Kähler class
has an extremal soliton metric with two given holomorphic vector fields if and only
if the given Kähler class enjoys geodesic stability.

Remark 3.5. With the formula in [Guan 2003, p. 279] we can also obtain a formula
for the modified Mabuchi functional without referring to ϕ0 by integrating as in
the proof of our Lemma 3.2. From a direct method for finding the minimal of the
functional we can get another method for finding ϕ0.

Remark 3.6. Combining Theorem 3.4 with the results in [Guan 2006; ≥ 2007a;
2005b; 2005a], we can prove that a Kähler class on a compact almost homogeneous
manifold of cohomogeneity 1 admits a unique extremal soliton metric with two
given holomorphic vector fields if and only if the given Kähler class is geodesically
stable.
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Remark 3.7. Just as in [Guan 2003], the generalized Futaki invariant does not
depend on the initial metrics but only depends on the direction. In the present case
the moduli space is flat and the directions at each initial metric can be regarded as
parallel vectors. In general, we do not expect the moduli space to be flat. Therefore,
we have the fourth geodesic stability principle: Instead of parallel vector fields we
should use maximal geodesic rays with the same infinite points.

4. General result on short time existence

The modified Calabi flow (see [Guan and Chen 2000, p. 820]) is

(12) ḟ = −1 log det(g) − HR − φ1 − 1φ2,

where φ1, φ2 are the functions corresponding to two holomorphic vector fields
E1, E2. After changing the Kähler metric by a function v, the functions φ1, φ2 are
changed by E1(v), E2(v) [Futaki and Mabuchi 1995]. Since we always consider
the case in which the metrics are invariant under a maximal compact group of
the holomorphic automorphism group and J E1, J E2 are Killing vector fields, the
potentials of E1 and E2 are always real. We have Ek(v) =

1
2(Ek(v) + Ēk(v)),

k = 1, 2. The linearization is

v̇ = −12v − vi j̄ (R j̄ i
− φ

i j̄
2 ) −

1
2(E i

1vi + E ī
1vī ) − 1E2(v),

where the indices i corresponds to zi in the local holomorphic coordinates (z1, . . . ,

zi , . . . , zn). Multiplying by v and observing that the functions E i
1, E i

2, Ri j̄ , φ
i j̄
2 are

smooth, as is the volume, we obtain

d
dt

∫
v2dV

≤ −

∫
(1v)2dV + C1

∫
v2dV + C2

∫
|vvi j̄ | dV + C3

∫
|vi | dV + C4

∫
1v|vi | dV

≤ −(1 − ε)

∫
(1v)2dV + C5

∫
v2dV + C6

( ∫
(1v)2dV

)3/4( ∫
v2dV

)1/4

≤ −(1 − ε)

∫
(1v)2dV + C5

∫
v2dV

+

( ∫
(1v)2dV

)1/2(
ε

( ∫
(1v)2dV

)1/2

+
C2

6

ε

( ∫
v2dV

)1/2 )
≤ −(1 − 3ε)

∫
(1v)2dV + C

∫
v2dV ≤ C

∫
v2dV,

for some constants C1, C2, C3, C4, C5, C6, C , and ε that can be chosen as small as
we want. Here we have applied [Aubin 1982, p. 93, Theorem 3.69] to the last two
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terms and the formula∫
|vi j̄ |

2
= −

∫
vivī j j̄ = −

∫
viv j ī j̄ = −

∫
viv j j̄ ī =

∫
vi īv j j̄ =

∫
(1v)2

to the third term. We also have applied repeatedly Young’s inequality

ab ≤ ca2
+

b2

c
by choosing suitable c’s which are related to ε.

Let A =
∫

v2dV , then Ȧ ≤ C A; then (d/dt)(e−Ct A)≤ 0. Therefore, if A(0)= 0
then A = 0. This allows us to use the argument in [Kobayashi 1987, p. 212]. To
do that we only need to replace Theorem 5.9 in that reference by [Huisken and
Polden 1999, Theorem 7.9] (see also Theorem 7.14 therein; this result was hidden
in Struwe’s argument [2002, p. 255]). The difference between the two norms used
in these references is of little import for a finite time, as explained in [Huisken and
Polden 1999, p. 76, lines 23 to 25]. We initially used our method here to [Guan
≥ 2007c] (see our last section for example), and in that case it was enough to apply
Theorem 5.9 in [Kobayashi 1987, p. 212].

We can also apply a different kind of linearization,

∂tv = −12v + B(t, z, g),

with B only related to the third derivatives of the given family of metrics g such that
we can get our equation back if we let ∂∂̄v = g−g0. The preceding argument shows
that A =

∫
v2dV is bounded for a short time, and that if A(0)< C1 we have A < C1

for sufficiently short interval of time [0, T ]. In the same way, by multiplying 12v,
we obtain that 1v is bounded in L2, and so is ∇

2v. Similarly, by assuming a
good initial value condition we can get the higher order estimates; see [Huisken
and Polden 1999, p. 76]. This enables us to apply the linearization and contraction
method for our original equation (12) (compare [Struwe 2002, p. 255]). We do this
as follows. Taking the initial metric as the given family of metrics g0(t) = g0 for
the linearized equation we can get a solution of a family of metrics g1(t) in a short
time. We then use the new family g1 as the given family of metrics in the linearized
equation and get a solution of another family g2(t) of metrics. We apply Newton’s
method by iterating the preceding argument and obtain gi (t). We now claim that the
map from gi+1−gi to gi+2−gi+1 is a contraction. More precisely, given any metric
g(t), we have a family of metrics h(t) = F(g) such that h(t) − g(t) corresponds
to the solution of the linearized equation. The map F1(g, h) = (F(g), F(h)) is a
contraction related to a seminorm that measures the difference h−g. For example,
as above, we have B =

∫ δ

0 (v1 − v2)
2dt ≤ δC , where C is a constant related to the

semi-B-norm of the preimage of the pair (g0 + i∂∂̄v1, g0 + i∂∂̄v2). We see that
when δ is small enough, we have a contraction. This should lead to another proof.
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Therefore, we have short time existence by the usual linearization argument:

Theorem 4.1. The short time existence of the modified Calabi flow holds for any
compact Kähler manifold with two given complex conjugates of Killing vector
fields, i.e., holomorphic vector fields with real potential functions.

5. Setting up the equation of the modified Calabi flow in our cases

From now until Section 10 we shall focus on the case φ2 = 0, that is, the extremal
metric case. We recall some results on the modified Calabi flow (12). Let

Cal(ω) =

∫
M

(R − HR − φE)2ωn

be the modified Calabi functional.

Lemma 5.1 Guan and Chen 2000, p. 820; Guan 1999, p. 550. The modified Calabi
flow is the gradient flow of the modified Mabuchi functional with respect to the
Mabuchi metric on the space of Kähler metrics. Its derivative is the negative of the
modified Calabi functional, and its second derivative is 2

∫
X |R,αβ |

2ωn .

In our case, the evolution equation of the Kähler potential function F along the
modified Calabi flow is given by

−Ġ(t, U ) =
∂ F
∂t

(t, s) = R̃ − a − bU.

Recall that G = s Fs − F is the Legendre transformation of F (see the paragraphs
before and after Lemma 3.1). Considering G as a function of t and U , we use U
as the free variable. We need to estimate the function G and its derivatives.

We use ′ and ˙ for the partial derivatives with respect to U and t , respectively.
The function ϕ determines the metric, as we have seen before; thus we pro-

ceed by estimating ϕ and its derivatives as functions of t and U . Note that if we
differentiate with respect to U twice, we obtain

−Ġ ′′
=

ϕ̇

2ϕ2 = R̃′′.

In this way, we change the modified Calabi flow into a flow of the function ϕ.
To make things simpler we assume that

(13) D0 = D∞ = 1

from now through Section 10. That is, we assume the manifolds that we are con-
sidering are just CP1 bundles and we defer other situations to another paper. Since
the modified Calabi functional

Cal =

∫
X
(R − HR − φE)2ωn

= A
∫ 1

−1
(R̃ − a − bU )2 Q dU,
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is decreasing with a constant A =
∫

ωn/
∫

Q dU > 0 and is always positive, by (2)
we have ∫ (

21 − (Qϕ)′′ − 2(a + bU )Q
)2 dU

Q
< C.

Now, since (Qϕ0)′′ = 21−2(a +bU )Q — see (5) — and Q is a polynomial of U ,
we get ∫ (

(Q(ϕ − ϕ0))′′
)2dU < B

∫ (
(Q(ϕ − ϕ0))′′

)2 dU
Q

< C,

with a constant B > Q (since Q is a polynomial of U ).
By the Sobolev embedding theorem, Qϕ is C1+

1
2 , since ϕ(−1)=0 and ϕ′(−1)=

2 by the last sentence of Lemma 2.5. Therefore, a subsequence of Qϕ converges
to Qϕ1 in C1+

1
2 . We must prove that ϕ converges to ϕ1. First we want to see

that ϕ1 cannot have a zero in (−1, 1) since the modified Mabuchi functional is
bounded and ϕ1 has a continuous first derivative. If ϕ1(U0) = 0, because U0 is the
minimal point we have ϕ′

1(U0) = 0 and ϕ1(U ) < C(U −U0) for a positive number
C . Also ϕ−1

1 > (C(U − U0))
−1 is not integrable. This will be in contradiction to

the boundedness of the modified Mabuchi functional.
Now applying the Sobolev embedding theorem to the modified Mabuchi func-

tional, which is just
∫

dt
∫
(Ġ)2dV , we see that G is continuous on t almost every-

where, since G is given and continuous near t = 0. It follows that if a subsequence
of ϕ converges to some other ϕ2, then ϕ2 = ϕ1. Thus, under the modified Calabi
flow, ϕ converges to ϕ1 in C1+

1
2 .

Set S = R̃ − a − bU . The equation for ϕ is

(14) ϕ̇ = 2ϕ2S′′,

with ϕ(−1) = ϕ(1) = 0, ϕ′(−1) = −ϕ′(1) = 2. By our short time existence result
(Theorem 4.1), this equation has a solution for t ∈ [0, T ) for a positive number
T . For later reference, note that the fact that ϕ is Ck implies the same for the
solutions of the original metric, but the converse is not true. However, by the
weighted Sobolev inequalities we shall see also later on that there is an integer k0

such that if the original metric solutions are C2k+k0 , then ϕ is Ck . Hence there is
equivalence between the C∞ properties.

The function ϕ has the disadvantage that ϕ(−1) = ϕ(1) = 0; that is, even if ϕ is
smooth and bounded, it might be negative at some point. Hence, we let ϕ = ϕ0eθ ,
which gives

ϕ̇ = ϕθ̇ .

Now
θ̇ = 2ϕS′′,

and θ(−1) = θ(1) = 0.
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6. Estimate of the C0 norm of θ and the derivative of the modified Calabi
functional on [0, T )

From [Guan 2003, p. 281] we know that the derivative of the modified Calabi
functional is

−2
∫

(ϕS′′)2 Q dU.

We’d like to see that this is bounded for t ∈ [0, T ). To see this we A = ϕS′′. Then

d
dt

( ∫
A2 Q dU

)
= 2

∫
AȦQ dU = 2

∫
A(ϕ̇S′′

+ ϕ(Ṡ′′))Q dU

= 2
∫

A
(

2ϕ2(S′′)2
− ϕ

( 1
2Q

(ϕ̇Q)′′
)′′

)
Q dU =

(15)

= 4
∫

ϕ3(S′′)3 Q dU − 2
∫

ϕ2S′′

(
(ϕ2S′′Q)′′

Q

)′′

Q dU

= 4
∫

A3 Q dU − 2
∫ (

(ϕQ A)′′
)2 dU

Q
.

The following is similar to [Caffarelli et al. 1984, p. 262 (A)]:

Lemma 6.1. For u(x) = xkv(x) and v(x) ∈ C0(R), 1 < r ≤ +∞, 1 ≤ k,∣∣|x |
−ku

∣∣
Lr ≤ C

∣∣|x |
−k+1u′

∣∣
Lr .

In particular,( ∫ 1

−1
((1 − x2)−ku)r dx

)1/r

≤ C
( ∫ 1

−1
((1 − x2)−k+1u′)r dx

)1/r

,

for u(x) = (1 − x2)kw(x) and w(x) ∈ C[−1, 1].

Proof. Without loss the generality we may assume that u(x) = 0 if x < 0 and
x > a > 0. Integrating by parts,∫

(x−ku)r dx = −

∫ a

0
x((x−ku)r )′dx = rk

∫
(x−ku)r dx − r

∫
x−rk+1ur−1u′dx .

Therefore,

(rk − 1)

∫
(x−ku)r dx = r

∫
x−rk+1ur−1u′dx

≤ r
( ∫

(x−ku)r dx
)1/r( ∫ (

x−k+1u′
)r dx

)(r−1)/r

,

which implies (rk−1
r

)1/(r−1)∣∣|x |
−ku

∣∣
Lr ≤

∣∣|x |
−k+1u′

∣∣
Lr .
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When r = +∞ we just take the limit and get sup |x−ku| ≤ sup |x−k+1u′
|, proving

the first part of our lemma.
For the second part, we let v(x) = (1 − x)kw(x). Then we apply the argument

above, and get( ∫ 0

−1
((1 − x2)−ku)r dx

)1/r

≤

( ∫ 0

−1
((1 + x)−ku)r dx

)1/r

≤

( ∫ 1

−1
((1 + x)−ku)r dx

)1/r

≤ C
( ∫ 1

−1
((1 + x)−k+1u′)r dx

)1/r

≤ C
(

C1

( ∫ 0

−1
((1 − x2)−k+1u′)r dx

)1/r

+

(∫ 1

0

(
(1 − x2)−k+1u′

)r dx
)1/r)

.

We apply the same argument to [0, 1], and get the second part of our lemma. �

Now we apply the condition (13), which implies that Q is a positive polynomial
of U on [−1, 1], and the boundary conditions of (14). We obtain

C1(1 − x2) ≤ ϕQ ≤ C2(1 − x2),

for positive constants C1, C2 depending on t . in the next paragraph we show that
on [0, T ) these two inequalities hold with constants independent on t . This is the
same as saying that θ is uniformly bounded (we need only apply the argument
below to a subsequence of t → T if needed, since if the above estimate does not
hold, it does not hold for a convergent subsequence of ϕ with a subsequence of t).

Since ϕ = ϕ0eθ with θ(−1) = θ(1) = 0, the fact that (ϕQ)′′ and hence ϕ′′ has a
bounded L2 norm (this is basically from the boundedness of the modified Calabi
functional, see the discussion at the bottom of page 107) implies that (ϕ0(eθ

−1))′′

has a bounded L2 norm. Therefore (ϕ0)−1(ϕ0(eθ
− 1))′ and (ϕ0)−1(eθ

− 1) have
bounded L2 norms. Hence, (eθ

− 1)′ = eθθ ′ also has bounded L2 norm, and
eθ is uniformly continuous. Therefore, eθ can be extended to t = T . Because
ϕ′(−1) = −ϕ′(1) = 2 at t = T , we see that

eθ(−1)
= eθ(1)

= 1.

By uniform continuity, this means there is ε0 > 0 such that when the distance
d(U, {−1, 1}) is less than ε0 we have eθ >ε0. By uniform convergence, this is also
true for t close enough to T . Therefore, eθ is bounded from 0 near the boundary
points −1, 1. We also conclude that eθ has no zero a ∈ [−1+ε0, 1−ε0]; otherwise,
since (eθ )′(a) = 0, there is a number ε1 > 0 such that for any small M > 0, there
is a δ > 0 such that eθ

≤ |U − a| whenever ε1 > |U − a| > M and T − t < δ,
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that is, the modified Mabuchi functional
∫
(e−θ

−1+θ) dU will turn to +∞ since
limθ→−∞(e−θ

−1+ θ)/e−θ
= 1 and e−θ

−1+ θ ≥ 0 always. Therefore, eθ is also
bounded away from zero. Thus θ is bounded and continuous, and θ(−1)=θ(1)=0
at t = T . This proves that the constants C1, C2 are independent of t .

We have

(16)
∫

(ϕ−1 A)2dU ≤ C1

∫
(ϕ−1(ϕQ A)′)2dU ≤ C2

∫
((ϕQ A)′′)2dU.

Now
ϕ−1(ϕQ A)′ = Q A′

+ ϕ−1 A(Qϕ)′,

and
(ϕQ A)′′ = 2(ϕQ)′ A′

+ A(ϕQ)′′ + ϕQ A′′,

giving

(17)

∫
(A′)2dU ≤ C1

∫
((ϕQ A)′′)2dU,∫

A2dU ≤ C2

∫
((ϕQ A)′′)2dU,∫

(ϕQ A′′)2dU ≤ C3

∫
((ϕQ A)′′)2dU.

The last inequality is true because∫
(A(ϕQ)′′)2dU ≤ sup{A2

}

∫
((ϕQ)′′)2dU ≤ C1

( ∫
|A′

| dU
)2

≤ C2

∫
(A′)2dU.

Similarly, we have (see [Lin 1986])∫
A3dU ≤ sup{|A|}

∫
A2dU ≤

∫
|A′

| dU
∫

A2dU

≤

( ∫
(A′)2dU

)1/2∫
A2dU ≤ C

( ∫
((ϕQ A)′′)2dU

)1/2∫
A2 Q dU.

Combining this with (15) and Young’s inequality ab ≤ εa2
+ ε−1b2, we get

(18)
d
dt

( ∫
A2 Q dU

)
≤ C

( ∫
A2 Q dU

)2

− (1 − ε)

∫
((ϕQ A)′′)2 dU

Q
.

If we let L =
∫

A2 Q dU , we get L̇ ≤ C L2 and

d
dt

(ln L) ≤ C L .(19)

But −2L is the derivative of the modified Calabi functional, so
∫ T

0 L dt is bounded.
Integrating (19) we conclude that L is bounded on [0, T ).
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This implies that ϕ1 is C3+
1
2 for points other than −1 and 1. In particular, S′ is

continuous in (−1, 1). So we have a good inner estimate.

7. Estimate of C2 norm of ϕ on [0, T )

For the boundary estimate we shall again apply a Hardy inequality, since ϕ has
zeros at U = −1 and U = 1. This is another place where the condition (13)
applies, otherwise Q also has zeros at the boundary. In our case we should have
the Hardy inequality as follows:

(20)
∫ 1

−1
(S′)2dU ≤ C

∫ 1

−1
ϕ2(S′′)2 Q dU ;

see, for example, [Caffarelli et al. 1984, p. 262 (A)]. Since∫ 1

−1
S′(1 − U 2) dU = S(1 − U 2)|1

−1 + 2
∫ 1

−1
SU dU = 0,

we observe that S′(a) = 0 for some a ∈ (−1, 1). Then∫ a

−1
(S′)2dU =

∫ a

−1
(U + 1)′(S′)2dU = (U + 1)(S′)2∣∣a

−1 − 2
∫ a

−1
(U + 1)S′S′′dU

≤ 2
( ∫ a

−1
(S′)2dU

)1/2( ∫ a

−1
((U + 1)S′′)2dU

)1/2

,

i.e.,
∫ a
−1(S′)2dU ≤ 4

∫ a
−1((1 + U )S′′)2dU . Similarly,∫ 1

a
(S′)2dU ≤ 4

∫ 1

a
((U − 1)S′′)2dU.

Combining these two inequalities we obtain our Hardy inequality. That is, S is in
the Hölder space C1/2 since

∫
S dU = 0 and S is continuous. Therefore, ϕ1 is C2.

Even without using the fact that S′(a) = 0 for a point a ∈ (−1, 1) we can still
have our conclusion. In fact by [Friedman 1963, p. 19, (8.2)], we have:

Lemma 7.1. If u ∈ L2
[−1, 1] and∫ 1

−1
(x2

− 1)2(u(k))2dx

is bounded, then u(k−1) is L2 bounded. In particular, u(k−2) is continuous.

Proof. We apply [Friedman 1963, p. 19, (8.2)] to the closed interval [−0.5, 0.5]

and see that both
∣∣ ∫ u(k−1)dx

∣∣ and
∣∣ ∫ u(k)dx

∣∣ are bounded. That is, the average
of u(k−1) and the difference of u(k−1) at two points is bounded, which implies that
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u(k−1)(0) is bounded. Applying the argument above we get∫ 0

−1

(
u(k−1)

)2dx ≤
(
u(k−1)(0)

)2
+2

( ∫ 0

−1
(u(k−1))2dx

)1/2( ∫ 0

−1
((x+1)u(k))2dx

)1/2

.

Now with Young’s inequality we have the first part of our lemma. The second
part follows from the Sobolev embedding theorem. �

8. Estimates of H4 and C3 norm of ϕ on [0, T )

To obtain H 4 norm estimates of ϕ we let O be an operator such that O(u) = ϕu′′.
Then A = O(S). We let O∗ be the dual of O . If u ∈ C∞

0 (R), we have that∫
uO∗(v)Q dU =

∫
O(u)vQ dU =

∫
ϕu′′vQ dU =

∫
u
(ϕQv)′′

Q
Q dU.

Therefore, O∗(v) = (ϕQv)′′/Q.
Let B = Q−1(ϕQ A)′′ = O∗(A) and A1 = O(B), Bi = O∗(Ai ), Ai = O(Bi−1).

We shall estimate K =
∫

B2 Q dU . Let L i =
∫

A2
i Q dU .

We have

K̇ = 8
∫

A1 A2 Q dU − 2
∫

A2
1 Q dU ≤ C

( ∫
A2

1dU
)1/2( ∫

A4dU
)1/2

− 2L1.

As before we have that

(21)
∫

A4dU ≤ sup{A2
}

∫
A2dU ≤

(∫
|A′

| dU
)2 ∫

A2dU

≤ C
∫

(A′)2 Q dU
∫

A2dU ≤ C1

∫
B2 Q dU.

Therefore,

(22) K̇ ≤ C L1/2
1 K 1/2

− 2L1.

Again, by Young’s inequality we have K̇ ≤ C1K and hence ∂(ln K )/∂t ≤ C2,

where C2 only depends on the number L .
Therefore, K is bounded by a function of the bound of L . Thus, (ϕQ A)′ has a

uniform C1/2 norm.
By (17),

∫
(A′)2dU is bounded. Therefore A is continuous. Also ϕQ A′ is

continuous.
By (16),

∫
(S′′)2dU is bounded and the H 4 norm of ϕ is bounded. Therefore S′

is continuous, since S′ has a zero point. Thus ϕ(3) is continuous.
Since ϕ′′ is bounded, so is (ϕ0(eθ

− 1))′′. By Lemma 6.1 (ϕ0)−1(ϕ0(eθ
− 1))′

and, hence, (ϕ0)−1(eθ
− 1) are bounded. So (eθ

− 1)′ is bounded, i.e., (eθ )′ and θ ′

are bounded.
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By the boundedness of ϕ(3), there are two numbers c, d such that

eθ
− 1 − (c + dU )(1 − U 2) = (1 − U 2)2 f1

with f1 continuous. The numbers c, d are determined by θ ′(−1) and θ ′(1), which
are bounded by the C0 norm of θ ′. Now,(

ϕ0(eθ
− 1 − (c + dU )(1 − U 2))

)(3)

is bounded. So are

(ϕ0)−1(ϕ0(eθ
− 1 − (c + dU )(1 − U 2))

)′′
,

(ϕ0)−2(ϕ0(eθ
− 1 − (c + dU )(1 − U 2))

)′
,

(ϕ0)−2(eθ
− 1 − (c + dU )(1 − U 2)),

as are (ϕ0)−1(eθ
−1−(c+dU )(1−U 2))′ and (eθ

−1−(c+dU )(1−U 2))′′. Thus
(eθ )′′ and θ ′′ are bounded.

In the same way we have:

Lemma 8.1. If ϕ(k) has Lr bound, then so does θ (k−1).

Proof. We only need to prove the case in which r is a finite number. If ϕ(k) is Lr

bounded, ϕ(k−1) is C0 bounded. So is θ (k−2). By applying a similar argument as
above with Lemma 6.1 and Lr norms we have our Lemma. �

Therefore, the H 3 norm of θ is bounded.

9. Estimates of higher order derivatives on [0, T )

To get higher-order estimates, we try to estimate L i and Ki =
∫

B2
i Q dU . We can

regard these functionals as higher order Calabi functionals.

Lemma 9.1. If L i , K j are bounded for i ≤ l, j < l (resp. i, j ≤ l), then B ′

l−1
(resp. A′

l) is bounded in L2 norm and Bl−1 is bounded (resp. (ϕQ Al)
′ is bounded).

Moreover, ϕ(2l+2) (resp. ϕ(2l+3)) and ϕ2l+1ϕ(4l+3) (resp. ϕ2l+2ϕ(4l+5)) are bounded
and continuous.

Proof. This is an extension of Lemma 7.1. When L is bounded we already see that
ϕ(2) is bounded. Also

(ϕS′)′ = ϕ′S′
+ ϕS′′

is L2 bounded. So ϕS′ and, hence, ϕϕ(3) are bounded. When K is bounded,
(ϕQ A)′ is bounded, and so are ϕ A′ and ϕ2S′′′. Therefore, ϕ2ϕ(5) is bounded. The
lemma is true for l = 0.

If L1, L , K are bounded, then B ′ is bounded in the L2 norm. B is bounded.
ϕ−1(ϕQ A)′ is bounded. ϕ−1 A = S′′ is bounded. Hence, ϕ(4) is. A′

= (ϕS′′)′ is
bounded, so ϕS′′′ is bounded. But

(ϕQ A)′′ = (ϕ2 Q)′′S′′
+ 2(ϕ2 Q)′S′′′

+ ϕ2 QS(4),
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which means that ϕ2S(4) is bounded. Hence ϕ2ϕ(6) is bounded. But the derivative

(ϕB ′)′ = ϕ′B ′
+ ϕB ′′

is also L2 bounded. Therefore, ϕB ′ is bounded. Moreover,

ϕB ′
= ϕ(ϕQ A)′′′ = ϕ

(
(ϕ2 Q)′′S′′

+ 2(ϕ2 Q)′S′′′
+ ϕ2 QS(4)

)′
,

which means that ϕ3 QS(5) is bounded. Hence ϕ3ϕ(7) is bounded.
If K1, L , K , L1 are bounded, so is (ϕQ A1)

′. Hence, Q A1 and ϕ2 B ′′′, as well
as B ′, are all bounded. Now B ′

= (Q−1(ϕ2 QS′′)′′)′, (ϕ2 QS′′)′′′ is bounded. Since
S′′ is bounded, there are two numbers c, d such that ϕ2S′′

− (c + dU )ϕ2
= ϕ3 f1

for a continuous function f1. Then ϕ−1(S′′
−(c+dU )) is bounded as before, so is

(S′′
− (c+dU ))′ = S′′′

−d . Therefore, S′′′ and ϕ(5) are bounded. Hence ϕS(4) and
ϕ2S(5) are both bounded. Therefore, because A1 = ϕB ′′ is bounded, so is ϕ3S(6),
and because (ϕQ A1)

′ is bounded, so is ϕ4S(7). So ϕ4ϕ(9) is bounded.
The same argument works for all l. We can also apply the proof of the next

lemma. �

Furthermore if we let O1(u) = ϕu′ and O2(u) = u′, then we call O2 the pure
derivative and O1 the coupled derivative, and we have:

Lemma 9.2. If L i , Ki are bounded for i, j ≤ l (resp. i ≤ l, j < l), then

Oi1 Qi2 · · · Oik ϕ

is bounded for at most 2l + 3 pure derivatives O2 and at most 2l + 2 coupled
derivatives O1 (resp. at most 2l+2 pure derivatives and 2l+1 coupled derivatives)
in (Oi1, . . . , Oik ). Moreover, it is L2 bounded for at most 2l + 4 pure derivatives
and 2l + 2 coupled derivatives (resp. 2l + 3 pure derivatives and 2l + 1 coupled
derivatives).

Proof. If L is bounded, then ϕ(3) is L2 bounded and ϕ′′ is bounded.

Ok
2 O1O2−k

2 ϕ =

∑
m≤k

(Om
2 ϕ)(O3−m

2 ϕ).

When 0 < m ≤ 2 the first factor is bounded and the second factor is also bounded.
When m = 0 we have ϕϕ(3), which is also bounded. We also have that

Ok
2 O1O3−k

2 ϕ =

∑
m≤k

(Om
2 ϕ)(O4−m

2 ϕ).

When 0 < m ≤ 3 the first factor is bounded and the second factor is L2 bounded.
When m = 0 the whole term is L2 bounded since L is bounded.

If L , K are bounded we want to see that

Oi1 · · · Oik O1O2O j1 · · · O j3−k ϕ,
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with three pure derivatives and two coupled derivatives is bounded if and only if

Oi1 · · · Oik O2O1O j1 · · · O j3−k ϕ,

is bounded. Actually, the difference between them is

Oi1 · · · Oik (ϕ
′O2O j1 · · · O j3−k ϕ)

=

∑
m≤k

∑
(k1,...,km)⊂(i1,...,ik)

(Ok1 · · · Okm ϕ′)(Ol1 · · · Olk−m O2O j1 · · · O j3−k ϕ),

where (k1, . . . , km) is an ordered subset of the ordered set (i1, . . . , ik), having
(l1, . . . , lk−m) as its ordered complement. When 0 ≤ m < 3 the first factor is
bounded, and likewise is also bounded, the second factor being a sum of products
of two bounded factors. When m = k = 3 the second factor is ϕ′ and is bounded,
and so is the first factor, being a sum of products of two bounded factors. An easier
alternative proof is that we use 2 in the place of 3 in the above argument first, then
do the case for 3. The proof is similar for the L2 bounded case.

The same argument can be carried out for all l by induction. �

Lemma 9.3. If L i , K j are bounded for i, j ≤ l (resp. i ≤ l, j < l), then L l+1 (resp.
Kl) is bounded.

Proof. If L i , K j are bounded for i, j ≤ l, then

˙L l+1 = −2Kl+1 + 4
∫

A2
l+1 AQ dU

+8
l∑

k=0

∫
Bl+1

(
(O∗O)k O∗(AO((O∗O)l−k S))

)
Q dU.

Let O = O1O2 with O1(u) = ϕu′, O2(u) = u′. Then O∗
= O3O4 with O3(u) =

Q−1u′ and O4(u)= (ϕQu)′. We see that Oi (uv)= Oi (u)v+uOi (v) for i = 1, 2, 3
and

O4(uv) = (ϕQuv)′ = (ϕQu)′v + ϕQuv′
= O4(u)v + QuO1(v).

Let O5 = QO1; then

(O∗O)k O∗(AO((O∗O)l−k S))

=

∑
(Oi1 Oi2 · · · Oim A)(O j1 O j2 · · · O j4k−m+2 O(O∗O)l−k S),

with half, i.e., 2k+1, of the Oi and O j being O2 and O3. If we forget the derivatives
coupled with ϕ, then there are at most 2k +1+3 pure derivative of ϕ from the first
factor. Also there are at most 2k + 1 + 1 coupled derivatives from the first factor.
Therefore, if k < l, then the first factor is bounded. The second factor has bounded
L2 norm since Kl is bounded.
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So we only need to check the term in which k = l and the first factor has 2l + 4
pure derivatives. Then the second factor has only 3 pure derivatives and at most
2l + 2 coupled derivatives. Therefore, in this case, the second factor is bounded.
However, again the first factor is L2 bounded. Therefore,

˙L l+1 ≤ C1L l+1 + C2.

By integration, we see that ln(C1L l+1 + C2) is bounded. Hence L l+1 is bounded.
If L i , K j are bounded for i ≤ l, j < l, we have

K̇l = −2L l+1 + 8
l∑

k=0

∫
Al+1

(
(O O∗)k(A(O O∗)l−k O S)

)
Q dU

and

(O O∗)k(A(O O∗)l−k O S
)
=

∑
(Oi1 · · · Oim A)

(
O j1 · · · O j4k−m (O O∗)l−k O S

)
,

with half, i.e., 2k, of the Oi and O j being O2 and O3. If we forget the derivatives
coupled with ϕ, there are at most 2k +3 pure derivatives of ϕ from the first factor.
Also, there are at most 2k + 1 coupled derivatives from the first factor. Thus, if
k < l, the first factor is bounded. The second factor is L2 bounded since L l is
bounded.

Therefore, we only need to check the term in which k = l and the first factor has
2l + 3 pure derivatives. Then the second factor has only 3 pure derivatives and at
most 2l +1 coupled derivatives. In the case there are 2l +1 coupled derivatives we
can treat the first one of them as pure derivative if l > 0, then we treat this term as
having 2l coupled derivatives with 4 pure derivatives. Therefore the second factor
is bounded. But the first factor is again L2 bounded, so K̇l ≤ C , showing that Kl

is bounded. �

Therefore the Ck norm of the solutions are uniformly bounded on [0, T ). The
solution can be extended to [0, T ].

10. Long time existence and convergence

From the general short time existence we now obtain long time existence.
The derivative of the modified Calabi functional is −2L and has a subsequence

of t such that L turns to zero. Therefore, the modified Calabi flow converges to ϕ1

in C1 and in C2 with a subsequence. The modified Calabi functional is decreasing
and tends to zero, giving us that ϕ1 = ϕ0.

Moreover, by (20) and the inequality

Ċal = −2L ≤ −C1

∫
(S′)2dU ≤ −C2

∫
S2dU = −C2 Cal
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we have Cal≤ Cal(t0)e−kt with k =C2, and Cal converges to zero at an exponential
rate.

By integrating (19) we have

(23) L(t) ≤ L(t0) exp C
∫ t

t0
L dt.

For any ε we can pick δ such that δ exp δ < ε, and then pick t0 such that L t0 < δ

and 2
∫

+∞

t0
L dt < (2/C)δ as the modified Calabi functional at t0. Then L(t) < ε

for any t > t0. Therefore, limt→+∞ L = 0. Now,
∑ ∫ t+1

t L dt converges to zero at
an exponential rate. With (23), we see that L also converges exponentially to zero.

In this case, (21) becomes
∫

A4dU < εK when t is big enough. Therefore, (22)
becomes

K̇ ≤ εL1/2
1 K 1/2

− L1

when t is big enough. Hence K̇ ≤ εK . But from (18) we have

2(1 − ε1)

∫
+∞

t0
K dt + L(t0) ≤ Cε

∫
+∞

t0
L dt ≤ Ce−kt0 .

In particular,
∫

+∞

t0
K dt ≤ Ce−kt0 when t0 is big enough. Therefore,

K (t) ≤ K (t0) + ε

∫ t

t0
K dt, ≤ K (t0) + Ce−kt0

for t > t0. Picking a t0 such that K (t0) small enough, we see that K ≤ ε. Thus
limt→+∞ K = 0. Moreover, since

∫ t+1
t K dt ≤ Ce−kt , we have K ≤ Ce−kt for

some positive C and k.
In particular, limt→+∞ A = 0 and A converges at an exponential rate.
Furthermore, the argument in the proof of Lemma 9.3 shows the following:

Lemma 10.1. If L i , Ki ≤ Ce−kt for i ≤ l (resp. L i+1, Ki ≤ Ce−kt for i < l), then

L̇ l+1 ≤ −2Kl+1 + Ce−kt(K 1/2
l+1 + L l+1)

(
resp. K̇l ≤ −2L l+1 + Ce−kt L1/2

l+1

)
.

Therefore, if L i , Ki ≤ Cr−kt for i ≤ l, then L̇ l+1 ≤ ε(L l+1 + Ce−kt). So

L l+1 ≤ (L l+1(t0) + Ce−kt0)eε .(24)

But we also have K̇l ≤ −2(1 − ε1)L l+1 + Ce−kt , meaning that

2(1 − ε1)

∫
+∞

t
L l+1dt + Kl ≤

C
k

e−kt .

Thus
∫ t+1

t L l+1dt ≤ Ce−kt , and L l+1 ≤ Ce−kt for some C, k > 0.
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Similarly if L i+1, Ki ≤ Ce−kt for i < l, then K̇l ≤ Ce−kt and Kl ≤ Kl(t0) +

(C/k)e−kt0 . But we also have L̇ l ≤ −2(1 − ε1)Kl + Ce−kt , which implies

2(1 − ε1)

∫
+∞

t
Kldt + L l ≤

C
k

e−kt .

Hence
∫ t+1

t Kldt ≤ (C/k)e−kt and Kl ≤ C1e−kt for some C1, k > 0.
From these estimates we see that ϕ converges exponentially to ϕ0 in any Cm norm.

Therefore:

Theorem 10.2. In the cases of D0 = D∞ = 1, i.e., when the surface has hypersur-
face ends, the modified Calabi flow converges exponentially in Cm norm for any m
to the extremal metric on our manifolds whenever the Kähler class is stable.

11. Evolution of metrics in a Kähler class along the modified Ricci flow

Now we consider the problem of finding (generalized) quasi-Einstein metrics [Guan
1995b] in a given Kähler class by the following modified Ricci flow equation:

(25)
∂

∂t
g = − Ric(g) + HRic(g) + LVR

g.

By contraction we get

(26)
∂

∂t
log det g = 1 log det g + HR + trg LVR

g.

We can easily see that these two equations are equivalent. Once we have a
solution gt for (26), we get

− Ric(g) + HRic(g) + LVR
g = ∂∂̄ f,

for some f with
∫

M f dVg = 0 and 1 f = (∂/∂t) log det g. Let gt,i j̄ = g0,i j̄ +∂i ∂̄ j u.
Then f = (d/dt)u + C(t), where C(t) is a function that only depends on t . Thus,
(d/dt)gi j̄ = ∂i ∂̄ j f , which means that gt is a solution of (25).

Now we consider the short time existence of (26). With

h = (exp(−V t))∗g,

that equation is equivalent to

(27)
∂

∂t
log det h = 1 log det h + HR.

Set ht = h0 + ∂∂̄ Ft . Then linearized equation of (27) is then

(28)
∂

∂t
1v = 12v + Ri j̄vi j̄ ,

where vi j̄ = ∂i ∂̄ jv.
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We want to prove that (28) has unique solution. Multiplying it by 21v and
integrating, we get

d
dt

∫
(1v)2

= −2
∫

|∇1v|
2
+ 2

∫
1vRi j̄vi j̄ + 2

∫
1F(1v)2

≤ C1

( ∫
(1v)2

)1/2( ∫ ∑
i, j

|vi j̄ |
2
)1/2

+ C2

∫
(1v)2

= C
∫

(1v)2,

where C1, C2 are constants not depending on t and C = C1 + C2. Letting v(t) =∫
(1φ)2, we get dv/dt − Cv ≤ 0, that is, (d/dt)e−Ctv ≤ 0. Thus e−Ctv is de-

creasing, so v = 0 if v(0) = 0. Thus, we have the short time existence for the
evolution.

In the general case of the extremal soliton metrics, we consider the equation

∂

∂t
log(det(g)) = −R + HR + φ1 + 1φ2.

The linear equation is

∂

∂t
1v = 12v + (Ri j̄

− φ
i j̄
2 )vi j̄ + 1(E2(v)) +

1
2(E i

1vi + E ī
1vī ).

The proof for short time existence still holds, since for the extra terms we have∫
1v1E2(v) dV = −

∫ (
∂̄1v, ∂̄ E2(v)

)
dV

≤ C
( ∫

|∇1v|
2dV

)1/2( ∫
|v j j̄ |

2dV
)1/2

= C
( ∫

|∇1v|
2dV

)1/2( ∫
(1v)2dV

)1/2

,

∫
1vE1(v) dV ≤ C

( ∫
(1v)2dV

)1/2( ∫
|vi |

2dV
)1/2

≤ C
( ∫

(1v)2dV
)3/4( ∫

v2dV
)1/4

≤ λ
−1/2
1 C

∫
(1v)2dV,

where λ1 > 0 is the first eigenvalue of the Laplacian 1. We also used Young’s
inequality in the calculation.

In this paper we only consider the special situation of the completions of C∗-
bundles studied in previous sections. To avoid confusion we use ∂t to denote the
partial derivative of t for a function of s and t , i.e., with respect to the coordinates
of the manifold; and we use d/dt to denote the partial derivative of t for a function
of U and t , i.e., with respect to the moving coordinates. Equation (25) can be
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written as

(29)
1
ϕ

∂tϕ(s, t) +
1
Q

∂t Q(s, t) = −
1

Q
+

1
2Q

(ϕQ)′′ + a + bU +
c

2Q
(ϕQ)′

And since ∂t H(U 0(s, t)) = 0, we get ∂t

(
ϕ(s, t)dU 0

dU
(s, t)

)
= 0, which implies

d
dU

(∂tU ) = ϕ−1∂tϕ(s, t).

Combining these two equations we get

d
dU

(∂tU (s, t)) +
Q′

Q
∂tU (s, t) =

1

Q
+

1
2Q

(ϕQ)′′ + a + bU +
c

2Q
(ϕQ)′.

We view this as a first order equation in ∂tU , and get the solution

(30) ∂tU =−
1
Q

∫ U

−1
1(x) dx +

1
2Q

(ϕQ)′+
1
Q

∫ U

−1
(a+bU )Q(x) dx +

c
2
ϕ−

d
Q

.

Letting U = −1, we obtain d = Q(−1). Therefore,

∂tU = −
p

2Q
+

(ϕQ)′

2Q
+

c
2
ϕ

with p as in (7).
Now, we let ϕ = (1 + θ)ϕ0 with ϕ0 being the extremal soliton solution. Then

we combine (29) and (30) to get

(31) 2ϕ0 d
dt

θ = ϕϕ0θ ′′
+ (1 + θ)θ

(
ϕ0

( p
Q

)′

− (ϕ0)′
( p

Q

))
+

ϕ0 p
Q

θ ′
− (ϕ0θ ′)2.

This is basically a nonlinear heat equation, meaning that a short time solution exists.
Now we want to prove that the long time solution of (31) exists and converges
uniformly to 0 at an exponential rate. Set p1 = p/Q. The desired result can be
proved by the maximum principle as in [Koiso 1990], under the following condition
on C :

The function ϕ0(p1)
′
− (ϕ0)′ p1 is negative on [−1, 1].

In general, this is very difficult to check since p might not be a product of linear
factors, as in [Koiso 1990].

This is additional evidence that the modified Calabi flow is more natural than
the modified Ricci flow.

Moreover, it has long been known that the generalized Mabuchi functional is
decreasing under the modified Ricci flow but the Calabi functional is not. For
example, let our manifold be CP1. Then Q = 1, 1= 0, ϕ0

= 1−U 2, p(U )=−2U ,
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2ϕ̇ = (1 −U 2)2(1 + θ)θ ′′
− 2U (1 − U 2)θ ′

− (1 − U 2)2(θ ′)2
− 2(1 + θ)θ(1 +U 2),

and R = −2−1ϕ′′, Cal = 2−2
∫ 1
−1(ϕ

′′)2dU ,

Ċal =
1
2

∫ 1

−1
ϕ′′ϕ̇′′dU =

1
2

∫ 1

−1
ϕ(4)ϕ̇dU + ϕ′′ϕ̇′

∣∣∣∣1

−1
.

We also let θ = A(1 − U 2); then ϕ(4)
= 24A, θ ′

= −2AU , θ ′′
= −2A. Therefore,

2ϕ̇ = −2(1 − U 2)2(A(1 + A(1 − U 2)) + 2A2U 2
+ A2(1 + U 2)

)
− 2(1 − U 2)

(
−2AU 2

+ A(1 + U 2)
)
i

= −2A(1 − U 2)2(1 + A(1 − U 2
+ 2U 2

+ 1 + U 2) + 1
)

= −4A(1 − U 2)2(1 + A(1 + U 2)).

We have ϕ̇′
∣∣1
−1 = 0. Since 1 + θ > 0 we have

1 > −A(1 − U 2),

and this holds if and only if −A < 1, or equivalently A > −1. We have

lim
A→−1

Ċal = lim
A→−1

(−48A2)

∫ 1

−1
(1 + A(1 + U 2))(1 − U 2)2dU

= 48
∫ 1

−1
U 2(1 − U 2)2dU > 0.

Therefore, there is a negative A near −1 such that the Calabi functional Cal (same
for the modified Calabi functional since they are only different by adding a con-
stant) is not decreasing under the modified Ricci flow.
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