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We show two results on local theta correspondence and restrictions of irre-
ducible admissible representations of GL(2) over p-adic fields. Let F be a
nonarchimedean local field of characteristic 0, and let L be a quadratic ex-
tension of F. Let ¢;, is the character of F'* corresponding to the extension
L/F, and let GL,(F)* be the subgroup of GL,(F) consisting of elements
with €, /r(det g) = 1. The first result is that the theorem of Moen—Rogawski
on the theta correspondence for the dual pair (U (1), U (1)) is equivalent to
a result by D. Prasad on the restriction to GL,(F)™ of the principal series
representation of GL;(F) associated with 1, € ,r. As the second result, we
show that we can deduce from this a theorem of D. Prasad on the restric-
tions to GL,(F)?* of irreducible supercuspidal representations of GL;(F)
associated to characters of L*.

1. Introduction

The purpose of this paper is to give two remarks on the comment in the last Remark
in Section 3 of [Prasad 2007] and Theorem 1.2 in [Prasad 1994].

Let F be a nonarchimedean local field of characteristic 0, and let L be an qua-
dratic extension of F. We denote by €;,r the quadratic character of F* corre-
sponding to the extension L/F.

Let Ps(1, €1,r) be the normalized principal series representation of GL(F)
associated to the characters 1 and €; ;. We fix an embedding of L* into GL,(F).
The restriction of Ps(1, €7,7) to L™ is a multiplicity-free direct sum. Let GLy (F )t
be the subgroup of GL,(F') consisting of elements with determinant belonging to
Nz r(L>). Then L™ is contained in GL,(F)™, and the restriction of Ps(1, €L/F) to
GL,(F)™ decomposes into two irreducible subspaces Pst(1, ¢; /r)- In this situa-
tion, Lemma 4 in [Prasad 2007] states that a character ¢ of L* , whose restriction to
F*is €, F, appears in Ps™(1, er/r) (resp.Ps™ (1, €. ,r)) if and only if €(¢, ¥o) =1
(resp. —1). Here g is a character of L, the precise definition of which will be given
in Section 3. On the other hand, we fix a character y of L™ whose restriction to
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F* is €1/, and consider the theta correspondence for the dual pair (U (1), U(1))
with respect to y. Then the theorem of Moen—Rogawski states that a character
n of L! appears in this theta correspondence if and only if &( anl, Yo) =1 (see
[Moen 1987; Rogawski 1992]). Here 7, is the character of L> given by

nL(x) =n(x/x)

for x € L*. Now the correspondence n — x nzl yields a one to one correspondence
between characters of L! and characters of L* whose restriction to F* is €, /F-
Thus the factor (¢, o) appears in formulas expressing characters of linear and
nonlinear groups. The Remark in Section 3 of [Prasad 2007] raises the question
whether there is a natural explanation for this phenomenon. Our first remark is an
answer to this question. Our result is that Lemma 4 in Prasad’s article is equivalent
to the theorem of Moen—Rogawski. We show this in Sections 3 and 4 using seesaw
diagrams after some preparations on seesaw diagrams in Section 2. We note that
both the theorem of Moen—Rogawski and Prasad’s Lemma 4 were originally proved
by local methods for F' with odd residual characteristic, and the general cases were
proved by these local results and global methods (see [Moen 1987], Proposition 3.4
of [Rogawski 1992], and Lemma 4 of [Prasad 2007]). Later a purely local proof
for the theorem of Moen—Rogawski was given by Harris, Kudla and Sweet (see
Corollaries 8.5 and A.9 of [Harris et al. 1996]), and that of Lemma 4 of [Prasad
2007] was given by the author (see Appendix of [Prasad 2007]).

The second remark is concerned with Theorem 1.2 in [Prasad 1994]. Let & be
the irreducible supercuspidal representation of GL,(F') associated to a character
A of L™ by theta correspondence. Then |, x is multiplicity-free, and 7 |GL,(F)+
decomposes into two irreducible subspaces 7 and 7. In the article in ques-
tion, D. Prasad proved that ¢ with A¢~!|p« = €, appears in 7 if and only if
e(ho!, Yo) = e(Ap™ !, o) = %1. In Section 3 we deduce an analogue of this
theorem for unitary groups of degree 2 (Theorem 3.5) from the theorem of Moen—
Rogawski using a seesaw diagram. In Section 4 we show the above theorem of D.
Prasad from this again using a seesaw diagram, which is found in [Harris 1993].
This is the first half of Theorem 1.2 in [Prasad 1994]. In Section 5, we treat a sim-
ilar problem for representations of multiplicative group of the division quaternion
algebra. This is the second half of Theorem 1.2 in [Prasad 1994].

2. Seesaw diagrams

In this section, we introduce notation and recall some seesaw diagrams which will
be used in later sections. Let F, L and €;,r be as before, and fix a nontrivial
additive character ¥ of F. For a € L, we denote by « its conjugate over F. We
fix 8 € L* such that § = —8 and ng € F* not contained in Ny r(L™).
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For a finite-dimensional L-space W equipped with hermitian or antihermitian
form, we denote by U (W) its unitary group and by GU(W) its unitary simili-
tude group. For a vector space W with symplectic form, we denote by Sp(W)
its symplectic group and by GSp(W) its symplectic similitude group. We denote
by Mp(W) the metaplectic group of W. Let V' be a finite-dimensional right F-
space with symmetric bilinear form (v, v') r for v, v’ € V'. We denote by SO(V’),
O(V’), and GO(V') the special orthogonal group, the orthogonal group, and the
orthogonal similitude group of V' respectively. We denote by GO™ (V') the group
of proper similitudes of V.

Let V be a finite-dimensional right L-space with hermitian form satisfying

(via, 1B) =afv, »)B, v, eV

and let W be a left L-space with antihermitian form satisfying

(awl,ﬁwz)za(wl,wz)ﬁ, wy, wy e W
fora, B € L. Thenon W =V ®; W, we can define a symplectic form by
(v ® wy, V2 @ wa)) = 5 trr/r ((v1, v2) (wy, wa) ).

For W, V, we have a dual reductive pair (U(W), U(V)) in Sp(W). We denote the
natural embeddings by
ty: UW) — Sp(W),
tw: UV) = Sp(W).
Assume W is a direct sum of two antihermitian spaces Wi, W, for L/ F, and set
W; =V®W, fori =1, 2. Similarly as above, we have dual pairs (U(Wp), U(V))
in Sp(Wy) and (U (W,), U(V)) in Sp(W,), and the embeddings

tv,1: UW1) — Sp(Wy),

tw, 2 U(V) — Sp(W)),

tv2: U(W2) — Sp(Wa),

tw,: U(V) — Sp(Wa).
These dual pairs yield the seesaw diagram

U(W) U(V) x Sp(W>)

-1 ><

U(W) x {1} Uuw)

The right vertical line is the map

tw, X tw,: U(V) = U(V) x Sp(W,) C Sp(Wp) x Sp(W>).
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We recall one more seesaw diagram from [Harris 1993]. Let W’ be a finite-
dimensional left F-space with symplectic form ( , ). We can define an antiher-
mitian form on W; = L @ r W’ by

<ZO([ X v;, Zﬁj ®U;> = Zai/§j<vi» U})F
i J i,j

for o, Bj € L, and v;. vj € V'. Conversely, let V be a right L-space with her-
mitian form (, ). Then composing the hermitian form with tr;,r, we can define a
symmetric bilinear form

3tz r((v,v')

on Resy V, the space V considered as an F-space. In this notation we have, from
[Harris 1993, (3.5.1.1)],

GU(Wi) GOResg V)
GSp(W') GU(V)

3. Application of the theorem of Moen—-Rogawski

In this section, using the diagram (2-1) and the theorem of Moen—Rogawski, we
deduce an analogue of Theorem 1.2 in [Prasad 1994] for unitary groups of degree
2.

For a € L™ with @ = —«a, we denote by W («) the 1 dimensional left L-space
L with antihermitian form (x, y) = axy for x,y € L. For o, B € L™, we set
W(a, B) =W (a)d W(B). Fora € F*, we denote by V (a) the 1 dimensional right
L-space L with hermitian form (x, y) = axy.

We set W = W), W_ = W(=§),and V = V1), or W = W(ned), W_ =
W(—ngd),and V=V (). Set W=V ®; W, and W_ =V ®; W_. Then we have
a seesaw diagram of type (2-1):

UW 4+ W) U(V) x Sp(W_)
UW) x {1} Uwv)

We recall the splittings of the above unitary groups into metaplectic groups,
following Section 1 of [Harris et al. 1996]. We fix a character y of L* whose
restriction to F'* is €7 /p. Let X be the graph of minus the identity from W to
W_, and let Y be the graph of the identity. Then V ®; X and V ® Y are maximal
isotropic subspace of W, and W=V ®; X+ V ®, Y yields a complete polarization
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of W. This determines an isomorphism
Mp(W +W_) ~ Sp(W +W_) x C!,

where the product in Sp(W +W_) x C! is given by the Rao cocycle [1993]. The
inverse image in Mp(W + W_) of Sp(W) x {1} or {1} x Sp(W) is isomorphic to
Mp(W). By (1.21) of [Harris et al. 1996], we have splittings ty ,, Ty, X Iy, —
satisfying

UW +W_) L Mp(W +W_)

i i
UW) x UW) L2 VX7 v o) x Mp(W).
Here we note that U(W_) = U (W), Mp(W) = Mp(W_) and the splitting
i1 Mp(W) x Mp(W) — Mp(W +W_)
of the embedding
i: Sp(W) x Sp(W) — Sp(W +W_)

is specified so that the restriction to central C! is given by

Cc'xc'— ¢l (c1,c2) = c10a.
Then, by [Harris et al. 1996, Lemma 1.1],
(3-1) W =x" g

In this case, U (V) is the center of U(W + W_), and the splitting of U (V') as the
center of U(W + W_) by x coincides with the splitting ¢y 2 (Corollary A.8
of the same reference).

Let (wy, ¥(V &1 X)) be the Weil representation of Mp(W + W_) realized on
the space of Schwartz—Bruhat functions on V ® p X as the Schrodinger model
associated to the complete polarization W =V ®; X +V ®_, Y. For a character A!
of U(V), let 6, (A', W + W_) be the theta correspondence of AMto UW + Wo).
Namely, let Sy w, X(Al) be the maximal quotient of ¥(V ®, X) on which U (V)
acts as multiple of A!. Then

Sv.w O =0, W+ W) KA,

as U(W + W_) x U(V)-spaces with an U(W + W_)-module 6, AL W+ wo).

Let wy, w be the Weil representation of Mp(W). Let ¥ be the additive character
of L given by ¥p(x) = z//(% tr/r(—0x)) for x € L. For a character n of L', we
denote by 7 the character of L* given by nz (x) = n(x/x).
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Theorem 3.1 (Moen and Rogawski). Let

[ 1 irw=we),

N {—1 if W=W(no).
Then

oywolvuwmy= €D Cn
eCxn; ' Wo)=e

Remark 3.2. Here we use the character v instead of ¥ o tr,r. This simplifies
some expressions (see Remark in Introduction of [Prasad 1994]).

For a character n of U (W), we denote by 6, (n, V) the theta correspondence of n
in Mp(W) to U (V). Then 6, (n, V) = n~lifn appears in the theta correspondence.
We note that U(V) ~ U(W) ~ L', and the embedding ty and ¢y are chosen so
that the actions of U (V) and U (W) on W are the inverse of each other.

By the isomorphism U(V) ~ L!, we consider the restriction of x to L' as a
character of U (V) and denote it also by .

Lemma 3.3. Let the notation be as above. Let U(W) x {1} be the subgroup of
UW) x UW)(C UW + W_)) consisting of elements with unit in the second
component. Then

dimHomU(W)x{l}(QX(X_l)»], w + W,), n X 1)
|1 ifnand A appear in Wy WO Ly, y,
|0 otherwise.

Proof.

Homy w)x{1pxuv) @y, @B DR x~'Ah
~ Hom w)xipxv vy @y (x AL W+ WO Rx ™A, @R DR x~'ah)
~ Homy (wyx (1) O (x ~'A', W+ W_), n K 1).
We note that U (V) is embedded into U (W) x U (W) diagonally in Sp(W +W_),
and the action of ¢ e U (V) fora e L' on P(V®; X) is given by that of (@ ahe
UW)xU(W). By [Mceglin et al. 1987, II.1, Remarques (5), (6)] and [Harris et al.
1996, Lemma 2.1(i)], the restriction of wy, to Mp(W) x Mp(W) is wy, w X a)%w.
Here a)lj’w is the contragredient of wy, w, and by (3-1) we obtain

wx/v/w OZV,)(,— = X(a)w’w OZV’X)V.
Hence
Homy (wyx(1)xu vy @y, MR 1)K x 1A
~ Homy w)xuw) (18 Oy (1, V) @ 0y yy 0Ty . —), n & x ')
~ Homy vy (0, (. V) ® (x (@y.woly..)"), x'A1).



TWO REMARKS ON A THEOREM OF DIPENDRA PRASAD 191

Our assertion follows from this. O

Taking 1! to be the trivial character of L', by Lemma 3.3 and Theorem 3.1, we
obtain:

Theorem 3.4. Let € be as above. Then
0,(x~ 1 W+ W) lumxy = @ CnX1.
e(xng' o)=e

Theorem 3.5. Let ! be a nontrivial character of L', and let € be as above. Then

O (x A W+ WO luwyxqy = @ CnX1.
e(x(in) o) =
e(xn; ' Wo) =€

4. Prasad’s Theorem

We rewrite the results in the previous section in terms of GU(2) and a torus 77 in
GU(2) isomorphic to L*, and by restricting it to a subgroup of index 2 of GL,(F),
we deduce the theorem of D. Prasad using a seesaw diagram of type (2-2).

Let W' = F? be the two-dimensional left F-space with symplectic form

(v, V2) = Xx1y2 — y1X2

for vy = (x1, ¥1), v2 = (x2, y2) € W', and let W, = L? be the two-dimensional left
L-space with antihermitian from

(U1, V2)H = X1Y2 — Y1 X2

for v; = (x1, y1), V2 = (x2, y2) € W;. Then we see W(8, —8) >~ W;, as spaces
with antihermitian forms. More explicitly, let

(512
=)

(10) 7= 5)

If we take ng(vy, vp) instead of (v, vp), we get W(no8, —ngd) =~ Wi. Similarly,

we have
0 no\,;z_ (nod O
h <—n0 0) h= ( 0 —l’l05> ’

Let Resg V be the two-dimensional right F-space with symmetric bilinear form
associated with V (1). For these spaces, we have the following diagram of type

Then
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(2-2):
GU(W;) GOResr V)
GSp(W") GU(V)

Note that W’ and V satisfy

GSp(W') =GL(W'), Sp(W')=SL(W'), U(W;) D> SU(W;)=SL(W),
SO[Resy V) =U(V), GOT(ResgV)=GU(V).

Let vy (g) be the similitude of g € U(W)). Let

GU(W,)" = {g € GUW}) | e/r(vw () = 1},
GL(W")" = {g € GL(W') | e1/r(detg) = 1},

and identify L> with the center of GU(Wp). Then
GU(W;) DGUW,)T = L*U(W;)=L*GL(W")™,

since Np/p(L*)L*% = L1L>2.
Let 7;, be the torus in GL(W’) isomorphic to L* given by

a 27
28%b  a

a=a+blel, u=o/a.

(@ 2-1p
Y\ 4

and identify T; with L. We have
4-1) a 27'p\ _ (@ 0\1 w+1  2) '(u—-1)
2820 a ) \0 a)2\@28)(u—1) w1 :
We note
1O u+1 @) '(w—1) et (H0),
2 \28(u—1) w+1 - 01)"

We recall the action of some elements on ¥(V ®; X). We write them for the
pair (U(W;),U(V)). Then X ={(x,0) |[x e L}, Y ={(0,y)|ye L}, and

0 /
(g &1> cUW))

‘(a,b) € F*\'(0, 0>},

and let

We fix the isomorphism
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acts on X by o and on Y by @~!. Hence

ﬂv("‘ 0 ) — @) = x(@)

0 a!

in the notation of Theorem 3.1 of [Kudla 1994]. By the same theorem we have,
fora € L™,

0 a!

ww<fv,x(a 0 ))f<x>=x(a)|a|£/2f<ax>.

In particular, for o € L,
@2) os(tv (5 ) )70 = x@ s @

For the dual pair (SL(W’), SO(Resf V)), let S(A!) be the maximal quotient of
FVRLX)=FResrVrX), X ={(x,0)| x € F}, on which SO(Resy V)
acts as multiple of A!. Here the action of & € SO(Resr V) with o € L! is given by
f(x) — f(a~'x). Then the above formula implies that

Syw,(x'Ah =sab.

Hence the restriction of the action of U (W) on the space 6, ( x L W4+Wo) to
SL(W’) is the theta correspondence of A to SL(W’). We denote it by O (1!, W).

We extend the theta correspondence 6, of U(V) to U(W,) to that of GU(V)
to GU(Wi)Jr following [Harris 1993, 3.2]. The similitude vy of GU(V) satisfies
vy (GU(V)) = NL/FLX. Let

R(V, W) ={(g,h) e GUW,) x GU(V) | vy (h) = vw(g)}.
Then by corresponding (g, &) to the map
v@w—h hv@uwg, veV, we Wi,

we can takes R(V, W) into Sp((V ®¢ Wi). We consider a semidirect product
U(W;) x GU(V) defined by
hg ="gh

W (10 1o\
E=Vo v )0 vwmy)

Then we have an isomorphism

with

R(V,W)~U(W;)x GU(V)
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—1
1 0
(g.h) — (g (O W(h)> ,h).

We let GU(V) act on S(V ®1 X) by

L(h) f(x) = x (@ Hlal* fl@ ).

Then L(h) defines a unitary operator on ¥(V ®7, X), and this action with wy, oty ,
defines an action of R(V, W) on ¥(V ®; X) and a splitting of R(V, W) into
Mp(V @, W;).

Let A be a character of GU(V) whose restriction to U(V) is A!. We identify
A with a character of L* by GU(V) ~ L*. For a character A of L, let A be the
character of L* given by A(a) = A(@) for « € L*. By the projection to the second
factor GU(V) of GU(W;) x GU(V), we may see ¥ A as a character of R(V, W).
Define

given by

FVRLX)RxMuw)

to be the maximal quotient of ¥(V ®; X)® x A on which U (V) acts trivially. Then
GU(W))* acts on this space as follows. For g € GU(W; )™, choose h € GU(V)
satisfying vy (g) = vy (h). Define the action of g as that of (g, h) € R(W, V).
Then this is independent of the choice of . As U(W )-modules, we have

PV QLX) ® xMuw) = Sv,w (x4,
and on this space, (g 2) € GU(Wi)Jr acts by xA. We denote the restriction to

GL(W')™ of this representation by 8 (A, GL(W'))¢. Here € is as in Section 3.

Let a = a@. Then
a0\ (aO0)(fa O
01/ \oa/\oa!
Hence (‘(’)‘ (1)) acts on f € S(1!) sending it to the class in S(A') of the function

X @n@)x (@) al)? flax) = r@)|al,” f(ax).

This coincides with the extension of the action of SL(W’) to GL(W')* in [Jacquet
and Langlands 1970, Proposition 1.5]. For a character A of L*, we set

O(x, GL(W") =TInd g1+ (A, GL(W) )T

Then as GL(W’)*-modules, we have
Resgr(y). 001, GL(W)) =0(h, GLIW)HHt @6k, GL(W)H) ™

see [Meeglin et al. 1987, II.1, Remarque (3)].
Let Ps(1, €7,r) be the principal series representation of GL (F) associated with
characters (1, €,r). Then 6(1, GL(W')) is isomorphic to Ps(1, €7,r) by [Jacquet
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and Langlands 1970, Theorem 4.7]. We set Ps(1, €7 )¢ the subspace correspond-
ing to 6 (A, GL(W’))€. By setting ¢ = x nzl, we see that Theorem 3.4 is equivalent
to the following:

Theorem 4.1 [Prasad 2007, Lemma 4]. For € = %1,

Ps(1, wr/r)|1, = Be, )= Ch.
where ¢ runs through all characters of L™ whose restriction to F* is equal to
€L/F-

Remark 4.2. The map  — x !5 induces a one to one correspondence between
the set of characters of L' and the set of characters of L* whose restriction to F*
is €7/ r. Therefore the theorem of Moen—Rogawski is equivalent to the preceding
theorem through Theorem 3.4.

For A such that A|;:1 is not trivial, 6 (A, GL(W’)) is an irreducible supercuspidal
representation of GL(W’) by Theorem 4.6 of [Jacquet and Langlands 1970]. In
this case, Theorem 3.5 can be stated as follows:

Theorem 4.3 [Prasad 1994, Theorem 1.2]. Under the action of GL,(F)*, the
space (A, GL(W")) decomposes into two subspaces 8(,, GL(W")*, and for € =
+1, one has

6, GLW) I, = P  Co,

e(r¢~ ! v0) =
e~ Yo)=¢

where ¢ runs through all characters of L* which satisfy »¢ ™| px = €L/F-
Proof. Set ¢ = x ~!'Anr. Since )\i =A1"1, we see
X))~ =0T i =e7
xng' =0 g Hr =2,

We note A¢~!|px = Ap~!|rx = €1,p. By (4-1), we can see the action of T, by
that of L'. For v € 6, (x~'A!, W+ W_), U(W) x {1} acts on v via n X 1 if and
only if T acts on v via xAn, = x 'Anz. The assertion follows from this and
Theorem 3.5. O

5. Nonsplit case

We now consider the nonsplit case. Let

a p
B:{(nog &>‘a,ﬁeL}.
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Then B is the division quaternion algebra over F. Let
Bt ={xeBleyr(Nx) =1}, B'={xeB|Nx) =1}

Here N (x) is the reduced norm of x € B. We set

T, = {(g 2) |aeLX}.
Then T7, >~ L*. We note

a 0\ (a 0\ fa/a 0O
-1 (o &)‘(o a)( 0 1)'
Leta =6, B = —ngd, ora =npd, B = —n%é. Then B* C GU(W(«, B)), and

T, C Bt cGUW (o, )T =L*U(W(a, B)) =L*B™.

Here GU(W (a, B))™ is the subgroup of GU(W («, B)) consisting of elements with
similitude in Ny, (L>).

We define splittings. Let W = W(«, —8). We embed W («, ) into W + W_
and consider U(W («, B)) as a subgroup of U(W + W_). Let W=V ®r W, and
W_ =V ®&r W_. We may consider W(e, B) =V ®r W(x, B) as a symplectic
subspace of W+ W_ and Sp(W(«, B))) as a subgroup of Sp(W +W_). Then we
have splittings Iy ,, Uy, ,,— satisfying

V.x

UW+W.) ~ Mp(W +W_)

i i

Ty y X1y y —
UW)xUW) Vo 7V Mp(W) x Mp(W).

We choose the embedding of Mp(W) x Mp(W) into Mp(W+W_) so that it induces

the map (ci, ¢2) + c1cp on the center C! x C!. Let W(x) = V ®; W(), and

W(B) =V ®r W(B). Restricting the above diagram to Mp(W(«, B)), we obtain

v, x

U(W(a, B)) - Mp(W(e, B))

zﬂ o If

Xly

U(W (@) x UW(B)) L2 Vrs Mp(W(a)) x Mp(W(B))

Here Mp(W(«, B)) is the inverse image of Sp(W(«, )) in Mp(W + W_), and
Mp(W(w)) and Mp(W(B)) are the inverse images of Sp(W(w)) and Sp(W(B)) in
Mp(W) on the first and the second factor in the above diagram respectively. The
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restriction of iy , : U(W(a, —p)) — Mp(W) to U (W (—p)) induces a map

UW(=B) = UW(B)) % Mp(W(=8)) = Mp(W(B)).

Then iy , _ and Xﬁlfv,x coincide as homomorphisms of U (W (8)) to Mp(W(8)),
by [Harris et al. 1996, Lemma 1.1]. We have

Wy, WAW 0§ = Oy W(a,—p) X wJ,W(a,—ﬂ)

by [Mceglin et al. 1987, II.1 Remarques (5), (6)] and [Harris et al. 1996, Lemma
2.1(i)]. By restricting this to Mp(W(«)) x Mp(W (8)), we obtain

Oy, Wi(a,B) © 1 = Oy Wia) B X w%W(—ﬂw

Wy W(a,B) oio (ZV,X X ZV,Xa—) = Wy W(a) OZV,X X a);’w(iﬂ) o ZV’X’_
= a)w’W(a) OZV,X X sz\/i,W(fﬁ) OZV,X

As for the splitting for U (V), we may take ty .y _ ,+ or that induced by Ty , .

Let 0, ( x~'Al, W(a, B)) be the theta correspondence of the character Al
of U(V) to U(W («, B)) in Mp(W(«, B)). By the same calculation as in the split
case, we obtain:

Lemma 5.1. Let U (W («)) x {1} be the subgroup of U(W(a)) x U(W(B)). Then

dlmHOmU(W(O[))x{l}(ex(X_l)\'l’ W(Ol, /3))? 77 & 1)

|1 if nappears in wy w) o ly,y and Ay appears in Wy W(—-B) O LV, x>
0 otherwise.

Since €7/ (—pB/a) = —1, the trivial character does not satisfy the above condi-
tion for A!. In the case of a nontrivial A!, we have:

Theorem 5.2. Let ' be a nontrivial character of L', and let € = €L/r(a/d). Then

0, (x "1 Wi, B)luwenxiny = &y Cnk1.
—e(x(GopnL) " Ap,Y0) =
e(xny o) =¢
As in the split case, we can interpret this result by the dual reductive pair
(B*,GO(V)). In the same way as in the split case, we can define O(A', B').
Let A be a character of L* which restriction to L' is A!. We define the action
of L*, the center of U(W(a, B)), on 0, (x~'A!, W(e, B)) by xA. Then this
yields a well-defined smooth action of L*U (W (e, B)) on 6, (x~'A!, W(a, B)),
since L NU(W(x, B)) = L. By restriction, we obtain an action of B, since
BT Cc L*U(W(a, B)). We denote this representation of Bt by 6(A, BT)¢ for
€ =€ ,r(a/8). We induce it to B and denote it by 6 (A, B*).
By Theorem 5.2 and (5-1), we obtain:
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Theorem 5.3. Under the action of BT, 0(A, BX) decomposes into two subspaces
O (A, B*) fore = +1, and

0B . MNln,= P Co.
—e(p™" Yo)=
e~ Yo)=e
where ¢ runs through all characters of L* that satisfy A~ | px = €r. JF-

Remark 5.4. The representations 6 (A, GL(W’)) and (A, B*) are in Jacquet—
Langlands correspondence with each other, and Theorem 5.3 gives the latter half
of Theorem 1.2 in [Prasad 1994].

By [Mceglin et al. 1987, Chapitre 3, IV, Corollaire 9], an irreducible quotient of

0(x "2, WU(a, B)))

is uniquely determined. Since U (W («, B)) is compact, 0(x ~'A', U(W («, B))) isa
multiple of this irreducible representation. Lemma 5.1 implies that the multiplicity
is 1, and 6(x~'A', W(a, B)) is irreducible. Let = = 6 (%, BX). Since A|;1 is not
trivial, (A, GL(W")) is supercuspidal. Let 7’ be the representation of B> which
corresponds to 6 (A, GL(W’)) under the Jacquet-Langlands correspondence. We
denote by x,, xn the characters of 7, 7’. Then 7 and 7’ satisfy

/ /
TReL/)F=T, T Q€L /F=T,

and x; = x.» on L*. By Corollaries 1.7 and 1.15 of [Hijikata et al. 1993] and
Theorem 4.6 (and the remark following it) in [Takahashi 1996], this implies that
Xz = X on all the other elliptic torus of B*. Therefore m >~ 7’.
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