Pacific Journal of Mathematics

ON ALGEBRAICALLY INTEGRABLE OUTER BILLIARDS

SERGE TABACHNIKOV

Volume 235 No. 1

March 2008

ON ALGEBRAICALLY INTEGRABLE OUTER BILLIARDS

SERGE TABACHNIKOV

We prove that if the outer billiard map around a plane oval is algebraically integrable in a certain nondegenerate sense then the oval is an ellipse.

In this note, an outer billiard table is a compact convex domain in the plane bounded by an oval (closed smooth strictly convex curve) *C*. Pick a point *x* outside of *C*. There are two tangent lines from *x* to *C*; choose one of them, say, the right one from the viewpoint of *x*, and reflect *x* in the tangency point. One obtains a new point, *y*, and the transformation $T : x \mapsto y$ is the outer (also called dual) billiard map. We refer to [Tabachnikov and Dogru 2005; Tabachnikov 1995; 2005] for surveys of outer billiards.

If C is an ellipse then the map T possesses a 1-parameter family of invariant curves, the homothetic ellipses; these invariant curves foliate the exterior of C. Conjecturally, if an outer neighborhood of an oval C is foliated by the invariant curves of the outer billiard map, then C is an ellipse—this is an outer version of the famous Birkhoff conjecture concerning the conventional, inner billiards.

In this note we show that ellipses are rigid in a much more restrictive sense of algebraically integrable outer billiards; see [Bolotin 1990] for the case of inner billiards.

We make the following assumptions. Let f(x, y) be a (nonhomogeneous) real polynomial that has zero as a nonsingular value and such that *C* is a component of its zero level curve. Thus *f* is the defining polynomial of the curve *C*, and if a polynomial vanishes on *C*, then it is a multiple of *f* (see for example [Clemens 2003; Fischer 2001; Walker 1978]). Assume that a neighborhood of *C* is foliated by invariant curves of the outer billiard map *T* and that this foliation is algebraic in that its leaves are components of the level curves of a real polynomial F(x, y). Since *C* itself is an invariant curve, we assume that F(x, y) = 0 on *C* and that *dF* is not identically zero on *C*. Thus F(x, y) = g(x, y) f(x, y) where g(x, y) is a polynomial not identically zero on *C*. Under these assumptions, our result is as follows.

Theorem 1. *C* is an ellipse.

MSC2000: primary 37J30; secondary 37E40.

Keywords: outer billiards, dual billiards, integrability, Birkhoff conjecture. The author was partially supported by an NSF grant DMS-0555803.

Proof. Consider the tangent vector field $v = F_y \partial/\partial x - F_x \partial/\partial y$ (the symplectic gradient) along *C*. This vector field is nonzero (except at possibly a finite number of points) and tangent to *C*. The tangent line to *C* at point (x, y) is given by $(x + \varepsilon F_y, y - \varepsilon F_x)$, and the condition that *F* is *T*-invariant means that the function

(1)
$$F(x + \varepsilon F_y, y - \varepsilon F_x)$$

is even in ε for all $(x, y) \in C$. Expand in a series in ε ; the first order term in ε vanishes automatically and the first nontrivial condition is cubic in ε :

(2)
$$W(F) := F_{xxx}F_y^3 - 3F_{xxy}F_y^2F_x + 3F_{xyy}F_yF_x^2 - F_{yyy}F_x^3 = 0$$

on C. We claim that this already implies that C is an ellipse. The idea is that otherwise the complex curve f = 0 would have an inflection point, in contradiction with identity (2).

Consider the polynomial

$$H(F) = \det \begin{pmatrix} F_y & -F_x \\ F_{yy}F_x - F_{xy}F_y & F_{xx}F_y - F_{xy}F_x \end{pmatrix}$$

Lemma 2. (i) v(H(F)) = W(F).

(ii) $H(F) = H(gf) = g^{3}H(f)$ on C.

(iii) If C' is a nonsingular algebraic curve with a defining polynomial g(x, y), then H(g)(x, y) = 0 if and only if (x, y) is an inflection point of C'.

Proof. The first two claims follow from straightforward computations. To prove the third, note that H(g) is the second order term in ε of the Taylor expansion of the function $g(x + \varepsilon g_y, y - \varepsilon g_x)$; see (1). Hence H(g) = 0 at the points where the tangent line is second order tangent to the curve, that is, at the inflection points. \Box

It follows from Lemma 2 and (2) that H(F) = const on *C*. Indeed, v(H(F)) = W(F) = 0; hence the directional derivative of H(F) along *C* is zero. Since *C* is convex, $H(F) \neq 0$. Indeed, if H(F) = 0 then, by Lemma 2, H(f) = 0 and all points of *C* are its inflections. Thus we may assume that H(F) = 1 on *C*. It follows that $g^{3}H(f) - 1$ vanishes on *C* and hence

(3)
$$g^{3}H(f) - 1 = hf,$$

where h(x, y) is some polynomial.

Now consider the situation in \mathbb{CP}^2 . We use the notation C' for the complex algebraic curve given by the homogenized polynomial $\overline{f}(x : y : z) = f(x/z, y/z)$. Unless *C* is a conic, this curve has inflection points (not necessarily real). Let *d* be the degree of C'.

Lemma 3. Not all the inflections of C' lie on the line at infinity.

Proof. Consider the Hessian curve given by

$$\det \begin{pmatrix} \bar{f}_{xx} & \bar{f}_{xy} & \bar{f}_{xz} \\ \bar{f}_{yx} & \bar{f}_{yy} & \bar{f}_{yz} \\ \bar{f}_{zx} & \bar{f}_{zy} & \bar{f}_{zz} \end{pmatrix} = 0.$$

The intersection points of the curve C' with its Hessian curve are the inflection points of C' (recall that C' is nonsingular). The degree of the Hessian curve is 3(d-2) because taking two derivatives lowers the degree by 2 and taking the determinant multiplies terms in threes. By Bézout's theorem, the total number of inflections, counted with multiplicities, is 3d(d-2). Also, the order of intersection equals the order of the respective inflection and does not exceed d-2, see for example [Walker 1978]. The number of intersection points of C' with a line equals d. Hence the inflection points of C' that lie on a fixed line contribute, at most, d(d-2) to the total of 3d(d-2). The remaining inflection points lie off this line.

To conclude the proof of Theorem 1, consider a finite inflection point of C'. According to Lemma 2, at such a point we have f = H(f) = 0, which contradicts (3). This is proves that C is a conic.

Remarks. First, it would be interesting to remove the nondegeneracy assumptions in Theorem 1.

Second, a more general version of Birkhoff's integrability conjecture is as follows. Let *C* be a plane oval whose outer neighborhood is foliated by closed curves. For a tangent line ℓ to *C*, the intersections with the leaves of the foliation define a local involution σ on ℓ . Assume that, for every tangent line, the involution σ is projective. Conjecturally, then *C* is an ellipse and the foliation consists of ellipses that form a pencil (that is, share four — real or complex — common points). For a pencil of conics, the respective involutions are projective: this is a Desargues theorem; see [Berger 1987]. It would be interesting to establish an algebraic version of this conjecture.

Acknowledgments

Many thanks to D. Genin for numerous stimulating conversations, to S. Bolotin for comments on his work [Bolotin 1990], to V. Kharlamov for providing a proof of Lemma 3, to R. Schwartz for interest and criticism, and to the referee for helpful suggestions.

References

[[]Berger 1987] M. Berger, *Geometry. I*, Universitext, Springer, Berlin, 1987. Translated from the French by M. Cole and S. Levy. MR 88a:51001a Zbl 0606.51001

- [Bolotin 1990] S. V. Bolotin, "Integrable Birkhoff billiards", Vestnik Moskov. Univ. Ser. I Mat. Mekh. 2 (1990), 33–36, 105. In Russian; translated in Mosc. Univ. Mech. Bull. 45:2 (1990), 10– 13. MR 91e:58143 Zbl 0708.58015
- [Clemens 2003] C. H. Clemens, *A scrapbook of complex curve theory*, Second ed., Graduate Studies in Mathematics **55**, American Mathematical Society, Providence, RI, 2003. MR 2003m:14001 Zbl 1030.14010
- [Fischer 2001] G. Fischer, *Plane algebraic curves*, Student Mathematical Library **15**, American Mathematical Society, Providence, RI, 2001. MR 2002g:14042 Zbl 0971.14026
- [Tabachnikov 1995] S. Tabachnikov, "Billiards", *Panor. Synth.* 1 (1995), vi+142. MR 96c:58134 Zbl 0833.58001
- [Tabachnikov 2005] S. Tabachnikov, *Geometry and billiards*, Student Mathematical Library **30**, American Mathematical Society, Providence, RI, 2005. MR 2006h:51001 Zbl 1119.37001
- [Tabachnikov and Dogru 2005] S. Tabachnikov and F. Dogru, "Dual billiards", *Math. Intelligencer* **27**:4 (2005), 18–25. MR 2006i:37121 Zbl 1088.37014
- [Walker 1978] R. J. Walker, *Algebraic curves*, Springer, New York, 1978. MR 80c:14001 Zbl 0399. 14016

Received August 1, 2007. Revised August 24, 2007.

SERGE TABACHNIKOV DEPARTMENT OF MATHEMATICS PENNSYLVANIA STATE UNIVERSITY UNIVERSITY PARK, PA 16802 UNITED STATES

tabachni@math.psu.edu www.math.psu.edu/tabachni/