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Anisotropic Delaunay surfaces are surfaces of revolution that have constant
anisotropic mean curvature. We show how the generating curves of such
surfaces can be obtained as the trace of a point held in a fixed position rel-
ative to a curve that is rolled without slipping along a line. This generalizes
the Delaunay’s classical construction for surfaces of revolution with con-
stant mean curvature. Our result is given as a corollary of a new geometric
description of the rolling curve of a general plane curve. Also, we charac-
terize anisotropic Delaunay curves by using their isothermic self-duality.

1. Introduction

When immiscible materials come into contact, the interface that forms between
them is often modeled as a surface. According to the law of least action, the
equilibrium surface will form so as to attempt to minimize its free potential energy
subject to whatever constraints and additional forces are imposed by its environ-
ment.

In a liquid/air interface with no additional forces present, the free energy as-
signed to the interface is its surface tension. For homogeneous materials, the
surface tension is proportional to the area of the surface interface. Minimization
leads to the formation of what are known as minimal surfaces (when no volume
constraints are imposed) and constant mean curvature surfaces (when a volume
constraint is imposed).

If the temperature is gradually lowered, the liquid in the drop may crystallize.
This means that its constituent molecules will be found in an ordered configu-
ration and, as a result, the energy assigned to the surface interface will become
anisotropic; it will depend on the direction of the surface at each point. The
simplest formulation of an anisotropic surface energy is this: Let F be a smooth
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positive function defined on the two dimensional sphere S2. If ν is a choice of a
unit surface normal along the surface 6, then

(1-1) F :=

∫
6

F(ν) d6

defines an anisotropic surface energy called a constant coefficient parametric func-
tional.

The surfaces that we will discuss here are in equilibrium among surfaces with
prescribed volume for such parametric functionals which in addition satisfy an
ellipticity condition: Denote by DF and D2 F the gradient and Hessian of F on
S2. Then we require that at each point in S2 the matrix D2 F + F1 is positive
definite. The functional appearing in (1-1) is referred to as a (constant coefficient)
parametric elliptic functional. This means that the Euler–Lagrange equation which
characterizes equilibria is an elliptic equation. The major consequence of ellipticity
is a maximum principle analogous to that for constant mean curvature surfaces.
Moreover, for such a parametric elliptic functional F, there is a unique minimizer
(up to translation in R3) of F among closed surfaces bounding a prescribed volume,
which is called the Wulff shape (for F), and it is a smooth convex surface.

When considering a nonlinear theory, it is essential to have a class of tractable
examples at hand. When the energy functional is rotationally invariant (that is, the
corresponding Wulff shape is a surface of revolution), an obvious class of examples
to consider are the surfaces of revolution. In the classical case of isotropic surface
energy, the surfaces of revolution with constant mean curvature were found by C.
Delaunay [1841]. The Delaunay surfaces are divided into major types: spheres,
unduloids, catenoids, nodoids, and cylinders. Delaunay found an ingenious method
for describing the generating curves of these surfaces. If a conic section 0 rolls
without slipping along a line, then the trace of one of its foci defines a curve �
which, when rotated around the line, gives a constant mean curvature surface 6.
In particular, when 0 is a parabola, 6 is a catenoid; when 0 is an ellipse, 6 is an
unduloid; and when 0 is a hyperbola, we obtain a nodoid. Among the reasons for
the importance of the Delaunay surfaces are these:

(1) They are the most accessible examples of constant mean curvature surfaces.

(2) In many problems involving symmetry, one can conclude a priori that the
solution is a Delaunay surface.

(3) Because of (1), they serve as ideal comparison surfaces in applying the max-
imum principle to study other surfaces of prescribed mean curvature.

(4) The ends of any properly embedded surface with nonzero constant mean cur-
vature in Euclidean space are asymptotic to Delaunay surfaces.
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(5) They are the essential building blocks in the construction of other important
examples of constant mean curvature surfaces using “gluing methods.”

It is reasonable to believe that the rotationally invariant equilibrium surfaces
should play an analogously important role for other functionals besides surface
area. In view of (2) and (3) above, this should particularly be the case for function-
als having a maximum principle, as do the elliptic parametric functionals. In fact, in
[Koiso and Palmer 2006; 2007a; 2007b] the maximum principle has been applied
to conclude that solutions of capillary problems for rotationally invariant elliptic
functionals with free boundaries on horizontal planes are surfaces of revolution.

This paper is organized as follows. Section 2 rederives the basic equations defin-
ing anisotropic Delaunay surfaces. We also give a generalization to the case where
the Wulff shape need not be rotationally symmetric but is a product of convex
curves. Section 3 reviews a general rolling construction of Hsiang and Yu and
relates it to the classical concept of isothermic duality. We also give a refinement
of the general rolling construction by determining the half-plane that contains the
rolling curve (Theorem 3.1). In Section 4, we give the definition and some basic
properties of the mean curvature profile associated with a surface S of revolution.
This is a curve whose curvature κ(s) is equal to twice the mean curvature H(s)
measured along a meridian of S. Section 5 applies the concept of the mean curva-
ture profile of a surface of revolution S to give a geometric description of the rolling
curve of the generating curve of S. The rolling curve 0 is obtained as a type of
dual curve of the mean curvature profile (Theorem 5.1). We then proceed to apply
the general rolling construction to the anisotropic Delaunay surfaces, beginning
with the Wulff shape in Section 6 (Theorem 6.1) and continuing with the other
types of anisotropic Delaunay surfaces in Section 7 (Theorems 7.1, 7.2). In the
applications to anisotropic unduloids and nodoids, the isothermic self-duality of
their generating curves (Lemmas 7.4, 7.5) is used essentially. And in Section 8,
we use isothermic duality to characterize the periodic curves that arise as generating
curves of anisotropic unduloids and nodoids (Theorem 8.1).

2. Generalized anisotropic Delaunay surfaces

Here we will give a description of some equilibrium surfaces for functionals whose
Wulff shape may not be rotationally symmetric. The Wulff shape is assumed to
have the property that all of its intersections with horizontal planes are mutually
homothetic. In the case when the Wulff shape is a surface of revolution, the con-
struction reduces to that of the anisotropic Delaunay surfaces which were exten-
sively studied in [Koiso and Palmer 2005]; that derivation was less elementary than
the one appearing here.
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Let

(2-1) �W : (u(σ ), v(σ )) for −2L1 ≤ σ ≤ 2L2

be a closed convex curve in the two-dimensional Euclidean space R2 parametrized
by arc length σ . Here we mean by “a closed convex curve” a closed C∞-curve
with positive curvature with respect to the inward pointing normal. We assume
that �W is symmetric with respect to the v-axis. We may assume that

(2-2)
u ≥ 0 and vσ≥ 0 for −L1 ≤ σ ≤ L2,

u < 0 and vσ< 0 for σ ∈ [−2L1,−L1)∪ (L2, 2L2].

Also we may assume that u and v′ have zeros only at σ = − L1, L2 and that u′

and v have zeros only at σ = 0,−2L1, 2L2. Let C : τ → (α(τ), β(τ )) be a closed
convex curve parametrized by arc length in the plane. We assume that the origin
is inside the domain bounded by C . Consider the surface W in R3 given by

χ(σ, τ )= (u(σ )α(τ), u(σ )β(τ), v(σ )).

When (α, β)= (cos τ, sin τ), this gives a surface of revolution.
In general, W is a convex surface such that all the curves obtained by intersecting

W with horizontal planes (that is, the third component = constant) are homothetic
to each other.

For a suitable plane curve (x(s), z(s)) parametrized by arc length with x > 0,
we have the surface 6 defined by

(2-3) X (s, τ )= (x(s)α(τ), x(s)β(τ ), z(s)).

A straightforward calculation shows that

(2-4) χσ ×χτ = u(−vσβτ , vσατ , uσ (αβτ −βατ )).

Note that because of the assumption that C = (α, β) is convex, and because the
origin (0, 0) is inside of C , the difference αβτ − βατ has a definite sign, and we
can choose the orientation of this curve so that the sign is positive.

The same calculation holds for X and so

(2-5) Xs × Xτ = x(−zsβτ , zsατ , xs(αβτ −βατ )).

Formulas (2-4) and (2-5) show that the normals to the two surfaces agree exactly
when either

(2-6)
xs = uσ

xs = − uσ

and

and

zs = vσ , or

zs = − vσ .
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Recall that the Gauss map of a convex surface is a diffeomorphism onto the 2-
sphere. The assignment to a point X (s, τ ) on 6 the point χ(σ(s), τ ) on W where
either in (2-6) holds defines a map which we call the anisotropic Gauss map of X .
This map clearly factors through the 2-sphere. We denote this map by χ .

We have

χ
s
= σs(uσα, uσβ, vσ )= ± σs(xsα, xsβ, zs)= ± σs Xs,

χ
τ

= (uατ , uβτ , 0)= (u/x)(xατ , xβτ , 0)= (u/x)Xτ .

Since χ
s
= dχ(Xs) and χ

τ
= dχ(Xτ ) we see that Xs and Xτ are eigenvectors of

dχ with eigenvalues ±σs and u/x respectively. The negative of the trace of dχ
is called the anisotropic mean curvature, which we will denote by 3. In the case
where W is the 2-sphere, χ is the Gauss map of 6, and 3 = 2H , where H is the
usual mean curvature.

The anisotropic mean curvature, of course, has a more important variational
definition. If an immersion X is subjected to a normal variation Xε = X + εψν+

O(ε2) for ψ ∈ C∞

0 , then the first variation of F is

∂εF(Xε)ε=0 = −

∫
6

ψ3 d6.

In particular, 3≡ constant characterizes surfaces which are in equilibrium for the
functional F subject to a volume constraint; see [Koiso and Palmer 2005].

From our computations, the anisotropic mean curvature is a constant 3 if and
only if

(2-7) ± σs + u/x = −3= constant.

However, by (2-6), we have us = uσσs = ± xsσs and so

(2-8) du
dx

=
us
xs

= ± σs .

Therefore, (2-7) is equivalent to

(2-9) du/dx + u/x = −3.

Equation (2-9) is the same as (xu)x = −3x . Integrating this equation gives

(2-10) ux = −3(x2/2)+ c/2,

where c is a constant. We obtain

(2-11) x =

{
(−1/3)(u ±

√
u2 +3c) if 3 6= 0,

c/(2u) if 3= 0.
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Assume (3, c) 6= (0, 0). Then, we can also use (2-6) to give a formula for z. We
have, using (2-8),

(2-12) dz = (dz/ds)ds = ± vσ sσdσ = vσ xudσ = xudv.

The function z can then be defined on a suitable subset of W as

(2-13) z :=

∫
xu dv,

with xu computed from (2-11). When inserted in (2-3), the functions x defined
by (2-11) and z defined by (2-13) define an immersion on a suitable subset of W
which has constant anisotropic mean curvature 3.

Let us consider the case where (α, β) = (cos τ, sin τ), that is, W is a smooth,
closed convex surface of revolution generated by the curve �W in (2-1). The
surfaces X (s, τ ) of revolution with constant anisotropic mean curvature 3 were
studied in detail in [Koiso and Palmer 2005; 2006; 2007a; 2007b]. We refer to
them as anisotropic Delaunay surfaces. In the special case where W is the 2-
sphere, the surfaces X (s, τ ) are just the usual Delaunay surfaces.

Denote by µ2 the principal curvature of the Wulff shape W along the “equator”
with respect to the inward pointing normal. Then µ2 = vσ/u, and therefore,

(2-14) µ2 = ± z′/u.

The curvature µ2 can be regarded as a function of the unit normal ν= (ν1, ν2, ν3)=

(z′ cos τ, z′ sin τ,−x ′). In the present case, µ2 can be regarded as a function of one
variable: µ2 = µ2(ν3)= µ2(−x ′). Then (2-10) with (2-14) implies ± 2µ−1

2 z′x +

3x2
= c. The constant of integration c will be called the flux parameter.

Let S be an anisotropic Delaunay surface for the Wulff shape W . Let Ŝ be
a reflection of S with respect to a horizontal plane. Then Ŝ is also an anisotropic
Delaunay surface for the same Wulff shape W . If the anisotropic mean curvature of
S is3 for the “outward” pointing normal, then the anisotropic mean curvature of Ŝ
is −3 for the “inward” pointing normal. Therefore, from now on, we will identify
an anisotropic Delaunay surface with its reflection with respect to a horizontal
plane, and we may assume that 3 ≤ 0. We remark that, for the CMC (constant
mean curvature) case, this normalization for the sign of3 corresponds to a suitable
choice of the orientation of the surface normal.

Now, we may consider only solutions of

(2-15) 2µ−1
2 z′x +3x2

= c

with3≤ 0. Then the anisotropic Delaunay surfaces fall into six cases as follows:

(I-1) 3= 0 and c = 0: horizontal plane.

(I-2) 3= 0 and c 6= 0: anisotropic catenoid.
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(II-1) 3< 0 and c = 0: Wulff shape (up to vertical translation and homothety).

(II-2) 3< 0 and c = ((µ2|ν3=0)
2
|3|)−1: vertical cylinder.

(II-3) 3< 0 and ((µ2|ν3=0)
2
|3|)−1 > c > 0: anisotropic unduloid.

(II-4) 3< 0 and c < 0: anisotropic nodoid.

The global behavior of these surfaces is strikingly similar to that of the classical
Delaunay surfaces. For example, an anisotropic unduloid is a periodic embedded
surface while an anisotropic nodoid is a periodic surface with self-intersections.
The reader is referred to [Koiso and Palmer 2005, Section 5] for details. Here
we note only the correspondence between these classes and the formulas for x
and z given before. The case (I-2) corresponds to (x, z) defined by (2-11) with
3 = 0 and (2-13). The case (II-4) is obtained with (x, z) defined by (2-11) with
3 6= 0 for −u0 ≤ u ≤ u0 with the + sign and (2-13), where u0 := max u = u(0)=
− u(−2L1) = −u(2L2). The part of the surface defined in u > 0 corresponds
to where the Gaussian curvature is positive; where u < 0, the Gaussian curvature
is negative. Case (II-3) is obtained by using (2-11) (with 3 6= 0) and (2-13) for
√

−3c ≤ u ≤ u0. The part of the surface obtained using the + sign in (2-11)
corresponds to where the Gaussian curvature is positive, whereas the part obtained
using the − sign has negative curvature. The two parts can be smoothly joined
together. Also, we remark that now

(2-16) xs = uσ and zs = vσ at σ = σ(s).

Finally, it should be pointed out that, if we adopt µ2 = vσ/u as the defini-
tion of µ2, then the calculation of the curve (x, z) from W only depended on the
curve (u, v). Therefore the curve (α, β) can be simultaneously varied in both the
formulas for X and χ without affecting the conclusion. These surfaces X have
similar classification and properties to those of the anisotropic Delaunay surfaces
mentioned above. We will call these surfaces generalized anisotropic Delaunay
surfaces. Examples of some generalized anisotropic Delaunay surfaces and the
corresponding Wulff shapes are shown in Figures 1 through 4.

We conclude this section with a remark about the relationship between harmonic
maps and anisotropic Delaunay surfaces.

Proposition 2.1. For any anisotropic Delaunay surface X :6→R3, the anisotropic
Gauss map χ : 6 → W is harmonic. In particular, when the surface is an
anisotropic catenoid or the Wulff shape, χ is ± holomorphic.

Proof. The metric induced by X (s, τ ) = (x(s) cos τ, x(s) sin τ, z(s)) is d S2
X =

ds2
+ x2dτ 2. We can introduce isothermal coordinates (ρ, τ ) for this metric by

defining dρ = ds/x so that d S2
X = x2(dρ2

+ dτ 2).
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Figure 1. The Wulff shape at left is the superellipsoid u4
+ v4

+

w4
= 1. At right, its generalized anisotropic catenoid, for c = 1.

Figure 2. Left: this Wulff shape is generated from the superfor-
mula of [Gielis 2003], r =

{
|cos(mθ

4 )|
n2 + |sin(mθ

4 )|
n3

}−n1 with
(m, n1, n2, n3) = (3, 3.2, 3, 3). Right: its generalized anisotropic
catenoid.

The induced metric on W is d S2
W = dσ 2

+ u2dτ 2. Then

χ∗(d S2
W )= σ 2

s ds2
+ u2dτ 2

= (−3− u/x)2x2dρ2
+ u2dτ 2

= (−3x − u)2dρ2
+ u2dτ 2.
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Figure 3. Left: the Wulff shape is the subellipsoid |u|
8/7

+|v|8/7+

|w|
8/7

= 1. Right: the convex part of its generalized anisotropic
unduloid. 3= −0.5 and c = 1. Below, more of the same surface.

We recall that a sufficient condition for the harmonicity of a map from a surface
with isothermal coordinates (ρ, τ ) is that the pull back of the metric on the target
space can be expressed as Edρ2

+2Fdρdτ+Gdτ 2 with (E−G)−2i F holomorphic
as a function of ρ+ iτ .

In our case, we have

(E − G)− 2i F = (−3x − u)2 − u2
=3(2ux +3x2)=3c = constant
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Figure 4. A half period of an anisotropic unduloid with Wulff
shape u4

+ v4
= 1.

by (2-10), and so this function is holomorphic. In the case of the anisotropic
catenoid (3= 0) or the Wulff shape (c = 0), this function vanishes, and we obtain
the stronger result that χ is ± holomorphic. �

It does not appear that the anisotropic Gauss map is harmonic if the anisotropic
Delaunay surface is replaced by a general constant anisotropic mean curvature
surface.

3. Rolling construction for general curves

We consider a smooth curve

�(s)= (x(s), z(s)) with x > 0 for 0 ≤ s ≤ l,

represented by the arc length s. The curve � will always be regarded as the gen-
erating curve of a surface of revolution S : X (s, t)= (x(s)ei t , z(s)) with respect to
the z-axis, where we identify C×R with R3. Our point of departure will be [Hsiang
and Yu 1981], which investigates a rolling construction for general curves. We also
refer the reader to [Guggenheimer 1977].

We will consider a configuration consisting of the following:

• The curve � itself, which in the current context will be called the roulette.

• A second curve 0 which will be called the rolling curve.

• A point P called the pole, whose location relative to 0 is kept fixed when 0
is moved. We express this by saying that P is stationary with respect to 0.

• A fixed line L called the base, which is somewhere tangent to 0.

According to [Hsiang and Yu 1981], away from umbilic points of the surface
X , there exists a configuration as above, such that � is obtained as the trace of the
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pole as 0 is rolled without slipping along the line L . A classical example is given
by taking � to be the generating curve of a catenoid S, 0 to be the parabola such
that the distance between the vertex and the focus is equal to the distance between
the vertex of � and the rotation axis of S, and P to be the focus of 0. Using
formulas from [Hsiang and Yu 1981], it follows that the curve 0 is given in polar
coordinates r = r(θ) around the pole by

r =
x

|z′|
,(3-1)

θ = −

∫ ( z′

x
− κ

)
ds =

∫
(k2 − k1) ds,(3-2)

where

κ := x ′z′′
− x ′′z′, k1 = x ′′z′

− x ′z′′, k2 = − x−1z′.

Here κ is the curvature of the plane curve (x(s), z(s)), and k1 are k2 are the principal
curvatures of S with respect to the outward normal if z′ > 0, and with respect to
the inward normal if z′ < 0.

Recall that a surface S is called isothermic if, away from umbilic points, its
lines of curvature are given as the level sets of a pair of locally defined conjugate
harmonic functions. CMC surfaces and surfaces of revolution are examples of
isothermic surfaces.

According to a classical theorem of Bour and Christofell, see [Eisenhart 1960],
to each isothermic surface corresponds an isothermic dual S̃, defined up to homoth-
ety and translation, with the property that S and S̃ are anticonformal and they share
the same Gauss map. The construction of the isothermic dual involves integration
and is therefore only well defined, in general, over simply connected domains. In
the case of an anisotropic Delaunay surface, the duality is global, as Lemmas 7.1,
7.2, 7.4 and 7.5 below will show.

Another familiar case of isothermic duality involves a nonspherical surface X
with constant mean curvature H 6= 0. In this case, the parallel CMC surface X̃ :=

H X + ν is the isothermic dual. Although X̃ will have branch points when X has
umbilics, it will however be globally defined.

In the case of a surface of revolution, the isothermic dual is given by the formulas
in the following proposition.

Proposition 3.1. Set

(3-3) x̃(s) :=
a

x(s)
and z̃(s) := − a

∫ s

0

z′

x2 ds + b,

where a is a nonzero constant and b is any constant. Then the surface S̃ : X̃(s, t)=
(x̃(s)ei t , z̃(s)) is an isothermic dual of S : X (s, t)= (x(s)ei t , z(s)).
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Remark 3.1. When the generating curve (x, z) is closed, the isothermic dual need
not be globally defined because of a period problem. This occurs for example
when S is the Clifford torus generated by rotating the circle of radius one and
center (

√
2, 0) about a vertical axis.

Proof of Proposition 3.1.. We have

(3-4) x̃ ′
= − ax ′/x2 and z̃′

= − az′/x2.

Therefore,

(x̃ ′, z̃′)= −
a
x2 (x

′, z′),

ds̃ :=

√
(dx̃)2 + (dz̃)2 =

√
(x̃ ′)2 + (z̃′)2ds =

|a|

x2 ds,(3-5)

(x̃s̃, z̃s̃)=

{
(−x ′,−z′) for a > 0,
(x ′, z′) for a < 0.

(3-6)

If we compute the induced metric d S̃2 for the surface S̃, we see that

d S̃2
= x̃2dτ 2

+ ds̃2
=

a2

x4 (x
2dτ 2

+ ds2)=
a2

x4 d S2,

where d S2 is the metric on S. Thus the metrics on the two surfaces are conformally
related; see [Eisenhart 1960, page 388].

On the other hand, the Gauss map ν of X is

ν :=
X t × Xs

|X t × Xs |
= (sgn x)(z′ cos t, z′ sin t,−x ′),

where (sgn x) is the sign of x . Also, by using (3-3), (3-4), and (3-5), the Gauss
map ν̃ of X̃ is

ν̃ :=
X̃ t × X̃s

|X̃ t × X̃s |
= (sgn x̃) ·

(z̃′ cos t, z̃′ sin t,−x̃ ′)√
(x̃ ′)2 + (z̃′)2

= − (sgn x)(z′ cos t, z′ sin t,−x ′)= − ν.

Therefore, if we choose the orientation of the surface S̃ so that its Gauss map
coincides with ν, then the map X (s, t) 7→ X̃(s, t) is anticonformal. �

We will see in Section 7 that, when S is a Wulff shape, �̃ generates an anisotropic
catenoid, and when S is an anisotropic catenoid, �̃ generates a homothety of the
Wulff shape. Also we will see that the isothermic dual of any anisotropic unduloid
(respectively nodoid) is a part of the same surface, that is, the anisotropic undu-
loids (respectively nodoids) are self-dual. In fact, this self-duality will characterize
these classes of curves without reference to the functional; see Theorem 8.1.
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Set

k̃1 := x̃s̃ z̃s̃ s̃ − x̃s̃ s̃ z̃s̃, k̃2 :=
z̃s̃

x̃
, H̃ := (k̃1 + k̃2)/2.

Then k̃1 and k̃2 are the principal curvatures and H̃ is the mean curvature of the
surface (x̃(s̃)ei t , z̃(s̃)) with respect to the outward pointing normal if z′ > 0 and
with respect to the inward pointing normal if z′ < 0. We now compute(d2 x̃

ds̃2 ,
d2 z̃
ds̃2

)
= −

1
a

x2(x ′′, z′′).

Hence, we obtain

(3-7) k̃1 = −
x2

|a|
k1, k̃2 =

x2

|a|
k2, H̃ = x2(k2 − k1)/|2a|.

By (3-1), (3-2), (3-5), and (3-7), we obtain

(3-8) r =

∣∣∣ a
x̃ z̃s̃

∣∣∣> 0,

θ =

∫
(k̃1 + k̃2) ds̃ = 2

∫
H̃ ds̃ =

∫
(k2 − k1) ds.

Lemma 3.1. The rolling curve 0 of a smooth curve

�(s)= (x(s), z(s)) with x(s) > 0 and z′(s) 6= 0

is a regular curve away from umbilic points of the rotation surface X (s, t) =

(x(s)ei t , z(s)). In other words, the rolling curve 0 is regular if H̃ 6= 0. Moreover,
at any nonumbilic point of X , the curvature κ0 of 0 is

κ0 = −
(z′)3

x2|k2 − k1|
= −

(z′)3

2|aH̃ |
.

Proof. We represent the rolling curve 0 : r = r(θ) as

ξ(s)= r(s) cos θ(s)+ ξ0 and η(s)= r(s) sin θ(s)+ η0.

Here, s is arc length of the curve � = (x(s), z(s)), but in general, it is not arc
length of 0. By elementary calculations, we obtain

(ξ ′)2 + (η′)2 = (r ′)2 + r2(θ ′)2 = (z′
− κx)2(z′)−4

= x2(k1 − k2)
2(z′)−4

= 4a2 H̃ 2x−2(z′)−4.

This implies the first half of the lemma.
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We compute

κ0 :=
ξ ′η′′

− ξ ′′η′

{(ξ ′)2 + (η′)2}3/2 =
2(r ′)2θ ′

+ rr ′θ ′′
− rr ′′θ ′

+ r2(θ ′)3

{(r ′)2 + r2(θ ′)2}3/2

=
−(κx − z′)2

x(z′)3

((κx − z′)2

(z′)4

)−3/2

= −
(z′)3

x |κx − z′|
= −

(z′)3

x2|k2 − k1|
= −

(z′)3

2|aH̃ |
. �

Theorem 3.1. Let

�(s)= (x(s), z(s)) with x(s) > 0 and z′(s) 6= 0

be a smooth curve with arc length s. Denote by R(s)= (Rx(s), Rz(s)) the center of
curvature of � at s. Set X (s, t)= (x(s)ei t , z(s)), which is the surface of revolution
generated by� with z-axis as rotation axis. Denote by k̂1 and k̂2 the principal cur-
vatures of X with respect to the inward pointing normal. Here, k̂1 is the curvature
of �. Let 0 be the rolling curve of � with z-axis as base. The following hold:

(I) If k̂1(s0) 6= k̂2(s0), then 0 is a regular smooth curve near s = s0. The condition
k̂1(s0) 6= k̂2(s0) is equivalent to the condition that either k̂1(s0)=0 or Rx(s0) 6=

0.

(II) Assume k̂1(s0) 6= k̂2(s0). Then 0 ⊂ {x > 0} (respectively 0 ⊂ {x < 0}) for
0 < |s − s0| < δ for some δ > 0 if and only if k̂2(s0) > k̂1(s0) (respectively
k̂2(s0) < k̂1(s0)).

(III) (i) Assume k̂1(s0) > 0, that is, the Gauss curvature of X is positive near
s = s0. Then Rx(s0)<0 (respectively Rx(s0)>0) if and only if 0⊂{x>0}

(respectively 0 ⊂ {x < 0}) for 0< |s − s0|< δ for some δ > 0.
(ii) Assume k̂1(s0) < 0, that is, the Gauss curvature of X is negative near

s = s0. Then, Rx(s0) > 0, and 0 ⊂ {x > 0} for 0 < |s − s0| < δ for some
δ > 0.

Proof. Assume that the rotation surface (x(s)ei t , z(s)) has no umbilic points. We
represent the rolling curve 0 : r = r(θ) of � as

ξ(s)= r(s) cos θ(s)+ ξ0 and η(s)= r(s) sin θ(s)+ η0.

Then r = x/|z′
| and θ ′

= k2 −k1, where k1 = x ′′z′
− x ′z′′ and k2 = − z′/x , and, by

Lemma 3.1, the curvature κ0 of 0 is

κ0 :=
ξ ′η′′

− ξ ′′η′

{(ξ ′)2 + (η′)2}3/2(3-9)

= −
(z′)3

x2|k2 − k1|
.(3-10)
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Let Q := (ξ(s0), η(s0)) be the point of contact between 0 and the z-axis. Then, if
η′(s0) > 0, then, by (3-9), we have at s = s0

(3-11)
κ0 > 0 ⇐⇒ ξ ′′ < 0 ⇐⇒ 0 ⊂ {x < 0} near Q,

κ0 < 0 ⇐⇒ ξ ′′ > 0 ⇐⇒ 0 ⊂ {x > 0} near Q.

If η′(s0) < 0, then, by (3-9), we have at s = s0

(3-12)
κ0 > 0 ⇐⇒ ξ ′′ > 0 ⇐⇒ 0 ⊂ {x > 0} near Q,

κ0 < 0 ⇐⇒ ξ ′′ < 0 ⇐⇒ 0 ⊂ {x < 0} near Q.

Also, by (3-10), we have at s = s0

(3-13) κ0 > 0 ⇐⇒ z′ < 0 and κ0 < 0 ⇐⇒ z′ > 0.

On the other hand, if z′ > 0, then k1 and k2 are principal curvatures of the surface
X (s, t) = (x(s)ei t , z(s)) with respect to the outward pointing normal, whereas if
z′< 0 they are the principal curvatures with respect to the inward pointing normal.
Therefore,

(3-14) z′θ ′
= z′(k2 − k1)= − |z′

|(k̂2 − k̂1)= − xr−1(k̂2 − k̂1).

Note that η′θ ′ < 0 at s = s0. Therefore, by (3-11) and (3-13), if θ ′(s0) < 0, then

z′ < 0 ⇐⇒ 0 ⊂ {x < 0} near Q,

z′ > 0 ⇐⇒ 0 ⊂ {x > 0} near Q.

By (3-12) and (3-13), if θ ′(s0) > 0, then

z′ < 0 ⇐⇒ 0 ⊂ {x > 0} near Q,

z′ > 0 ⇐⇒ 0 ⊂ {x < 0} near Q.

Therefore, if θ ′z′(s0)> 0 (respectively θ ′z′(s0)< 0), then 0⊂{x < 0} (respectively
0 ⊂ {x > 0}) for 0 < |s − s0| < δ for some δ > 0. Hence, by (3-14), 0 ⊂ {x < 0}

(respectively 0 ⊂ {x > 0}) for 0 < |s − s0| < δ for some δ > 0 if and only if
k̂2(s0) < k̂1(s0) (respectively k̂2(s0) > k̂1(s0)). We have proved (II).

By elementary calculations, we prove (I) by

(3-15) R = (Rx , Rz)= (xk−1
1 (k1 − k2), z − k−1

1 x ′).

Lastly we prove (III). It is sufficient to prove it for the case where z′(s0) > 0. In
this case, k1 = − k̂1 and k2 = − k̂2. Now (III) follows from (II) and (3-15). �

The rolling construction still applies when S has umbilic points. Figure 5 depicts
the rolling curve for the surface S generated by the curve u4

+ v4
= 1. The cusps

of the rolling curve correspond to the umbilics of S. We investigate this next.
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Figure 5. This series of pictures demonstrates the rolling con-
struction for the Wulff shape whose generating curve is given by
u4

+ v4
= 1.

Proposition 3.2. Let� and 0 be the same as in Theorem 3.1. Let s0 be an isolated
zero of η(s) := k1 − k2. Assume that z′(s0) 6= 0, that is, r is bounded as s → s0 by
(3-1). Then, the one sided limits

λ± := lim
s→s0±0

0′(s)
‖0′(s)‖

both exist. In addition, if η(s) does not change sign at s0, then λ− = λ+. If η(s)
changes sign at s0, then λ− = − λ+ and consequently, at 0(s0), the limits of the
unit tangent vectors to the two arcs exist and point in opposite directions.

Proof. A straightforward calculation using (3-1) and (3-2) shows that, for s ≈ s0,
with s 6= s0 and σ := sgn z′, we have r ′

= σ(k1 − k2)(xx ′)/(z′)2. Therefore

r ′
+ iθ ′r = σ(k1 − k2)

( xx ′

(z′)2
− i x

z′

)
,

and so
0′

‖0′‖
= ρσ

( xx ′

(z′)2
− i x

z′

)
eiθ

∥∥∥ xx ′

(z′)2
− i

x
z′

∥∥∥−1
,

where ρ = 1 if k1 − k2 is positive, and ρ = − 1 if k1 − k2 is negative. Here θ(s)
has a well-defined limit lims→s0 θ(s). The result follows. �

Remark 3.2. It follows from the previous proposition that the part of the rolling
curve near s = s0 consists of two C1 arcs that lie on opposite (respectively the
same) sides of the tangent line to 0 if k1 − k2 changes sign (respectively does not
change sign) at s0.

4. Mean curvature profile

Let S : X (s, t) = (x(s)ei t , z(s)) be a surface of revolution generated by a smooth
curve�(s)= (x(s), z(s)) parametrized by arc length. We assume that either x(s)>
0 for all s or x(s) < 0 for all s. We set

(4-1) k̂1 := x ′z′′
− x ′′z′, k̂2 :=

z′

x
, HS := (k̂1 + k̂2)/2.
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HS(s) is the mean curvature of S measured along the meridian �(s) with respect
to the inward pointing normal if xz′ > 0 and with respect to the outward pointing
normal if xz′ < 0.

The mean curvature profile of S is the plane curve CS(s)= ( f (s), g(s)) defined
by the properties

(A) s is also the arc length parameter of CS and

(B) the curvature κCS (s) of CS is κCS (s)= 2HS(s).

Note that the mean curvature profile is only determined up to rigid motion. The
mean curvature profile was used extensively by Kenmotsu [1980; 2003] to study
surfaces of revolution with prescribed mean curvature.

It is elementary that, up to rotation, the mean curvature profile ( f, g) is given
by

(4-2) f (s) :=

∫ s

0
cos θ(s1) ds1 − c1 and g(s) :=

∫ s

0
sin θ(s1) ds1 − c2,

where

θ(s) := 2
∫ s

0
HS(s) ds,

and c1 and c2 are constants. Kenmotsu [1980] showed that one can determine
constants c1 and c2 so that

x = (sgn x)
√

f 2 + g2,(4-3)

z′
= (sgn x)

f g′
− f ′g√

f 2 + g2
.(4-4)

The equality (4-3) can be expressed as follows:

(C) The distance between a point of � and the z-axis is equal to the distance
between the corresponding point of CS and the origin.

(A), (B), and (C) determine the curve CS(s) = ( f (s), g(s)) up to rotation around
the origin.

We can characterize the mean curvature profile in another way:

Proposition 4.1. Let CS(s) = ( f (s), g(s)) be a plane curve defined by the above
properties (A) and (C). Then, (B) is automatically satisfied (up to sign). The curve
CS(s)= ( f (s), g(s)) is determined up to rotation around the origin.
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Proof. Express the curve CS(s)= ( f (s), g(s)) by the polar coordinate (ρ, t), that
is, f = ρ cos t and g = ρ sin t . We regard ρ, t as functions of s. Then,

(4-5)

κCS (s) :=
f ′g′′

− f ′′g′

{( f ′)2 + (g′)2}3/2

=
2(ρ ′)2t ′

+ ρρ ′t ′′
− ρρ ′′t ′

+ ρ2(t ′)3

{(ρ ′)2 + ρ2(t ′)2}3/2 .

Conditions (A) and (C) respectively imply

(4-6) dx2
+ dz2

= dρ2
+ ρ2dt2 and |x | = ρ.

Together, these imply dz2
= x2dt2, and therefore

(4-7) t ′
= ±

z′

x
and t ′′

= ±
z′′x − z′x ′

x2 .

Inserting (4-7) and the second of (4-6) into (4-5), we obtain

κCS (s)= ±

{
(x ′z′′

− x ′′z′)+
z′

x

}
= ± 2HS(s). �

When ( f, g) satisfies (A), (B), and (C), we call the curve ( f, g) the mean cur-
vature profile associated with S.

Lemma 4.1. If z′(0)= ± 1, then c1 = 0 and c2 = (sgn z′(0))x(0).

Proof. At s = 0, we have

f (0)= − c1, f ′(0)= 1, g(0)= − c2, g′(0)= 0,

x(0)= (sgn x(0))
√

c2
1 + c2

2, z′(0)= (sgn x(0))c2/

√
c2

1 + c2
2.

These equalities imply the result. �

5. Rolling curves as dual curves

Let γ = γ (s)= ( f (s), g(s)) be a smooth curve with arc length s in the plane with
unit normal N . Let p := 〈γ, N 〉 be the support function. Away from points where
N ′(s) = 0, that is, where the curvature κγ vanishes at s, we can consider p to be
(locally) a function on a subset of the unit circle S1. We assume that p has at most
isolated zeros. The curve γ can be expressed using its tangential representation,

γ = pN + Dp,

where Dp is the gradient of p on S1. If N = (cos θ, sin θ), then

γ = (p cos θ − ṗ sin θ, p sin θ + ṗ cos θ), where ṗ = dp/dθ.
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We define the dual curve by γ ∗
:= p−1 N . Since

(γ ∗)′ = − p′ p−2 N + p−1 N ′ and 〈N , N ′
〉 = 0,

γ ∗ is a regular smooth curve around s where p(s) 6= 0 and (p′(s), κγ (s)) 6= (0, 0).
When γ is the profile curve for the unit sphere of a rotationally invariant norm,

then γ ∗ is the profile curve of the unit sphere of the dual norm. Note that the curve
γ ∗ depends on the choice of origin in the plane.
γ ∗ is characterized by the conditions 〈dγ, γ ∗

〉 = 0 and 〈γ, γ ∗
〉 ≡ 1. Note that

γ ∗∗
= γ . This can be seen by differentiating the second condition to get 0 = d1 =

d〈γ, γ ∗
〉 = 〈dγ, γ ∗

〉+〈γ, dγ ∗
〉. Thus the conditions still hold when γ and γ ∗ are

interchanged.

Example 5.1. Let γ be the circle of radius ρ and center (ε, 0), where ε ≥ 0. Then,

γ = (ε+ ρ cos θ, ρ sin θ), N = (cos θ, sin θ), p = ρ+ ε cos θ,

γ ∗
= (1/p)N =

(1/ρ)
1 + (ε/ρ) cos θ

(cos θ, sin θ).

This means that γ ∗ is a curve with polar equation r = (1/ρ)/(1 + (ε/ρ) cos θ).
These equations describe all the various conic sections if one of the foci is at the
origin, the directrix is the line x = 1/ε, and ε/ρ is the eccentricity.

In the present context it is natural to treat all conic sections in a unified way. To
do this, we consider the projective plane

P2(R) := {X = (x1, x2, x3) ∈ R3
; X 6= (0, 0, 0)}/∼ ,

where ∼ is the equivalence relation defined as follows: (x1, x2, x3)∼ (y1, y2, y3) if
and only if (y1, y2, y3)= c(x1, x2, x3) for some c ∈ R. Let (ξ, η) be the orthogonal
coordinates in the plane where the curve γ lies. We identify each point (ξ, η) in
this plane with (ξ, η, 1) in P2(R) and regard γ as a curve in P2(R).

Lemma 5.1. Assume that κγ (s) 6= 0 for all s in the domain of γ . Assume also that
p = 〈γ, N 〉 has at most isolated zeros. Then, the dual curve γ ∗ can be regarded as
a connected regular smooth curve in the projective plane P2(R).

Proof. Set γ ∗(s)= (ϕ(s), ψ(s)). Then

p = f g′
− f ′g, ϕ =

g′

f g′ − f ′g
, ψ = −

f ′

f g′ − f ′g
.

Therefore, at each point s (including a point s where p(s)= 0),

γ ∗(s)= (g′,− f ′, f g′
− f ′g)

in P2(R). Hence

(γ ∗)′(s)= (g′′,− f ′′, f g′′
− f ′′g)= κγ ( f ′, g′, f f ′

+ gg′) 6= (γ ∗)(s)
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in P2(R). Therefore, γ ∗(s) is well defined for all s and is a connected regular
smooth curve in the projective plane P2(R). �

For any smooth curve

(5-1) �(s)= (x(s), z(s)) with x > 0 and z′ > 0 for l1 ≤ s ≤ l2

(l1 ≤ 0< l2) represented by the arc length s, and for a real constant a 6= 0, we recall
from Section 3 that the isothermic dual is

(5-2) x̃(s) :=
a

x(s)
and z̃(s) := − a

∫ s

0

z′

x2 ds.

Now represent the coordinate functions of the rolling curve 0 : r = r(θ) of � as

ξ(s)= r(s) cos θ(s)+ ξ0 and η(s)= r(s) sin θ(s)+ η0,

where the point (ξ0, η0) is the pole of 0. Then, by elementary calculation, we
obtain that the dual curve 0∗ of 0 is

0∗
= (1/r)(cos θ, sin θ)+ (1/r)θ (− sin θ, cos θ).

We compute using (3-1) and (3-2) and that s is the arc length of (x, z), obtaining
rθ = − r x ′/z′. Therefore, from (3-6), we get (1/r)θ = x̃z̃/r . Thus

0∗
= (1/r)[(cos θ, sin θ)+ x̃z̃(− sin θ, cos θ)].

Write x̃s̃ = cosϑ and z̃s̃ = sinϑ ; then

0∗
= (1/(r z̃s̃))(sin(ϑ − θ), cos(ϑ − θ)).

This can be expressed, because of (3-6), (3-8), (5-1), and (5-2), as

(5-3) 0∗
= (−1/|a|)x̃ · (sin(ϑ − θ), cos(ϑ − θ)).

We consider the mean curvature profile C S̃(s̃) = ( f (s̃), g(s̃)) associated with
the surface S̃ : (x̃(s̃)ei t , z̃(s̃)). We obtain from (4-3) and (4-4) that

(5-4)
z̃s̃

x̃
=

f gs̃ − fs̃ g
f 2 + g2 = −

d
ds̃
(arctan( f/g)).

By using (5-4), a useful formula is obtained by inverting Equations (4-3) and (4-4):

g − i f = (sgn x̃)x̃ exp
(

i
∫ z̃

0

dz̃
x̃

)
.

From (4-1) and (5-4), we obtain k̃2 = − d(arctan( f/g))/ds̃. Also, it follows
from (4-1) and the definition of ϑ above that ϑs̃ = k̃1, and therefore

θ =

∫ s̃

0
2H̃ ds̃ =

∫ s̃

0
(k̃1 + k̃2) ds̃ = ϑ − arctan( f/g)+ c3,
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where c3 is a constant. This gives ϑ−θ = arctan( f/g)−c3, which, in (5-3), gives

(5-5)

0∗
= −

sgn a
|a|

√
f 2 + g2 · [(sin(arctan( f/g)− c3), cos(arctan( f/g)− c3)]

= −
sgn a
|a|

√
f 2 + g2

[(
cos c3 − sin c3

sin c3 cos c3

) (
sin(arctan( f/g))
cos(arctan( f/g))

)]t

= −
sgn a
|a|

[(
cos c4 − sin c4

sin c4 cos c4

) (
f
g

)]t

,

where c4 = c3 or c3 + π . Therefore, the curve 0∗ is a homothety of a rotation of
the curve C S̃ .

The above discussion and Remark 3.2, and Lemma 5.1 prove the following:

Theorem 5.1. Let S be a smooth surface of revolution generated by the curve

�(s)= (x(s), z(s)) with x > 0 for l1 ≤ s ≤ l2,

(where l1 ≤ 0 < l2) which is represented by the arc length s and has the z-axis as
its rotation axis. Assume that the surface S restricted to � has at most isolated
umbilics. Assume also that z′ has at most isolated zeros. Also we assume that
z′

6= 0 at any umbilic of S. Regard 0 as a curve in the projective plane if z′ has
isolated zeros. Then the rolling curve 0 of � is a piecewise C1 curve which is
smooth away from the umbilics of S. Define �̃ = (x̃, z̃) by (5-2). Let C S̃ be the
mean curvature profile associated with the surface S̃ of revolution generated by �̃.
Then, the rolling curve 0 of � satisfies, up to homothety, 0 = C∗

S̃
, that is, 0 is

(up to homothety) dual to C S̃ = ( f, g) with respect to the origin of the coordinate
plane. Moreover, the pole of the rolling construction is the origin in this plane.
Finally, 0 is a closed curve if , for some integer n,

x(l1)

z′(l1)
=

x(l2)

z′(l2)
and

∫ l2

l1

(k2 − k1) ds = 2nπ.

Remark 5.1. Each zero of H̃ corresponds to an umbilic point of S, and vice versa.

Remark 5.2. Kenmotsu [2003] studied periodic surfaces of revolution with a pre-
scribed mean curvature function. He divided the periodic surfaces of revolution
into two classes. One class, which appears there as [Theorem 2], has a mean
curvature function for a one parameter family of periodic surfaces of revolution.
In the class appearing in [Theorem 3], each mean curvature function has only an
isolated periodic surface of revolution. It can be shown that the surfaces appearing
in [Theorem 2] are exactly those periodic surfaces whose rolling curves are closed,
while those appearing in [Theorem 3] are exactly those periodic surfaces whose
rolling curves are not closed.
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6. Rolling curve of the Wulff shape

We assume that the Wulff shape W is a smooth convex surface that is rotationally
symmetric with respect to the vertical axis (z-axis). We consider the rolling curve
0 : r = r(θ) of the generating curve �W of W , and we will obtain a sufficient
condition such that 0 is smooth.

As usual, we adopt the notations that appeared in (2-1) and (2-2) for the gen-
erating curve �W of W . We denote by “ ′ ” the derivative with respect to σ . We
denote by κ the curvature of �W with respect to the inward pointing normal, that
is κ := − u′′v′

+ u′v′′.

Theorem 6.1. If either (i) κ ′ < 0 in −L1 <σ < 0 and κ ′ > 0 in 0<σ < L2, or (ii)
κ ′ > 0 in −L1 < σ < 0 and κ ′ < 0 in 0 < σ < L2, then the rolling curve 0 of the
interior (u(σ ), v(σ )) for −L1 < σ < L2 of �W is a smooth arc. In (i), r ′ > 0 in
−L1 < σ < 0 and r ′ < 0 in 0< σ < L2. In (ii), r ′ < 0 in −L1 < σ < 0 and r ′ > 0
in 0< σ < L2.

To prove Theorem 6.1, we prepare a lemma. As usual, we write

µ1 = κ = − u′′v′
+ u′v′′ and µ2 = u−1vσ .

Lemma 6.1. If κ ′ < 0 in −L1 < σ < 0 and κ ′ > 0 in 0< σ < L2, then µ1 <µ2 in
−L1 < σ < L2. If κ ′ > 0 in −L1 < σ < 0 and κ ′ < 0 in 0< σ < L2, then µ1 >µ2

in −L1 < σ < L2. Therefore, in both cases, the Wulff shape W has umbilic points
only at (0, 0,min v) and (0, 0,max v).

Proof. It is clear that

(6-1) µ1 = µ2 at σ = − L1, L2.

We compute

(6-2) µ′

2 =
v′′u−v′u′

u2 =
κu′u−v′u′

u2 =
u′

u
(µ1 −µ2).

First assume that κ ′ < 0 in −L1 < σ < 0 and κ ′ > 0 in 0 < σ < L2. Set
f (σ ) := u2(σ )+ v2(σ ). We claim that f (σ ) is a strictly decreasing function of
σ in −L1 ≤ σ ≤ 0 and a strictly increasing function in 0 ≤ σ ≤ L2. In fact, this
is proved by a similar way to the proof of [Koiso and Palmer 2007b, Lemma 3.2].
This implies that µ1 < µ2 at σ = 0. Assume µ1(σ0)−µ2(σ0) ≥ 0 for some point
σ0 ∈ (0, L2). Then, because of (6-1), there exists some σ1 ∈ (0, L2) such that

(6-3) µ1(σ1)−µ2(σ1)≥ 0 and µ′

1(σ1)−µ
′

2(σ1)≤ 0.

On the other hand, (6-2) with the first inequality of (6-3) implies that µ′

2(σ1) ≤ 0.
This with the second inequality of (6-3) implies that µ′

1(σ1) ≤ µ′

2(σ1) ≤ 0. This
contradicts the assumption that µ′

1 = κ ′ > 0 in 0< σ < L2. Therefore, µ1 <µ2 in
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0 ≤ σ < L2. Similarly we can prove that µ1 < µ2 in −L1 ≤ σ < 0. The proof for
the second case is similar. �

Proof of Theorem 6.1. Lemma 6.1 combined with Lemma 3.1 implies the first half
of Theorem 6.1.

We will now prove the second half. We will prove the result only for the first
case, because the proof of the second case is similar. We know from (3-1) that
r = u/v′. Hence, we have

(6-4) r ′
=

−u′

(v′)2
(κu − v′).

Set g := κu−v′. Then, g(−L1)= g(L2)= 0 and g′
= κ ′u+κu′

−v′′
= κ ′u. Hence,

in the first case, g < 0 in −L1 < σ < L2. This with (6-4) implies the result. �

Figure 5 shows the rolling curve for the Wulff shape having profile curve u4
+

v4
= 1. Although the Wulff shape W is smooth, the rolling curve has cusps at

points which correspond to umbilics of W . The rolling construction continues to
work in this case as long as the curve is rolled as described in Section 3.

7. Applications to anisotropic Delaunay surfaces

Here we will apply the results of the previous sections when � is an anisotropic
Delaunay curve.

We assume that the Wulff shape W is rotationally symmetric with respect to
the vertical axis. This means that, from (2-15), there exists a positive function µ2

of one variable such that the surface S : (x(s)ei t , z(s)) is an anisotropic Delaunay
surface if and only if S satisfies

(7-1) 2µ−1
2 (−x ′)z′x +3x2

= c

for some constants3≤0 and c∈R. Equation (7-1) determines the surface uniquely
up to translation along z direction.

As usual, we adopt the notations that appeared in (2-1) and (2-2) for the gener-
ating curve �W of W .

First we apply the “dual curve method” constructed in Section 3–Section 5 to
anisotropic Delaunay curves �. Denote by S the surface of revolution obtained
from the curve� by rotating it around z-axis. Denote by S̃ the surface of revolution
obtained from the curve (x̃(s), z̃(s)) by rotating it around z-axis, where x̃ and z̃ are
defined as in (3-3). Then, it is clear that, if S is a horizontal plane, then S̃ is also a
horizontal plane, and, if S is a vertical cylinder, then S̃ is also a vertical cylinder.

Lemma 7.1. If S is the Wulff shape, then S̃ is an anisotropic catenoid with flux
parameter c = − 2|a|.

Proof. In this case 3= − 2. Now it is easy to see that 2µ−1
2 z̃s̃ x̃ = − 2|a|. �
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Lemma 7.2. Assume that S is an anisotropic catenoid with flux parameter c. Then
S̃ is homothetic to the Wulff shape W . In fact, S̃ is 2|a/c| times W .

Proof. It is easy to see that 2µ−1
2 z̃s̃ x̃ + (c/|a|)x̃2

= 0. �

Before we study the isothermic duals of an anisotropic unduloid and nodoid, we
give a lemma.

Lemma 7.3. z̃ =

∫
x̃u dv.

Proof. We compute, by using (2-12) and (3-3),

z̃ =

∫
dz̃ =

∫
dz̃
ds

ds
dz

dz = −a
∫

z′

x2 (z
′)−1xu dv= −

∫
a
x2 xu dv=

∫
x̃u dv. �

Lemma 7.4. Assume that S is an anisotropic unduloid U, that is, S satisfies (7-1)
for some constants 3< 0 and c > 0. Set

(7-2) x̃(s) :=
c

|3|x(s)
and z̃(s) := −

c
|3|

∫ s

0

z′

x2 ds.

Then, S̃ is an anisotropic unduloid Ũ which is a translation of U along the z
direction, that is, an anisotropic unduloid is isothermic self-dual. A positively
curved part of U corresponds to a negatively curved part of U; the same holds
with “negatively” and “positively” interchanged.

Proof. By using (3-6) and (7-1), we obtain −2µ−1
2 (x̃s̃)x̃ z̃s̃ +3x̃2

= c. Changing
the parameter so that τ := − s̃, we obtain

(7-3) 2µ−1
2 (−x̃τ )x̃ z̃τ +3x̃2

= c.

Equation (7-3) means that (x̃(τ ), z̃(τ )) generates the same anisotropic unduloid
as (x(s), z(s)). Therefore, (x̃(s̃), z̃(s̃)) generates the same anisotropic unduloid as
(x(s), z(s)).

If S is a positively curved part of the anisotropic unduloid U, then x = (u +
√

u2 +3c)/(−3). We obtain using (7-2) that x̃ = (u −
√

u2 +3c)/(−3). This
with Lemma 7.3 implies that S̃ is a negatively curved part of U.

On the other hand, the same reasoning holds with “negatively” and “positively”
interchanged and the sign of

√
u2 +3c reversed. �

Lemma 7.5. Assume that S is an anisotropic nodoid N, that is, S satisfies (7-1)
for some constants 3< 0 and c < 0. Set

(7-4) x̃(s) := −
c

3x(s)
and z̃(s) :=

c
3

∫ s

0

z′

x2 ds.

Then, S̃ is an anisotropic nodoid Ñ which is a translation of N along z direction,
that is, an anisotropic nodoid is isothermic self-dual. A positively curved part of



ROLLING CONSTRUCTION FOR ANISOTROPIC DELAUNAY SURFACES 369

N corresponds to a negatively curved part of N; the same holds with “negatively”
and “positively” interchanged.

Proof. By using (3-6) and (7-1), we obtain

(7-5) 2µ−1
2 (−x̃s̃)x̃ z̃s̃ +3x̃2

= c.

The Equation (7-5) means that (x̃(s̃), z̃(s̃)) generates the same anisotropic nodoid
as (x(s), z(s)).

If (x(s), z(s)) generates a positively curved part of the anisotropic nodoid, then
x = (u +

√
u2 +3c)/(−3) for u > 0. We obtain, by using (7-4), x̃ = − (u +

√
u2 +3c)/(−3) for u > 0. This with Lemma 7.3 implies that (x̃, z̃) generates a

negatively curved part of N.
On the other hand, the same reasoning holds with “positively” replaced by “neg-

atively” and u < 0 replaced by u > 0. �

Applying Theorem 5.1 to an anisotropic catenoid using Lemmas 7.2 and 4.1,
we obtain the following:

Theorem 7.1. Let �W (σ ) for −L1 ≤ σ ≤ L2 be the generating curve of W as
usual. Assume that the mean curvature HW (σ ) of W regarded as a function of σ
has only isolated zeros. Let CW (σ ) denote the mean curvature profile associated
with W . Let � be the generating curve of an anisotropic catenoid with flux pa-
rameter c normalized by c = 2 and denote its rolling curve with z-axis as base
by 0. Then the curve 0 is obtained as the dual curve of CW , that is 0 = (CW )

∗.
Here, the pole of the rolling construction is the origin in the coordinate plane
where CW is expressed as CW (σ ) = ( f (σ ), g(σ )), which satisfies (4-3) and (4-4)
for (x(s), z(s)) = (u(σ ), v(σ )). In addition, 0 is a piecewise C1 curve which is
smooth away from those points that correspond to the zeros of HW (σ ) under the
anisotropic Gauss map.

Figures 6 and 7 show an anisotropic catenary, an anisotropic parabola (the rolling
curve) and the mean curvature profile for the functional whose Wulff shape is
generated by a curve

(7-6) |u|
p
+ |v|p

= 1

with p = 4.
Applying Theorem 5.1 to an anisotropic unduloid and nodoid using Lemmas

7.4, 7.5 and 4.1, we obtain the following:

Theorem 7.2. Let � : (x(s), z(s)) for −l ≤ s ≤ l be one period (from a bulge to
the next bulge) of the generating curve of an anisotropic unduloid U. Denote by
H�(s) the restriction of the mean curvature of U to �(s). We assume that H�(s)
vanishes only at isolated points. Define a curve C�(s) = ( f (s), g(s)) using (4-2)
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Figure 6. Left: the profile curves of a Wulff shape defined by
u4

+ v4
= 1 (left) and an anisotropic catenoid. These surfaces

are isothermic dual to each other. Right: the profile curve of a
Wulff shape W defined by u4

+v4
= 1 (outer curve) and the mean

curvature profile associated with W .
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Figure 7. Left: the same mean curvature profile as the one at right
in Figure 6 and its dual curve. The dual curve is an anisotropic
parabola: the rolling curve of an anisotropic catenary in Equation
(2-10) with the origin as the pole. Right: anisotropic catenary
(right) and anisotropic parabola. The base of the rolling construc-
tion is the vertical axis.
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with c1 = 0 and c2 = − B, where B is the radius of the bulge. Then, C� is the mean
curvature profile associated with U. Also, the dual curve C∗

� of C�, with respect
to the origin, is a homothety of the rolling curve of one period (from a neck to the
next neck) of the generating curve of U with z-axis as base. Here, the pole of the
rolling construction is the origin in the coordinate plane where C� is expressed as
C�(s)= ( f (s), g(s)). If we normalize U so that |c/3| = 1, then C∗

� is the rolling
curve of one period (from one neck to the next) of the generating curve of U (up
to rigid motion). The entire theorem also holds with U replaced by an anisotropic
nodoid N.

Figure 8 shows the rolling curves for anisotropic unduloids having Wulff shape of
the form (7-6). Figure 9 shows the rolling curve of an anisotropic nodoid having
Wulff shape of the form (7-6). Figure 10 demonstrates the rolling construction for
an anisotropic unduloid.

In Theorem 7.2 we assumed that the mean curvature of the anisotropic Delaunay
curve has at most isolated zeros. Here we give sufficient conditions for the Wulff
shape so that this assumption is satisfied.

Lemma 7.6. Assume that the curvature κ of the generating curve �W of W sat-
isfies (i) in Theorem 6.1. Then the mean curvature H of an anisotropic unduloid
with respect to the outward pointing normal is everywhere negative.

Proof. In Lemma 3.1, we found that the curvature κ0 of the rolling curve 0 of a
general curve (x(s), z(s)) is

κ0 =
−(z′)3

x |κx − z′|
=

−(z′)3

2|aH̃ |
.
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Figure 8. Rolling curves of half periods of an anisotropic undu-
lary with the pole at the origin. Here p = 4 and 3 = − 1. Left:
c = 0.4. Right: c = 0.8.



372 MIYUKI KOISO AND BENNETT PALMER

0.5

1.5

-0.25

0.75

1.0

-0.5

0.0

0.25

-0.75

0.0 0.5

Figure 9. Left: rolling curve of an anisotropic nodary with p = 4,
3 = − 2, and c = − 0.5. The pole is the origin. Right: a part of
the corresponding anisotropic nodoid.

Figure 10. This series of pictures demonstrates the rolling con-
struction for an anisotropic unduloid. The generating curve of the
Wulff shape is given by u4

+ v4
= 1, c = 0.5 and 3= − 1.

Now let (x(s), z(s)) be an anisotropic undulary. Then,

x =
u ±

√
u2 +3c

−3
for 3> 0 and c > 0.

Set k1 := − x ′z′′
+ x ′′z′ and k2 := − z′/x . We compute

k1 = −µ1σs, xσs = ±

√
u2 +3c, z′

= uµ2, k2 = −µ2
u
x
,

where µ1 = κ = uσvσσ − uσσvσ and µ2 = vσ/u. Hence, we obtain

(7-7) H := (k1 + k2)/2 = −
1

2x
(±µ1

√
u2 +3c +µ2u).
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Now, by the assumption on κ and Lemma 6.1, 0 < µ1 ≤ µ2 for − L1 < σ < L2.
This, combined with (7-7), implies H < 0. �

Lemma 7.7. The mean curvature H of an anisotropic nodoid with respect to the
outward pointing normal is everywhere negative if

3c >max
{
µ2

2 −µ2
1

µ2
1

u2
}
.

If the curvature κ of the generating curve �W of W satisfies (ii) in Theorem 6.1,
then H < 0.

Proof. Let (x(s), z(s)) be an anisotropic nodary. Then,

x =
u +

√
u2 +3c

−3
for 3< 0 and c < 0.

As in the proof of Lemma 7.6, we obtain

H = −
1

2x
(µ1

√
u2 +3c +µ2u).

Therefore, if u ≥ 0, then H < 0.
Suppose u < 0. Then, µ1

√
u2 +3c +µ2u > 0 if and only if

(7-8) 3c >
µ2

2 −µ2
1

µ2
1

u2.

This implies the first half of the lemma.
Now, assume (ii) in Theorem 6.1. Then by Lemma 6.1, µ1 ≥µ2 > 0 for −L1 <

σ < L2. Hence (7-8) is satisfied. �

We will now briefly discuss how these theorems apply to the classical Delaunay
surfaces. Let (x(s)ei t , z(s)) be a (CMC) catenoid. We make the normalization
c = 2. We take a = 1. Then (x̃, z̃) is a half circle with radius 1 and center in the
z-axis, and H̃ ≡ −1. We may assume z̃s̃(0)= 1. Then, by Lemma 4.1, c1 = 0 and
c2 = − x̃(0)= −1. Hence ( f, g) is a circle with radius 1/2 and center at (0, 1/2).
Therefore, the rolling curve 0 (the dual curve of ( f, g)) is a parabola.

We will apply Theorem 7.2 to the classical unduloid. Let (x(s)ei t , z(s)) be
one period (from a bulge to the next bulge) of an unduloid with mean curvature
H =3/2<0. We take a =|c/3|= |c/(2H)|. We normalize |c/3|= |c/(2H)|=1.
Then (x̃, z̃) gives the same undulary as (x(s), z(s)) (up to translation). We may
assume z′(0) = 1. Then B = (1 +

√
1 − 2|Hc|)/|2H |. Since the mean curvature
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of (x, z) is a constant H ,

f (s)=

∫ s

0
cos(2Hs) ds =

1
2H

sin(2Hs),

g(s)=

∫ s

0
sin(2Hs) ds + B = −

1
2H

cos(2Hs)+
√

1 − 2|Hc|
2|H |

.

Thus ( f, g) is a circle with radius 1/|2H | and center at (0,
√

1 − 2|H |c/|2H |).
The origin is inside of the circle ( f, g). Therefore, the rolling curve 0 (the dual
curve of ( f, g)) is an ellipse.

Finally, we apply Theorem 7.2 to the nodoid. Let (x(s)ei t , z(s)) be one period
(from one bulge to the next) of a nodoid with mean curvature H = 3/2 < 0. We
take a = − |c/3| = − |c/(2H)|. We normalize |c/3| = |c/(2H)| = 1. Then
(x̃, z̃) gives the same nodary as (x(s), z(s)) (up to translation). We may assume
z′(0) = 1. Then B = (1 +

√
1 + 2|Hc|)/|2H |. Since the mean curvature of (x̃, z̃)

is a constant H ,

f (s)=

∫ s

0
cos(2Hs) ds =

1
2H

sin(2Hs),

g(s)=

∫ s

0
sin(2Hs) ds + B = −

1
2H

cos(2Hs)+
√

1 + 2|Hc|
2|H |

.

Thus ( f, g) is a circle with radius 1/|2H | and center at (0,
√

1 + 2|H |c/|2H |).
The origin is outside of the circle ( f, g). Therefore, the rolling curve 0 (the dual
curve of ( f, g)) is a hyperbola.

To conclude this section, we give expressions of the rolling curves 0 of the
anisotropic undulary and nodary in terms of the Wulff shape, which are useful for
drawing pictures of 0. It is sufficient to give formulas only for the “half” period
that corresponds to a part of the “upper half” (u(σ ), v(σ )) for 0 ≤ σ ≤ L2 of �W .

Proposition 7.1. Let S be a “half” period of an anisotropic unduloid U with
anisotropic mean curvature 3 and flux parameter c. Parametrize the correspond-
ing half period of the generating curve of the Wulff shape as u = u(v) for 0 ≤ v ≤

v := max v with u ≥ 0, and let v1 > 0 be defined by u(v1) =
√

−3c. Then the x
coordinate of the generating curve C of S can be represented as

x =


u +

√
u2 +3c

−3
for v = 0 to v = v1,

u −
√

u2 +3c
−3

for v = v1 to v = 0.
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Then, the rolling curve 0 : (r, θ) is given as follows:

(7-9) r =


u +

√
u2 +3c

−3
·

√
1 + u2

v for v = 0 to v = v1,

u −
√

u2 +3c
−3

·

√
1 + u2

v for v = v1 to v = 0.

θ =


arcsin

(
|uv|√
1 + u2

v

)
−

∫ v

0

dv
√

u2 +3c
for v = 0 to v = v1,

arcsin
(

|uv|√
1 + u2

v

)
+

∫ v

v1

dv
√

u2 +3c
−

∫ v1

0

dv
√

u2 +3c
for v = v1 to v = 0.

In particular, if W is symmetric with respect to the horizontal plane, the rolling
curve of one period of U is a closed curve if and only if∫ v1

0

dv
√

u2 +3c
=
π

2
.

Proof. From (3-1), we have r = x/z′
= x/vσ . On the interval in question, we have

v2
σ = (1 + u2

v)
−1, from which we obtain (7-9).

Recall (2-16) and (3-2). We compute

θ = −

∫ ( z′

x
− κ

)
ds = −

∫ (vσ
x

− (uσvσσ − uσσvσ )
dσ
ds

)
ds

= −

∫
dv
xσs

−

∫
uσσ
vσ

dσ = −

∫
xu

x
dv+ arcsin

(
|uv|√
1 + u2

v

)
+ constant

= ∓

∫
dv

√
u2 +3c

+ arcsin
(

|uv|√
1 + u2

v

)
+ constant. �

In a similar way, and using Lemma 5.1, we have the following.

Proposition 7.2. Suppose S is a “half” period of an anisotropic nodoid N with
anisotropic mean curvature 3 and flux parameter c. Parametrize the upper half of
the generating curve of the Wulff shape as

v = v(u)≥ 0 for − u ≤ u ≤ u := max u.

On this interval the x coordinate of the generating curve C of S can be represented
as, by setting v := max v,

x =
u +

√
u2 +3c

−3
for

{
0 ≤ u ≤ u as v = 0 to v = v,

− u ≤ u < 0 as v = v to v = 0.

Then, the rolling curve 0 : (r, θ) is

r =
u +

√
u2 +3c

−3
·

√
1 + u2

v for
{

0 ≤ u ≤ u as v = 0 to v = v,

− u ≤ u < 0 as v = v to v = 0.
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θ =


arcsin

(
|uv|√
1+u2

v

)
−

∫ v

0

dv
√

u2+3c
for v = 0 to v = v,

2π − arcsin
(

|uv|√
1+u2

v

)
−

∫ v

0

dv
√

u2+3c
for v = v to v = 0,

where arcsin(|uv|/
√

1 + u2
v) takes values in the closed interval [0, π/2]. In partic-

ular, the total variation of θ for one period of N is 2π , and therefore its rolling
curve is a closed curve (in the projective plane).

8. Characterization of anisotropic Delaunay curves

What surfaces of revolution arise as anisotropic Delaunay surfaces? Here, using
isothermic duality, we characterize the surfaces which can arise as anisotropic un-
duloids and nodoids without making explicit reference to the functional.

Let�(s)= (x(s), z(s)) with x(s)> 0 be a smooth curve with arc length s which
is periodic with period L in the following sense: x and z satisfy x(s + L) = x(s)
and z(s + L)− z(s) = z(L)− z(0) for all s ∈ R. We assume that one period of �
contains a unique local maximum and a unique local minimum of x , which will
be called a bulge and a neck of �, respectively. We also assume that � satisfies
either of these conditions:

(I) There is only one inflection point between a bulge and the next neck, and there
is no zero of z′.

(II) There is no inflection point, and there is only one zero of z′ between a bulge
and the next neck.

We may assume that s = 0 corresponds to a bulge, s = − l1, l2 with l1, l2 > 0
correspond to the next necks, and z(0)= 0. We denote by −sI and sJ with −l1 <

−sI < 0< sJ < l2 the unique point in (I) or (II) above.
Define a curve �̃(s) := (x̃(s), z̃(s)),

x̃(s) :=
a

x(s)
and z̃(s) := − a

∫ s

0

z′

x2 ds,

as before. Here, a is a positive constant if � satisfies (I), and a is a negative
constant if � satisfies (II).

Theorem 8.1. If �(R) = �̃(R) up to vertical translation and reflection with re-
spect to the vertical axis (z-axis), then � is an anisotropic undulary or nodary
for some anisotropic surface energy F =

∫
F(ν3) d6 with rotationally symmetric

energy integrand.
Conversely, if � is an anisotropic undulary or nodary for an anisotropic surface

energy F =
∫

F(ν3) d6 with rotationally symmetric energy integrand, then � is
periodic, either (I) or (II) holds, and �(R)= �̃(R) for some constant a 6= 0 up to
vertical translation.
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Proof. We need to prove only the first half. We know from (3-6) that

(8-1) (x̃s̃, z̃s̃)=

{
(−x ′,−z′) if a > 0,
(x ′, z′) if a < 0.

First we assume that (I) is satisfied. We may assume that z′(s) > 0 for all s.
The range z′([−l1, 0]) is a closed interval [β1, 1], and z′([0, l2]) is a closed interval
[β2, 1] for some β1, β2 ∈ (0, 1). Each point satisfying x ′>0 and z′

=β1 corresponds
to the inflection point s = −sI ; each point satisfying x ′<0 and z′

=β2 corresponds
to the inflection point s = sJ . We may assume that s = 0 corresponds to s̃ = 0.
Because of (8-1) with a > 0, the range z̃s̃([−l1, 0]) is a closed interval [−1,−β1],
and z̃s̃([0, l2]) is a closed interval [−1,−β2].

Then, at s̃ = l2 − sJ ,

x(sJ )= x̃(l2 − sJ ) and (x ′(sJ ), z′(sJ ))= (−x̃s̃(l2 − sJ ),−z̃s̃(l2 − sJ )).

Therefore, a = x2(sJ ). Similarly, we obtain a = x2(−sI ). Hence we must have
a = x2(sJ )= x2(−sI ). Now set µ̃2 := 2z′/(x + x̃). Then µ̃2 can be regarded as a
function of ν̃3 := − x̃s̃ . For any negative number 3, set

µ2(ν3) := (−3)−1µ̃2(−ν̃3) and c := − a3.

Then 2µ−1
2 z′x +3x2

= c for c > 0. Set

u := µ−1
2 z′ and v :=

∫ z

0

z′

x ′
u′ ds.

Then it is easy to see that z =
∫

xu dv. Denote the arc length of (u, v) by σ .
Then, by elementary computation, we obtain (dσ/ds)2 = (u′)2/(x ′)2. Therefore,
we obtain dv/dσ = (dv/ds)(ds/dσ) = z′. Hence 2µ−1

2 vσu − 2u2
= 0, which is

the equation for the generating curve of the Wulff shape. Now, u and v can be
regarded as functions of ν3 for x ′(sJ )≤ ν3 ≤ x ′(−sI ). We compute

u′(s)v′′(s)− u′′(s)v′(s)= (u′(s))2(x ′)−2(x ′z′′
− x ′′z′).

Since the arc (x(s), z(s)) for −sI ≤ s ≤ sJ is convex with respect to the inward
normal, u′(s)v′′(s)− u′′(s)v′(s) > 0. Therefore, (u, v) is also convex. (u, v) can
be extended to a convex closed curve, which we will denote by (u, v) also. Then,
(x, z) is an anisotropic undulary with constant anisotropic mean curvature 3 for a
Wulff shape generated by (u, v).

If (II) is satisfied, then, in a similar way, we can prove that (x, z) is an anisotropic
nodary with constant anisotropic mean curvature 3 for a Wulff shape generated
by a convex closed curve (u, v). �
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