POWERS OF THETA FUNCTIONS

HENG HUAT CHAN AND SHAUN COOPER

Dedicated to Michael Hirschhorn on the occasion of his sixtieth birthday.

The Ramanujan–Mordell Theorem for sums of an even number of squares is extended to other quadratic forms. A number of explicit examples is given. As an application, the value of the convolution sum

\[\sum_{1 \leq m < n/23} \sigma(m)\sigma(n - 23m) \]

is determined, where \(\sigma(m) \) denotes the sum of the divisors of \(m \).

1. Introduction

Throughout this work let \(\tau \) be a complex number with positive imaginary part, and let \(q = e^{2\pi i \tau} \). Dedekind’s eta-function is defined by

(1) \[\eta(\tau) = q^{1/24} \prod_{j=1}^{\infty} (1 - q^j). \]

Let

\[z = z(\tau) = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} q^{m^2 + n^2} \text{ and } \Lambda(\tau) = \frac{\eta(2\tau)^{12}}{z^6}. \]

The following result was stated by S. Ramanujan \[1916; 2000, \text{ p. 159, eq. (14)} \] and first proved by L. Mordell in \[1917\].

Theorem 1.1 (Ramanujan–Mordell). Suppose \(k \) is a positive integer. Then

\[z^k = F_k(\tau) + z^k \sum_{1 \leq j \leq (k-1)/4} c_{j,k} \Lambda^j, \]

MSC2000: primary 11E25; secondary 33E05, 11F11, 05A19.

Keywords: sum of squares, Ramanujan, convolution sum, modular form, Eisenstein series.

The first author is funded by National University of Singapore Academic Research Fund R146000103112.
where $c_{j,k}$ are constants that depend on j and k, and $F_k(\tau)$ is an Eisenstein series given by:

$$F_1(\tau) = 1 + 4 \sum_{j=1}^{\infty} \frac{q^j}{1 + q^{2j}} = 1 + 4 \sum_{j=1}^{\infty} \frac{(-1)^{j+1} q^{2j-1}}{1 - q^{2j-1}},$$

and for $k \geq 1$,

$$F_{2k}(\tau) = 1 - \frac{4k(-1)^k}{(2^k - 1)B_{2k}} \sum_{j=1}^{\infty} \frac{j^{2k-1} q^j}{1 - (-1)^k q^j}, \quad \text{and} \quad F_{2k+1}(\tau) = 1 + \frac{4(-1)^k}{E_{2k}} \sum_{j=1}^{\infty} \left(\frac{(2j)^{2k} q^j}{1 + q^{2j}} - \frac{(-1)^{k+j} (2j - 1)^{2k} q^{2j-1}}{1 - q^{2j-1}} \right).$$

Here B_k and E_k are the Bernoulli numbers and Euler numbers, respectively, defined by

$$\frac{x}{e^x - 1} = \sum_{k=0}^{\infty} \frac{B_k}{k!} x^k \quad \text{and} \quad \text{sech } x = \sum_{k=0}^{\infty} \frac{E_k}{k!} x^k.$$

For the values $k = 1, 2, 3$ and 4, the condition $1 \leq j \leq (k - 1)/4$ is empty, and therefore Theorem 1.1 gives a representation of z, z^2, z^3 and z^4 solely in terms of an Eisenstein series. These are the familiar Lambert series for sums of $2, 4, 6$ and 8 squares, originally due to C. G. J. Jacobi [1969]. The result for $k = 5$ was known in part to G. Eisenstein (without proof) [1988, p. 501], and stated in full by J. Liouville (without proof) in [1866]. The result for $k = 6$ was known in part to Liouville (without proof) in [1860; 1864]. The results for $1 \leq k \leq 9$ were proved by J. W. L. Glaisher in a series of papers culminating in [1907]. The general statement of Theorem 1.1 is due to Ramanujan (without proof) [2000, Eqs. (145)–(147)], and the first proof is due to Mordell in [1917]. Other proofs of Theorem 1.1 have been given by R. A. Rankin in [1977, pp. 241–244] and S. Cooper in [2001].

The goal of this work is to prove the analogue of the Ramanujan–Mordell Theorem for which the quadratic form $m^2 + n^2$ in the definition of z is replaced with $m^2 + mn + n^2, m^2 + mn + 2n^2, m^2 + mn + 3n^2, m^2 + mn + 6n^2$, or $2m^2 + mn + 3n^2$. Before stating the result we make some definitions. For $k \geq 1$, define the normalized Eisenstein series by

$$E_{2k}(\tau) = 1 - \frac{4k}{B_{2k}} \sum_{j=1}^{\infty} \frac{j^{2k-1} q^j}{1 - q^j},$$

(2)
where B_{2k} denotes the Bernoulli numbers. Let p be an odd prime. The generalized Bernoulli numbers $B_{k,p}$ are defined by

$$ x \frac{e^{px} - 1}{e^x - 1} \sum_{j=1}^{p-1} \left(\frac{j}{p} \right) e^{jx} = \sum_{k=0}^{\infty} B_{k,p} \frac{x^k}{k!}, $$

where $\left(\frac{j}{p} \right)$ is the Legendre symbol. Let k be a positive integer which satisfies

$$ k \equiv \frac{p - 1}{2} \quad (\text{mod } 2). $$

The generalized Eisenstein series $E_0^k(\tau; \chi_p)$ and $E_\infty^k(\tau; \chi_p)$ are defined by

$$ E_0^k(\tau; \chi_p) = \delta_{k,1} - \frac{2k}{B_{k,p}} \sum_{j=1}^{\infty} j^{k-1} \sum_{\ell=1}^{p-1} \left(\frac{\ell}{p} \right) q^{j\ell}, \quad \text{and} $$

$$ E_\infty^k(\tau; \chi_p) = 1 - \frac{2k}{B_{k,p}} \sum_{j=1}^{\infty} \left(\frac{j}{p} \right) j^{k-1} q^j \frac{1}{1-q^j}, $$

where $\delta_{m,n}$ is the Kronecker delta function, defined by

$$ \delta_{m,n} = \begin{cases} 1 & \text{if } m = n, \\ 0 & \text{if } m \neq n. \end{cases} $$

If p is a prime of the form $p \equiv 3 \quad (\text{mod } 4)$, let

$$ F_1(\tau; p) = E_1^\infty(\tau; \chi_p), $$

and for $k \geq 1$, let

$$ F_{2k}(\tau; p) = \frac{E_{2k}(\tau) + (-p)^k E_{2k}(p\tau)}{1 + (-p)^k}, $$

$$ F_{2k+1}(\tau; p) = E_{2k+1}^\infty(\tau; \chi_p) + (-p)^k E_{2k+1}^0(\tau; \chi_p). $$

For $p = 3, 7, 11$ or 23, let

$$ z_p = z_p(\tau) = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} q^{m^2 + mn + (p+1)n^2/4} $$

and

$$ \Lambda_p = \Lambda_p(\tau) = \left(\frac{\eta(\tau) \eta(p\tau)}{z_p} \right)^{24/(p+1)}. $$
Furthermore, let
\begin{equation}
 z_{23} = z_{23}(\tau) = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} q^{2m^2+mn+n^2}
\end{equation}
and
\begin{equation}
 \Lambda_{23} = \Lambda_{23}(\tau) = \frac{\eta(\tau)\eta(23\tau)}{z_{23}}.
\end{equation}

The analogue of the Ramanujan–Mordell Theorem, and the main result of this work, is:

Theorem 1.2. Suppose \(p = 3, 7, 11 \) or 23 and let \(k \) be a positive integer. Let \(F_k(\tau; p), z_p \) and \(\Lambda_p \) be defined by (4)–(8). Then
\begin{equation}
 z^k_p = F_k(\tau; p) + z_p \sum_{1 \leq j \leq (p+1)k/24} c_{p,k,j} \Lambda_p^j,
\end{equation}
where \(c_{p,k,j} \) are numerical constants that depend only on \(p, k \) and \(j \).

A similar result holds for \(z'_{23} \) and \(\Lambda'_{23} \) defined by (9) and (10), namely
\begin{equation}
 z_{23}^k = F_k(\tau; 23) + z_{23} \sum_{1 \leq j \leq k} a_{k,j} \Lambda_{23}^j,
\end{equation}
where \(a_{k,j} \) are numerical constants that depend only on \(k \) and \(j \).

A proof of Theorem 1.2 will be given in Section 2. In the remainder of this section we describe some special cases of Theorem 1.2.

Example 1. For \(k = 1 \) and \(p = 3, 7 \) or 11, Theorem 1.2 gives
\begin{align*}
 \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} q^{m^2+mn+n^2} &= 1 + 6 \sum_{j=1}^{\infty} \left(\frac{j}{3} \right) \frac{q^j}{1-q^j}, \\
 \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} q^{m^2+mn+2n^2} &= 1 + 2 \sum_{j=1}^{\infty} \left(\frac{j}{7} \right) \frac{q^j}{1-q^j}, \\
 \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} q^{m^2+mn+3n^2} &= 1 + 2 \sum_{j=1}^{\infty} \left(\frac{j}{11} \right) \frac{q^j}{1-q^j}.
\end{align*}
These are equivalent to instances of a general theorem of Dirichlet; see [Landau
1958, Theorem 204]. When \(k = 1 \) and \(p = 23 \), Theorem 1.2 gives
\[
\sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} q^{m^2+mn+6n^2} = 1 + \frac{3}{2} \sum_{j=1}^{\infty} \left(\frac{j}{23} \right) \frac{q^j}{1-q^j} + \frac{3}{2} q \prod_{j=1}^{\infty} (1-q^j)(1-q^{23j}),
\]
\[
\sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} q^{2m^2+mn+3n^2} = 1 + \frac{3}{2} \sum_{j=1}^{\infty} \left(\frac{j}{23} \right) \frac{q^j}{1-q^j} - \frac{3}{2} q \prod_{j=1}^{\infty} (1-q^j)(1-q^{23j}),
\]
and these were proved by F. van der Blij in [1952]. They may be rearranged to give
\[
\sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} q^{m^2+mn+6n^2} + 2 \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} q^{2m^2+mn+3n^2} = 3 + 2 \sum_{j=1}^{\infty} \left(\frac{j}{23} \right) \frac{q^j}{1-q^j},
\]
\[
\sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} q^{m^2+mn+6n^2} - \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} q^{2m^2+mn+3n^2} = 2q \prod_{j=1}^{\infty} (1-q^j)(1-q^{23j}).
\]
The first of these is equivalent to another instance of Dirichlet’s theorem [Landau
1958, Theorem 204], and the second formula was noted by J.-P. Serre in [1977,
p. 242].

Example 2. For the case \(p = 3 \), results for \(1 \leq k \leq 4 \) were given (without proof)
by Ramanujan [Andrews and Berndt 2005, pp. 402–403], and results for \(3 \leq k \leq 6 \)
were given by H. Petersson in [1982, p. 90]. For \(2 \leq k \leq 6 \), these results are:
\[
\left(\sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} q^{m^2+mn+n^2} \right)^2 = 1 + 12 \sum_{j=1}^{\infty} \frac{jq^j}{1-q^j} - 36 \sum_{j=1}^{\infty} \frac{jq^{2j}}{1-q^j},
\]
\[
\left(\sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} q^{m^2+mn+n^2} \right)^3 = 1 - 9 \sum_{j=1}^{\infty} \left(\frac{j}{3} \right) \frac{j^2q^j}{1-q^j} + 27 \sum_{j=1}^{\infty} \frac{j^2q^j}{1+q^j+q^{2j}},
\]
\[
\left(\sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} q^{m^2+mn+n^2} \right)^4 = 1 + 24 \sum_{j=1}^{\infty} \frac{j^3q^j}{1-q^j} + 216 \sum_{j=1}^{\infty} \frac{j^3q^{3j}}{1-q^{3j}},
\]
\[
\left(\sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} q^{m^2+mn+n^2} \right)^5 = 1 + 3 \sum_{j=1}^{\infty} \left(\frac{j}{3} \right) \frac{j^4q^j}{1-q^j} + 27 \sum_{j=1}^{\infty} \frac{j^4q^j}{1+q^j+q^{2j}},
\]
\[
\left(\sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} q^{m^2+mn+n^2} \right)^6 = 1 + \frac{252}{13} \sum_{j=1}^{\infty} \frac{j^5q^j}{1-q^j} - \frac{6804}{13} \sum_{j=1}^{\infty} \frac{j^5q^{3j}}{1-q^{3j}} + \frac{216}{13} q \prod_{j=1}^{\infty} (1-q^j)^6 (1-q^{3j})^6.
\]
Results for \(p = 3 \), \(1 \leq k \leq 20 \), were given by G. Lomadze in [1989a; 1989b]. Lomadze’s expansions for \(6 \leq j \leq 20 \) are different from ours. For example, Lomadze’s formula for \(k = 6 \) has
\[
\frac{1}{12} \sum_{n=1}^{\infty} \left(\sum_{x_1^2 + x_1 y_1 + y_1^2 + x_2^2 + x_2 y_2 + y_2^2 = n} 9x_1^4 - 9n x_1^2 + n^2 \right) q^n
\]
in place of
\[
q \prod_{j=1}^{\infty} (1 - q^j)^6 (1 - q^{3j})^{6},
\]
and Lomadze’s formulas become more complicated as \(k \) increases.

Example 3. For \(p = 7 \), the cases \(k = 2 \) and \(3 \) of Theorem 1.2 give
\[
\left(\sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} q^{m^2+mn+2n^2} \right)^2 = 1 + 4 \sum_{j=1}^{\infty} \frac{j q^j}{1 - q^j} - 28 \sum_{j=1}^{\infty} \frac{j q^{7j}}{1 - q^{7j}}
\]
and
\[
\left(\sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} q^{m^2+mn+2n^2} \right)^3
\]
\[
= 1 - \frac{7}{8} \sum_{j=1}^{\infty} \left(\frac{j}{7} \right) - \frac{7}{8} \sum_{j=1}^{\infty} \frac{j^2 (q^j + q^{2j} - q^{3j} + q^{4j} - q^{5j} - q^{6j})}{1 - q^{7j}}
\]
\[
+ \frac{3}{4} q \prod_{j=1}^{\infty} (1 - q^j)^3 (1 - q^{7j})^3.
\]

The identity (11) was given by Ramanujan; see [Andrews and Berndt 2005, p. 405, Entry 18.2.15]. See [Chan and Ong 1999; Cooper and Toh 2008; Liu 2003] and [Williams 2006] for other proofs.

The identity (12) is a consequence of the formulas for \(E_3^\infty(q; \chi_7) \) and \(E_3^0(q; \chi_7) \) in [Chan and Cooper 2008]. In [Chan et al. 2008], it was shown that
\[
q \prod_{j=1}^{\infty} (1 - q^j)^3 (1 - q^{7j})^3 = \frac{1}{2} \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} \left(m + n \left(\frac{1 + i \sqrt{7}}{2} \right) \right)^2 q^{m^2+mn+2n^2}.
\]

Another result for \(\chi_7^3 \) can be obtained by combining two of Ramanujan’s results, [Andrews and Berndt 2005, p. 404, Entry 18.2.14] and [Berndt 1991, p. 467, Entry 5 (i)].
\[
\left(\sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} q^{m^2+mn+2n^2} \right)^3 = \prod_{j=1}^{\infty} \frac{(1 - q^j)^7}{(1 - q^{7j})} + 13q \prod_{j=1}^{\infty} (1 - q^j)^3 (1 - q^{7j})^3 + 49q^2 \prod_{j=1}^{\infty} \frac{(1 - q^{7j})^7}{(1 - q^j)}.
\]

Other proofs of (13) have been given by H. H. Chan and Y. L. Ong in [1999, Lemma 2.2] and Z.-G. Liu in [2003].

The remainder of this paper is organized as follows. We shall give a proof of Theorem 1.2 in Section 2. The proof depends on three transformation formulas (Lemmas 2.1–2.3) for \(\Gamma_0(p) \), as well as a result that says certain bounded functions must be constant (Lemma 2.4). A proof of the identity (13) using the same technique is also given. Some applications to convolution sums are given in Section 3.

2. Proofs

Let
\[
\Gamma = \left\{ \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) : a, b, c, d \in \mathbb{Z}, \ ad - bc = 1 \right\},
\]
\[
\Gamma_0(p) = \left\{ \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) : a, b, c, d \in \mathbb{Z}, \ ad - bc = 1, \ c \equiv 0 \pmod{p} \right\}.
\]
For \(p = 3, 7, 11 \) or 23, define
\[
(14) \quad \eta_p(\tau) = (\eta(\tau) \eta(p \tau))^{24/(p+1)}.
\]

The proof of Theorem 1.2 hinges on the following four lemmas.

Lemma 2.1. Let \(p = 3, 7, 11 \) or 23 and let \(\left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \in \Gamma_0(p) \). Then, for \(\eta_p(\tau) \) defined by (14), we have
\[
\eta_p \left(\frac{a \tau + b}{c \tau + d} \right) = \left(\frac{d}{p} \right)^{24/(p+1)} (c \tau + d)^{24/(p+1)} \eta_p(\tau)
\]
and
\[
\eta_p \left(\frac{-1}{\tau \sqrt{p}} \right) = (-i \tau)^{24/(p+1)} \eta_p \left(\frac{\tau}{\sqrt{p}} \right).
\]

Proof: These follow from the transformation formula for the Dedekind eta-function [Apostol 1990, p. 52, Theorem 3.4].

Lemma 2.2. Let \(p = 3, 7, 11 \) or 23 and let \(\left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \in \Gamma_0(p) \). Then, for \(z_p(\tau) \) defined by (7), we have
\[
z_p \left(\frac{a \tau + b}{c \tau + d} \right) = \left(\frac{d}{p} \right) (c \tau + d) z_p(\tau)
\]
and
\[z_p \left(\frac{-1}{\tau \sqrt{p}} \right) = -i \tau z_p \left(\frac{\tau}{\sqrt{p}} \right). \]

The same transformation formulas hold when \(z_{23} \) is replaced with \(z'_{23} \).

Proof. The first result follows from [Schoeneberg 1974, p. 217, Theorem 4] by taking \(r = 1, A = \left(\frac{2}{1_{(p+1)/2}} \right), h = (0, 0), k = 0 \) and \(P_k = 1 \). The corresponding result for \(z'_{23} \) follows by taking \(A = \left(\frac{4}{1_6} \right) \), with the other parameters being the same as for the case \(p = 23 \).

The second result is a direct consequence of [Schoeneberg 1974, p. 205, (5)]. □

Lemma 2.3. Let \(p \equiv 3 \pmod{4} \) be prime and let \(n \) be a positive integer. Let \(\left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \in \Gamma_0(p) \). Then for \(F_k(\tau; p) \) defined by (4)–(6), we have
\[F_k \left(\frac{a \tau + b}{c \tau + d}; p \right) = \left(\frac{d}{p} \right)^k (c \tau + d)^k F_k(\tau; p) \]
and
\[F_k \left(\frac{-1}{\tau \sqrt{p}}; p \right) = (-i \tau)^k F_k \left(\frac{\tau}{\sqrt{p}}; p \right). \]

Proof. For odd values of \(k \), these follow from [Cooper 2008, Theorem 6.1] or [Kolberg 1968, (1.8)–(1.12)]. For even values of \(k \) with \(k \geq 4 \), these follow from the well-known transformation formulas for \(E_{2k}(\tau) \), for example, see [Serre 1973, pp. 83, 92, 95–96]. For \(k = 2 \), the results are most easily proved by appealing to the transformation formulas for the function \(\left(\frac{\psi(p \tau)}{\eta(\tau)} \right)^{24} \) in [Apostol 1990, pp. 84–85, Theorems 4.7 and 4.8], and then applying logarithmic differentiation. □

Lemma 2.4. Let \(f(\tau) \) be analytic and bounded in the upper half plane \(\text{Im}(\tau) > 0 \), and suppose it satisfies the transformation property
\[f \left(\frac{a \tau + b}{c \tau + d} \right) = f(\tau) \quad \text{for all} \quad \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \in \Gamma_0(p). \]

Then \(f \) is constant.

Proof. This is Theorem 4.4 in [Apostol 1990, p. 79]. □

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. Let \(p = 3, 7, 11 \) or 23, and let \(k \) be a positive integer. Let \(\ell \) be the smallest integer that satisfies \(\frac{24\ell}{p+1} \geq k \). Consider the functions
\[\varphi(\tau) = \varphi_{p,k}(\tau) = \frac{F_k(\tau; p)}{(z_p(\tau))^k \left(\frac{\eta(\tau) \eta(p \tau)}{\eta(\tau) \eta(p \tau)} \right)^{24/(p+1)}} \]
and
\[\psi(\tau) = \psi_{p}(\tau) = \left(\frac{z_p(\tau)}{\eta(\tau) \eta(p \tau)} \right)^{24/(p+1)}. \]
By Lemmas 2.1–2.3, $\varphi(\tau)$ and $\psi(\tau)$ satisfy the transformation property (15). Furthermore, φ and ψ are both analytic in the upper half plane $0 < \text{Im}(\tau) < \infty$, as $\eta(\tau)$ does not vanish in this region. Let us analyze the behavior at $\tau = i\infty$. From the q-expansions, we find that

$$
\varphi(\tau) = \frac{(1 + O(q))}{(1 + O(q))^{k}} \left(\frac{1 + O(q)}{q + O(q^{2})} \right)^{\ell} = q^{-\ell} + O(q^{-\ell+1}) \quad \text{as} \quad \tau \to i\infty.
$$

Therefore $\varphi(\tau)$ has a pole of order ℓ at $i\infty$. Similarly, we find that $\psi(\tau)$ has a pole of order 1 at $i\infty$. It follows that there exist constants b_{1}, \ldots, b_{ℓ}, such that the function

$$
\lambda(\tau) := \varphi(\tau) - \sum_{j=1}^{\ell} b_{j} (\psi(\tau))^{j}
$$

has no pole at $i\infty$. That is to say,

$$
\lambda(\tau) = b_{0} + O(q) \quad \text{as} \quad \tau \to i\infty
$$

for some constant b_{0}. Let us consider the behavior of $\lambda(\tau)$ at $\tau = 0$. By the second result in each of Lemmas 2.1–2.3, we find that

$$
\varphi\left(\frac{-1}{\sqrt{\tau}}\right) = \varphi\left(\frac{\tau}{\sqrt{p}}\right) \quad \text{and} \quad \psi\left(\frac{-1}{\sqrt{\tau}}\right) = \psi\left(\frac{\tau}{\sqrt{p}}\right).
$$

Therefore

$$
\lambda(\tau) = \lambda\left(\frac{-1}{p\tau}\right) \to b_{0} \quad \text{as} \quad \tau \to 0.
$$

It follows from the description of the fundamental region for $\Gamma_{0}(p)$ given in [Apostol 1990, p. 76, Theorem 4.2] that $\lambda(\tau)$ is bounded in the upper half plane. Hence by Lemma 2.4, $\lambda(\tau)$ is constant, that is, $\lambda(\tau) \equiv b_{0}$. Therefore, from (16) we have

$$
\varphi(\tau) = \sum_{j=0}^{\ell} b_{j} (\psi(\tau))^{j}.
$$

Using the fact that $\psi(\tau) = 1/\Lambda_{p}(\tau)$, this is equivalent to

$$
F_{k}(\tau; p) = z_{p}^{k} \sum_{j=0}^{\ell} b_{j} \Lambda_{p}^{\ell-j} = z_{p}^{k} \sum_{0 \leq j \leq (p+1)k/24} c_{j} \Lambda_{p}^{j},
$$

where $c_{j} = b_{\ell-j}$. Letting $q = 0$ on both sides we deduce that $c_{0} = 1$.

If we replace z_{23} and Λ_{23} by z'_{23} and Λ'_{23}, respectively, at every step in the proof, we establish the result for z'_{23} and Λ'_{23}.

This completes the proof of Theorem 1.2.
Remarks. For \(p = 3, 7, 11 \) or 23, the genus of the normalizer of \(\Gamma_0(p) \) in \(SL_2(\mathbb{R}) \) (denoted by \(\Gamma_0(p)+ \)) is 0. It turns out that for each \(p \), the field of functions invariant under \(\Gamma_0(p)+ \) is generated by \(\psi_p(\tau) \), which has a simple pole at \(\tau = i\infty \). Since \(\varphi_{p,k}(\tau) \) has a pole of order \(\ell \) at \(\tau = i\infty \) and \(\varphi_{p,k}(\tau) \) is a function on \(\Gamma_0(p)+ \), it follows that \(\varphi_{p,k}(\tau) \) is a polynomial in \(\psi_p(\tau) \) with degree exactly \(\ell \). This explains the existence of relation (16).

The identity (13) may be proved similarly.

Proof of (13). Let

\[
F(\tau) = \frac{z^3}{\eta^3(\tau)\eta^3(7\tau)} \quad \text{and} \quad G(\tau) = \frac{\eta^4(\tau)}{\eta^4(7\tau)}.
\]

Lemmas 2.1 and 2.2 imply \(F(\tau) \) satisfies the transformation formula (15). Furthermore, [Apostol 1990, p. 87, Theorem 4.9] implies that \(G(\tau) \) also satisfies the transformation formula (15). The \(q \)-expansions are

\[
F(\tau) = \frac{1}{q} + O(1) \quad \text{and} \quad G(\tau) = \frac{1}{q} + O(1) \quad \text{as} \quad \tau \to i\infty.
\]

Hence \(F(\tau) \) and \(G(\tau) \) both have a pole of order 1 at \(\tau = i\infty \).

By the second parts of Lemmas 2.1 and 2.2, and by the transformation formula for the Dedekind eta-function [Apostol 1990, p. 52, Theorem 3.4], we have

\[
F\left(\frac{-1}{\tau}\right) = F(\tau) \quad \text{and} \quad G\left(\frac{-1}{\tau}\right) = \frac{49}{G(\tau)}.
\]

Therefore at the point \(\tau = 0 \), \(F(\tau) \) has a pole of order 1 and \(G(\tau) \) has a zero of order 1.

Let

\[
H(\tau) := F(\tau) - aG(\tau) - \frac{b}{G(\tau)},
\]

where \(a \) and \(b \) are constants that will be chosen so that \(H(\tau) \) has no pole at 0 or \(i\infty \). In order for there to be no pole at \(\tau = i\infty \), (17) implies \(a = 1 \). In order for there to be no pole at \(\tau = 0 \), (17) and (18) imply \(b = 49 \). It follows that the function \(H(\tau) \) with these values of \(a \) and \(b \) is bounded in the upper half plane, and Lemma 2.4 implies that it is constant. That is,

\[
\frac{z^3}{\eta^3(\tau)\eta^3(7\tau)} = c + \frac{\eta^4(\tau)}{\eta^4(7\tau)} + 49\frac{\eta^4(7\tau)}{\eta^4(\tau)},
\]

for some constant \(c \). If we multiply by \(\eta^3(\tau)\eta^3(7\tau) \) and compare coefficients of \(q \) on both sides, we find that \(c = 13 \). This completes the proof of (13).
3. Application to convolution sums

Let $\sigma_j(n)$ denote the sum of the j-th powers of the divisors of n, and let $\sigma(n) = \sigma_1(n)$. The convolution sum

$$W_k(n) = \sum_{1 \leq m < n/k} \sigma(m)\sigma(n-km)$$

has been evaluated for $1 \leq k \leq 14$ and $k = 16, 18$ and 24. See [Alaca et al. 2007] and [Royer 2007] for references. In this section, we show how Theorem 1.2 leads to an evaluation of $W_k(n)$ for the cases $k = 3, 7, 11$ and 23. The case $k = 23$ is new. Let

$$P(q) = E_2(\tau) = 1 - 24 \sum_{j=1}^{\infty} \frac{jq^j}{1-q^j},$$
$$Q(q) = E_4(\tau) = 1 + 240 \sum_{j=1}^{\infty} \frac{j^3q^j}{1-q^j},$$
$$S(q) = -q \frac{d}{24 dq} P(q) = \sum_{j=1}^{\infty} \frac{j^2q^j}{(1-q^j)^2}.$$

Theorem 3.1. For $p = 3, 7, 11$ and 23 we have

$$P(q)P(q^p) = \frac{1}{p^2+1}(Q(q)+p^2Q(q^p)) - \frac{144}{p}(S(q)+p^2S(q^p))-576z^4u_p(\Lambda_p),$$

where

$$u_3(\Lambda_3) = 0,$$
$$u_7(\Lambda_7) = \frac{1}{31} \Lambda_7,$$
$$u_{11}(\Lambda_{11}) = \frac{1}{671} (15\Lambda_{11} - 17\Lambda_{11}^2),$$
$$u_{23}(\Lambda_{23}) = \frac{1}{2438} (77\Lambda_{23} - 222\Lambda_{23}^2 + 201\Lambda_{23}^3 - 30\Lambda_{23}^4).$$

Proof: By Theorem 1.2 with $k = 2$ and 4, we have

$$\frac{pP(q^p) - P(q)}{p-1} = z_p^2 \left(1 - \sum_{1 \leq j \leq (p+1)/12} c_{p,j} \Lambda_p^j \right),$$
$$\frac{p^2Q(q^p) + Q(q)}{p^2+1} = z_p^4 \left(1 - \sum_{1 \leq j \leq (p+1)/6} d_{p,j} \Lambda_p^j \right),$$

for some constants $c_{p,j}$ and $d_{p,j}$. If we square (19) and subtract the result from (20), we obtain

$$\frac{p^2Q(q^p) + Q(q)}{p^2+1} - \left(\frac{pP(q^p) - P(q)}{p-1} \right)^2 = z_p^4 \sum_{1 \leq j \leq (p+1)/6} d_{p,j}^* \Lambda_p^j.$$
for some constants $d'_{p,j}$. This may be rewritten as

$$P(q)P(q^p) = \frac{1}{2p} \left(\frac{p^2 P^2(q) + P^2(q)}{2p^3 + 1} \right) - \frac{(p-1)^2}{2p^3} \left(P^2(Q(q) + Q(q)) \right)$$

$$+ z^4 \sum_{1 \leq j \leq (p+1)/6} d''_{p,j} \Lambda^j_p,$$

for some constants $d''_{p,j}$. Now use the result (see [Chan 2007; Glaisher 1885] or [Ramanujan 2000, p. 142, Eq. (30)])

$$P^2(q) = Q(q) - 288S(q)$$

to get

$$P(q)P(q^p) = \frac{1}{p^2 + 1} \left(Q(q) + p^2 Q(q^p) \right) - \frac{144}{p} \left(S(q) + p^2 S(q^p) \right)$$

$$+ z^4 \sum_{1 \leq j \leq (p+1)/6} d''_{p,j} \Lambda^j_p.$$

The values of the coefficients $d''_{p,j}$ may be determined by expanding in powers of q and equating coefficients of q^j for $1 \leq j \leq (p+1)/6$. In this way we obtain the polynomials $u_p(\Lambda_p)$ given in the statement of the theorem. This completes the proof.

\[\square\]

Theorem 3.2. For $p = 3, 7, 11$ and 23 we have

$$W_p(n) = \frac{5}{12(p^2 + 1)} \left(\frac{\sigma_3(n) + p^2 \sigma_3 \left(\frac{n}{p} \right)}{6} \right)$$

$$+ \left(\frac{1}{24} - \frac{n}{4p} \right) \sigma(n) + \left(\frac{1}{24} - \frac{n}{4} \right) \sigma \left(\frac{n}{p} \right) - c_p(n).$$

Here $c_p(n)$ is defined by

$$\sum_{n=1}^{\infty} c_p(n)q^n = z^4 u_p(\Lambda_p),$$

and $u_p(\Lambda_p)$ is as in Theorem 3.1.

Proof. Equate coefficients of q^n on both sides of the identity in Theorem 3.1. \[\square\]

References

[Alaca et al. 2007] A. Alaca, Ş. Alaca, and K. S. Williams, “Evaluation of the convolution sums $\sum_{l+18m=n} \sigma(l)\sigma(m)$ and $\sum_{2l+9m=n} \sigma(l)\sigma(m)$”, *Int. Math. Forum* 2:1 (2007), 45–68. MR 2007a:11052 Zbl 05151598

G. A. Lomadze, “Representation of numbers by the direct sum of quadratic forms of type $x_1^2 + x_1 x_2 + x_2^2$”, Trudy Tbiliss. Univ. Mat. Mekh. Astronom. 26 (1989), 5–21. MR 92m:11037 Zbl 0900.11010

HENG HUAT CHAN
DEPARTMENT OF MATHEMATICS
NATIONAL UNIVERSITY OF SINGAPORE
KENT RIDGE 119260
SINGAPORE
matchh@nus.edu.sg

SHAUN COOPER
INSTITUTE OF INFORMATION AND MATHEMATICAL SCIENCES
MASSEY UNIVERSITY – ALBANY
PRIVATE BAG 102904, NORTH SHORE MAIL CENTRE
AUCKLAND
NEW ZEALAND
s.cooper@massey.ac.nz