Vol. 234, No. 1, 2008

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Module supersingulier, formule de Gross–Kudla et points rationnels de courbes modulaires

Marusia Rebolledo

Vol. 234 (2008), No. 1, 167–184
Abstract

We show how the Gross–Kudla formula about triple product L-functions allows us to construct degree-zero elements of the supersingular module annihilated by the winding ideal. Using the method of Parent, we apply those results to the study of rational points on modular curves, determining a set of primes of analytic density 1 9210 for which the quotient of X0(pr) (r > 1) by the Atkin–Lehner operator wpr has no rational points other than the cusps and the CM points.

Keywords
rational points on modular curves, supersingular module, special values of L-functions
Mathematical Subject Classification 2000
Primary: 14G05, 11G05, 11G18
Secondary: 14G10, 11R52
Milestones
Received: 1 December 2006
Revised: 15 October 2007
Accepted: 17 October 2007
Published: 1 January 2008
Authors
Marusia Rebolledo
Laboratoire de Mathématiques
Université Blaise Pascal
Campus universitaire des Cézeaux
63177 Aubière
France
http://math.univ-bpclermont.fr/~rebolledo/