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Consider the first order linear difference equation

1u(k) + p(k) u(τ(k)) = 0, k ∈ N,

where 1u(k) = u(k + 1) − u(k), p : N → R+, τ : N → N , τ(k) ≤ k − 2 and
limk→+∞ τ(k) = +∞. Optimal conditions for the oscillation of all proper
solutions of this equation are established. The results lead to a sharp oscil-
lation condition, when k − τ(k) → +∞ as k → +∞. Examples illustrating
the results are given.

1. Introduction

The first systematic study for the oscillation of all solutions to the first order delay
differential equation

(1-1) u′(t)+ p(t) u(τ (t))= 0,

where

p ∈ L loc(R+; R+), τ ∈ C(R+; R+), τ (t)≤ t for t ∈ R+ and lim
t→+∞

τ(t)= +∞,

in the case of constant coefficients and constant delays was made by Myshkis
[1972]. For the differential equation (1-1) the problem of oscillation is investigated
by many authors. See, for example, [Elbert and Stavroulakis 1995; Koplatadze and
Chanturiya 1982; Koplatadze and Kvinikadze 1994; Ladas et al. 1984; Sficas and
Stavroulakis 2003] and the references cited therein.

Theorem 1.1 [Koplatadze and Chanturiya 1982]. Assume that

(1-2) lim inf
t→+∞

∫ t

τ(t)
p(s) ds >

1
e
.

Then all solutions of Equation (1-1) oscillate.
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It is to be emphasized that condition (1-2) is optimal in the sense that it cannot
be replaced by the condition

(1-3) lim inf
t→+∞

∫ t

τ(t)
p(s) ds ≥

1
e
.

For example, if τ(t)= t−δ or τ(t)=α t or τ(t)= tα, where δ>0, α∈ (0, 1), exam-
ples can be given such that condition (1-3) is satisfied, but (1-1) has a nonoscillatory
solution.

The discrete analogue of the first order delay differential equation (1-1) is the
first order difference equation

(1-4) 1u(k)+ p(k) u(τ (k))= 0,

where

(1-5)
1u(k)= u(k + 1)− u(k), p : N → R+,

τ : N → N , τ (k)≤ k − 1, lim
k→+∞

τ(k)= +∞.

By a proper solution of (1-4) we mean a function u : Nn0 → R with n0 =

min{τ(k) : k ∈ Nn} and Nn = {n, n + 1, . . . }, which satisfies (1-4) on Nn and
sup{|u(i)| : i ≥ k}> 0 for k ∈ Nn0 .

A proper solution u : Nn0 → R of (1-4) is said to be oscillatory (around zero) if
for any positive integer n ∈ Nn0 there exist n1, n2 ∈ Nn such that u(n1) u(n2)≤ 0.
Otherwise, the proper solution is said to be nonoscillatory. In other words, a proper
solution u is oscillatory if it is neither eventually positive nor eventually negative.

Oscillatory properties of the solutions of (1-4), in the case of a general de-
lay argument τ(k), have been recently investigated in [Chatzarakis et al. 2008a;
2008b], while the special case when τ(k)= k − n, n ≥ 1, has been studied rather
extensively. See, for example, [Agarwal et al. 2005; Baštinec and Diblik 2005;
Chatzarakis and Stavroulakis 2006; Domshlak 1999; Elaydi 1999; Ladas et al.
1989] and the references cited therein. In this particular case, (1-4) becomes

(1-6) 1u(k)+ p(k) u(k − n)= 0, k ∈ N .

For this equation Ladas, Philos and Sficas established the following theorem.

Theorem 1.2 [Ladas et al. 1989]. Assume that

(1-7) lim inf
k→+∞

k−1∑
i=k−n

p(i) >
( n

n + 1

)n+1
.

Then all proper solutions of (1-6) oscillate.
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This result is sharp in the sense that the inequality (1-7) cannot be replaced by
the nonstrong one for any n ∈ N . Hence, Theorem 1.2 is the discrete analogue of
Theorem 1.1 when τ(t)= t − δ.

An interesting question then arises whether there exists the discrete analogue
of Theorem 1.1 for (1-4) in the case of a general delay argument τ(k) when
limk→+∞(k − τ(k))= +∞.

In the present paper optimal conditions for the oscillation of all proper solutions
of (1-4) are established and a positive answer to the above question is given.

2. Some auxiliary lemmas

Let k0 ∈ N . Denote by Uk0 the set of all proper solutions of (1-4) satisfying the
condition u(k) > 0 for k ≥ k0.

Remark 2.1. We will suppose that Uk0 = ∅, if (1-4) has no solution satisfying the
condition u(k) > 0 for k ≥ k0.

Lemma 2.2. Assume that k0 ∈ N , Uk0 6= ∅, u ∈ Uk0 , τ(k) ≤ k − 1, τ is a nonde-
creasing function and

(2-1) lim inf
k→+∞

k−1∑
i=τ(k)

p(i)= c > 0.

Then

(2-2) lim sup
k→+∞

u(τ (k))
u(k + 1)

≤
4
c2 .

Proof. By (2-1), for any ε ∈ (0, c), it is clear that

(2-3)
k−1∑

i=τ(k)

p(i)≥ c − ε for k ∈ Nk0 .

Since u is a positive proper solution of (1-4), then there exists k1 ∈ Nk0 such that

u(τ (k)) > 0 for k ∈ Nk1 .

Thus, from (1-4) we have

u(k + 1)− u(k)= −p(k)u(τ (k))≤ 0

and so u is an eventually nonincreasing function of positive numbers.
Now from inequality (2-3) it is clear that, there exists k∗

≥ k such that

(2-4)
k∗

−1∑
i=k

p(i) <
c − ε

2
and

k∗∑
i=k

p(i)≥
c − ε

2
.
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This is because in the case where p(k) < c−ε
2 , it is clear that there exists k∗ > k

such that (2-4) is satisfied, while in the case where p(k) ≥
c−ε

2 , then k∗
= k, and

therefore
k∗

−1∑
i=k

p(i)=

k−1∑
i=k

p(i) (by which we mean) = 0<
c − ε

2

and
k∗∑

i=k

p(i)=

k∑
i=k

p(i)= p(k)≥
c − ε

2
.

That is, in both cases (2-4) is satisfied.
Now, we will show that τ(k∗) ≤ k − 1. Indeed, in the case where p(k) ≥

c−ε
2 ,

since k∗
= k , it is obvious that τ(k∗) ≤ k − 1. In the case where p(k) < c−ε

2 ,
then k∗ > k. Assume, for the sake of contradiction, that τ(k∗) > k − 1. Hence,
k ≤ τ(k∗)≤ k∗

− 1 and then

k∗
−1∑

i=τ(k∗)

p(i)≤

k∗
−1∑

i=k

p(i) <
c − ε

2
.

This, in view of (2-3), leads to a contradiction. Thus, in both cases, we have
τ(k∗)≤ k − 1.

Therefore, it is clear that

(2-5)
k−1∑

i=τ(k∗)

p(i)=

k∗
−1∑

i=τ(k∗)

p(i)−
k∗

−1∑
i=k

p(i)≥ (c − ε)−
c − ε

2
=

c − ε

2
.

Now, summing up (1-4) first from k to k∗ and then from τ(k∗) to k − 1, and using
that the function u is nonincreasing and the function τ is nondecreasing, we have

u(k)− u(k∗
+ 1)=

k∗∑
i=k

p(i)u(τ (i))≥

( k∗∑
i=k

p(i)
)

u(τ (k∗))≥
c − ε

2
u(τ (k∗)),

or

(2-6) u(k)≥
c − ε

2
u(τ (k∗)),

and then

u(τ (k∗))−u(k)=
k−1∑

i=τ(k∗)

p(i)u(τ (i))≥
( k−1∑

i=τ(k∗)

p(i)
)

u(τ (k−1))≥ c−ε

2
u(τ (k−1)),

or

(2-7) u(τ (k∗))≥
c − ε

2
u(τ (k − 1)).
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Combining inequalities (2-6) and (2-7), we obtain

u(τ (k − 1))
u(k)

≤
4

(c − ε)2

and, for large k, we have
u(τ (k))
u(k + 1)

≤
4

(c − ε)2
.

Hence,

lim sup
k→+∞

u(τ (k))
u(k + 1)

≤
4

(c − ε)2
,

which, for arbitrarily small values of ε, implies (2-2). �

Lemma 2.3. Assume that k0 ∈ N , Uk0 6= ∅, u ∈ Uk0 , τ(k) ≤ k − 1, τ is a nonde-
creasing function and condition (2-1) is satisfied. Then

(2-8) lim
k→+∞

u(k) exp
(
λ

k−1∑
i=1

p(i)
)

= +∞ for any λ >
4
c2 .

Proof. Since all the conditions of Lemma 2.2 are satisfied, for any γ > 4/c2 , there
exists k1 ∈ Nk0 such that

(2-9)
u(τ (k))
u(k + 1)

≤ γ for k ∈ Nk1 .

Also, for any n ∈ Nk1

n∑
k=k1

1u(k)
u(k + 1)

=

n∑
k=k1

(
1 −

u(k)
u(k + 1)

)
= (n − k1)−

n∑
k=k1

exp
(

ln
u(k)

u(k + 1)

)

≤ (n − k1)−

n∑
k=k1

(
1 + ln

u(k)
u(k + 1)

)
= −

n∑
k=k1

ln
u(k)

u(k + 1)
= ln

u(n + 1)
u(k1)

,

or
n∑

k=k1

1u(k)
u(k + 1)

≤ ln
u(n + 1)

u(k1)
.

Moreover, from (1-4), we have
n∑

k=k1

1u(k)
u(k + 1)

= −

n∑
k=k1

p(k)
u(τ (k))
u(k + 1)

.

Combining (2-9) with the last two relations, we obtain

u(n + 1)≥ u(k1) exp
(

−γ

n∑
k=k1

p(k)
)
.
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Now, by (2-1), it is obvious that
+∞∑

p(i)= +∞. Therefore, for λ > 4/c2, the last
inequality yields

lim
n→+∞

u(n + 1) exp
(
λ

n∑
k=k1

p(k)
)

= +∞,

or

lim
k→+∞

u(k) exp
(
λ

k−1∑
i=k1

p(i)
)

= +∞,

which implies (2-8), since

k−1∑
i=1

p(i)≥

k−1∑
i=k1

p(i). �

Next, consider the difference inequality

(2-10) 1u(k)+ q(k) u(σ (k))≤ 0,

where
q : N → R+, σ : N → N and lim

k→+∞

σ(k)= +∞.

In the sequel the following lemma will be used, which has recently been estab-
lished in [Chatzarakis et al. 2008a].

Lemma 2.4. Assume that (2-1) is satisfied, and for sufficiently large k

σ(k)≤ τ(k)≤ k − 1, p(k)≤ q(k)

and u : Nk0 → (0,+∞) is a positive proper solution of (2-10). Then, there exists
k1 ∈ Nk0 such that Uk1 6= ∅ and u∗ ∈ Uk1 is the solution of (1-4), which satisfies the
condition

0< u∗(k)≤ u(k) for k ∈ Nk1 .

By virtue of Lemma 2.4, we can formulate Lemma 2.3 in the following more
general form, where the function τ is not required to be nondecreasing.

Lemma 2.5. Assume that k0 ∈ N , Uk0 6= ∅, u ∈ Uk0 , τ(k) ≤ k − 1 and condition
(2-1) is satisfied. Then, for any λ > 4/c2, condition (2-8) holds.

Proof. Since u : Nk0 → (0,+∞) is a solution of (1-4), it is clear that u is a solution
of the inequality

1u(k)+ p(k) u(σ (k))≤ 0 for k ∈ Nk1,

where σ(k) = max{τ(i) : 1 ≤ s ≤ k, s ∈ N } and k1 > k0 is a sufficiently large
number.
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First we will show that

(2-11) lim inf
k→+∞

k−1∑
i=σ(k)

p(i)= c.

Assume that (2-11) is not satisfied. Then there exists a sequence {ki }
+∞

i=1 of natural
numbers such that σ(ki ) 6= τ(ki ) (i = 1, 2, . . . ) and

(2-12) lim inf
j→+∞

k j −1∑
i=σ(k j )

p(i)= c1 < c.

Also, from the definition of the function σ , and in view of σ(ki ) 6= τ(ki ), for any
ki , there exists k ′

i < ki such that σ(k)= σ(ki ) for k ′

i ≤ k ≤ ki , limi→+∞ k ′

i = +∞

and σ(k ′

i )= τ(k ′

i ). Thus

k′

i −1∑
j=τ(k′

i )

p( j)=

k′

i −1∑
j=σ(k′

i )

p( j)=

k′

i −1∑
j=σ(ki )

p( j)≤

ki −1∑
j=σ(ki )

p( j) (i = 1, 2, . . . ),

and, by the virtue of (2-12), we have

lim inf
i→+∞

k′

i −1∑
j=τ(k′

i )

p( j)≤ lim inf
i→+∞

ki −1∑
j=σ(ki )

p( j)= c1 < c.

In view of (2-1), the last inequality leads to a contradiction. Therefore (2-11) holds.
Now, by Lemma 2.4, we conclude that the equation

1u(k)+ p(k) u(σ (k))= 0

has a solution u∗ which satisfies the condition

(2-13) 0< u∗(k)≤ u(k) for k ∈ Nk1,

where k1 > k0 is a sufficiently large number. Hence, taking into account that the
function σ is nondecreasing, in view of Lemma 2.3, we have

lim
k→+∞

u∗(k) exp
(
λ

k−1∑
i=1

p(i)
)

= +∞,

where λ > 4/c2. Therefore, by (2-13), we get

lim
k→+∞

u(k) exp
(
λ

k−1∑
i=1

p(i)
)

= +∞ for any λ >
4
c2 . �
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Lemma 2.6 (Abel transformation). Let {ai }
+∞

i=1 and {bi }
+∞

i=1 be sequences of non-
negative numbers and

(2-14)
+∞∑
i=1

ai <+∞.

Then
k∑

i=1

ai bi = A1 b1 − Ak+1 bk+1 −

k∑
i=1

Ai+1(bi − bi+1),

where Ai =
∑

+∞

j=i a j .

Proof. Since (2-14) is satisfied, we have

k∑
i=1

Ai+1(bi − bi+1)=

k∑
i=1

Ai+1bi −

k+1∑
i=2

Ai bi

= A2b1 − Ak+1bk+1 +

k∑
i=2

(Ai+1 − Ai )bi

= A2b1 − Ak+1bk+1 −

k∑
i=2

ai bi

= A1b1 − Ak+1bk+1 −

k∑
i=1

ai bi ,

or
k∑

i=1

ai bi = A1b1 − Ak+1bk+1 −

k∑
i=1

Ai+1(bi − bi+1). �

Koplatadze, Kvinikadze and Stavroulakis established the following lemma. For
completeness, we present the proof here.

Lemma 2.7 [Koplatadze et al. 2002]. Let ϕ,ψ : N → (0,+∞), ψ be nonincreas-
ing and suppose

lim
k→+∞

ϕ(k)= +∞,(2-15)

lim inf
k→+∞

ψ(k) ϕ̃(k)= 0,(2-16)

where ϕ̃(k)= inf{ϕ(s) : s ≥ k, s ∈ N }. Then there exists an increasing sequence of
natural numbers {ki }

+∞

i=1 such that

lim
i→+∞

ki = +∞, ϕ̃(ki )= ϕ(ki ), ψ(k) ϕ̃(k)≥ ψ(ki ) ϕ̃(ki )

(k = 1, 2, . . . , ki ; i = 1, 2, . . .).
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Proof. Define the sets E1 and E2 by

k ∈ E1 ⇐⇒ ϕ̃(k)= ϕ(k),

k ∈ E2 ⇐⇒ ϕ̃(s) ψ(s)≥ ϕ̃(k) ψ(k) for s ∈ {1, . . . , k}.

According to (2-15) and (2-16), it is obvious that

(2-17) sup Ei = +∞ (i = 1, 2).

Show that

(2-18) sup E1 ∩ E2 = +∞.

Let k0 ∈ E2 be such that k0 /∈ E1. By (2-16) there is k1 > k0 such that ϕ̃(k)= ϕ̃(k1)

for k = k0, k0 + 1, . . . , k1 and ϕ̃(k1)= ϕ(k1). Since ψ is nonincreasing, we have

ϕ̃(k) ψ(k)≥ ϕ̃(k1) ψ(k1) for k = 1, . . . , k1.

Therefore k1 ∈ E1∩E2. The above argument together with (2-17) imply that (2-18)
holds. �

Remark 2.8. The analogue of this lemma for continuous functions ϕ and ψ was
proved first in [Koplatadze 1994].

3. Necessary conditions of the existence of positive solutions

The results of this section play an important role in establishing sufficient condi-
tions for all proper solutions of (1-4) to be oscillatory.

Theorem 3.1. Assume that k0 ∈ N , Uk0 6= ∅, (1-5) is satisfied,

(3-1) lim inf
k→+∞

k−1∑
i=τ(k)

p(i)= c > 0,

and

(3-2) lim sup
k→+∞

k−1∑
i=τ(k)

p(i) <+∞.

Then there exists λ ∈ [1, 4/c2
] such that

(3-3)

lim sup
ε→0+

(
lim inf
k→+∞

exp
(
(λ+ ε)

k−1∑
i=1

p(i)
) +∞∑

i=k

p(i) exp
(

−(λ+ ε)

τ(i)−1∑
l=1

p(l)
))

≤ 1.
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Proof. Since Uk0 6= ∅, Equation (1-4) has a positive solution u : Nk0 → (0,+∞).
First we show that

(3-4) lim sup
k→+∞

u(k) exp
( k−1∑

i=1

p(i)
)
<+∞.

Indeed, if k1 ∈ Nk0 , we have

k∑
i=k1

1u(i)
u(i)

=

k∑
i=k1

u(i + 1)
u(i)

− (k − k1) =

k∑
i=k1

exp
(

ln
u(i + 1)

u(i)

)
− (k − k1)

≥

k∑
i=k1

(
1 + ln

u(i + 1)
u(i)

)
− (k − k1) = ln

u(k + 1)
u(k1)

,

or
k∑

i=k1

1u(i)
u(i)

≥ ln
u(k + 1)

u(k1)
.

By (1-4), and taking into account that the function u is nonincreasing, we have

k∑
i=k1

1u(i)
u(i)

= −

k∑
i=k1

p(i)
u(τ (i))

u(i)
≤ −

k∑
i=k1

p(i).

Combining the last two inequalities, we obtain

u(k + 1) exp
( k∑

i=k1

p(i)
)

≤ u(k1),

that is, (3-4) is fulfilled. On the other hand, since all the conditions of Lemma 2.5
are satisfied, we conclude that condition (2-8) holds for any λ > 4/c2. Denote by
3 the set of all λ for which

(3-5) lim
k→+∞

u(τ (k)) exp
(
λ

τ(k)−1∑
i=1

p(i)
)

= +∞

and λ0 = inf3. In view of (1-5), (2-8) and (3-4), it is obvious that λ0 ∈ [1, 4/c2
].

Thus, it suffices to show, that for λ = λ0 the inequality (3-3) holds. First, we will
show that for any ε > 0

(3-6) lim
k→+∞

u(τ (k)) exp
(
(λ0 + ε)

τ(k)−1∑
i=1

p(i)
)

= +∞.
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Indeed, if λ0 ∈ 3, it is obvious from (3-5) that condition (3-6) is fulfilled. If
λ0 6∈ 3, according to the definition of λ0, there exists λk > λ0 such that λk → λ0

when k → +∞ and λk ∈ 3 , k = 1, 2, . . . . Thus, condition (3-5) holds for any
λ= λk . However, for any ε > 0, there exists λk = λk(ε) such that λ0 <λk ≤ λ0 +ε.
This insures the validity of (3-5) and (3-6) for any ε > 0.

Similarly, we show that for any ε > 0,

(3-7) lim inf
k→+∞

u(τ (k)) exp
(
(λ0 − ε)

τ(k)−1∑
i=1

p(i)
)

= 0 .

Hence, by virtue of (1-5), (3-6) and (3-7), it is clear that for any ε>0, the functions

(3-8) ϕ(k)= u(τ (k)) exp
(
(λ0 + ε)

τ(k)−1∑
i=1

p(i)
)

and

ψ(k)= exp
(

−2ε
k−1∑
i=1

p(i)
)

satisfy the conditions of Lemma 2.7 for sufficiently large k. Hence, there exists an
increasing sequence {ki }

+∞

i=1 of natural numbers satisfying limi→+∞ ki = +∞,

(3-9) ψ(ki ) ϕ̃(ki )≤ ψ(k) ϕ̃(k) for k∗
≤ k ≤ ki ,

where k∗ is a sufficiently large number, and

(3-10) ϕ̃(ki )= ϕ(ki ) (i = 1, 2, . . . ),

Now, given that

u(τ (i)) exp
(
(λ0+ε)

τ(i)−1∑
l=1

p(l)
)

≥ inf
{

u(τ (s)) exp(λ0+ε)

τ(s)−1∑
l=1

p(l) : s ≥ i, s ∈ N
}

= ϕ̃(i),

Equation (1-4) implies

u(τ (k j ))≥

+∞∑
i=τ(k j )

p(i) u(τ (i))≥

+∞∑
i=τ(k)

p(i) ϕ̃(i) exp
(

−(λ0 + ε)

τ(i)−1∑
l=1

p(l)
)
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that is,

u(τ (k j ))≥

k j −1∑
i=τ(k j )

p(i) ϕ̃(i) exp
(

−2ε
i−1∑
l=1

p(l)
)

exp
(

2ε
i−1∑
l=1

p(l)
)

× exp
(

−(λ0 + ε)

τ(i)−1∑
l=1

p(l)
)

+

+∞∑
i=k j

p(i) ϕ̃(i) exp
(

−(λ0 + ε)

τ(i)−1∑
l=1

p(l)
)
,

for j = 1, 2, . . . . Thus, by (3-9), and using the fact that the function ϕ̃ is non-
decreasing, the last inequality yields

(3-11) u(τ (k j ))≥ ϕ̃(k j ) exp
(

−2ε
k j −1∑
l=1

p(l)
)

×

k j −1∑
i=τ(k j )

p(i) exp
(

2ε
i−1∑
l=1

p(l)
)

exp
(

−(λ0 + ε)

τ(i)−1∑
l=1

p(l)
)

+ ϕ̃(k j )

+∞∑
i=k j

p(i) exp
(

−(λ0 + ε)

τ(i)−1∑
l=1

p(l)
)

( j = 1, 2, . . . ).

Also, in view of Lemma 2.6, we have

I (k j , ε)=

k j −1∑
i=τ(k j )

p(i) exp
(

2ε
i−1∑
l=1

p(l)
)

exp
(

−(λ0 + ε)

τ(i)−1∑
l=1

p(l)
)

(3-12)

= exp
(

2ε
τ(k j )−1∑

i=1

p(i)
) +∞∑

i=τ(k j )

p(i) exp
(

−(λ0 + ε)

τ(i)−1∑
l=1

p(l)
)

− exp
(

2ε
k j −1∑
i=1

p(i)
) +∞∑

i=k j

p(i) exp
(

−(λ0 + ε)

τ(i)−1∑
l=1

p(l)
)

+

k j −1∑
i=k j

(
exp

(
2ε

i∑
l=1

p(l)
)

− exp
(

2ε
i−1∑
l=1

p(l)
))

×

+∞∑
i=1

p(i) exp
(

−(λ0 + ε)

τ(i)−1∑
l=1

p(l)
)

( j = 1, 2, . . . ).
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Given that

exp
(

2ε
i∑

l=1

p(l)
)

− exp
(

2ε
i−1∑
l=1

p(l)
)

≥ 0,

inequality (3-12) becomes

I (k j , ε) ≥ exp
(

2ε
τ(k j )−1∑

i=1

p(i)
) +∞∑

i=τ(k j )

p(i) exp
(

−(λ0 + ε)

τ(i)−1∑
l=1

p(l)
)

− exp
(

2ε
k j −1∑
i=1

p(i)
) +∞∑

i=k j

p(i) exp
(

−(λ0 + ε)

τ(i)−1∑
l=1

p(l)
)
.

Therefore, by (3-11), we take

u(τ (k j ))≥ ϕ̃(k j ) exp
(

−2ε
k j −1∑
l=1

p(l)
)

exp
(

2ε
τ(k j )−1∑

l=1

p(l)
)

×

+∞∑
i=τ(k j )

p(i) exp
(

−(λ0 + ε)

τ(i)−1∑
l=1

p(l)
)
.

Thus, (3-8) and (3-10) imply

exp
(
(λ0 + ε)

τ(k j )−1∑
i=1

p(i)
) +∞∑

i=τ(k j )

p(i) exp
(

−(λ0 + ε)

τ(i)−1∑
l=1

p(l)
)
≤ exp

(
2ε

k j −1∑
i=τ(k j )

p(i)
)
.

From the last inequality, and taking into account that (3-2) is satisfied, we have

(3-13) lim sup
j→+∞

exp
(
(λ0 +ε)

τ(k j )−1∑
i=1

p(i)
) +∞∑

i=τ(k j )

p(i) exp
(

−(λ0 +ε)

τ(i)−1∑
l=1

p(l)
)

≤ exp(2εM),

where

M = lim sup
k→+∞

k−1∑
i=τ(k)

p(i).

Hence, for any ε > 0, (3-13) gives

lim inf
k→+∞

exp
(
(λ0 + ε)

k−1∑
i=1

p(i)
) +∞∑

i=k

p(i) exp
(

−(λ0 + ε)

τ(i)−1∑
l=1

p(l)
)

≤ exp(2εM),
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which implies

lim sup
ε→0+

(
lim inf
k→+∞

exp
(
(λ0 + ε)

k−1∑
i=1

p(i)
) +∞∑

i=k

p(i) exp
(

−(λ0 + ε)

τ(i)−1∑
l=1

p(l)
))

≤ 1.

�

Remark 3.2. Condition (3-2) is not a limitation since, as proved in [Chatzarakis
et al. 2008a], if τ is a nondecreasing function and

lim sup
k→+∞

k∑
i=τ(k)

p(i) > 1,

then Uk0 = ∅, for any k0 ∈ N .

Remark 3.3. In (3-1), without loss of generality, we may assume that c ≤ 1. Oth-
erwise, for any k0 ∈ N , we have Uk0 = ∅ [Chatzarakis et al. 2008a].

Theorem 3.4. Assume that all the conditions of Theorem 3.1 are satisfied. Then

(3-14) lim inf
k→+∞

k−1∑
i=τ(k)

p(i)≤
1
e
.

Proof. Since all the conditions of Theorem 3.1 are satisfied, there exists λ = λ0 ∈

[1, 4/c2
] such that the inequality (3-3) holds.

Assume that the condition (3-14) does not hold. Then, there exists k1 ∈ N and
ε0 > 0 such that

k−1∑
i=τ(k)

p(i)≥
1 + ε0

e
for k ∈ Nk1 .

Therefore, for any ε > 0,

(3-15) I (k, ε)= exp
(
(λ0 + ε)

k−1∑
i=1

p(i)
) +∞∑

i=k

p(i) exp
(

−(λ0 + ε)

τ(i)−1∑
l=1

p(l)
)

≥ exp
(
(λ0 + ε)(1 + ε0)

e

)
exp

(
(λ0 + ε)

k−1∑
i=1

p(i)
)

×

+∞∑
i=k

p(i) exp
(

−(λ0 + ε)

i−1∑
l=1

p(l)
)

for k ∈ Nk1 .

Defining
∑i−1

l=1 p(l)= ai−1, we will show that

lim inf
k→+∞

exp((λ0 + ε)ak−1)

+∞∑
i=k

p(i) exp(−(λ0 + ε)ai−1)≥
1

λ0 + ε
.
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Indeed, since

lim inf
k→+∞

k−1∑
i=τ(k)

p(i)= c > 0,

it is obvious that
∑

+∞

i=1 p(i)= +∞, that is, limi→+∞ ai = +∞. Therefore

exp((λ0 + ε)ak−1)

+∞∑
i=k

p(i) exp(−(λ0 + ε)ai−1)

= exp((λ0 + ε)ak−1)

+∞∑
i=k

(ai − ai−1) exp(−(λ0 + ε)ai−1)

= exp((λ0 + ε)ak−1)

+∞∑
i=k

exp(−(λ0 + ε)ai−1)

∫ ai

ai−1

ds

≥ exp((λ0 + ε)ai−1)

+∞∑
i=k

∫ ai

ai−1

exp(−(λ0 + ε)s)ds

= exp((λ0 + ε)ai−1)

∫
+∞

ai−1

exp(−(λ0 + ε)s)ds =
1

λ0 + ε
.

Hence, by (3-15), we obtain

lim sup
ε→0+

(
lim inf
k→+∞

I (k, ε)
)

≥
1
λ0

· exp
(λ0(1 + ε0)

e

)
≥ 1 + ε0 .

This contradicts (3-3) for λ= λ0. �

4. Sufficient conditions of the proper solutions to be oscillatory

Theorem 4.1. Assume that conditions (1-5), (3-1), (3-2) are satisfied and that, for
any λ ∈ [1, 4/c2

],

(4-1)

lim sup
ε→0+

(
lim inf
k→+∞

(
exp

(
(λ+ε)

k−1∑
i=1

p(i)
) +∞∑

i=k

p(i) exp
(

−(λ+ε)

τ(i)−1∑
l=1

p(l)i
)))

>1.

Then all proper solutions of Equation (1-4) oscillate.

Proof. Assume that u : Nk0 → (0,+∞) is a positive proper solution of (1-4). Then
Uk0 6= ∅. Thus, in view of Theorem 3.1, there exists λ0 ∈ [1, 4/c2

] such that the
condition (3-3) is satisfied for λ= λ0. But this contradicts (4-1). �

Using Theorem 3.4, we can similarly prove:
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Theorem 4.2. Assume that conditions (1-5) and (3-2) are satisfied and

(4-2) lim inf
k→+∞

k−1∑
i=τ(k)

p(i) >
1
e
.

Then all proper solutions of Equation (1-4) oscillate.

Remark 4.3. It is to be pointed out that Theorem 4.2 is the discrete analogue of
Theorem 1.1 for the first order difference equation (1-4) in the case of a general
delay argument τ(k).

Remark 4.4. The condition (4-2) is optimal for (1-4) under the assumption that

lim
k→+∞

(k − τ(k))= +∞,

since in this case the set of natural numbers increases infinitely in the interval
[τ(k), k − 1] for k → +∞.

Now, we are going to present two examples to show that the condition (4-2) is
optimal, in the sense that it cannot be replaced by the nonstrong inequality.

Example 4.5. Consider (1-4), where

(4-3)
τ(k)= [αk], p(k)= (k−λ

− (k + 1)−λ)[αk]
λ,

α ∈ (0, 1), λ= − ln−1 α,

with [αk] the integer part of αk.
It is obvious that

k1+λ(k−λ
− (k + 1)−λ)→ λ for k → +∞ .

Therefore

(4-4) k(k−λ
− (k + 1)−λ)[αk]

λ
→

λ

e
for k → +∞ .

Hence, in view of (4-3) and (4-4), we have

lim inf
k→+∞

k−1∑
i=τ(k)

p(i)=
λ

e
lim inf
k→+∞

k−1∑
i=[αk]

e
λ

i(i−λ
− (i + 1)−λ)[αi]λ

1
i

=
λ

e
lim inf
k→+∞

k−1∑
i=[αk]

1
i

=
λ

e
ln

1
α

=
1
e

or

lim inf
k→+∞

k−1∑
i=τ(k)

p(i)=
1
e
.
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Observe that all the conditions of Theorem 4.2 are satisfied except the condition
(4-2). In this case, it is not guaranteed that all solutions of (1-4) oscillate. Indeed,
it is easy to see that the function u = k−λ is a positive solution of (1-4).

Example 4.6. Consider (1-4), where

(4-5)
τ(k)= [kα], p(k)= (ln−λ k − ln−λ(k + 1)) lnλ[kα],

α ∈ (0, 1), λ= − ln−1 α,

with [kα] the integer part of kα.
It is obvious that

k ln1+λ k(ln−λ k − ln−λ(k + 1))→ λ for k → +∞ .

Therefore

(4-6) k ln k lnλ[kα](ln−λ k − ln−λ(k + 1))→
λ

e
for k → +∞ .

On the other hand,

k−1∑
i=[kα]

1
i ln i

≥

k−1∑
i=[kα]

∫ i+1

i

ds
s ln s

=

∫ k

[kα]

ds
s ln s

= ln
ln k

ln[kα]
,

which tends to ln(1/α) as k → +∞, and

k−1∑
i=[kα]

1
i ln i

≤

k−1∑
i=[kα]

∫ i

i−1

ds
s ln s

=

∫ k−1

[kα]−1

ds
s ln s

= ln
ln(k − 1)
ln[kα] − 1

,

which also tends to ln(1/α) as k → +∞. Together these two bounds imply

lim
k→+∞

k−1∑
i=[kα]

1
i ln i

= ln
1
α
.

Hence, in view of (4-5) and (4-6), we obtain

lim inf
k→+∞

k−1∑
i=[kα]

p(i)= lim inf
k→+∞

k−1∑
i=[kα]

lnλ[iα](ln−λ i − ln−λ(i + 1))

=
λ

e
lim inf
k→+∞

k−1∑
i=[kα]

e
λ

i ln i lnλ[iα](ln−λ i − ln−λ(i + 1))
1

i ln i

=
λ

e
lim inf
k→+∞

k−1∑
i=[kα]

1
i ln i

=
λ

e
ln

1
α

=
1
e
.
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We again observe that all the conditions of Theorem 4.2 are satisfied except (4-2).
In this case, it is not guaranteed that all solutions of (1-4) oscillate. Indeed, it is
easy to see that the function u = ln−λ k is a positive solution of (1-4).
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