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We prove that if the outer billiard map around a plane oval is algebraically
integrable in a certain nondegenerate sense then the oval is an ellipse.

In this note, an outer billiard table is a compact convex domain in the plane
bounded by an oval (closed smooth strictly convex curve) C . Pick a point x outside
of C . There are two tangent lines from x to C ; choose one of them, say, the right
one from the viewpoint of x , and reflect x in the tangency point. One obtains a new
point, y, and the transformation T : x 7→ y is the outer (also called dual) billiard
map. We refer to [Tabachnikov and Dogru 2005; Tabachnikov 1995; 2005] for
surveys of outer billiards.

If C is an ellipse then the map T possesses a 1-parameter family of invariant
curves, the homothetic ellipses; these invariant curves foliate the exterior of C .
Conjecturally, if an outer neighborhood of an oval C is foliated by the invariant
curves of the outer billiard map, then C is an ellipse — this is an outer version of
the famous Birkhoff conjecture concerning the conventional, inner billiards.

In this note we show that ellipses are rigid in a much more restrictive sense of
algebraically integrable outer billiards; see [Bolotin 1990] for the case of inner
billiards.

We make the following assumptions. Let f (x, y) be a (nonhomogeneous) real
polynomial that has zero as a nonsingular value and such that C is a component
of its zero level curve. Thus f is the defining polynomial of the curve C , and if
a polynomial vanishes on C , then it is a multiple of f (see for example [Clemens
2003; Fischer 2001; Walker 1978]). Assume that a neighborhood of C is foliated
by invariant curves of the outer billiard map T and that this foliation is algebraic
in that its leaves are components of the level curves of a real polynomial F(x, y).
Since C itself is an invariant curve, we assume that F(x, y) = 0 on C and that d F
is not identically zero on C . Thus F(x, y) = g(x, y) f (x, y) where g(x, y) is a
polynomial not identically zero on C . Under these assumptions, our result is as
follows.

Theorem 1. C is an ellipse.
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Proof. Consider the tangent vector field v = Fy ∂/∂x − Fx ∂/∂y (the symplectic
gradient) along C . This vector field is nonzero (except at possibly a finite number
of points) and tangent to C . The tangent line to C at point (x, y) is given by
(x +εFy, y −εFx), and the condition that F is T -invariant means that the function

(1) F(x + εFy, y − εFx)

is even in ε for all (x, y) ∈ C . Expand in a series in ε; the first order term in ε

vanishes automatically and the first nontrivial condition is cubic in ε:

(2) W (F) := Fxxx F3
y − 3Fxxy F2

y Fx + 3Fxyy Fy F2
x − Fyyy F3

x = 0

on C . We claim that this already implies that C is an ellipse. The idea is that
otherwise the complex curve f = 0 would have an inflection point, in contradiction
with identity (2).

Consider the polynomial

H(F) = det
(

Fy −Fx

Fyy Fx − Fxy Fy Fxx Fy − Fxy Fx

)
.

Lemma 2. (i) v(H(F)) = W (F).

(ii) H(F) = H(g f ) = g3 H( f ) on C.

(iii) If C ′ is a nonsingular algebraic curve with a defining polynomial g(x, y), then
H(g)(x, y) = 0 if and only if (x, y) is an inflection point of C ′.

Proof. The first two claims follow from straightforward computations. To prove
the third, note that H(g) is the second order term in ε of the Taylor expansion of
the function g(x + εgy, y − εgx); see (1). Hence H(g) = 0 at the points where the
tangent line is second order tangent to the curve, that is, at the inflection points. �

It follows from Lemma 2 and (2) that H(F) = const on C . Indeed, v(H(F)) =

W (F) = 0; hence the directional derivative of H(F) along C is zero. Since C
is convex, H(F) 6= 0. Indeed, if H(F) = 0 then, by Lemma 2, H( f ) = 0 and
all points of C are its inflections. Thus we may assume that H(F) = 1 on C . It
follows that g3 H( f ) − 1 vanishes on C and hence

(3) g3 H( f ) − 1 = h f,

where h(x, y) is some polynomial.
Now consider the situation in CP2. We use the notation C ′ for the complex

algebraic curve given by the homogenized polynomial f̄ (x : y : z) = f (x/z, y/z).
Unless C is a conic, this curve has inflection points (not necessarily real). Let d
be the degree of C ′.

Lemma 3. Not all the inflections of C ′ lie on the line at infinity.
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Proof. Consider the Hessian curve given by

det

 f̄xx f̄xy f̄xz

f̄yx f̄yy f̄yz

f̄zx f̄zy f̄zz

 = 0.

The intersection points of the curve C ′ with its Hessian curve are the inflection
points of C ′ (recall that C ′ is nonsingular). The degree of the Hessian curve is 3(d−

2) because taking two derivatives lowers the degree by 2 and taking the determinant
multiplies terms in threes. By Bézout’s theorem, the total number of inflections,
counted with multiplicities, is 3d(d − 2). Also, the order of intersection equals
the order of the respective inflection and does not exceed d − 2, see for example
[Walker 1978]. The number of intersection points of C ′ with a line equals d . Hence
the inflection points of C ′ that lie on a fixed line contribute, at most, d(d − 2) to
the total of 3d(d − 2). The remaining inflection points lie off this line. �

To conclude the proof of Theorem 1, consider a finite inflection point of C ′.
According to Lemma 2, at such a point we have f = H( f ) = 0, which contradicts
(3). This is proves that C is a conic. �

Remarks. First, it would be interesting to remove the nondegeneracy assumptions
in Theorem 1.

Second, a more general version of Birkhoff’s integrability conjecture is as fol-
lows. Let C be a plane oval whose outer neighborhood is foliated by closed curves.
For a tangent line ` to C , the intersections with the leaves of the foliation define
a local involution σ on `. Assume that, for every tangent line, the involution σ is
projective. Conjecturally, then C is an ellipse and the foliation consists of ellipses
that form a pencil (that is, share four — real or complex — common points). For a
pencil of conics, the respective involutions are projective: this is a Desargues the-
orem; see [Berger 1987]. It would be interesting to establish an algebraic version
of this conjecture.
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