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MARIA ATHANASSENAS AND KIRK LANCASTER

For a capillary graph in a vertical cylinder € x R c R3, the existence of a
reentrant corner P € 92 makes the determination of the continuity at P
(or the behavior of the radial limits at P) of the solution problematic. Since
continuity is the necessary consequence of the existence of a “central fan” of
radial limits under certain conditions, the determination of necessary and
sufficient conditions for the existence of a central fan is a very important
open question in the mathematical theory of capillarity. Examples by Finn
and Shi suggest that ‘““central fans” may be very rare in the sense that ar-
bitrarily small perturbations can eliminate them. In this note we obtain
examples of capillary graphs (with zero mean curvature), each of which is
continuous or has a central fan at a reentrant corner.

1. Introduction

The nonparametric capillary problem in a cylinder 2 x R over a piecewise smooth
domain 2 with corners at points Ay, ..., A, € d€2 and gravitational constant x
consists of finding the solution(s) 1 € C*(Q)NC'(Q\{A1, ..., A,}) of the Dirichlet
problem

(1a) div(Th) =xh+A inQ,
(1b) Th-v=cos(y) ondQ\{A,...,A,},

where v is the outer unit normal to 02 and
Vh

V1+|Vh]

An extremely interesting and important question about nonparametric capillary
surfaces is that of determining necessary and sufficient conditions for the continuity
atacorner P of a solution £ of (1). As a solution of a boundary value problem for a
quasilinear elliptic equation with positive genre (g = 2), the possibility of obtaining

Th=

such conditions should seem remote; solutions of equations like (1a) can behave
near a point on the boundary in significantly different ways than can solutions of
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equations such as Laplace’s equation or a Poisson equation, as illustrated by [Jin
and Lancaster 1999] and [Serrin 1969].

Let us assume €2 is a domain in R? whose boundary has a corner of size 2« at a
point, which we may temporarily take to be the origin O = (0, 0) for convenience;
we may assume the domain is oriented so that the rays 6 = « and 6 = — « are
tangent to d€2 at O and so that the directions 6 € (—«, «) are the interior directions
to 2 from O, where (r, ) denotes polar coordinates about O. We may parametrize
a2 near O by (x(s), y(s)) so that (x(0), y(0)) = (0, 0) and y(s) > 0 if s > O but
y(s) < 0if s < 0. Let us also suppose that the contact angle y = y(x, y) might
depend on (x, y) € €2 and assume the limits

2 Y= 13%1 y(x(s), y(s)) and y»= 13%1 Y (x(s), y(s))

both exist.

The study of capillary surfaces in wedge domains can be tricky, as illustrated by
[Keller et al. 1991] and [Vreeburg 1990]. Concus and Finn [1991] mentioned that
[Vreeburg 1990] was incorrect; we note that its argument is invalid since it does
not distinguish between mean curvature and Gauss curvature and since it ignores
[Tam 1986]. Vreeburg fails to consider the possibility of a jump discontinuity
in the trace of the capillary surface on the boundary cylinder; see Section 2 and
[Lancaster and Siegel 1996b]. Concus and Finn [1996b] noted that [Keller et al.
1991] was incorrect. Keller, King and Merchant [1991] argued that the only ruled
minimal surfaces in R? were planes, ignoring helicoids, and seemed to be confused
about the notion of principal curvature. As with Vreeburg, they failed to consider
the possibility of bounded, discontinuous (at the corner) capillary surfaces when
y1 # 2. Concus and Finn did consider this important possibility; as part of their
investigation of these capillary surfaces, they discussed the question of continuity
at a corner and in 1992 formulated the following conjecture for convex corners;
see for example [Shi 2006].

Concus—Finn Conjecture. Suppose a € (0, 7/2), v1, y2 € (0, w), and |y — 2| >
1w —2«. Then a solution of (1) must be discontinuous at O.

Concus and Finn [1996a] and Lancaster and Siegel [1996b; 1996a] studied the
behavior near O of capillary surfaces over domains with a corner at O whose
contact angles might have differing limits at O; see also [Concus and Finn 1994;
Concus et al. 1992].

For convex corners (2o < 1), the continuity or discontinuity of a solution of (1)
at such a corner is completely determined by “local” geometric information, that
is, 1, ¥2, and @. At nonconvex corners (2« > 1), the task of finding necessary and
sufficient conditions for continuity is much more difficult, and local information
(that is, y1, y» and «) is not necessarily sufficient to determine continuity.
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Our first goal is to provide an overview of results related to the continuity of
a solution 4 of (1) and to introduce a problem, the “central fan question”, which
we consider to be the most important open problem in the mathematical theory of
capillary surfaces; we do this in Section 2. Our second goal is to demonstrate that
for a range of piecewise constant contact angle data y, there exists a domain 2
with a reentrant corner at P such that either the solution h of the capillary problem
with k = 0 is continuous at P or the radial limits of h at P exhibit a central fan.

Our examples complement [Shi 2006, Example 6.6], which is a slight modifi-
cation of [Lancaster and Siegel 1996b, Example 2]. One motivation for seeking
examples containing central fans (or continuity) is the insight into the central fan
question these examples might provide. The cited examples use comparison argu-
ments which require ¥ > 0; in contrast, our examples illustrate the limiting case
of k = 0. Our solutions are minimal surfaces satisfying contact angle boundary
conditions. Such solutions have qualitatively different behavior than solutions of
(1a) with « > 0, and, for example, the a priori height bounds, which play a critical
role in the cited examples, do not hold when « = 0. Our examples are obtained
by solving Riemann—Hilbert problems, representing minimal surfaces in terms of
Weierstrass f and g representations, and proving that these surfaces behave as
claimed in Theorems 3.1, 3.2, 7.1, and 7.2. In principle, our solutions are con-
structive; computing one of our surfaces would require computing a conformal
map and a certain number of complex contour integrals.

2. Radial limits, central fans and continuity at corners

Consider  C R? whose boundary has a corner of size 2« at the origin O = (0, 0)
as described above, and assume the limits in (2) both exist.

Definition. For a function /# with domain Q C R? and P € 3%, the radial limit of
h at P in the direction 6 is

Rh(0) = Rh(0; P) = lilrzr)l+ h(P+rw(d)), where w(0) = (cos(d),sin(0));

here 0 is an angle for which P + rw(6) € 2 when r > 0 is small. (The existence
of each limit above follows from [Lancaster and Siegel 1996b, Theorem 1] when
h satisfies (1), y is piecewise continuous with y € [e€, m — €] for some € > 0, and
Ivi+y2—7m| <2a.)

2.1. Convex corners. Lancaster and Siegel [1996b, Corollary 4] proved that a so-

lution 4 of (1) must be continuous at O if a < %, lyi — 12| < m — 2, and

|1 + v2 — | < 2a. The proof follows from lower bounds on the sizes of “fans”
of constant radial limits obtained in [Lancaster and Siegel 1996b, Theorem 2].

These bounds implied the “fans” touch or overlap and hence RA is a constant
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function on [—a, ], where Rh(4«) are defined as the one-sided limits at O of
the trace of 4. These limits are proven to exist as part of the proof of [Theorem
1]; if & is discontinuous at O, [Theorem 1] implies Rk is not constant. When
lv1 + v2 — | > 20, we know that no solution of (1) can remain bounded near O;
see [Concus and Finn 1974b; Concus and Finn 1974a]. When |y + y» — 7| = 2a,
a variation of Tam’s argument [1986] should establish the continuity of a solution
at P. The Concus-Finn conjecture was recently proven by Lancaster [> 2008];
hence & is discontinuous at the corner if |y; — y2| > m — 2«. Thus, assuming
the successful application of Tam’s arguments, the continuity or discontinuity of a
solution of (1) at a convex corner is completely determined by “local” geometric
information, that is, vy, 2, and «. When o < /2, h is continuous at O if and
only if |1 + 2, — 7| <2 and |y — 2| <7 — 2.

2.2. Nonconvex corners. We now discuss the results of [Lancaster and Siegel
1996b]. The conclusion of [Theorem 1] is that the radial limits of 4 behave in
one of the following ways:

(1) There exist a; and oy such that —a < o < oy < o and such that Rh is
constant on [—«o, o1] and [op, ] and strictly increasing or strictly decreasing
on [ay, az). Label these case (1) and case (D), respectively.

(i1) There exist oy, ap, og, @y such that —a < o] < ap < ar < ap < o, where
or = oy + 7 and such that Rh is constant on [—«, o1], [or, agr], and [ca, o]
and either strictly increasing on [y, ar] and strictly decreasing on [ag, o;]
or strictly decreasing on [o1, o] and strictly increasing on [og, an]. Label
these case (ID) and case (D1), respectively.

We note that the language in (ii) is a little ambiguous since the word “strictly”
is not present; an examination of [Parts 2 and 3] of the proof of [Theorem 1]
demonstrates that the statement above is correct and the size of the “central fan”
[ar, ar], in directions for which R#h is constant, is exactly 7. When k = A =0
in (la), that the size of the central fan is exactly = was obtained in [Lancaster
1988, Theorem 2]. The conclusion of [Lancaster and Siegel 1996b, Theorem 2] is
that there exist lower bounds on the sizes of the “side fans” [—«, o] and [c2, o]
depending on which of the cases (I), (D), (ID), or (DI) holds; these bounds are

e a; + o >y, for (D) and (DI);

e a1 +oa >m —y for (I) and (ID);
e o —ap >y for (I) and (DI);

e a—ap > 7 — yp for (D) and (ID).

Central fans will be of particular interest to us. [Lancaster and Siegel 1996b,
Example 2] is a nonparametric capillary surface, perhaps the first in which a central
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fan can be seen to exist. Shi [2006] assumes the Concus—Finn conjecture holds and
proves that if ¥ > 0 and o > /2 and either |y} — | > 2o —m or |y1 +y» — 7| >
2w — 2a, then a solution £ of (1) must be discontinuous at O. Since the Concus—
Finn conjecture has been proven, this means that the question of continuity at a
nonconvex corner reduces to the situation where the size 2« of the opening angle
and the limiting contact angles y; and y» are related by

3) Vi—rl<2e¢—m and |y1+y2—7|=<27 —2a.

When |y; + y» — | < 2m — 2a, we claim that the only possibilities are that /4 is
discontinuous at the corner O and (i) holds at O or that 4 is continuous at O. To
see this, suppose % is discontinuous at O and either case (ID) or (DI) holds. If
(ID) holds, then ¢« —ap > m — y; and o] — (—&) > 7w — y», and (using the fact
that central fans are of size 7) the sum of the sizes of the three fans is at least
T —y1+m+m —y. If (DI holds, then @ — oy > y; and o] — (—a) > y», and the
sum of the sizes of the three fans is at least y; +7 +y». Now |y1+y2, —7| <27 —2«
implies 2o < w + y; 4+ y» and 2« < 37 — y; — ¥», and these imply that the sum
of the sizes of the fans is at least 2«; since Rh is constant on each fan, Rh must
be constant, and our assumption that % is discontinuous at O is false. We see
therefore that a necessary and sufficient condition for the continuity of 4 at O is
that |y; 4+ y» — | < 27 — 2« and the radial limits of & cannot be monotonic, that is,
[Lancaster and Siegel 1996b, Theorem 1(i)] cannot hold. Consider the following:

Definition (symmetry condition). We say that a capillary problem (1) satisfies an
“(even) symmetry condition at a point P € 92" if there is a rigid motion L :
R? — R? such that L(P) = O, L(RQ) is symmetric with respect to the x-axis and
yoL '(x,—y) =y oL !(x,y)forall (x, y) € L(3R).

[Lancaster and Siegel 1996b, Corollary 2] is the first result which provides suf-
ficient conditions for the existence of a central fan; it implies this: Suppose k > 0,
Q has a reentrant (that is, nonconvex) corner at P € 02, (1) satisfies the symmetry
condition at P, and h satisfies (1). Then h* = h o L™ is even in y and Rh*(6; O)
is constant for 6 € [—m /2, 7w /2].

Shi and Finn [2004] examined [Lancaster and Siegel 1996b, Example 2] and
modified its construction to obtain a ¥ > 0 capillary surface in a nonsymmetric
domain; their solution satisfied the angle requirements of [Lancaster and Siegel
1996b, Corollary 2], that is, (3) with y; = y», but was discontinuous at O. The Shi—
Finn construction made, in a sense they explained, an arbitrarily small perturbation
in the domain which left a neighborhood of O unaltered.

We define the central fan question to be the problem of finding necessary and
sufficient conditions for excluding [Lancaster and Siegel 1996b, Theorem 1(i)],
that is, case (I) and case (D), at a reentrant corner; if cases (I) and (D) are excluded,



206 MARIA ATHANASSENAS AND KIRK LANCASTER

then one of case (ID), case (DI), or Rh is constant (and 4 is continuous at the
corner) must hold, and so there exists a central fan of constant radial limits (of
size 7 in cases (ID) and (DI) or of size 2« otherwise) at the corner. We consider
this question to be the most important open problem in the mathematical theory of
capillarity for these reasons:

(i) The (unresolved aspect of the) continuity question — that is, “Is a solution 4 of
(1) continuous or discontinuous at a corner?” —is a special case of the central
fan question.

(i) Any sufficient condition for the existence of central fans will probably be
“unstable”, as illustrated in [Shi and Finn 2004].

(iii) It seems likely that this question will be very challenging and may require the
development of new mathematical techniques or the modification of existing
techniques.

(iv) The central fan question has inherent geometric and analytic appeal. The
question was first raised by Finn in [1998], and [Shi and Finn 2004] is the first
investigation of this question; see also [Finn 1999; Finn 2002].

(v) A solution of this problem offers the possibility of obtaining insight about
boundary value problems for general quasilinear elliptic partial differential
equations.

3. Construction of the domains 2 and main theorems

We will construct an appropriate “capillary graph” (for example, [Huff and Mc-
Cuan 2006]) using a Weierstrass representation of minimal surfaces. We assume
the domain €2 is symmetric about the coordinate axes and starshaped as indicated
in Figure 1. We assume cos(y (x, y)) is an odd function of x and y. In each
quadrant, d€2 has a reentrant corner and our principal interest is in the behavior of
the solution at these corners. We note that the symmetry condition does not hold
at P (nor at Q, R, and S) if y; # y»; specifically, & will not be symmetric with
respect to the line through P that bisects angle AP B in Figure 1 if y; # y». We
will restrict our attention to g, which is the quarter of the domain in the second
quadrant and require the Gauss map of the surface z = h over Qg to be injective.
This requirement that the Gauss map be injective is critical for our construction
using the Weierstrass ( f, g)-representation of minimal surfaces; however, minimal
surfaces with injective Gauss maps over nonconvex domains are in some sense rare
and this requirement will “pick out” (depending on y) the particular domain €2 in
which we will work.

Specifically, to create our domain, we let § € (0, 7/4) and, for B = (xg, 0) with
xo € (— cot(8), — tan(8)), consider the domain Q(B) C R? illustrated in Figure 1
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A

Figure 1. The domain 2.

whose boundary is a polygon with eight sides that is symmetric with respect to
the horizontal and vertical axes and whose two sides in the second quadrant have
vertices at (0, 1), P, and B, where P = P(xgp) is the point of intersection of the
lines y = cot(8)x 4+ 1 and y = tan(8)(x — xo). We have labeled the vertices of €2,
starting at (0, 1) and moving in a counterclockwise direction, as A, P, B, Q, C,
R, D, and §; we labeled the origin as O. The convex angles OAP and O B P have
measure 8, and the nonconvex angle AP B has measure 37 /2 — 25. Let Q¢(B) be
the (open) region whose boundary is the nonconvex quadrilateral APBO.

Consider 2 = Q(B) as the cross section of a vertical cylinder A. We need to
specify our contact angle boundary condition on A. Let y, y» € (0, /2) satisfy
the condition

cos(y2)

(@) tan(6) < cos(1)

< cot(d)

and define the function y : 92 — R by

Y1 if (x,y) e APUCR,
1Z) if (x,y) e PBURD,
T—y if(x,y) e BQUDS,
m—y if(x,y)e QCUSA.

y(x,y)=
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Consider the capillary problem (1) in the cylinder A with contact angle boundary
data y, gravitational constant ¥ > 0, and Lagrange multiplier A. We are interested
in the behavior of the solution in zero gravity. In this case, K =0 and the divergence
theorem together with (1) implies

AlQ = /diV(Th) dA :f cos(y) ds.
Q a0

Since cos(y (x, ¥)) is an odd function of x and of y, we see that A = 0. This means
the solution 4 will be a minimal surface.

First we will consider pairs (y;, y2) of contact angles that satisfy the additional
restrictions y; > & and y, > 4. It turns out that the simplest case to state, Theorem
3.1, is the most difficult to prove. In Section 7, we will discuss the situation in
which one or both of the assumptions y; > § and y, > § is removed. This results
in a number of cases, illustrated in Figures 5 and 6, which affect the geometry of
the stereographic projection of the Gauss map; however each case follows rather
easily from the proofs of Theorems 3.1 and 3.2.

Theorem 3.1. Let § € (0, w/4) and y1, y» € (0, w/2) satisfy (4),
Vi+yv2>m/2-26, y1>6, and y)>34.

There exists a unique xo € (— cot(8), — tan(8)) such that if B = (xg, 0), 2= Q(B),
and Qo = Qo(B), then the boundary value problem (1) with k =X =0 and y as
defined above has a (unique) solution h € C 2(Q) N C%Q) which satisfies

(1) h(0,0)=0and

(1) the Gauss map G of the surface I'yg = {(x, y, h(x, y)) : (x,y) € Qo} defined
by

(Vh(x, y), =1

VI+|Vhx, y)P?

extends to an injective map GecC® Ty : Sz).

5 G(x,y, h(x,y) =

for (x,y) € Qo,

In addition, if y1 + 1y, > /2 =28, y1 > 8 and y, > 8, then h € C1(Q).
Theorem 3.2. Let § € (0, w/4) and y,, y» € (0, w/2) satisfy (4),
ity <m/2—-26, y1>36, and y,>6.

For each 0, € [§ + vy, —m, —7/2 — 8 — y1], there exists a unique xo = xo(61) €
(= cot(8), —tan(8)) such that if B = (x¢, 0), 2= Q(B), and 2y = Qy(B), then the
boundary value problem (1) with k = A =0 and y as defined above has a (unique)
solution h € C*(Q)NCYQ\{P, Q, R, S}) which satisfies

(i) h(0,0) =0and
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(ii) the Gauss map G over S, given in (5), extends to an injective map G €
C%(To : 8%), where To = {(x, y, h(x, y)) : (x,y) € Qo}.

This solution is discontinuous at P, Q, R, and S and

constant ifoel6—m, 6+, —ml,
strictly decreasing  if 0 € [ + v, — m, 01],

Rh(0; P) = 3 constant ifo €6y,60,+m],
strictly increasing  if0 €0 +m, w/2—56—y1],
constant ifoeln/2—86—y,m/2—46].

Rh(0; Q), Rh(0; R), and Rh(0; S) behave in appropriately similar manners. In
particular, 0) determines the position of the central fan and, through the determi-
nation of the point B, the geometry of the domain.

4. Proof preliminaries

We are interested in the stereographic projection E of the image of the Gauss map
of our solution over 2¢(B) for an appropriate B. In this section, we assume y; > §
fori =1, 2. Todetermine E,let By ={weC : |w| <1}, Q1={we B; : Re(w) <
0, Im(w) > 0} and set

Ey={we Q1 : |lw—wi[>tan(y)), |w—ws| > tan(y,)},

where w; = u; +ivy = — cos(§) sec(yy) +i sin(5) sec(yy) and wy = upy +ivy =
—sin(8) sec(yn) + i cos(8) sec(y»). The constant contact angle condition on the
vertical plane AP x R corresponds to requiring that the Gauss map lie on the circle
that is the intersection of S? and a cone with opening angle y;. The stereographic
projection of this circle is the circle C; = {w : |w — w;| = tan(y;)} centered
at wi. In the same way, we see that the constant contact angle condition on the
vertical plane P B x R corresponds to requiring that the Gauss map lie on the circle
that is the intersection of S> and a cone with opening angle y». The stereographic
projection of this second circle is C; = {w : |w — w;| =tan(y»)}. Then E = Eo.
Let us examine the set £, which is a simply connected subset of the closed unit
disk. The boundary of E consists of portions of the circles C; and C, which are
orthogonal to the unit circle d By, the positive imaginary axis, the negative real axis
and (possibly) the unit quarter-circle {w € dB; : Re(w) <0, Im(w) > 0}. If
the circles C; and C; intersect in |w| < 1, then let wy = ug + ivg be this point of
intersection; (4) implies wy € Q1, and by reflecting about d By, we see that

(v2 —v1)vg = (U1 — u2)up.
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Note that C; lies entirely in the open set Re(w) < 0 if y; < w/2 —§, and C; lies
entirely in the open set Im(w) > 0if y, < /2 —§. Let us write

o3={wedE : Im(w) =0},

o1 =0ENCy,
o4 ={wedE : Re(w) =0},
oy =0ENC,,
os={weiE : |lw|=1}
We will set fp = 0. We denote the remaining corners of 0F as t1, ...,y for 3 <

L < 4. The t; have these properties:

(i) t1, 1 € o1 and Im(#p) = 0; that is, 1, is the intersection of C; with the negative
real axis, and #; is the intersection of C; with either C, (see (iii)) or d B; (see
@iv)).

(i1) 13 € 0o and Re(#3) = 0; that is, #3 is the intersection of C, with the positive
imaginary axis.

(i) y1+y2 = n/2—28 implies L =3 and ¢; € 0,.
(iv) y1+y2 <m/2—256 implies L =4, t4 € 0p and t1, t4 € 9 B.

When condition (iii) holds, Figure 2 illustrates the shape of E, while Figure 3
illustrates the shape of £ when condition (iv) holds. An example of a listing of
the corners in counterclockwise order is t1, t,, to, t3, and, if L = 4, t4. Notice that
when condition (iv) holds, #; = exp((r — 8§ — y1)i) and t4 = exp((w/2+ 8 + y2)i).
For the Weierstrass representation, let us define g : E — E by g(w) = w.
We wish to find f € CO(E \ {t1,...,1.}), with at worst integrable singularities
atty, ..., tr, whichis analytic in Eg. We define X € CUE :R>»NC*(Ej: R with

Figure 2. y1 =6, y» =6, y1+y2 > mw/2—26.
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4
3

v}

Figure 3. y; =6, »» =6, vi+y, <m/2—26.

(6) Xu+iv)=(xu,v), yu,v),z(u,v)).

and K (u+iv) = (x(u, v), y(u, v)) foru+iv € E, such that X (0) = (0, 0, 0) and (a)
the analytic functions (f, g) form the Weierstrass representation of X [Osserman
1986]; (b) K is a homeomorphism between o] and AP, 0, and PB, o3 and OA,
and o4 and B O (where, for example, O A means the line segment between O and
A); and (¢)

7 K is constant on each component of o5s.

Here we say f has an integrable singularity at t,, if and only if | f (w)| < C|lw —1,|°
for —1 <s <0 and C > 0 for w near ¢,.

We will now formulate the Riemann—Hilbert problem which we will solve by
temporarily assuming the existence of a suitable function f.

The boundary requirements (b) imply

(8a) y(u, v) =cot(8)x(u, v) +1 foru+iv € o,
(8b) y(u, v) = tan(8) (x (1, v) — xg) foru+iv € oy,
(8¢) x(u,v)=0 and O0<y(u,v)<l1 foru+iv € o3,
(8d) y(u,v)=0 and xg<x(u,v)<0 foru+iv € oy,

where xg € (— cot(8), — tan(8)) remains to be determined. Decompose f (u+iv)=
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fi(u, v) +ifa(u, v), where f; and f> are real-valued. Now (a) implies

Xp=fW (A —wh/2,  yu=ifw(A+w)/2,  z,=wf(w)

for w € E; see for example [Osserman 1986]. Since d/dw = (0/du —id/dv)/2,
the equations above yield

X (t, v) = Re(f (w)(1 — w?)), Xy (u, v) = — Im(f (w)(1 — w?)),
Yu(u, v) = Re(if (w)(1+w?)), Yo, v) = —Im(@i f (w) (1 + w?)),
Zu(u, v) = ReQuf (w)), 2o(u, v) = — ImQuf (w)),

where we use the notation w = u +iv.

If we parametrize oy by o = {wi (#) = ux(t) +ive(t) : t € Iy}, with I a closed
intervalin Rfork=1, ..., 5, then by differentiating with respect to ¢ (and denoting
d/dt by a prime), we find

(8a) implies y,u| + yyv] = cot(8) (x,uy + xyv});

(8b) implies y, u5 + yyv5 = tan(8) (x,uh + x,v5);

(8c) implies x, (u3(t), 0) =0;

(8d) implies y, (0, v4(z)) = 0; and

(7) implies x,us + x,v5 =0 and y,us + y,v5 =0.

For o1, we have (u;(t) — u;)* + (v1(t) — v))? = r12, where r; = tan(y;), which
implies

W@ w-v Im(wi @) —w)

V(1) uy(r) —u Re(w; (1) —wy)’
For 05, we have (ux(1) — u2)* + (v2(t) — v2)? = rj, where r, = tan(y,), which
implies

uy() v -—v _ Im(w(t) —wy)
5 (1) us(t) —uy Re(ws (1) — wy) '
Recall that cot(§) = —Re(w;) /Im(w{) = —u /vy and tan(§) = —Re(wy) /Im(w,) =
—uz/vz.
If we use this information, we obtain
) Re ((ax(u, v) +ibg(u, v)) f(u +iv)) =0,
when (u,v) eo fork=1,...,5, where

ai(u, v) +iby(u,v) =ie’ (w—w) (e —w?) fw=u+iveo,
ay(u,v)+iby(u,v) = e_i‘s(w — wz)(ez‘” + w2) ifw=u+iveoy,
az(u, v) +ibs(u,v) = —1 ifw=u+iv e o3,
as(u, v) +ibs(u,v)y = —1 ifw=u+iv € oy,

a5(u,v)+ib5(u,v)=(u+iv)2 ifw=u+iv €os.
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We now definea,b: 0E — Rby a(u+iv) =ar(u, v) and b(u +iv) = by (u, v) if
u+iveogforkefl,...,5} anddefine G : 0E — C by G(w) = a(w) +ib(w).
It is possible that o5 = &, in which case as(u, v) + ibs(u, v) has no impact on G.

Assuming the existence of f, we were led to (9). Now we can formulate the
problem of finding X with g = id. We wish to find a function f € CY(E \
{t1, ..., t}) thatis analytic in Eq and satisfies

(10) Re(G(w) f(w)) =0 forwedE\{t, ..., 1)

This is a Hilbert problem with piecewise discontinuous Holder coefficients G in
the notation of [Monakhov 1983, Chapter 1, Section 4]. To use the results in
[Monakhov 1983], we need to compute the index of G in an appropriate function

class O(m) = O(ty,, ..., t,,) forsomem € {0, ..., L}. Define G| : 9E — C by
G(w)
G = ——.
1(w) Gw)
We have G1(w) = — 1 for w € o3 U oy, G, is continuous at 0, and G| (w) =
— (w/|w])* = — w* for w € 05. Set w = €. Notice also that
G1(w) = |G w)| (0w — w) (@ —w?))’ for w € o1,
Gi(w)= — |G(w)|_2625i((w —wy) (w? —I—a)z))2 for w € o0s.

For two corners ¢, and ¢, with n > 1 on 0E, let [t,, t,4+1] denote the arc
of JF between f, and ¢, with 774 equalling #;; for example, [#(, £,] = 07 and
[tr,t3]1=03Uo04. Forn e {l,..., L}, let

b = 5 (@2(G1 1y — 0) — arg(G 1 (1 +0)),

where arg(G1(f, — 0)) means the limit at 7, of the argument of G| along the arc
[t.—1, t,] and arg(G (¢, + 0)) means the limit at #,, of the argument of G| along the
arc [t,, t,+1]. The argument is taken to be continuous along each arc [#,, #,+1].

To understand the monotonicity behavior of arg G; on the different arcs, and
since G is a product on o} and o,, we consider w € 01\ {—w, iw} and define

Mw) =arg@® —w?) and  Ay(w) = arg(w? + w?) = arg(w? — (—w?));

note that A (w) € (—n /2 —26§, 7/2 —26) and Ax(w) € (—7 /2428, w/2 + 26).

Notice that if w € o3, then A (w) € [—7/2—65, —25) and if w € oy, then Ly (w) €
(28, /2 +68]. Let us factor &> — w? and w? +w? and analyze these factors. Define
ap(w) = arg(w —w) € [3n/4—6/2, 1 —§/2], ax(w) = arg(w + iw) € [1/2 +
8/2,3m /44 6/2], B1(w) = arg(w 4+ ) = arg(w — (—w)) € (—x/2 -6, /2 =),
and By (w) = arg(w —iw) € (6 — m, §). Then

Aw) =ai(w)+Br(w) =7 and Ax(w) = az(w) + Ba(w).
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Some simple calculations show that if w1)(7) = w; + rie't parametrizes the cir-
cular arc C; N By, then

L@@ @) <0, L (Biwa@)) =0, (@ + @) =0,

while if wp) (1) = wy + rre'T parametrizes the circular arc C, N B, then

L @) <0, L(pwe @) =0, <L(@+pwe @) =0,

Hence A (w) is strictly increasing as w € o1 moves in a clockwise direction with
respect to E (that is, counterclockwise on C;) and A, (w) is strictly increasing as
w € o, moves in a clockwise direction with respect to E (that is, counterclockwise
on C»). Similarly, we see that A (u) is strictly increasing for u € [—1, 0] and A, (iv)
is strictly increasing for v € [0, 1].

5. Proof of Theorem 3.1

Suppose first that y; + y» > /2 — 24, so that L = 3. Then

H=w+ rze”“ for some 14 € [y + 8 — 7, 0),

13 = wy + re'?? for some Top € (8 —/2,0], with 124 < T3,
f1 =w; +re™4 forsome 114 € (—/2, /2 —8 — yi,

tr =w; +r1e'"? forsome 115 € [—7/2, —8), with T4 > T1p.

We observe that

ar(t3) = arg(tz +iw) < /2436, Ba(t3) = arg(tz —iw) <4,
ai(t) =arg(thy —w) > — 6, Bi(tr) = arg(tr + @) > —m /2 — 6,
T14—T24 > 0 and (4) implies 154 < 0 and 714 > —7/2. For the sake of definiteness,
we set
arg(G1(1 —0)) =7 + 25 — 2(124 + A2(11)),
arg(G1(n +0)) = —2(8 + 114 + A1(11)),
arg(Gi(n—0)) = =28+ 11 + A1 (1)),
arg(Gi(+0)) =arg(G (13 — 0)) =7,
arg(G1(13+0)) = + 28 — 2(t2p + 22(13)).
Notice that
01 =1/2+ 25+ 114 — 24 + 11 (1) — X2(11)) /7,
Or= —1/2— (8 + () +11p)/m € (—1/2428/7,1/2],
=)+ —08)/mre(—1/2+25/m,1/2].
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Also

arg(G1(t2 — 0)) —arg(G1(t1 +0)) =2(114 — T1B) +2(A1(11) — A1(12)) > O,
arg(G(t; — 0)) —arg(G (13 +0)) = 2(125 — 124) + 2(A2(13) — A2(11)) > 0;

hence 61 + 0, + 03 > 0. Therefore, 6; > 1 —45/7 > 0.

Now 114 — 124 equals the angle formed by the triangle with vertices wy, #1,
and w; at the vertex t; notice that 0 < 714 — o4 < w. Also, Bi(t;) — B2(t1)
equals the angle at | formed by the line segments [#;, —w] and [t;, iw] from #;
to —w and iw, respectively, where the angle begins in the direction [#1, iw] and
moves counterclockwise to [#;, —@]. Notice that tj4 — 704 < B1(t;) — B2(t1) and
w/4—8 < Bi(t)) — Ba(t1) <3m/4+ 5. Further, oy (t1) — aa(f1) equals the (acute)
angle formed by the triangle with vertices —iw, t;, and @ at the vertex t;; notice
that w /4 — 8§ < a1 (1)) —ap(t)) < /2 —28. In agreement with the conclusion of the
previous paragraph, we see that

01> 1/24 (26+0+4[(/4—8) + (w/4—8) —x])/m =0,

where the sum in the square brackets is a lower bound for A () — A»(#1). In fact,
as y; and y, converge to /2 from below, 6, and 65 each converge to —1/2+26/m,
and 0; convergesto 1 —46/r.

If we set z; = exp(i(m — 38 — y1)) and zp = exp(i(w/2 4+ 6 + y»)), so that z; €
C,NdB; and z; € C; N d By, then the monotonicity of A, on C, N B implies

arg(Gi(t —0)) < + 28 —2[124 + A2(22)] =27 — 2724 — 26 — 2>,
and the monotonicity of A; on C| N B implies
arg(G1(t1 +0)) = =26 = 2[t1a + A1 (z)] = — 7 — 2714 + 26 + 2y1.
Recalling that y; + y» > 7 /2 — 26, we obtain
0<O <1+ (t1a—104)/m <2

and 6; =2 if and only if y; + y» = /2 — 26.

Setvi =1[01], v =0, v =0, a1 =61 — vy, oy = 0, and a3 = O3, where
[61] denotes the greatest integer less than or equal to 6. Notice that vj + v, 4+ 13 €
{0, 1, 2}. Let ¢/ be the conformal map from E onto the unit disk B; that maps ¢; to
1, © to i, and t3 to —i. Define G* : 9B; — C by

G*(¢)=GW '(¢)) for{edB.

Our Hilbert problem (10) is then equivalent to finding f* € C O(By\ {1, %i}) which
is analytic in By, has (at worst) integrable singularities at 1, i, —i, and satisfies

(11) Re(G*(0) f*(¢)) =0 for¢ € 9By \ (1, +i}.
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We now use results from [Monakhov 1983, Chapter 1, Section 4]. Using [2.°(a),
p. 49-52] when vy = 0 after setting x = 0, [2.°(b), p. 52-53] when v; = 1 after
setting x = 0, and [2.°(a), p. 49-52] when v; = 2 after setting x = 1, we obtain a
solution f = cfy of (10), where f; has the form

fow) = (@ (w) — DI (P (w) — )2 (P (w) + )0V @)

and e"°®) is a continuous, nonvanishing function on B;. Assuming ¢ # 0, f does
not vanish on E \ {t, 17, t3}. Notice that Re(fo(w)) =0 if w € (03 Uoy) \ {t2, 13},
and so f(0) =ibg for some by # 0. Now Im( fo(w)) # 0, and so Im(bg fo(w)) >0
for w € (o3 Uoy) \ {2, 13}. We set

0
(12) —1/c=/ (14 u?)ifo(u) du

and observe that chy > 0 since 7, < 0. It follows then that f(0) =ibgc, Im(f (w)) >
0 for w € (63 Uoy) \ {f2, 13}, and

/2(1 +u®)if ) du=1.
0

Let X € C°(E : R?) be the minimal surface whose Weierstrass ( £, g) representation
is given by g(w) = w, where f is defined above, and which satisfies X (0) =
(0, 0, 0). Recall (6) and notice that (x(#,, 0), y(#, 0)) = (0, 1) and K maps o3 onto
the line segment joining (0, 0) and (0, 1). Also x(0, #3) < 0 and K maps o4 onto
the line segment joining (0, 0) and B = (x(0, t3),0). Withw =u +iv € E, let

Xu(w)x X, (w) _(2Re(w) 2Im(w) |w|2—1)

13 ]_\} = —_ [} 9
(3) W) = X, ) x Xy~ \[wlP+1" w41’ |wPt

denote the Gauss map N e CY(E : §?) of X(E); here N(w) is the downward unit
normal to X (E) at X (w).

From the above, setting /5 (w) = (Y (w) — D)* (Y (w) +1i)*3 "0V @) "and defin-
ing h3(w) similarly, we have

(14) fw) =@ (w) —i)*ha(w) = (Y (w) +i)*h3(w)

with 71y € CUE \ {t1,13)), h3 € CUE\ {t1, 1)), ha(tr) # 0, and h3(13) # O.
Since ¥ (w) € 0By with arg(y¥(w)) € [7/2, 37 /2] for w € 03 U0y, Y(t2) =i, and
Y (t3) = — i, we see that

) =it ) = (S ) ) wosw i,
Y(w) +i

a3 .
) hs(w) — e h3(t3) asoy>w — f.

[ (w) +i|7* f(w) = (m
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Since Re(— f(w)) =0if w € (063Uoy) \ {2, 13} and so Re(|¥ (w) —i|7*2 f(w)) =0
and Re(|¥ (w) +i|7% f(w)) =0 for w € (03 Uoy) \ {fz, 3}, we see that

ha(fy) = ide®™  and  hi(t3) = ihze O™
for some Az, A3 € R. Since Im(f) > 0 on (03 Uoy) \ {f2, 13}, we have Az, A3 > 0,

fw) = (Y (w) —i)*2ire?™ +o(|¢(w) —i|*®?)  for w € E near t,,
fw) = W (w)+i)%irze™ " +o(|Y(w)+i]|*) for w € E near 3.

Recall that w()(t) = w; + rie’ and define

u)(t) =Re(w) (7)), x1(t) = x(uy (), vy (1)),
v1)(7) = Im(w (7)), y1(7) = y(ua)(r), v1)(7)).

Also recall w()(t) = wy +r2e™ and define

uo) (1) =Re(w) (1)), xX2(1) = x(u) (1), v2) (1)),
V) (1) = Im(wz) (7)), y2(1) = y(u) (1), v2)(7)).
Recall that the condition Re[G (w) f(w)] =0

for w € o1 \ {t1, ©2} implies y|(t) = cot(8)x| (t) for T € (115, T14) and

for w € 0\ {t1, 13} implies y| (t) = tan(8)x; (r) for T € (11, T14).

Thus K (w(1)(7)) maps [715, T14] onto a line segment on the line y = cot(§)x + 1
(with K (w(1y(t18)) = K(#2) = (0, 1)) and K (w(2) (7)) maps [124, 23] onto a line
segment on the line y = tan(8)x + yy for some undetermined yy.

Do we know that K maps dE onto a nonconvex quadrilateral of the type de-
sired? Actually, the answer is no. Figure 4 represents the types of nonconvex
quadrilaterals onto which K could map dE. We need to show that Figure 4(C)
corresponds to the actual image of K. (Different choices of o, &y and o3 do yield
all of the possibilities illustrated in (A), (B), and (C) of Figure 4.)

Since ¥ (w) € 0 B; with arg(y (w)) € (0, w/2) when w € o1 \ {t1, f»}, we see that

Y(wy(t)) —1i
[ (wy(T)) — |

W (way (2) = 17 f (wy (0) = ( ) hatwiy () > o)

as T — tf%. Notice that

L) = 1;1:‘(:—;“_(?1 Im((wy(r) = wi) £ (way () (1= w?) (1)),
A 01(0) = S () (2) = )i ()14 (),
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P

(A) (B) ©

Figure 4. Types of quadrilaterals onto which K could map 0 E.

Recall that 5 (f2) = iX2e*2™, ty —w) =rie™5, sin(t;g) <0, v; >0, Im(t;) =0,
and wom +t15+7/2 = — (A1 () +6) € (6, m/2]. Hence cos(am +t15+7/2) >0
and sin(apm 4+ 713 +7/2) > 0. Now

lim Iw(wl(f))—il_“zi(xl(r))z

rony  [L—wqy ()] dT

—ry sin(Tg)
0— V1

Im((t2 — wl)i)\geazi)

—ry sin(t
= l—v(lB)rlkz Sin(OQT[ + 1718 + %) <0,
— V1

im 4 (£) 1172 4L (1 (1) = R 02

(14 ) Im((t2 — wy)i*re®)
1>, 0—v;

= %ﬁnlg)rlkz(l —|—t22) cos((xzn + g+ %) <0.
These inequalities imply that there exists an € > 0 such that xj (r) <0 and, if y; > §
(so g > —m/2), yj(r) <O0fort € (115, T1g +€).
We leave it to the reader to verify that if ¢ is in (715, T14) and xi (t9) = 0, then
S (w()(t0)) = 0; this would use that |w(y(70)| < 1. Since f #0on oy \ {t1, 12}, we
see that x{(7) # 0 and y| () # 0if T € (118, T1a). Therefore,

xi(r) <0 and yj(r) <0 fort € (115, T14),
and K is a homeomorphism from o} onto the line segment between A = (0, 1)

(=K())and P = (xp, yp), for some xp <0 and yp =cot(§)xp + 1. K(oy) isa
subset of the line y = cot(8)x + 1.
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Notice that
L) = % Im((wey (1) — w2) f (i) (1)) (1 — wh) (1)),
d —r cos(7) |
77 (2(0) = 5 [ (1) — w2 (o ()1 + 0y (0)]

Arguing as above, we find that
. o —rp cos(T
lim. [y (s () |~y (1) = 220028
T=T,p 0—uy

lim Y w2() i7"
1m 5
=1, |1— w(g)(f)|

rpAas(1 —t%) sin(% +1Tp —azn) <0,

—rp cos(Tap)
0—u

b4
A3 cos(— + g — oezn) <0,

yi(r) = 3

since Tp + /2 — o = /2 — (A2(13) — &) € [0, /2 — §). Hence y,(r) =
tan(S)xé(t) < 0 for 7 € (14, T2). Since yy(1op) = Im(K(3)) =0, T4 < T2,
and y,(7) is a decreasing function of 7, we have y>(t24) > 0. This implies xg =
Re(K (t3)) = x(12B) < xp. Therefore K maps d E homeomorphically onto the
boundary of a nonconvex quadrilateral AP BO with K mapping o onto AP, o,
onto P B, o3 onto BO, and o4 onto O A.

Each point w € Ey = E'\ 9 E lies in the open disc Bj, and so the tangent plane to
X (Ep) at X (w) is not vertical (for example, (13)). Hence w has an open neighbor-
hood U whose closure is strictly contained in B and whose image X (U) under X
is a C? function over an open set in the xy-plane. Since the boundary X (3 E) has a
simple projection onto the quadrilateral AP B O, it follows that X (E) is the graph
of a function in & € C2(2(B)) N C°(Q(B)) over the xy-plane; see for example
[Huff and McCuan 2006, Lemma 1].

Ifyi1+y >m/2—-28, y1 > 6, and y, > §, then the stereographic projection of
the image of the Gauss map of X (E) is contained in a compact subset of the open
unit disk By, and hence ||VA|| is uniformly bounded in €2. From this, it follows that
hec'(Q).

Suppose there exists another value x; € (— cot(§), — tan(§)) such that if B} =
(x1,0), Q=Q(B}), and ¢ = 2¢(B}), then the boundary value problem (1) with
k = A =0and y as defined in Section 1 has a solution 4 € C*(£2) N C°(Q) which
satisfies the conditions that /2(0, 0) = 0 and whose Gauss map G over €, given in
(5), extends to a map GeC 9Ty : §?) which is injective. From the symmetry of the
problem, the comparison principle implies that # =0 on O A and on O B. Suppose
X E - R X(w) = (x(w), y(w), z(w)), is an isothermal parametrization of
So, the graph of & over €29 which maps #; to (P, h(P)), t» to (A, h(A)), and 13 to
(B, h(B)). Then it follows from the symmetries in the capillary problem and the
symmetries of E that X maps 0to (0, 0, 0). If we define §: E — Cby § = poGoX,
where p(x1, x2, x3) = (x1+ix2)/(1—x3) is the usual stereographic projection, then
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g is an analytic function; see for example [Osserman 1986]. Notice that Section 2
implies g : 0FE — 0E, g(t1) =11, g(t2) = t», and g(t3) = t3. Since G is injective
on Iy, g is injective, and so g must be a conformal map from E to E that equals
the identity; that is, g = g. Let us define the analytic function f : E — C by
f(w) =xy(w) —iyy,(w). From Section 2, we see that f must be a solution of the
Hilbert problem (10) and must therefore be the one obtained earlier here. However,
this implies x; = xp (= Re(K (13))).

6. Proof of Theorem 3.2

Suppose next that y1 + y» < 5 — 28, so that L = 4. Then

f =T =y 4TI e — Wy + et ™8 for some Tap € (8 — 7, 0],

ty = eI — ) 4 eI — w4 r1€! T8 for some Ty € [—7F, —6).

For the sake of definiteness, we set

arg(Gi(t) —0)) =7 —4(r =3 —y1),

arg(Gi(n +0)) = =200+ (/2 —y1 —8) + (/2 — y1 — 29)),
arg(Gi(nn—0)) = —2(8 + 115 + A1(R2)),

arg(G (2 +0)) = arg(G (13 — 0)) = 7,

arg(G1(13+0)) = 7 + 28 — 2(t2p + 22(13)),

arg(G1(t4—0) =7 4+20 —2((a +06—m) + 25+ yr — 1 /2)),
arg(G1(t4+0)) =7 —4(7/2+ 8+ y2).

Then
6= —1/2, 0= —1/2—(+1(tr)+118) /€ (—1/24+258/7,1/2],
0,=15/2, 03 = (A (t3)+Top—96)/me(—1/24+25/m,1/2].

Also 0+ 60, +603+64 € (1 +465/7, 3].

Letussetvi= —1, v, =0, v3=0, V4 =2, a1 =601+ 1, ap =6, a3 =03,
and og = 64 — 2. Let i be the conformal map from E onto the unit disk B; which
maps t1 to 1, #; to i, and #3 to —i. Set ¥ (¢4) = ¢4. Define G* : 9B; — C by

G*¢)=GW '(¢)) for¢edB.

Our Hilbert problem (10) is then equivalent to finding f* € C (B, \ {1, £i, ¢4})
which is analytic in Bj, has (at worst) integrable singularities at 1, i, —i, ¢4, and
satisfies

(15) Re(G* () f*(¢)) =0 for¢ € 9By \ {1, %i, 4.}
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Figure 5. Region E for Theorem 3.2.

Since vi + v + v3 +vq = 1, this Hilbert problem has a solution of the form
£i@) =g — e MHIE)e ™

where ¢, p e Rand T1(¢) = (¢ — D (¢ — i) (¢ +1)* (¢ — £4)*. Recall that T 0&)
is nonvanishing and continuous on Bj.

Now select 0* € [1/2+ 8 + y», 1 — 8 — y1], and note that ¢!?" € o5; see Figure
5. Set

p=—arg(¥('”))/2 € [0, —arg(s4)/2],
so that e 2" = 1y (¢!?"). With this choice, we see that
f,f(é“) = ce'™ (£ — e MHI1()e™ @),
fu(w) = ce™ (W (w) — e 2T (Y (w))e oW @),

Let ¢ € R be given by (12), with the obvious interpretation of fy(w). If we define
() =2¢G* () T1(¢)e @), then we see p(e~2) # 0, and so

2G*(€i9)f/j(€i6) 0 ) '
i = 1 I 7 § 1 —2ui
(16) e%lfrz}u T T eggup(e )|el’9 mper R ple™H)

ei@ _e—2i/L
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and

2G*(ei€)f*(ei9) i ei@ _ e—zm ) '
. 1% T oy —C . 2ip —2ui
17 01151# e — 2R Q}IIIZIM ple )|ei9 =TT ie * " p(e My,

Using (15), we see that e 72/ p(e=24) € R\ {0}.

Let X, : E— R3, X, (u+iv) = (x,(u,v), yu(u, v), z,(u, v)) be the minimal
surface satisfying X (0) = (0, 0, 0) whose Weierstrass ( f, g)-representation is given
by f,. and g(w) = w. From the arguments in the proof of Theorem 3.1, we see that

(i) there exists xp € (—cot(§), —tan(§)) and B = (xp,0) such that X, (dE)
projects onto 9(£2(B)),

(i) X, is a homeomorphism from E onto X, (E), and

(iii) K, maps oy onto AP, o, onto PB, o3 onto BO, o4 onto O A, and o5 to the
point P.

Notice, for example, that the argument in the previous section showing x/{(7) <0,
y1(r) < 0and x)(r) <0, y5(r) < 0 remains valid here (with x}(t) <0, y;(7) <0
for € (t13, 5 — y1 —8) and x}(7) <0, yi(r) <0 for v € (y2+8 — 7, 128))).

Notice that a classical “tilting argument” (for example [Huff and McCuan 2006,
Section 3]), together with the argument in Section 5, shows that X (Ey) is the graph
of a function i, € C 2(Q(B)). Now h w18 discontinuous at P and the radial limits
Rh,, of h, at P contain a central fan if 6* € (/2 48+ y», m — & — y1) with Rh,
constant on [6* — 37w /2, 0% — 7 /2].

Since K, (w) = P for all w € o5 while d/dr(zu(e”)) # 0 for T € (arg(&s), 0)
with T # -2, we see that &, is discontinuous at P if 0* € (w /2+5+y>, 1 —6—y1).
Suppose now 0* isin (7 /248 + y2,  —§ — y1). Notice that

L @u@) = —2mGE 1)

and, since e ~2* = 1 (¢'?"), (16) and (17) show that this derivative changes sign at
T = 0*. This implies z,, (€'T) is increasing on one side of 6* and decreasing on the
other side of 6* fort € (w/24+8 4 y2, m — & —y1). Set

E§=8+y—m, & =0"-3m/2, E&=0"—n/2, &L=n/2-8—y.

From our construction, X, has a (boundary) branch point at ¢'?". From (13), we
see that ]V(eie*) = (cos(0*), sin(0*), 0). Let D ={u+iveC : u>+v><1,v>0},
and let x be a conformal map from D to Ey which maps 0to ¢/, Let X : D — R?
be defined by X = X, 0 x, and let X (u +iv) = (x(u, v), y(u, v), z(u, v)) denote
the components of X. From [Lancaster and Siegel 1996b, p. 174], we see that

Xy(u, 0) = sin(@*)u + o(lu]) and y,(u,0) = —cos(@*)u+o(|u|) as u — 0.
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A

Figure 6. The “central fan region”.

Hence

(@, 0), 3o, 0)) {(COS(EL), sin(§2)) asu 10,
S, 0 + 2,0 L(cos(Er), sin(€r)) asu | 0.

As in Steps 2 and 3 of the proof of [Lancaster and Siegel 1996b, Theorem 1(ii)],

this implies that the radial limits of &, at P satisfy

limr—>—2uﬁ Zu(f) ifd—m<6<§,
strictly decreasing if§; <6 < &y,
Rh,,(0) is | constant if & <0 < &g,

strictly increasing if &g <6 < &,

limrﬁleﬁ- ZM(‘L') if& <60 < %—5.
The behavior of Rh,, () on [ay, ag] is the definition of a “central fan” of (constant)
radial limits (for example [Lancaster and Siegel 1996b]), and the “central fan re-
gion” (for example {(r cos(8), rsin(f)) € 2 : r >0, 6 € [&, &Er]}) is illustrated in
Figure 6. If 0* =7 /2+ 68+ y», then &, =&, & =6+ y», and Rh,(0) is constant
on [6 —m, Eg] while if 0* =71 — 8 — |, then &g = &, & = — /2 -6 — yy,
and Rh,(0) is constant on [§7, /2 — §]. We leave it to the reader to verify the
uniqueness of / as in the proof of Theorem 3.1.

7. General results

Theorem 7.1. Let 6 € (0, w/4), and suppose y1, y» € (0, 7/2) satisfy (4) and
y1 + 2 > 1w /2 —28. Then there exists a unique xo € (— cot(8), —tan(8)) such



224 MARIA ATHANASSENAS AND KIRK LANCASTER

that if B = (x9, 0), Q= Q(B), and Qo= Qy(B), then the boundary value problem
(1) with k = A = 0 and y as defined in Section 1 has a (unique) solution h €
C2(QNCYQ\{A, B, C, D)) which satisfies the conditions that h(0,0) = 0 and
whose Gauss map over L, G: Iy — S2, given in (5) with 'y = {(x, y, h(x, y)) :
(x,y) € Qo}, extends to a map G e C%Ty : S?) which is injective. In addition, if
Yi+yr>m/2—28, then he CY(Q\{A, B, C, D}). If y1 > 8, then C°(Q\ {B, D}),
while if y» > 8, then C°(Q\ {A, C)).

Theorem 7.2. Let § € (0, w/4) and yy, y» € (0, w/2) satisfy (4) and
Y+ <m/2—26.

For each 01 € [6 + yvo — m, —/2 — § — y1], there exists a unique xy = x¢(0) €
(—cot(8), —tan(8)) such that if B = (x9,0), Q = Q(B), and Qy = Q(B), then
the boundary value problem (1) with k = A =0 and y as defined in Section 1 has a
(unique) solution h € C*(Q)NC°(Q\{A, B, C, D, P, Q, R, S}) which satisfies the
conditions that h(0, 0) = 0 and whose Gauss map G over Qo, given in (5), extends
to a map GeC Oy : S?) which is injective. This solution is discontinuous at P,
0, R,and S and

constant ifeld—m,6+y,—ml,
strictly decreasing if 6 € [ + y» — 7, 01],

Rh(0; P) = 3 constant ifo €6y,60 +m],
strictly increasing if0 € [0 +m, /2 -8 — 1],
constant ifoelrn/2—-86—y,m/2-46].

Rh(0; Q), Rh(9; R), and Rh(0; S) in an appropriately similar manner. If y > 8,
thenhe CY(Q\{B, D, P, Q, R, S}). If y,>8,then he C°(Q\{A, C, P, O, R, S)).

The are eight different possible geometries of E represented by Theorems 7.1
and 7.2. For Theorem 7.1, they are tabulated as follows.

6] yI=86 w»m=8 yvi+y»>=n/2-25 L=3 Figure?2
(ii) yiI=8 ym<d yi+y>=n/2-25 L=4 Figure7
(i) y1<d8 =6 yi+wy=n/2-2 L=4 Figure7
iv) y1<8 ym<é yi+yp=n/2-25 L=5 Figure7
For Theorem 7.2, the table is this:
(v) y1=8 =86 yi+y<n/2—-25 L=4 Figure3
Vi) =8 »m<é yi+y<mw/2—-25 L=5 Figure8§
(vil) y1<d8 =8 yi+wy<mn/2-25 L=5 Figure8

(viii) y1 <8 ym<é yi+wy<mn/2—-25 L=6 Figure8
The results of Theorem 3.1 show that Theorem 7.1 is true in case (i) and Theorem
3.2 shows that Theorem 7.2 is correct in case (v). Here we have used the notation
of Section 4 to indicate (by L) the number of corners, excluding the origin, which



CMC CAPILLARY SURFACES AT REENTRANT CORNERS 225

B
/ N

Case (ii)

Case (jii)

B
N

Case (iv)

Figure 7. Other Theorem 7.1 cases.

the boundary of E contains. In cases (ii)—(iv), the proof of Theorem 3.1 remains
unchanged except for certain details which differ from those in Section 5. The
changes for each case are listed below.

(i) 13 =€/ 2T 1y =i 63 = —28/m, 0, =0, and ay = 04.
(i) p =T = —1, b =1/24+2(8—y1)/m, 64 =0, and oy = 6.
(V) =€ T 3 = /2Ry = ts=—1, 6,=1/2+2(8 —y1)/7,

932 —25/7‘[, 9420, 95 =0, a4=94,anda5:95.

In cases (vi)-(viii), the proof of Theorem 3.2 remains unchanged except for cer-
tain differences from Section 6:

(Vi) 13 =e!T/2H0) ys =i 03 = — 28/, 65 =0, and a5 = 6.
(Vi) th =T s = — 1, 0 =1/242(8 —y1)/m, 65 =0, and a5 = 6.
(viii) tp = ! Ty = o248 e = tg = — 1, 6, =1/242(08 —y1)/7,

93: —23/7‘[, 94:0, 95 :0, o5 :95,anda6:96.
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V)

Case (vi) = Case (vii)

Case (viii)

Figure 8. Other Theorem 7.2 cases.

Remark 7.3. It would be interesting to extend this work to appropriate analytic
functions g : E — B; which map d £ homeomorphically onto dE but are not
injective over E. In this case, although the surface z = h(x, y) would be a strict
minimizer of the appropriate capillary functional, the surface z = h(x, y) would
have “undulations” or “wobbles” which one might expect to increase surface area.
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