Vol. 236, No. 1, 2008

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
On Dupin hypersurfaces with constant Möbius curvature

Carlos M. C. Riveros, Luciana Avila Rodrigues and Keti Tenenblat

Vol. 236 (2008), No. 1, 89–103
Abstract

We show that proper Dupin hypersurfaces Mn for n 4 in n+1 with n distinct principal curvatures and constant Möbius curvature cannot be parametrized by lines of curvature. For n = 3, up to Möbius transformations, there is a unique proper Dupin hypersurface, parametrized by lines of curvature, with three distinct principal curvatures and constant Möbius curvature. Moreover, these hypersurfaces are the only conformally flat proper Dupin hypersurfaces M3 4 with three distinct principal curvatures and constant Möbius curvature.

Keywords
Dupin hypersurfaces, constant Möbius curvature, conformally flat hypersurfaces
Mathematical Subject Classification 2000
Primary: 53C42, 53A30, 53C40, 53A07
Milestones
Received: 13 June 2007
Revised: 22 February 2008
Accepted: 25 February 2008
Published: 1 May 2008
Authors
Carlos M. C. Riveros
Departamento de Matemática
Universidade de Brasília
70910-900, Brasília, DF
Brazil
Luciana Avila Rodrigues
Instituto de Matemática e Estatística
Universidade Federal de Goiás
74001-970, Goiânia, GO
Brazil
Keti Tenenblat
Departamento de Matemática
Universidade de Brasília
70910-900, Brasília, DF
Brazil