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We prove that if the outer billiard map around a plane oval is algebraically
integrable in a certain nondegenerate sense then the oval is an ellipse.

In this note, an outer billiard table is a compact convex domain in the plane
bounded by an oval (closed smooth strictly convex curve) C. Pick a point x outside
of C. There are two tangent lines from x to C; choose one of them, say, the right
one from the viewpoint of x, and reflect x in the tangency point. One obtains a new
point, y, and the transformation 7 : x — y is the outer (also called dual) billiard
map. We refer to [Tabachnikov and Dogru 2005; Tabachnikov 1995; 2005] for
surveys of outer billiards.

If C is an ellipse then the map 7' possesses a 1-parameter family of invariant
curves, the homothetic ellipses; these invariant curves foliate the exterior of C.
Conjecturally, if an outer neighborhood of an oval C is foliated by the invariant
curves of the outer billiard map, then C is an ellipse — this is an outer version of
the famous Birkhoff conjecture concerning the conventional, inner billiards.

In this note we show that ellipses are rigid in a much more restrictive sense of
algebraically integrable outer billiards; see [Bolotin 1990] for the case of inner
billiards.

We make the following assumptions. Let f(x, y) be a (nonhomogeneous) real
polynomial that has zero as a nonsingular value and such that C is a component
of its zero level curve. Thus f is the defining polynomial of the curve C, and if
a polynomial vanishes on C, then it is a multiple of f (see for example [Clemens
2003; Fischer 2001; Walker 1978]). Assume that a neighborhood of C is foliated
by invariant curves of the outer billiard map 7" and that this foliation is algebraic
in that its leaves are components of the level curves of a real polynomial F(x, y).
Since C itself is an invariant curve, we assume that F(x, y) =0 on C and that d F
is not identically zero on C. Thus F(x, y) = g(x, y) f(x, y) where g(x,y) is a
polynomial not identically zero on C. Under these assumptions, our result is as
follows.

Theorem 1. C is an ellipse.
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Proof. Consider the tangent vector field v = F) d/dx — F, 9/dy (the symplectic
gradient) along C. This vector field is nonzero (except at possibly a finite number
of points) and tangent to C. The tangent line to C at point (x, y) is given by
(x+eF,, y—eFy), and the condition that F is T-invariant means that the function

1) F(x+eFy,y—¢Fy)

is even in ¢ for all (x, y) € C. Expand in a series in ¢; the first order term in &
vanishes automatically and the first nontrivial condition is cubic in &:

) W (F) := Fyxx F} —3FuuyFy Fx +3Fyy FyF} — Fyy F) =0

on C. We claim that this already implies that C is an ellipse. The idea is that
otherwise the complex curve f =0 would have an inflection point, in contradiction
with identity (2).

Consider the polynomial

F —F
H(F) = det Y * )
(F) (%ﬂ—%ﬂ FyuFy — Foy Fy

Lemma 2. (i) v(H(F))= W(F).
(i) H(F)=H(gf)=g>H(f)onC.

(iii) If C’ is a nonsingular algebraic curve with a defining polynomial g(x, y), then
H(g)(x,y) =0 ifand only if (x, y) is an inflection point of C'.

Proof. The first two claims follow from straightforward computations. To prove
the third, note that H(g) is the second order term in ¢ of the Taylor expansion of
the function g(x +¢&gy, y —£gx); see (1). Hence H(g) =0 at the points where the
tangent line is second order tangent to the curve, that is, at the inflection points. [J

It follows from Lemma 2 and (2) that H(F) = const on C. Indeed, v(H (F)) =
W (F) = 0; hence the directional derivative of H(F') along C is zero. Since C
is convex, H(F) # 0. Indeed, if H(F) = 0 then, by Lemma 2, H(f) = 0 and
all points of C are its inflections. Thus we may assume that H(F) =1 on C. It
follows that g3 H(f) — 1 vanishes on C and hence

3) SH(f)—1=hf,

where A (x, y) is some polynomial.

Now consider the situation in CP>. We use the notation C’ for the complex
algebraic curve given by the homogenized polynomial f(x : y:z) = f(x/z, y/z).
Unless C is a conic, this curve has inflection points (not necessarily real). Let d
be the degree of C’.

Lemma 3. Not all the inflections of C' lie on the line at infinity.
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Proof. Consider the Hessian curve given by

Toe Jor fre
det | fyx fyy fyz | =0.
fzx fzy fzz

The intersection points of the curve C’ with its Hessian curve are the inflection
points of C’ (recall that C” is nonsingular). The degree of the Hessian curve is 3(d —
2) because taking two derivatives lowers the degree by 2 and taking the determinant
multiplies terms in threes. By Bézout’s theorem, the total number of inflections,
counted with multiplicities, is 3d(d — 2). Also, the order of intersection equals
the order of the respective inflection and does not exceed d — 2, see for example
[Walker 1978]. The number of intersection points of C’ with a line equals d. Hence
the inflection points of C’ that lie on a fixed line contribute, at most, d(d — 2) to
the total of 3d(d — 2). The remaining inflection points lie off this line. 0

To conclude the proof of Theorem 1, consider a finite inflection point of C’.
According to Lemma 2, at such a point we have f = H(f) =0, which contradicts
(3). This is proves that C is a conic. Il

Remarks. First, it would be interesting to remove the nondegeneracy assumptions
in Theorem 1.

Second, a more general version of Birkhoff’s integrability conjecture is as fol-
lows. Let C be a plane oval whose outer neighborhood is foliated by closed curves.
For a tangent line £ to C, the intersections with the leaves of the foliation define
a local involution o on £. Assume that, for every tangent line, the involution o is
projective. Conjecturally, then C is an ellipse and the foliation consists of ellipses
that form a pencil (that is, share four —real or complex — common points). For a
pencil of conics, the respective involutions are projective: this is a Desargues the-
orem; see [Berger 1987]. It would be interesting to establish an algebraic version
of this conjecture.
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