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The gyroid and Lidinoid are triply periodic minimal surfaces of genus three
embedded in R3 that contain no straight lines or planar symmetry curves.
They are the unique embedded members of the associate families of the
Schwarz P and H surfaces. We prove the existence of two 1-parameter
families of embedded triply periodic minimal surfaces of genus three that
contain the gyroid and a single 1-parameter family that contains the Lidi-
noid. We accomplish this by using the flat structures induced by the holo-
morphic 1-forms G dh, (1/G) dh, and dh. An explicit parametrization of
the gyroid using theta functions enables us to find a curve of solutions in a
two-dimensional moduli space of flat structures by means of an intermedi-
ate value argument.

1. Introduction

The gyroid was discovered by Alan Schoen [1970], a NASA crystallographer in-
terested in strong but light materials. Among its most curious properties was that,
unlike other known surfaces at the time, the gyroid contains no straight lines or pla-
nar symmetry curves [Karcher 1989; Große-Brauckmann and Wohlgemuth 1996].
Soon after, Bill Meeks [1975] discovered a 5-parameter family of embedded genus
three triply periodic minimal surfaces.

Theorem 1.1 [Meeks 1975]. There is a real five-dimensional family V of periodic
hyperelliptic Riemann surfaces of genus three. These are the surfaces that can
be represented as two-sheeted covers of S2 branched over four pairs of antipodal
points. There exist two distinct isometric minimal embeddings for each M3 ∈ V .

Meeks’s family contains many known examples of genus three triply periodic
minimal surface, including the classical P, D, and CLP surfaces. Most members
were previously undiscovered surfaces, and many have no straight lines and no
planar symmetries. Sven Lidin [1990] discovered a related surface, christened by
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Lidin the HG surface but now commonly called the “Lidinoid”. Later, Große-
Brauckmann and Wohlgemuth [1996] proved that the gyroid and Lidinoid are
embedded.

Every currently known triply periodic minimal surface of genus three except for
the gyroid and Lidinoid is deformable, that is, for each triply periodic minimal sur-
face M there is a continuous family of embedded triply periodic minimal surfaces
Mη for η ∈ (−ε, ε) such that M = M0, as long as M is neither the gyroid nor the
Lidinoid. In general, the lattices may vary with η, so that generically 3η1 6= 3η2 .
We are primarily concerned with this question: do there exist continuous defor-
mations of the gyroid and the Lidinoid? In general, the moduli space of genus
three triply periodic minimal surface is not understood, and the existence of these
deformations would provide more information about the moduli space.

In a series of papers, the crystallographers and physical chemists Fogden, Hae-
berlein, Hyde, Lidin, and Larsson graphically argue for the existence of two 1-
parameter families of embedded triply periodic minimal surfaces that contain the
gyroid and two additional families that contain the Lidinoid [Fogden et al. 1993;
Fogden and Hyde 1999; Lidin and Larsson 1990]. While accompanied by very
convincing computer-generated images, their work does not provide an existence
proof, and the mathematical landscape is fraught with examples where pictures
mislead; see, for example, [Weber 1998].

The goal of this paper is to establish this main result:

Theorem 1.2. For η ∈ R+, there is a one parameter family of minimal embeddings
Mη ⊂ R3/3η such that Mη is an embedded minimal surface of genus three. This
family contains the gyroid. Each Mη admits a rotational symmetry of order 2.

We will call this family of surfaces the “tG” family following the notation of
[Fogden et al. 1993]; the “t” stands for “tetragonal”. This theorem shows that
the gyroid is deformable. Our other two main theorems prove the existence of a
Lidinoid family and an additional gyroid family.

Theorem 1.3. For η ∈ R+, there is a one parameter family of minimal embeddings
rLη ⊂ R3/3η such that rLη is an embedded minimal surface of genus three. This
family contains the Lidinoid. Each rLη admits a rotational symmetry of order 3.

Theorem 1.4. For η ∈ R+, there is a one parameter family of minimal embeddings
rGη ⊂ R3/3η such that rGη is an embedded minimal surface of genus three. This
family contains the gyroid. Each rGη admits a rotational symmetry of order 3.

As a consequence of these results, we have shown this:

All currently known examples of genus three triply periodic minimal
surfaces admit deformations.

None of these new examples are members of Meeks’s family.
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2. Preliminaries

2.1. Parametrizing minimal surfaces. For this section, refer to [Dierkes et al.
1992; Osserman 1969; Nitsche 1975] for further details and history. Let � ⊂ C

denote a simply connected open domain, and let h = (h1, h2, h3) : � → C3 be a
nonconstant holomorphic map such that h2

1 +h2
2 +h2

3 ≡ 0 and |h1(z)|2 +|h2(z)|2 +

|h3(z)|2 6= 0 for all z ∈ �. A direct computation shows that

(2-1) F : � → R3, p 7→ Re
∫ p

·

(h1dz, h2dz, h3dz)

is a minimal surface M ⊂ R3. The normal map N : M → S2 assigns to each point
p ∈ M the normal at p. The Gauss map, G : M → C ∪ ∞ is the stereographic
projection of the normal map.

To relate (2-1) to the geometry of the surface, we can rewrite the map as

(2-2) p 7→ Re
∫ p

·

1
2

( 1
G

− G,
i
G

+ iG, 1
)

dh.

The meromorphic function G in (2-2) is the Gauss map

G = −
h1 + ih2

h3
.

Here dh is a holomorphic differential, often called the height differential. Given
any minimal surface M , there exists a height differential dh that, along with the
Gauss map, provides the above parametrization of a surface patch. Therefore,
simply connected surface patches are fully parametrized.

The next result gives us a way to parametrize nonsimply connected surfaces.

Theorem 2.1 [Osserman 1969]. A complete regular minimal surface M having
finite total curvature, that is, satisfying

∫
M |K |d A < ∞, is conformally equivalent

to a compact Riemann surface X that has finitely many punctures.

Since our triply periodic minimal surfaces M are compact in the quotient M/3,
the fundamental domain necessarily has finite total curvature and therefore can be
parameterized on a Riemann surface. Instead of using a simply connected domain
� and meromorphic functions h1, h2, and h3, we instead consider three holomor-
phic 1-forms ω1, ω2, and ω3 defined on a Riemann surface X , again with

∑
ω2

i ≡ 0
and

∑
|ωi |

2
6= 0 (making sense of this first quantity pointwise and locally). We can

then define

F : X → R3, p 7→ Re
∫ p

·

(ω1, ω2, ω3)

with
ω1 =

1
2

( 1
G

− G
)

dh, ω2 =
i
2

( 1
G

+ G
)

dh, w3 = dh.
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Since the domain is no longer simply connected, integration of the Weierstrass
data over a homotopically nontrivial loop γ on X is generically no longer zero. This
integration leads to a translational symmetry of the surface. The surface need not,
at this point, be embedded or even immersed, so the term “symmetry” is perhaps
misleading here. More precisely, if F(p) = (q1, q2, q3) ∈ R3 for some choice of
path of integration from the base point to p, then for any other choice of path
of integration, F(p) = (q1, q2, q3) +

∫
γ
(ω1, ω2, ω3) for some γ ∈ H1(X, Z). We

define the period of γ by

P(γ ) := Re
∫

γ

(ω1, ω2, ω3).

Fr a surface to be immersed and nonperiodic, we must have P(γ ) = 0 for all
γ ∈ H1(X, Z). For a surface to be triply periodic with lattice 3 ⊂ R3, we must
have

P(γ ) ∈ 3 for all γ ∈ H1(X, Z).

Note

F1(z) + i F2(z) = −

∫ z

·

G dh +

∫ z

·

1
G

dh,

so the periods can be written as

P(γ ) =


Re

(
−

∫
γ

G dh +
∫
γ

1
G dh

)
Im

(
−

∫
γ

G dh +
∫
γ

1
G dh

)
Re

∫
γ

dh

 .

The next lemma gives us a convenient way to generate surfaces.

Lemma 2.2. Let X be a Riemann surface of genus g. Let G : X → C ∪ ∞ be
meromorphic, and let dh be a holomorphic 1-form defined on X. Also assume the
following:

(1) If G has a zero or pole of order k at p, then dh also has a zero at p of order
k. Conversely, if dh has a zero of order k at p, then G must have a zero or
pole of order k at p.

(2) There exists a lattice 3 ⊂ R3 such that P(γ ) ∈ 3 for all γ ∈ H1(X, Z).

Then the Weierstrass data (X, G, dh) define an immersed triply periodic minimal
surface of genus g.

The Weierstrass representation immediately allows for the following well-known
construction of a minimal surface. Let M0 be a minimal surface defined by Weier-
strass data (X, G, dh). We construct a new minimal surface Mθ using Weierstrass
data (X, G, eiθdh). Note that the data still satisfies the requirements of Lemma
2.2, in particular, that

∑
j e2iθω2

j ≡ 0. The family of surfaces Mθ for 0 ≤ θ ≤ π/2
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is called the associate family of M0. (Sometimes we say these surfaces Mθ are the
Bonnet transform of M0; see [Nitsche 1975; Bonnet 1853].) If the period problem
is solved for M0, it will in general not be solved for Mθ , since PMθ

(γ ) is a linear
combination of PM0(γ ) and PMπ/2(γ ); a generic such linear combination need not
be either zero or in a lattice. The associate family plays an crucial role in the
construction of the gyroid and Lidinoid.

2.2. Cone metrics. We call a flat structure with cone singularities a cone metric.
When it is apparent from context that we are dealing with cone metrics, we will
often simply refer to a flat structure. Cone metrics are abundant for Riemann sur-
faces — every holomorphic 1-form gives rise to a cone metric structure (recall that
a Riemann surface of genus g has g linearly independent holomorphic 1-forms).

Proposition 2.3. Let X be a Riemann surface with meromorphic 1-form ω. Let
Uα be an open covering of X by simply connected sets, with distinguished points
pα ∈ Uα. Define gα : Uα → C by gα(z) =

∫ z
pα

ω. Then (Uα, gα) endows X with
a cone metric (in fact, a translation structure). If ω has a zero or pole of order k,
then this is a cone point of angle 2π(k + 1).

Proof. First, since Uα is simply connected, the integral
∫ z

pα
ω does not depend on

the choice of pα — changing pα simply adds a constant.
Away from ω’s zeros, gα is invertible, and so we have

gαβ(z) = z +

∫ pα

pβ

ω = z + const,

which gives X a translation structure.
The developing map of the flat structure is given by dev(γ ) =

∫
γ

ω. If ω has a
zero or pole at a point p (without loss of generality, p = 0), this developing map
extends meromorphically with pre-Schwarzian derivative

dev′′

dev′
(z) =

dω

ω
.

In the neighborhood of a zero or pole, we can locally write ω = zkh for a mero-
morphic function h with h(0) 6= 0, ∞. The residue of the pre-Schwarzian becomes

res0
dev′′

dev′
(z) = res0

k
z

giving a cone of angle 2π(k + 1). �

2.3. Conformal quotients of triply periodic minimal surfaces. Our principal tool
in the study of these surfaces will be taking the quotient of a triply periodic minimal
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surface by a rotational symmetry. We first recall Abel’s theorem, the Riemann–
Hurwitz formula, and some corollaries. [Farkas and Kra 1992] contains a full
treatment of the Riemann–Hurwitz formula.

Theorem 2.4 (Abel’s theorem). Let 0 be a lattice in C. There is an elliptic function
f on the torus C/0 with divisor

∑
j n j Pj if and only if

(1)
∑

j n j = 0, and

(2)
∑

j n j Pj ∈ 0.

Theorem 2.5 (Riemann–Hurwitz formula). Let f : N ′
→ N be a (nonconstant)

holomorphic map between a compact Riemann surface N ′ of genus g and a com-
pact Riemann surface N of genus γ . Let the degree of f be n. Define the total
branching number of the mapping to be B =

∑
P∈N ′ b f (P). Then

g = n(γ − 1) + 1 + B/2.

Corollary 2.6 [Farkas and Kra 1992, V.1.5]. For 1 6= T ∈ Aut(M),

|fix(T )| ≤ 2 +
2g

order(T ) − 1
+

2γ order(T )

order(T ) − 1

with equality if order(T ) is prime.

Corollary 2.7 [Farkas and Kra 1992, proof of V.1.5].

(2g − 2) = order(T )(2γ − 2) +

order(T )−1∑
j=1

∣∣ fix(T j )
∣∣.

Using these tools, we can describe the quotient of a minimal surface by a rota-
tional symmetry.

Proposition 2.8. Let M be an embedded triply periodic minimal surface admit-
ting a rotational symmetry ρ with axis of symmetry x3. Then the quotient surface
M/3/ρ has genus one.

Proof. We use the Riemann–Hurwitz formula. Notationally, N ′ is M/3, N is
M/3/ρ, and f is the quotient map f : M/3 → M/3/ρ. Note that γ 6= 3, since
f is not degree 1. Similarly, if γ = 2, then by Riemann–Hurwitz, 2 = n + B/2,
and so either n = 2 and the map is unbranched or n = 1 (which is impossible since
rotational symmetries have order at least 2). If n =2, then by Corollary 2.6 the map
ρ must have 4 fixed points on M/3, implying that f is branched, a contradiction.

Furthermore, the quotient cannot have genus γ = 0, since the height differen-
tial dh is invariant under ρ; therefore it descends holomorphically to the quotient
M/3/ρ. Of course, a surface of genus 0 has no holomorphic differentials, so
γ 6= 0. The only remaining possibility is γ = 1. �
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We can use these results to obtain information about the Gauss map of a minimal
surface. Let M/3 be an embedded genus three triply periodic minimal surface,
and let ρ ∈ Aut(M) with order(ρ) = 2. Using a rigid motion, we orient M so that
the axis of rotational symmetry is the x3-axis. By Proposition 2.8, M/ρ is a torus,
and so, by Corollary 2.6, ρ has exactly 4 fixed points. The fixed points are precisely
those points with vertical normal, and we scale M so that the torus generators are
1 and τ with τ ∈ C ∩ {Im τ > 0}. The squared Gauss map G2 descends to the
quotient torus.

Lemma 2.9. G2 has two first-order poles and two first-order zeros.

Proof. Part (1) of Abel’s theorem tells us that there must be an equal number of
zeros and poles. Suppose, by way of contradiction, that G2 had a second-order
zero at 0. Thus G has a zero of at least second order on the genus three surface
M . Since dh is the lift of dz and since dz has no zeros, dh has zeros of at most
first order on the genus three surface in space (locally, the pullback map behaves
like z2 at a branch point). However, for the metric on M to be nondegenerate and
to have no ends, dh must have a zero of at least second order, a contradiction.
Therefore, the zeros of G2 are of at most first order. The same reasoning holds for
the first-order poles. �

3. Parametrization of the gyroid and description of the periods

The gyroid is the unique embedded member in the associate family of the Schwarz
P surface (except for the D surface, the surface adjoint to the P surface). Therefore,
to parametrize the gyroid, we must first understand the P surface. We now give a
parametrization of the Schwarz P surface by a convenient Weierstrass representa-
tion. Then we describe the gyroid as a specific member of the associate family of
the P surface. Finally, we describe the periods of the gyroid in terms of the flat
structures.

3.1. The P Surface and tP deformation. The Schwarz P surface (see Figure 3.1)
can be constructed in a number of different ways. The approach taken below, while
useful for our purposes, is not the most direct parametrization.

The P surface admits an order 2 rotational symmetry ρ2 : R3
→ R3 about the

x3-axis. Since the rotation is compatible with the action of 3 on R3, ρ2 descends
to an order 2 symmetry of the quotient surface P/3 (abusing notation, we also
call the symmetry induced on the quotient ρ2). ρ2 has four fixed points on P/3

as illustrated in Figure 3.2. (The fixed points of a rotation about a vertical axis
are exactly those points with vertical normal. For any genus three triply periodic
minimal surface, there are at most four points with vertical normal since the degree
of the Gauss map is 2.) The quotient P/3/ρ2 is a (conformal) torus C/0 (compare
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Figure 3.1. Left: A translational fundamental domain of the
Schwarz P surface. Right: A fundamental domain of the Schwarz
H surface.

A

A
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1 1

B

B

B

2

2

3

3

Figure 3.2. P surface with generators for the homology. Fixed
points of ρ2 are shown in red.

Proposition 2.8 and Corollary 2.6, noticing that ρ2 is not the hyperelliptic involution
since it fixes only four points).

The lattice 3 is the cubical lattice generated by the unit length standard basis
vectors {e1, e2, e3}. We can restrict the possible conformal structure of the torus
C/0 by considering reflectional symmetries. The P surface admits a reflectional
symmetry that also commutes with ρ2, namely, the reflection in the plane contain-
ing x1 and x3. Its fixed point set consists of two disjoint totally geodesic curves.
Since this reflection commutes with ρ2, it descends to the torus C/0 as a symmetry,
which yields two disjoint fixed point sets. The only conformal tori that admit two
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disjoint fixed point sets of a single (orientation reversing) isometry are the rectangu-
lar tori (rhombic tori admit orientation reversing isometries with a connected fixed
point set). Therefore, 0 is generated by b ∈ R and τ ∈ i · R. Since the conformal
structure is unchanged by a dilation in space, we may dilate so that we can take
0 = 〈1, τ 〉 with τ = ai for a ∈ R. (Note that the dilation required to normalize the
torus this way may change the lattice 3 so that the generators no longer have unit
length.) The map P/3 → (P/3)/ρ2

= C/0 is a branched covering map. We can
identify (using the aforementioned symmetries) the location (on the torus) of the
branch points of this map: branch points corresponding to zeros of G are located
at 0 and τ/2, while branch points corresponding to poles of G are located at 1/2
and 1/2 + τ/2.

Since the x3 coordinate is invariant under ρ2, the height differential dh descends
holomorphically to the quotient torus as reiθdz for some r ∈ R and 0 ≤ θ ≤ π/2
(since dz is, up to a constant multiple, the only holomorphic 1-form on C/0).
Varying r only scales the surface in space, and so r is determined by our require-
ment that one of the generators of the torus is 1 (we will drop the r for the rest
of this work, since scaling is inconsequential to us). θ is the important Bonnet
transformation parameter. For the P surface, θ = 0. As noted in Lemma 2.9, the
squared Gauss map G2 has simple poles and zeros at the branch points.

We can explicitly write the formula for G2 using theta functions as

G2(z) := ρ
θ(z, ai) θ(z − (a/2)i, ai)

θ(z − 1/2, ai) θ(z − (1 + ai)/2, ai)
.

The multivalued function G on C/0 is obtained by G(z) =

√
G2(z). The factor

ρ is called the Lopez–Ros factor and gives rise to many interesting deformations
of minimal surfaces, most of which are not embedded [López and Ros 1991]. If
ρ = r1eiφ , varying φ simply produces a rotation of the minimal surface in space.
We will use φ indirectly to normalize certain quantities. We will also determine
the real part r of ρ by a normalization, although varying r is highly destructive:
in general, if a surface is embedded for ρ = ρ0, modifying ρ will instantly yield
a nonimmersed surface (à la the Bonnet transformation). We will determine an
appropriate value of ρ for the P surface in Section 3.1.3.

The torus and the branch points are invariant under the symmetry −id; the
quotient S = (C/0)/(−id) is a sphere with 4 branch points.

The 1-forms G dh, (1/G)dh, and dh each place a flat structure on the torus
which, after taking the quotient with −id, descends to the sphere. We study here
the developed image of each flat structure, which we will then use to compute
periods. We study each flat structure independently.

3.1.1. dh flat structure for the P surface. Since the dh flat structure descends as
eiθdz, the developed image of the flat structure for the torus is simply the rectangle.
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Consider the “lower half” of the rectangle as a fundamental domain for the action
−id , and note the additional identification induced. One can then see directly the
sphere S. The dh flat structure is, in fact, a rectangle with τ/2 directly above
0. This is because there is a horizontal plane of reflection that interchanges the
zeros and poles of the Gauss map. The horizontal symmetry curve descends to
the quotient torus as a vertical straight line. The reflection only interchanges the
branch points if the torus is oriented so that the points corresponding to 0 and τ/2
in the developed flat structure have the same imaginary part.

3.1.2. G dh flat structure for the P surface. As noted in the proof of Proposition
2.3, the order of the zeros and poles of the 1-form G dh produce cone angles on the
torus of 3π at both 0 and τ/2 and of π at both 1/2 and 1/2 + τ/2. The involution
−id halves the cone angles in the quotient, so that on the sphere the cone angles
are

• a cone point of angle 3π/2 at both 0 and τ/2;

• a cone point of angle π/2 at both 1/2 and 1/2 + τ/2.

The situation is illustrated in Figure 3.3.
Developing the sphere with cone metric induced by G dh gives a hexagon:

τ
2

0

1
2

1+τ
2

Figure 3.3. A three-dimensional topological picture of the sphere
S with flat structure induced by G dh. Note that the angles are not
drawn correctly. Cone points are visible at the marked vertices.
Thick black lines indicate cuts made to develop the sphere (tetra-
hedron) into the plane. Although this is conformally not the G dh
cone metric, this tetrahedron is conformally the development of
the dh cone metric (since all points are regular for dh).
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Lemma 3.1. By cutting along the shortest geodesics on the sphere from 1/2 to 0,
0 to τ/2, and from τ/2 to 1/2 + τ/2 and developing into the plane, we obtain a
hexagon shown in Figure 3.4. The hexagon has the properties

(i) the length of li is equal to that of l∗i for i = 1, 2, 3;

(ii) the angle between l1 and l2 and the angle between l∗1 and l∗2 are both 3π/4;

(iii) the angle between l1 and l∗1 and the angle between l3 and l∗3 are both π/2.

The proof is nearly identical to the more general proof of Lemma 4.1 and is
omitted.

At this point, we have not yet determined the value of a for the torus. What
is clear is that once a is chosen, the entire G dh flat structure will be fixed. For
the moment, we describe the flat structures and study the period problem with this
determinacy still unresolved.

3.1.3. (1/G)dh flat structure for the P surface. G2(z + 1/2) and (1/G)2(z) have
precisely the same zeros and poles to the same order. By Liouville’s theorem, the
quotient is constant, since it is holomorphic (with no poles) and doubly periodic.
Thus

G2
(

z +
1
2

)/( 1
G

)2
(z) = r1eiφ1 .

By adjusting the Lopez–Ros parameter, we can ensure that this factor is 1, and
we do that for the P surface. Therefore, the (1/G)dh flat structure is simply a
translation of the (infinite, periodic) G dh flat structure. This is reflected in the
outline of the (1/G)dh flat structure in Figure 3.4.

3.1.4. Compatibility of G dh, (1/G)dh, and dh. We have drawn G dh and dh
oriented a specific way; namely, the dh flat structure is horizontal, and the G dh
flat structure has the line segment l2 vertical. We have not yet justified the second
of these claims. More generally, any time one prescribes all three data — G dh,
(1/G)dh, and dh — one has to ensure that G dh · (1/G)dh = dh2. This compati-
bility is a serious problem when showing the existence of surfaces in general, but
the approach taken in Section 4.2 avoids this problem completely.

For the P surface, one can see that this orientation is correct as follows. There is
a vertical symmetry plane that interchanges the two zeros of the Gauss map. This
reflection descends to the torus, and the symmetry curve is exactly the horizontal
line at y = Im τ/4 (recall we have fixed a fundamental domain of the torus). After
a translation, dh is real on this symmetry curve. Under the flat structure G dh, this
symmetry curve develops to the line segment from (0, q/2) to (2p, q/2). Again,
after a vertical translation,

∫
G dh is real on this segment. This is also true for

(1/G)dh (the developed flat structure is only a translation of that for G dh). Thus
we see that both G dh and (1/G)dh are real on this segment, and this is compatible
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(p,−p)

(0, 0)

(0, q)

(p, p + q)

(2p, q)

(2p, 0)

l2 l∗2

l1 l∗1

l3 l∗3

Figure 3.4. The G dh (thick lines) and (1/G)dh (thin lines) flat
structures for the P surface. Labeled vertices are for the G dh flat
structure; the corresponding points on (1/G)dh are obtained by
translation by (−p, p).

with dh. (The only possible inconsistency is the rotational orientation of G dh, so
it suffices to check one curve.)

3.2. The period problem for the P surface. The six cycles shown in Figure 3.2
generate the homology H1(P/3, Z). Figure 3.5 shows these cycles on the 2-
sheeted branched torus, along with cuts to identify this structure with the surface
in space. To compute the periods, we need to compute

∫
γ

G dh for each generator
γ of the homology (and do the same for (1/G)dh). Since

∫
G dh is simply the

developing map of the G dh flat structure on the torus, we can compute in terms
of the cycles’ image on the developed flat structure. To calculate the periods, we
first obtain the horizontal contribution from the G dh and (1/G)dh flat structures,
for example∫

A1

G dh = (1+ i)(p + pi) = 2p · i and
∫

A1

1
G

dh = (1− i)(p − pi) = −2p · i.

The vertical periods are easily read off of the torus as simply the difference in
the endpoints of the curves drawn on the torus in Figure 3.2. Recalling that

P(γ ) =

(
Re

(
−

∫
γ

G dh +
∫
γ

1/Gdh
)
, Im

(
−

∫
γ

G dh +
∫
γ

1/Gdh
)
, Re

∫
γ

dh
)
,
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A1

A2

A3

B3B1

Sheet 1

B2

Sheet 2

Figure 3.5. The conformal model of the P surface showing the
homology generators. Cuts to reconstruct the surface by gluing are
shown by dashed lines. Branch points corresponding to zeros of
the Gauss map are shown by solid dots, while poles are indicated
by an X.

we write

P(A1) = (0, 0, 0), P(B1) = (2(p + q), −2(p + q), 0),

P(A2) = (0, 0, 0), P(B2) = (−2(p + q), −2(p + q), 0),

P(A3) = (0, 0, 1), P(B3) = (0, 0, 0).

(This last horizontal period is zero due to the 2-fold symmetry of this curve. Since
the cycle continues onto both sheets, we develop from p1 to p4, then rotate 180◦

(to get on the other sheet), then develop the same length again. This causes the
horizontal period for B3 to vanish.) It is immediately clear that these periods gen-
erate a 3-dimensional lattice 3 for all values of p and q. In other words, the
period problem is solved no matter what the actual lengths of the segments in the
developed flat structure are. Thus any value of a (and therefore, any quotient torus)
solves the period problem.
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While we have phrased this section as if we were describing the P surface, what
we have actually seen is that there is a family of immersed triply periodic minimal
surfaces that contains the P surface.

Theorem 3.2. There exists a continuous family of embedded triply periodic min-
imal surfaces of genus three that contains the P surface (the tP family). Each
member of the family admits an order 2 rotational symmetry and has a horizontal
reflective symmetry plane.

This is a consequence of the fact that all rectangular tori (with the given Weier-
strass data) solve the period problem. (Embeddedness follows from Proposition
4.6.) Note that all of these surfaces are in the Meeks family.

We will call this family of minimal surfaces the tP family (Figure 3.6). Note
that the limit τ → 0 looks like a pair of parallel planes joined with small catenoidal
necks. The limit τ → ∞ looks like a pair of perpendicular planes that are desin-
gularized along the intersection by adding handles (like the singly periodic Scherk
surface). See [Traizet 2008] for interesting results related to these limiting surfaces.

3.3. The gyroid. We are finally ready to describe the gyroid minimal surface.
Schoen [1970] describes a surface that is associate to the P and D surfaces and
is embedded. Let (X, G, dh) be the Weierstrass data describing the P surface
(see Section 3.1). Recall that a surface is called associate to (X, G, dh) if its
Weierstrass data is (X, G, eiθdh). For a single value of θ , this associate surface is
an embedded minimal surface, which Schoen called the gyroid. In his description
of the gyroid, Schoen estimated θ ≈ 38.0147740◦. That this value of θ along with
θ = 0 (P surface) and θ = π/2 (D surface) are the only values that produce an
embedded minimal surface is something of a curiosity. In [Große-Brauckmann
and Wohlgemuth 1996], the gyroid is described geometrically as follows. The
angle of association for the gyroid is such that the vertical period of B3 must be
twice that of A3. Since the B3 curve continues on both sheets of the torus, we
need the images of the curves on a single sheet of the developed image of the dh
flat structure of the torus to have equal real part. This is equivalent to choosing θ

so that the rotated dh flat structure places the point 1 + τ directly above 0 in the
developed image (see Figure 3.7). Therefore θ = arccot Im τ .

Unfortunately the value of τ that gives the standard, most symmetric P surface
still must be determined by an elliptic integral. In other words, if (X, G, dh) is any
member of the tP family, then (X, G, eiθdh) is an embedded surface only if θ = 0,
θ = π/2, or (X, G, dh) describe the most symmetric (what we call the “standard”)
P surface. As an unfortunate consequence of this fact, we see that varying τ ∈ i ·R

is not enough to yield a family of gyroids — we must consider τ ∈ C.
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τ = 0.24 τ = 0.40

τ = 0.781 τ = 1.10

τ = 1.70 τ = 3.00

Figure 3.6. The tP deformation of the P surface, for different val-
ues of τ .

A quick computation using the resulting flat structures gives the following pe-
riods for the gyroid:

(3-1)

P(A1) = (1, 0, 0),

P(A2) = (1, 0, 0),

P(A3) = (0, 1, 1),

P(B1) = (1, 0, −1),

P(B2) = (−1, 0, −1),

P(B3) = (0, 0, 2).
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eiθ · 1
eiθ · τ

Figure 3.7. The alignment of the dh flat structure for the gyroid.
The alignment of the dh flat structure for the gyroid.

We have gone through a fairly complicated set of gymnastics to show that the
gyroid is even immersed, but this complicated method does nicely set up the period
problem for Section 4.2, where we prove the existence of two families of gyroids.
There is, however, a much easier way to see that the gyroid is immersed. Instead
of considering the flat structures induced by G dh, (1/G)dh, and dh, consider
instead the Weierstrass 1-forms ω1, ω2, and ω3 = dh. The standard P surface
admits an order 3 rotational symmetry that interchanges each of the coordinate
axes; the action of this rotation on the space of holomorphic forms permutes the
1-forms ωi . The flat structures, therefore, are all congruent, and all of the periods
can be expressed in terms of these 1-forms. Since the associate family parameter θ

solves the vertical period problem and since the flat structures of these forms are all
congruent, the period problem is completely solved. Even though this brief proof
easily shows that the gyroid is immersed, this technique seems to fail miserably at
achieving a family of gyroids. As soon as we lose the symmetry of the standard P
surface, the technique is no longer useful.

4. Proof of main theorem

In this section, we prove Theorem 1.2, which says there exists a family of gyroids
that preserve an order 2 rotational symmetry.

4.1. Sketch of the proof. First, define a moduli space of polygons H(G) that solve
the horizontal period problem. That is, suppose X is a Riemann surface constructed
as the branched (double) cover of a torus T , a Gauss map G, and a height differen-
tial dh so that the developed image of the torus T with cone metric induced by G dh
is in H(G). Then the horizontal periods will lie in a lattice. Also, the generators
of the lattice will be the periods of the same cycles that generate the lattice for the
gyroid. (In fact, our tori will have the property that they are invariant under −id,
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so we only develop T/−id .) Note that the lattice will not be constant throughout
the deformation. Since the horizontal period problem requires knowledge about
not only G dh but also (1/G)dh, we impose a normalization so that the (1/G)dh
flat structure is a translate of the flat structure developed by G dh.

Second, define a moduli space of polygons V(G) that solve the vertical period
problem. Since the conformal model of a Riemann surface is, in our case, always
the (two or three)-fold cover of a torus, the vertical moduli space will always consist
of parallelograms. The critical issue here will be the orientation of the developed
image of the parallelograms. (In fact, orientation of the developed flat structure is
also the critical issue for H(G).)

Then, we show that there exists a set of Weierstrass data {Xη, Gη, dhη} for η∈ R

such that the developed image of the torus Tη under the flat structure induced
by G dh is in H(G) and that induced by dh is in V(G). This shows that both
the horizontal and the vertical period problems can be solved simultaneously by
a family of Weierstrass data. To accomplish this, define a continuous function
h : C → R with the property that h(τ ) = 0 implies that there exists θ(τ ) such
that the G dh flat structure (respectively the dh flat structure ) will be in H(G)

(respectively V(G)) provided that dh = eiθ . The Gauss map will be determined by
the conformal structure of the torus and the normalization requiring that the G dh
and (1/G)dh flat structures are translates. We then show that h−1(0) contains a
curve and that this curve contains the value τ that determines the standard gyroid.
This guarantees the existence of a continuous family of immersed triply periodic
minimal surfaces that contains the gyroid. To study the zero set of h, we use
that we can compute h more or less explicitly for rectangular tori. Also, we can
compute h for τ = n + yi for n ∈ Z by studying the effect of twists on the torus
and the flat structures. This allows us to compute sufficiently many values to use
an intermediate value argument.

Finally, we show that the surfaces obtained in this way are embedded (and not
just immersed), a consequence of the maximum principal for minimal surfaces; see
the survey [López and Martı́n 1999]. We separate the embeddedness portion of the
proof into the more general Proposition 4.6.

In Section 4.2, we set up the moduli spaces H(G) and V(G). In Section 4.3,
we prove the remaining statements. We do this in detail for the tG family. For the
families rG and rL, we construct the moduli spaces in Section 5.

4.2. Horizontal and vertical moduli spaces for the tG family. In the most general
setting, it is not possible to split the period problem into vertical and horizontal
components. In our case however, we are considering surfaces that are invariant un-
der rotation. Therefore, since the height is invariant under this rotation, the height
differential dh establishes a consistent x3 direction that is invariant throughout the
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family. Therefore, the lattice 3 is a product Z×31, and so we can split the period
problem into two parts. We need to show that there is a single vertical period, and
that the horizontal periods lie in a two-dimensional Z-lattice.

4.2.1. Definition of V(G) and calculation of the vertical periods. In this subsec-
tion we describe the conformal models of the surfaces we wish to construct. Recall
that the underlying Riemann surface structure for the gyroid was a 2-fold branched
cover of a rectangular torus that parametrized the P surface (here we are referring
to the most symmetric P surface).

Denote by Ṽ(G) the space of marked parallelograms in C up to equivalence by
translations (we consider marked parallelograms to distinguish the cone point 0).
Notice that if 0 = 〈1, τ 〉 is a Z-lattice in C, the torus C/0, once equipped with
the flat structure induced by eiθdz, develops to an element of T ∈ Ṽ(G). If M is a
triply periodic minimal surface with symmetry ρ2 such that M/3/ρ2 = C/0, and
if we develop generators of the homology H1(M, Z) onto T , then M is immersed
only if both the horizontal and the vertical period problems are solved. The period
problem is in general not solved if C/0 develops into Ṽ(G).

We will now define a subset of Ṽ(G) that does solve the vertical period problem.
There are generally many such subsets, but we seek a deformation of the gyroid.
Recall (see Figure 3.7) that the gyroid’s dh flat structure for the torus satisfies
Re eiθ

= − Re eiθτ . With this motivation, we define

V(G) = {(ω1, ω2) ∈ C × C | |ω1| = 1 and Re ω1 = − Re ω2}.

Developing the cycles shown in Figure 3.2 onto this flat structure, one easily
sees that the vertical period problem is solved. Using the notation of the cycles
from Figure 3.5, the vertical periods are

P(A1) = (−−, −−, 0),

P(A2) = (−−, −−, 0),

P(A3) = (−−, −−, Re ω1),

P(B1) = (−−, −−, − Re ω1),

P(B2) = (−−, −−, − Re ω1),

P(B3) = (−−, −−, 2 Re ω1).

4.2.2. Definition of H(G) and calculation of the horizontal periods. Suppose that
M is any immersed, genus three, triply periodic minimal surface that has as a
conformal model a two-fold branched cover of a generic torus C/0. Without loss
of generality we write 0 = 〈1, τ 〉. Suppose further that the square of the Gauss
map descends to C/0 and has simple poles at 1/2 and 1/2+τ/2 and simple zeros
at 0 and τ/2. (This is the case for the gyroid, except that the torus is rectangular.)
The quotient S = C/0/(−id) is a sphere, and G dh again induces a cone metric on
S. Under this cone metric, the sphere is a tetrahedron with two vertex angles 3π/2
and two vertex angles π/2. The developed image of this sphere has a particularly
nice parametrization:
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ξ1

(0, 0)

ξ2

l1

l∗
1

ξ̂1

l2

l∗
2

l3

l∗
3

α

α∗

Figure 4.1. A generic member of the H̃(G) moduli space.

Lemma 4.1. For any torus C/0 with 0 = 〈1, τ 〉 the cone metric G dh descends to
S. By cutting along shortest geodesics on S from 1/2 to 0, 0 to τ/2, and from τ/2
to 1/2+τ/2, we obtain a hexagon; see Figure 4.1. The hexagon has the properties

(i) the length of li is equal to that of l∗i for i = 1, 2, 3;

(ii) l2 is parallel to l∗2 ;

(iii) the angle between l1 and l∗1 and the angle between l3 and l∗3 are both π/2.

We can parametrize the space of possible hexagons by ξ1, ξ2 ∈ C as shown in
Figure 4.1.

We call the space of all hexagons satisfying the conditions of Lemma 4.1 H̃(G).

Proof. Since C/0/(−id) is a sphere and since −id fixes the branch points of C/0,
the flat structure induced by G dh makes S a tetrahedron with cone angle 3π/2 at
0 and τ/2 and with cone angle π/2 at 1/2 and (1+τ/2). By making the indicated
cuts, we obtain a hexagon with sides l1, l2, l3, l∗1 , l∗2 , and l∗3 . We denote the points in
the developed image corresponding to 1/2, 0, τ/2, and (1+τ/2) ∈ C/0 by p1, p2,
p3, and p4, respectively. By making a translation, we arrange so that p2 = 0 ∈ C.
Each li was identified with l∗i before the cutting; therefore, the length of li is equal
to l∗I . Also, since there is a π/2 cone angle at 1/2, the angle between lines l1 and
l∗1 must be π/2 (and similarly for l3).

Let α denote the angle between l1 and l2, and let α∗ denote the angle between l∗1
and l∗2 . The cone angle at 0 is 3π/2, therefore, since both p2 and p∗

2 correspond to
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0 ∈ T , the sum α+α∗
= 3π/2. One can see this by developing a small circle about

0 and noting that in the developed image we must obtain an arc that subtends an
angle of 3π/2. �

To understand the horizontal periods, we again adjust ρ, if necessary, to normal-
ize the (1/G)dh flat structure as in Section 3.1.3 so that the developed flat structure
for (1/G)dh is simply a translate of that for G dh; ρ is uniquely determined by
this normalization. Then in terms of these flat structures, we compute the periods
of the six generators of H1(M, Z) and tabulate them:

X
∫

X G dh
∫

X (1/G)dh

A1 (1 + i)(ξ̂1 − ξ2) (1 − i)(ξ2 + iw − ξ̂1 + ξ1)

B1 (1 + i)(ξ̂1 − ξ1) (1 − i)ξ2

A2 (i − 1)ξ1 (1 − i)ξ1

B2 (1 − i)ξ2 (1 + i)(ξ̂1 − ξ1)

A3 (−1 − i)ξ1 (−1 − i)ξ1

B3 2(ξ̂1 − ξ1) 2ξ2

The notation ξ̂1 is the complex number corresponding to p4 (see Lemma 4.1),
that is,

ξ̂1 = − ξ1 + ξ2 +
(2 + 2i)ξ 2

1 ξ̄1

2|ξ1|2
.

To simplify the calculations, we make the change of variables

a = 2(Re ξ1 + Im ξ2) and b = 2(Im ξ1 − Im ξ2).

One can then compute the horizontal periods to be

PA1 = (a + b, 0, −−),

PB1 = (a, b, −−),

PA2 = (a + b, 0, −−),

PB2 = (−a, b, −−),

PA3 = (0, a + b, −−),

PB3 = (0, 0, −−).

Notice that when b = 0, the period problem is solved. In particular, when b = 0
the periods coincide with those of the gyroid; see Equation (3-1)) Recall that b =

2(Im ξ1 − Im ξ2); define

H(G) = {(ξ1, ξ2) ∈ H̃(G) | Im ξ1 = Im ξ2}.

Then every flat structure in H(G) solves the horizontal period condition, and does
so with the same relations among the generating curves as for the gyroid. Figure
4.2 shows a typical member of H(G).

Of course, there are other choices for a and b that also solve the horizontal
period problem. We make this choice because we want the family to contain the
gyroid. The choice a = −b, for example, would yield the tP family of Section 3.1.
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(0, 0)

ξ1ξ2

Figure 4.2. A generic member of the H(G) moduli space.

We have shown that if (X, G, dh) has as flat structures members of H(G) and
V(G), then the period problem is solved. Certainly the Weierstrass data for the
gyroid do solve the period problem. It remains to find a 1-parameter family of
such data. We will then show that the surfaces are all embedded.

4.3. Proof of the tG family. To prove the existence of the tG family, our first task
is to show that there exists a family of Weierstrass data (X, G, dh) with X the
double branched cover of a torus such that the developed image of C/0/(−id)

under G dh is in H(G) and such that the developed image of C/0/(−id) under
dh is in V(G). This will show that the period problem is solved.

Let 0 = 〈1, τ 〉. Define dh = dz on C/0. Define Xτ to be the Riemann surface
obtained from the double cover of C/0, with branch points at 0, 1/2, τ/2, and
1/2 + τ/2 and with branch cuts as shown in Figure 3.5. The square of the Gauss
map will be well defined on C/0 as the unique meromorphic function with zeros
at 0 and τ/2 and poles at 1/2 and 1/2 + τ/2, up to a complex multiple ρ. Define
ρ so that the G dh and (1/G)dh flat structures are normalized as in Section 3.1.3,
that is, so that they are translates.

For each choice τ ∈ C, this data describes a minimal surface.

Definition 4.2. The vertical relative turning angle θV(τ ) is

θV(τ ) := π/2 − arg(1 + τ).

This is precisely the angle by which the dh flat structure fails to be in V(G).
The horizontal relative turning angle θH(τ ) is the angle by which the G dh flat

structure must be rotated so that it satisfies Im ξ1 = Im ξ2.

If θV(τ ) = θH(τ ), then we could define dh = eiθV(τ )dz = eiθH(τ )dz. The defi-
nition of horizontal and vertical turning angle ensures that (X, G, dh) solves the
horizontal and vertical period problem. Define b(τ ) := θH(τ ) − θV(τ ).The period
problem is solved exactly on the zero set of b. Let τG denote the value of τ which
yields the gyroid; τG ≈ 0.781i .
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B

Y

L R

gyroid

//

Figure 4.3. b < 0 on Y and b > 0 on B, so the zero set contains
a curve separating B and Y (it must pass through the value that
yields the gyroid).

Our goal is to understand the zero set of b. Note that when τ ∈ iR, the resulting
torus is rectangular. On rectangular tori, it is possible to explicitly develop the cone
metric G dh into C by integrating the Gauss map (recall that the Gauss map can
be explicitly given in terms of theta functions) and to therefore understand b. On a
generic, nonrectangular torus explicit computation is not possible, since the edges
of a fundamental domain are no longer fixed point sets of an isometry and thus
are not totally geodesic. It is no longer the case that these edges of a fundamental
domain develop, under integration, to the shortest geodesic between cone points
of the tetrahedron.

Next, as in Figure 4.3, consider the half plane, with the y-axis divided into two
segments B and Y , where Y = {(0, y) | Im(y) < Im τG}.

Lemma 4.3. b > 0 on L and R, where L is a vertical line x = −1 and R is a
vertical line x = n for n ∈ Z sufficiently large.

Proof. The quotient sphere of the torus generated by (1, 1 + τ) is related to the
sphere obtained from the torus generated by (1, τ ) by performing a Dehn twist on
the cycle A1. To understand the effect of the Dehn twist on the G dh flat structure,
note that after the twist, ξ2, ξ1 + ξ̂1, and ξ̂1 are translated by ξ1 + ξ̂1 − ξ2, while the
remaining vertices of the developed flat structure are fixed.

We can compute the G dh flat structure explicitly in the case of normalized
rectangular tori and flat structures: for all rectangular tori, the angle between l1

and l2 is 3π/4 and when normalized (recall that this requires that the G dh and
(1/G)dh flat structures are aligned), the segment l2 is vertical with Im ξ2 > 0.
This last is a consequence of the symmetries of rectangular tori; see Section 3.1.
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l1 l∗1

l∗2

l∗3l3

l2 0

ξ1

ξ2

Figure 4.4. Left: The G dh flat structure after many positive Dehn
twists. Right: A “rectangular torus” G dh flat structure after ap-
plying a single negative Dehn twist.

After a large number of positively oriented Dehn twists, we see a G dh flat
structure as in Figure 4.4. Therefore θH(n + τ) ≈ π for large n ∈ Z. This value is
larger than θV(n + τ) ≈ π/2. Thus b ≈ π/2 > 0 on R.

Showing that b > 0 on L is similar other case. After applying a single negatively
oriented Dehn twist, θH remains positive (θH is always positive), but θV(−1+ci)=

0 for all c ∈ iR. Therefore b > 0 on L , since a negatively oriented Dehn twist shifts
the “top cone” of the G dh flat structure; see Figure 4.4. �

Lemma 4.4. b > 0 on B and Y .

Proof. We will show that both θV and θH are monotone — decreasing and increas-
ing, respectively — as Im τ increases. This implies that the b has at most 1 zero.
Of course, we know that a zero occurs at τG , yielding the gyroid.

Fortunately, we are able to explicitly calculate θV as θV(τ ) = arccot(Im τ). This
function is clearly monotone decreasing in Im τ .

The situation for the horizontal turning angle is not as simple. First, for all
τ ∈ iR, the G dh flat structure is normalized in the same orientation as it is for the
gyroid, that is, the straight line segment λ from the developed image of 0 to the
developed image of 1 is horizontal. To see this, observe that in the rectangular
case, there is a vertical symmetry curve in space that translates, on the torus,
to a horizontal curve (straight line) connecting 0 and 1. The endpoints have no
horizontal displacement, and so must be conjugate in the G dh and (1/G)dh flat
structures. Since all surfaces in the tP family share this symmetry, the line λ must
be horizontal.

Since for all τ ∈ iR the normalized G dh flat structure is aligned so that λ

is horizontal when the angle of association is 0, the relative turning angle in the
rectangular case is computed in terms of the ratio of |l1| to |l2|; precisely,

θH(τ ) = π − arg((|l2|/|l1|)i − e−iπ/4).
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f1 g1

p1 p2 1

τ1

f2 g2

p1 p2

p3

1

τ2

Figure 4.5. Two maps from the upper half plane to a hexagon.

Therefore θH(τ ) increases as the ratio |l2|/|l1| increases. We now show that |l2|/|l1|

is monotone in Im τ .
Suppose that there exist τ1, τ2 ∈ iR such that |lτ1

2 |/|lτ1
1 | = |lτ2

2 |/|lτ2
1 |. Because of

the restrictions on the flat structures imposed by the rectangular torus (see Lemma
3.1), this implies that the G dh flat structures are dilations of each other. Call
the developing map from the torus C/〈1, τi 〉 to the plane (yielding a hexagon) gi .
The Schwarz–Christoffel maps fi map the upper half plane to the tori C/〈1, τi 〉.
Composing gives two maps from the upper half plane to similar hexagons; see
Figure 4.5.

Thus g1 ◦ f1 and 1
2 · g2 ◦ f2 are two maps from the upper half plane to the

same hexagon. By the Riemann mapping theorem, there is a unique such map
up to Möbius transformation, which is however fixed because both maps send p1

to the same point. Since g1 ◦ f1(p2) =
1
2 · g2 ◦ f2(p3) these maps are distinct (a

contradiction with the Riemann mapping theorem) unless p2 = p3. But these points
are determined by the conformal structure of the torus, so τ1 = τ2. This shows that
the ratio |l2|/|l1| is monotone, and it is easy to check that it is increasing in Im τ . �

Lemma 4.5. There exists a continuous curve c : R → C such that τG ∈ c(R) and
c(R) ⊂ b−1(0).

Proof. Since b is continuous, b < 0 on Y and b > 0 on B, the zero set of b must
topologically separate B and Y ; in particular, it contains a curve c such that τG ∈ c.
This curve does not intersect L or R, because there are no zeros on either. Thus
Im(c(t)) → 0 or Im(c(t)) → ∞ as t → ±∞. �

Finally, the following proposition proves embeddedness.

Proposition 4.6. Let Mt for 0 ≤ t ≤ 1 be a continuously differentiable family of im-
mersed triply periodic minimal surfaces. If M0 is embedded, then Mt is embedded
for all 0 ≤ t ≤ 1.
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Proof. Let S be a fixed genus three Riemann surface. Then each Mt can be
parametrized (not conformally) by a map ft : S → R3. We write the family of
surfaces as a map f : S ×[0, 1] → R3 by f (x, t) = ft(x) and assume that this map
is continuously differentiable.

Let t0 be the first time that a surface is not embedded, that is,

t0 := inf{t > 0 | Mt is not embedded}.

We assume that t0 exists and arrive at a contradiction.
We first prove that Mt0 is not embedded. Let tk → t0. Since f (S, tk) is not

embedded, there exists pk, qk ∈ S with pk 6= qk such that f (pk, tk) = f (qk, tk).
Since S is compact, there is a convergent subsequence of pk and qk ; without loss
of generality we relabel to obtain sequences pk → p and qk → q .

Case 1: p = q. Fix ε > 0. Since f ∈ C1 there exists δ1 > 0 and N > 0 such that
for all k > N and for any x ∈ Bδ1(p),

(4-1) |N ( f (x, tk)) − N ( f (p, t0)| < ε.

Since f (·, t) is an immersion for each t ∈ [0, 1], we know f (Br (p), tk) is an
embedded minimal disk for sufficiently small r . Let

ηk = sup{r > 0 | f (Br (p), tk) is an embedded minimal disk}.

For sufficiently large k, we have pk, qk ∈ Bδ(p), and so f (Bδ(p), tk) is not em-
bedded for k > N (possibly after increasing N ). Thus ηk < δ. Define rk =

ηk + (δ − ηk/2). Because f (Brk , tk) is not a graph over its tangent plane, there
exist two points whose orthogonal projections to the tangent plane are the same.
Therefore, by the mean value theorem, there must be some point zk ∈ Brk (p) such
that N ( f (zk, tk)) is parallel to the tangent space at p, which contradicts (4-1),
provided ε is sufficiently small.

Case 2: p 6= q . Since f (p, t0) = f (q, t0) and f (S, t0) is embedded, for some
δ > 0, we have f (Bδ(p), t0) = f (Bδ(q), t0). This implies that f (·, t0) : S → Mt0
is a mapping of degree 2; this is a contradiction since both S and Mt0 have genus
three.

Having shown so far that Mt0 is not embedded, we know it has a point of self-
intersection. Also, t0 > 0. Suppose that the planes tangent to the surface are
transverse at the intersection point. Since transversality is an open condition: by
the continuity of the family there exists an ε > 0 such that the tangent planes
for Mt0−ε will also be transverse. Therefore, Mt0−ε has a self intersection, which
contradicts the minimality of t0. Thus the tangent planes must be coincident.

Suppose that f (p1, t0) = f (p2, t0) is a point of self intersection. As above,
Br (pi ) is an immersed minimal disk Mi for sufficiently small r > 0. Each is a
minimal graph over their common tangent plane. Define a height function hi on
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Mi as the height of graph(Mi ). By the maximum principle for minimal surfaces,
we cannot have h1 −h2 > 0 on Br (p)−{p}. Thus h1 −h2 assumes some negative
values. This being an open condition, there is an ε > 0 such that h1 − h2 is also
negative on a neighborhood of G t0−ε . If h1 − h2 is both negative and positive,
the surface G t0−ε can not be embedded since the two graphs M1 and M2 intersect,
which contradicts the minimality of t0. Therefore, the family must be embedded
for all t > 0. �

We can now prove the existence and embeddedness of the tG family.

Proof of Theorem 1.2. By Lemma 4.5, there exists a family of tori such that the
developed and normalized flat structures have the same vertical and horizontal
turning angle θ . We use the Gauss map used to develop these flat structures, and
set dh = eiθdz. This choice of height differential ensures that the flat structures
are in the moduli spaces V(G) and H(G). Therefore, the period problem is solved
for this Weierstrass data. The branched torus cover provides the conformal model
of the triply periodic minimal surface, and the Gauss map G and dh that we have
defined lift, via the rotation ρ2, to a well-defined Gauss map and height differential
for the triply periodic surface. This one-parameter family does contain the gyroid,
by the description of the gyroid in Section 3.3. The entire family is embedded by
Proposition 4.6. �

5. The rG and rL families

5.1. Description of the Lidinoid. The H surface (Figure 3.1) is a genus three
triply periodic minimal surface that admits an order 3 rotational symmetry. It can
be thought of as containing a “triangular catenoid” in the same way that the P
surface contains “square catenoids”. Its lattice is spanned by a planar hexagonal
lattice (along with a vertical component), in contrast to the square planar lattice for
the P surface. We proceed analogously to the P surface and omit most details.

The order 3 rotation ρ3 : R3
→ R3 descends on H/3 to a well-defined isometry

with 2 fixed points. By Abel’s theorem, there are only two possible locations for
the pole of the Gauss map on the torus, 1/2 or 1/2+τ/2. Since there is a reflective
symmetry of H whose fixed point set contains both fixed points of the map, the
same must be true on the torus. This forces the pole to be located at 1/2. Again,
symmetry considerations force the torus to be rectangular, and we normalize so
that it is generated by 〈1, τ 〉 for τ ∈ iR. The zero and poles are second-order by a
computation similar to Lemma 2.9.

We write G3(z) := ρθ2
11(z, τ )/θ2

11(z − 1/2, τ ) and we again set the Lopez–Ros
factor ρ = 1 for the appropriate normalizations.
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A1
B1 A3

to 2 to 3

Sheet 1 A3
A2

B2

to 3 to 1

Sheet 2

A3

B3

to 1 to 2

Sheet 3

Figure 5.1. The conformal structure of the H surface branched
cover of a torus. Cuts are shown by dashed lines.

The torus is invariant under −id , which is here the hyperelliptic involution.
Figure 5.1 gives the conformal structure of the branched cover and the relevant
cycles.

5.1.1. Flat structures. The 1-forms G dh, (1/G)dh, and dh each place a flat struc-
ture on the torus which, after taking the quotient with −id, descends to the sphere.
We study each flat structure for the H surface independently:

The dh flat structure. Since this descends as dz, the flat structure for the torus is
simply the rectangle.

The G dh flat structure. Again, the order of the zeros and poles of the 1-form G dh
produce cone angles on the torus of 10π/3i at 0 and of 2π/3 at 1/2. The remaining
fixed points, at τ/2 and 1/2 + τ/2, are regular points. The involution −id halves
the cone angles in the quotient, so that on the sphere have cone points of angle
10π/6 at 0, of angle π/3 at 1/2, and of angle π at τ/2 and 1/2 + τ/2.

The flat structure is a hexagon:

Lemma 5.1. By cutting along the shortest geodesics on the sphere from τ/2 to 0,
0 to 1/2, and from 1/2 to 1/2+τ/2, we obtain a hexagon shown in black in Figure
5.2. The hexagon has the properties that

(i) the length of li is equal to that of l∗i for i = 1, 2, 3;

(ii) the angle between l1 and l2 and the angle between l∗1 and l∗2 are both 5π/6;

(iii) the angle between l1 and l∗1 is π/2 and the angle between l3 and l∗3 is π .

The proof is precisely analogous to Lemma 3.1. We find this flat structure
inconvenient, given that the flat structure on the entire torus (without the −id
identification) is so simple. The flat structure on the entire torus is obtained by
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(0, 0)

(1
2p,

√
3

2 p)

(1
2p,

√
3

2 p + q)

(0,
√

3p + q)

(−1
2p,

√
3

2 p + q)

(−1
2p,

√
3

2 p)

Figure 5.2. The G dh (thick line) and (1/G)dh (thin line) flat
structures for the H surface. Labeled vertices are for the G dh flat
structure (the corresponding points on (1/G)dh are obtained by
translation by (−1/2p, −

√
3/2p).

rotating by π about the vertex between l3 and l∗3 (the −id map descends on the
developed image to the −id map since 1/2+τ/2 is a regular point). Doing so, we
obtain the flat structure shown in Figure 5.2; compare to the P surface flat structure.

Again we have not chosen the imaginary part of τ as we expect to recover a
family of surfaces.

We now describe the (1/G)dh flat structure for the H surface. By precisely
the same argument as in Section 3.1.3, it is simply a translate of the G dh flat
structure, with the Lopez–Ros factor ρ = 1. The blue outline in Figure 5.2 shows
this translation.

5.1.2. The period problem for the H surface. We omit the computation of the
periods, but we obtain

P(A1) = (0, 0, 0),

P(A2) = (0, 0, 0),

P(A3) = (0, 0, 0),

P(B1) = (0, −
√

3p − 2q, 0),

P(B2) = R2π i/3(0, −
√

3p − 2q, 0),

P(B3) = (0, 0, 1).

Here the notation R2π i/3 means a rotation by 2π i/3 about the x3-axis.
It is again immediate that these periods generate a 3-dimensional lattice 3 for all

values of p and q. In other words, the period problem is solved no matter what the
actual lengths of the segments in the developed flat structure are. Thus any value
of a (and therefore, any quotient torus) solves the period problem. This proves that
the H surface comes in a 1-parameter family; in fact, the H surface is in Meeks’
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family, so it comes in a 5-parameter family. This family is called the rH family.
In the limit τ → 0, the rH surface looks like a pair of parallel planes joined with
small catenoidal necks. As τ → ∞, it looks like three intersecting planes that are
desingularized along the intersection by adding handles. (Compare this to the tP
family.)

To construct the Lidinoid, let (X, G, dh) be the Weierstrass data describing a
member of the rH family. As in the case of the gyroid, we can easily calculate
the periods for all members of the associate family by using the H surface flat
structures. For instance, one can compute that for all 0 ≤ θ ≤ 2π , the associate
surface has periods

P(A1) = (
√

3p sin θ, p sin θ, −−) and P(B3) = (−
√

3p sin θ, p sin θ, −−).

Since these two periods clearly generate the horizontal part of the lattice, we must
ensure the others are compatible. For instance,

P(B1) = (
√

3p sin θ, −(2q +
√

3p) cos θ, −−).

Thus, since sin(θ) 6= 0 for nontrivial members of the associate family,

±(2q +
√

3p) cos θ = sin θ.

Examining the periods for B2 shows that we must choose the “+” equation, so that

(5-1) θ = arctan
(
−

√
3p−2q

p

)
.

Similarly to the gyroid, Equation (5-1) puts a constraint on θ , and the vertical
period condition places another condition; these two conditions are compatible for
exactly one value of θ — the value that gives the Lidinoid.

The full set of periods of the Lidinoid for our parametrization are

P(A1) = R2π i/3(0, −1, 0),

P(A2) = −R2π i/3(0, −1, 0),

P(A3) = (0, 0, 3s),

P(B1) = −R4π i/3(0, −1, s),

P(B2) = −R4π i/3(0, −1, s),

P(B3) = R4π i/3(0, −1, s),

where s ∈ R+ is calculated with an elliptic integral.

5.2. Moduli spaces for the rL family.

5.2.1. Vertical moduli space V(L). The vertical moduli space is defined in pre-
cisely the same way as for the gyroid, that is, V(L) = V(G).
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Figure 5.3. The Lidinoid.

5.2.2. Horizontal moduli space H(L). Suppose that M is any immersed, genus
three, triply periodic minimal surface that has as a conformal model a three-fold
branched cover of a generic torus C/0. Without loss of generality we write
0 = 〈1, τ 〉. Suppose further that the square of the Gauss map descends to C/0

and has a second-order pole at 1/2 and a second-order zero at 0. (This is the case
for the Lidinoid, except that the torus is rectangular.) The quotient S = C/0/− id
is a sphere, and G dh again induces a cone metric on S. Under this cone metric,
the sphere is a tetrahedron, with vertex angle of 5π/3 corresponding to the zero, a
vertex angle of π/3 corresponding to the pole, and two vertex angles of π corre-
sponding to the remaining fixed points τ/2 and 1/2 + τ/2 of −id . The developed
image of this sphere is parametrized as follows.

Lemma 5.2. For any torus C/0 with 0 = 〈1, τ 〉, the cone metric G dh descends
to S. By cutting along shortest geodesics on S from 1/2 to 0, 0 to τ/2, and from τ

2
to 1

2 +
τ
2 , we obtain a hexagon. The hexagon has the properties that

(i) the length of li is equal to that of l∗i for i = 1, 2, 3;

(ii) l2 is parallel to l∗2 ;

(iii) the angle between l1 and l∗1 and the angle between l3 and l∗3 are both π/2.

Since the fixed point 1/2 + τ/2 is regular before the application of −id , we
can extend this to a developing map on the whole torus by rotating by π about the
intersection of l4 and l∗4 . Doing this, we obtain the hexagon flat structure shown in
Figure 5.4. We can parametrize this final space of possible hexagons by ξ1, ξ2 ∈ C

as shown in Figure 5.4.

Let H̃(G) be the space of all hexagons satisfying the conditions of Lemma 5.2.
The proof is precisely analogous to that of Lemma 4.1, and we omit the details.
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π
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Figure 5.4. A generic member of the H̃(L) moduli space.

To understand the horizontal periods, we again adjust ρ, if necessary, to nor-
malize the (1/G)dh flat structure as in Section 3.1.3.

After the substitutions

c = −
1
2(Im ξ1 +

√
3 Re ξ1) and d =

1
2(Im ξ1 − 4 Im ξ2 +

√
3 Re ξ1),

the periods can be expressed as

P(A1) = (
√

3c, ci, 0),

P(A2) = (−
√

3c, −ci, 0),

P(A3) = (0, 0, 3s),

P(B1) = (
√

3c, d, s),

P(B2) = (−(
√

3/2)(d − c), −(1/2)(d − c), s),

P(B3) = (−
√

3c, c, s).

Again, s is a factor determined by the torus. Since P(B1)= P(B2) for the Lidinoid,
we are forced to set c = −d to solve the period problem. Therefore, the period
problem is solved if Im ξ2 =0. Note that, apart from parametrizing the flat structure
differently (here 0 corresponds to a different cone angle on the P surface), this is
precisely the same condition as for the gyroid flat structures.

The same argument as before proves Theorem 1.3.

5.3. Description of the gyroid from the standpoint of the rPD family. In addition
to the order 2 rotational symmetry, the standard, most symmetric P surface also
admits an order 3 symmetry. This symmetry permutes the handles of the P surface
and is obtained by rotating by 2π/3 though the normal at one of the eight points
where the Gaussian curvature K = 0. We repeat the procedure discussed above for
the P surface (viewed as invariant under an order 2 rotation), and we obtain again
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a one-parameter family of P surfaces, which this time is invariant under an order
3 rotation.

Since the standard P surface is a member of the rPD family, the gyroid can also
be parametrized in terms of it. We outline the construction of the gyroid in this
way, so that we can construct a second family of gyroids, the order 3 gyroids rG.

To begin, we need to find the conformal parameter τ that yields the standard,
most symmetric P surface. From the end of Section 3.3, recall that the standard P
surface can be described in terms of the 1-forms ω1, ω2, and ω3; these forms are
considered with the orientation of the P surface in space so that the lattice is the
standard, cubical lattice. These are permuted by the rotation ρ3. After a rotation
of the surface in space so that the axis of rotation is vertical, dh = ω1 + ω2 + ω3.
We understand the periods of these 1-forms explicitly from our work with the
P surface. Denote by γ1 the cycle generated by the vector 1 on the order 2 P
surface torus. Its period on each of the ωi flat structures is 1, that is,

∫
γ1

ωi = 1 so
that

∫
γ1

dh =
∫
γ1

ω1 + ω2 + ω3 = 1. This implies that one generator of the quotient
torus P/ρ3 is 1, since the location of the branch cuts implies that this cycle γ1

continues onto all three sheets.
Considering the other generator of the torus (rather, the cycle γ2 coinciding with

this generator), we note that
∫
γ2

ωi = 2a, since the cycle continues onto both sheets
of the torus P/ρ2 (recall that a = Im τ ≈ 0.78). On the other hand, if we denote
the generators of the torus P/ρ3 by 1 and σ , then

∫
γ2

dh =
∫
γ2

ω1 + ω2 + ω3 = 6a
but also

∫
γ2

dh = 3 Im σ since the cycles continues onto both sheets. Thus, the
standard P surface is obtained when σ = 2τ . Since this is the standard P surface,
the angle of association that yields the gyroid is the same θ = arccot Im τ . This is
precisely the same surface as obtained in Section 3.3, but viewed from a different
perspective and using a different parametrization. Another view of the gyroid is in
Figure 5.5.

5.4. Moduli spaces for the rG family.

5.4.1. Vertical moduli space V(rG). To obtain the standard gyroid from the order
3 perspective, we take as the torus parameter τ = 2 · ai , where a is the conformal
parameter for the standard P surface. We then use the same angle of association
as in the order 2 parametrization, obtaining, Re eiθ

= −2 Re eiθτ . We therefore
define V(rG) = {(ω1, ω2) ∈ C × C | |ω1| = 1 and Re ω1 = −2 Re ω2}, so that the
vertical period problem is solved.

5.4.2. Horizontal moduli space H(rG). Suppose M is an immersed, genus three,
triply periodic minimal surface that has as a conformal model a three-fold branched
cover of a generic torus C/0. Without loss of generality we write 0 = 〈1, τ 〉.
Suppose further that the square of the Gauss map descends to C/0 and has a
second-order pole at 1/2 + τ/2 and a second-order zero at 0. (This is the case
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Figure 5.5. Left: a translational fundamental domain of the gy-
roid, viewed as invariant under an order 3 rotation. Right: several
copies of a fundamental domain. Notice the similarity to the Lidi-
noid.

for the order 3 gyroid, except that the torus is rectangular.) The quotient S =

C/0/ − id is a sphere, and G dh again induces a cone metric on S. Under this
cone metric, the sphere is a tetrahedron, with vertex angle of 5π/3 corresponding to
the zero, a vertex angle of π/3 corresponding to the pole, and two vertex angles of
π corresponding to the remaining fixed points τ/2 and 1/2 of −id . The developed
image of this sphere is described as follows.

Lemma 5.3. For any torus C/0 with 0 = 〈1, τ 〉, the cone metric G dh descends
to S. By cutting along shortest geodesics on S from 1/2 to 0, from 0 to τ/2, and
from τ/2 to 1/2+τ/2, we obtain a hexagon shown in Figure 5.6. The hexagon has
properties that

(i) the length of li is equal to that of l∗i for i = 1, 2, 3;

(ii) l2 = ei2π/3l∗2 ;

(iii) the angle between l1 and l∗1 is π and the angle between l3 and l∗3 is π/3.

We can parametrize this final space of possible hexagons by ξ1, ξ2 ∈ C as shown
in Figure 5.6. We use the notation ξ̂1 = e−iπ/3(ξ2 − ξ1) + ξ1 − e−2π i/3ξ1.

We call the space of all hexagons satisfying the conditions of Lemma 5.3 H̃(rG).
To understand the horizontal periods, we again adjust ρ, if necessary, to nor-

malize the (1/G)dh flat structure as in Section 3.1.3. Then in terms of these flat
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Figure 5.6. A generic member of the H(rG) moduli space.

structures, we compute the periods of the six generators of H1(M, Z) to be

P(A1) = (a, 0, −s),

P(A2) = (a, 0, −s),

P(A3) = (a, 0, −s),

P(B1) = (b,
√

3(a − b), 2s),

P(B2) = (b,
√

3(a − b), 2s),

P(B3) = (b,
√

3(a − b), 2s).

Here we simplified the expressions using the substitutions

a = 2
√

3 Im ξ1 −
√

3 Im ξ2 + 2 Re ξ1 − 3 Re ξ2,

b =
√

3 Im ξ1 − (
√

3/2) Im ξ2 + Re ξ1 − (5/2) Re ξ2.

Again, s is a factor determined by the torus. Since, for the gyroid, one computes
that P(A1) = P(B2), we must set a = b to solve the period problem. Therefore,
the period problem is solved if

√
3 Im ξ1 − (

√
3/2) Im ξ2 + Re ξ1 − (1/2) Re ξ2 = 0.

This seemingly complicated expression is actually very reasonable; it holds if and
only if arg

(
ξ̂1 − ξ2

)
= π/3. But the consequence of this is that any member of

H̃(rG) solves the period problem after a rotation (and so we can again define the
relative turning angles). We define

H(rG) =
{
(ξ1, ξ2) ∈ H̃(rG)

∣∣ √
3 Im ξ1 − (

√
3/2) Im ξ2 +Re ξ1 − (1/2) Re ξ2 = 0

}
.

The rest of the proof of the existence of a family of order 3 gyroids is analogous
to the other two families discussed above, and this proves Theorem 1.4.
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