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EXISTENCE OF SINGULAR POSITIVE SOLUTIONS FOR
SOME SEMILINEAR ELLIPTIC EQUATIONS

ZONGMING GUO, DONG YE AND FENG ZHOU

We study positive solutions of an equation with singular nonlinearities. The
equation arises in the study of equilibrium states of thin films. Under weak
assumptions on the nonlinearity, we show that for N ≥3 there exists a family
of radial solutions {uα}α>0 with uα(0) = α and each of them is oscillatory in
(0, ∞). We obtain then a singular radial solution in (0, ∞) by taking the
limit α → 0. Meanwhile, using the solutions obtained in (0, ∞), we show
some existence results for the corresponding Neumann eigenvalue problem
on a ball.

1. Introduction

This paper concerns mainly the structure of positive radial solutions of the semi-
linear elliptic equation in RN given by

(1-1) 1u = f (u),

where f ∈ C1(0, ∞) is a given nonlinear function which tends to ∞ at 0+. A class
of typical examples is f (u) = u−p

− µ1u−q
− µ2 with constants p > max(q, 0).

This kind of semilinear equation appears in several applications in mechanics and
physics. For example, equations of the type

(1-2) ut = −∇ · [h(u)∇1u] − ∇ · [g(u)∇u]

have been used to model the dynamics of thin films for viscous liquids, where
z = u(x, y, t) is the height of the air/liquid interface. The zero set

6 =

{
x ∈ � : lim

r→0+

1
|Br (x)|

∫
Br (x)

u(y)dy exists and is equal to 0
}
,

with Br (x) being the ball with center at x and radius r , is called set of ruptures,
which plays a very important role in the study of thin films. The coefficient h(u) is
determined by surface tension effects, and the coefficient g(u) can model additional
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forces. Polynomials are often chosen for h and g. For example, in the van der Waals
model we may choose h(u) = u3 and g(u) = um

− κun , with suitable constants
κ, m, n. If we consider the steady states of Equation (1-2), we see that u satisfies

h(u)∇1u + g(u)∇u = C in �,

where C is a constant vector. Assuming C = 0RN , let v = (2 − m)1/(3−m)u; then a
direct calculation yields that

1v = vm−2
−

κ(2 − m)(3−n)/(3−m)

(2 − n)
vn−2

− C0 in �.

Some detailed physics background is found in [Bertozzi et al. 2001; Bertozzi
and Pugh 1998; 2000; Burelbach et al. 1988; Hwang et al. 1997; Jones and Küpper
1986; Joseph and Lundgren 1972/73; Laugesen and Pugh 2000a; 2000b]. Some
recent mathematical analysis is found in [Grün 2004; Jiang and Lin 2004; Jiang
and Ni 2007; Li et al. 2005; Slepčev and Pugh 2005].

In this paper, we study of the radial solutions of Equation (1-1); hence we always
write it in the radial version

(1-3) u′′
+

N −1
r

u′
= f (u) for r = ‖x‖ =

√
x2

1 + x2
2 · · · + x2

N ∈ [0, ∞).

Here f satisfies two general conditions:

Condition 1.1. (i) f has a single zero t0 in (0, ∞) satisfying f ′(t0) < 0,

(ii) f is nonincreasing near 0, and limt→0+ f (t) = ∞.

Remark 1.2. Here we do not need any monotonicity assumption at infinity for f ,
and no additional condition on the primitive of f is required.

As a very special case of our main result, let f (u) = u−p
−µ1u−q

−µ2 for any
constants p ≥ 1 > q > 0 and µ2 > 0. We will show (see Theorem 2.9 and Remark
2.10) in dimension N ≥ 3 that if α > 0 with α 6= t0, where t0 is the unique zero
of f , then Equation (1-3) has a global solution uα with uα(0) = α. Moreover, uα

is infinitely oscillatory around the constant t0. That is, there exists a sequence ρn
α

tending to ∞ such that uα(ρn
α) = t0 for n ∈ N and such that uα − t0 changes sign at

ρn
α . We present a uniform approach for N ≥ 3, since we have different behaviors

in lower dimensions N = 1, 2, for which some special results will be given in the
appendix.

Meanwhile, we show that when N ≥3, Equation (1-3) has a singular (or rupture)
solution u0 which is also oscillatory; see Theorem 3.1. More precisely, u0 is a
continuous radial function in RN and is a weak solution of (1-1) in RN such that
u0(0) = 0.

Jiang and Ni [2007] have shown the existence and uniqueness of the radial rup-
ture solution when f (u) = u−p

−µ2 in RN with p, µ2 > 0 and N ≥ 2. Their proof
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for the existence of rupture solution used more-involved ODE techniques and is
very different from our method.

Using the entire solutions, meaning those defined on the whole space, we obtain
easily the structure of radial solutions for the eigenvalue Neumann problem

(1-4) 1u = λ f (u) in B,
∂u
∂ν

= 0 on ∂ B,

where λ > 0, f satisfies Condition 1.1, and B = B1 = {x ∈ RN
: ‖x‖ < 1} is the

unit ball of RN .
When f is positive, for example, if f (u) = u−p with p > 0, then is clear that

any radial solution is increasing with the radius r . Guo and Wei [2007] give some
interesting necessary and sufficient conditions to ensure the radial symmetry of
entire solutions; however we do know that nonradial solutions exist, for example,
when N = 2 and p = 3. For entire radial solution of 1u = K (r)u−p with bounded,
positive and, nonincreasing coefficient function K and p > 0, the asymptotic be-
havior of u near ∞ was established in [Guo et al. 2006].

2. Existence and oscillatory properties of solutions of (1-3)

We first remark that any classical radial solution of (1-3) solves the initial value
problem

(2-1) u′′
+

N −1
r

u′
= f (u) in R+, with u(0) = α > 0 and u′(0) = 0.

In this section, we assume always N ≥ 3. We claim then for any α ∈ (0, t0) that the
solution uα(r) of (2-1) is oscillatory around the unique zero of f , and uα(r)> 0 for
all r > 0. Throughout the paper, the symbols C and Ci denote positive constants,
though they may change from one line to another.

Theorem 2.1. Suppose that f ∈ C1(0, ∞) satisfies only Condition 1.1(i). Then for
each α ∈ (0, t0), (2-1) has a unique positive solution uα, which oscillates around
the constant t0, that is, there is an increasing positive sequence {rn

α} such that
{r > 0, u′

α(r) = 0} = {rn
α} and limn→∞ rn

α = ∞. Also the r2i+1
α are local maxima of

uα with uα(r2i+1
α )> t0 for any i ∈N, while the r2i

α are local minima with uα(r i
α)< t0.

Proof. By standard ODE theory, Equation (2-1) has a unique solution uα near r = 0
for any fixed 0 < α < t0, and uα can be extended whenever it exists. For simplicity,
we will omit the index α. Thus

(2-2) (r N−1u′)′ = r N−1 f (u).

Condition 1.1(i) implies that f (t) > 0 in (0, t0) and f (t) < 0 for any t > t0, so u
is increasing near r = 0 as α ∈ (0, t0). We want to prove that the solution exists on
all of R+.
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Assume that u exists in [0, rmax). Define

(2-3) F(t) =

∫ t

t0
f (s)ds.

Multiplying (2-1) by u′, we find

(2-4)
(u′2

2
− F(u)

)′

(r) = −
(N −1)

r
u′(r)2

≤ 0 for all r ∈ [0, rmax).

Therefore the function u′(r)2/2 − F(u(r)) is decreasing in [0, rmax), and so

(2-5) 1
2 u′(r)2

− F(u(r)) ≤ −F(α).

Hence F(u(r)) ≥ F(α), and we get readily u(r) ≥ α in [0, rmax) by the variation
of F . It remains to show that u cannot tend to infinity at a finite value of r .

We now claim u has a turning point. That is, there exists an r1 > 0 such that
u′(r1) = 0 and u′′(r1) < 0. In fact, let r1

= inf{r > 0 : u′(r) = 0}. If r1 < ∞ exists,
then, since r N−1u′ increases until u reaches t0, it is clear that u(r1) > t0. Hence
u′′(r1) < 0 by Equation (2-1). If r1 does not exist, u is increasing in [0, rmax).
Since f is negative in (t0, ∞), we get 0 ≤ r N−1u′

≤ C in (0, rmax). Using N ≥ 3,
we find that limr→rmax u(r) = β ∈ (0, ∞) exists. Hence rmax = ∞. Furthermore,
if f (β) > 0, we have then 1u ≥ C > 0 for r big enough, and we easily get
u(r) ≥ C1r2

− C2, which contradicts β ∈ R. Similarly, we cannot have f (β) < 0,
so we must have β = t0. But this is also impossible by Lemma 2.2 below, whose
proof we postpone. Our claim is proved.

Lemma 2.2. Suppose that an entire solution uα of (2-1) exists with f satisfying
(i) and N ≥ 3. Then there is no r0 > 0 such that uα > t0 or uα < t0 for all r ≥ r0.

Moreover, the monotonicity of u′2/2 − F(u) and the variation of F show that
u(r) ≤ u(r1) for any r ≥ r1. In conclusion, the solution u exists in R+, and
u(r) ∈ [α, u(r1)]. The oscillatory property of u is insured by Lemma 2.2, which
then implies there is an increasing sequence {r i

} such that limi→∞ r i
= ∞ and

u′(r i ) = 0.
We see that if r∗ is a local minimum of u, then u′′(r∗) ≥ 0 and u′(r∗) = 0. Thus

u(r∗) < t0 by Equation (2-1), since we cannot have u(r∗) = t0. On the other hand,
any local maximum r∗ of u satisfies u(r∗) > t0. Recall that r1 realizes a local
maximum of u; so r2i+1 are local maxima, while r2i are local minima. �

Proof of Lemma 2.2. Suppose that there exists an r0 > 0 such that u > t0 for all
r ≥r0, and so 1u ≤0 for r ≥r0. As above, we can show that u is uniformly bounded
and u(r) tends to t0 at ∞. Set v = u − t0. Then v > 0 in [r0, ∞), and v satisfies the
differential equation v′′

+ ((N − 1)/r)v′
− f ′(ξ)v = 0 with ξ(r) ∈ (t0, u(r)). By

limr→∞ u(r) = t0 and Condition 1.1(i), there exist constants C0 > 0 and r1 ≥ r0

such that −1v ≥ C0v in RN
\ Br1 .
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However, this is impossible. Indeed, fix R > r1 large enough so that λ1(−1)

is less than C0/2 in H 1
0 (AR), where AR = BR \ Br1 . Letting 81 ∈ H 1

0 (AR) be a
corresponding eigenfunction such that 81 > 0 in AR , we get∫

AR

(−1v)81dx ≥

∫
AR

C0v81dx .

This yields, because ∂ν81 < 0 on ∂ AR , that

0 < (C0 − λ1)

∫
AR

v81dx ≤

∫
∂ AR

∂81
∂ν

vds < 0,

and so the hypothesis is false. Similarly, we can prove that these is no r0 > 0 such
that u < t0 in [r0, ∞). �

Remark 2.3. By (2-4), it is easy to show that uα(r2i+1
α ) is a decreasing sequence

and that uα(r2i
α ) is increasing.

Therefore limi→∞ uα(r2i+1
α )= t and limi→∞ uα(r2i

α )= t exist. In fact, t = t = t0.

Theorem 2.4. Suppose that f ∈ C1(0, ∞) satisfies Condition 1.1(i). Then any
oscillating solution uα of (2-1) satisfies limr→∞ uα(r) = t0.

Proof. We omit the fixed index α. By (2-4) and the boundedness of u,

(2-6) lim
r→∞

(1
2 u′(r)2

− F(u(r))
)
= `

for some constant ` ∈ R. It suffices to prove that ` = 0 = −F(t0). Indeed, letting
{r k

} be the sequence of local extremum points of u, we have limk→∞ F(u(r k))=0,
and hence limk→∞ u(r k) = t0. Then limr→∞ u(r) = t0 by Remark 2.3.

It is clear that ` ≥ 0 since F ≤ 0 in R+. Suppose by contradiction that ` > 0, so
t > t . We claim then

(2-7) there exists a C > 0 such that r k+1
− r k

≤ C < ∞ for all k ∈ N∗.

Let sk ∈ (r k, r k+1) be the unique point with u(sk) = t0. Using (2-4) again, we
have 1

2 u′(sk)
2

≥ ` + F(t0), that is, |u′(sk)| ≥
√

2` > 0. On the other hand, we
know that α ≤ u ≤ u(r1) for all r ∈ [r1, ∞). Therefore f (u) is uniformly bounded
in [r1, ∞). Because F ≤ 0, 1

2 u′(r)2
≤ F(u(r)) − F(u(r1)) ≤ −F(u(r1)) for all

r ≥ r1; hence u′(r) is uniformly bounded in [r1, ∞). By (2-1), we see that u′′(r)

is uniformly bounded in [r1, ∞). There is an η > 0 such that |u′(r)| ≥
√

` > 0 for
all r ∈ [sk − η, sk + η] with k ≥ 1.

Fixing k ≥ 1, we may assume without loss of generality that u is decreasing in
[r k, r k+1

]. In the interval [r k, sk − η] (if r k < sk − η), we have u(r) ≥ t0 +
√

`η,
which implies that ∫ sk−η

r k
f (u(r))dr ≤ −C1(sk − η − r k),
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where C1 = − max
[t0+

√
`η,u(r1)] f (t) > 0. Also, since u′

≤ 0 in [r k, sk −η], we see∫ sk−η

r k

(
u′′(r) +

N −1
r

u′(r)
)

dr ≥ u′(sk − η) +
N −1

r1

∫ sk−η

r k
u′(r)dr ≥ −C2.

Combining the last two results and Equation (2-1), we get sk −η− r k
≤ C for any

k ≥ 1. By the same, r k+1
−sk −η ≤ C for k ≥ 1. Finally we get r k+1

−r k
≤ 2η+C ,

which verifies the claim (2-7). We now finish the proof by following the argument
in [Jiang and Ni 2007]. Because∫ r k+1

r k

dr
r

≤ ln
(r k

+C
r k

)
≤

C
r k ≤

C3
r k+1

and |u(r k+1) − u(r k)| ≥ t − t = δ > 0, we obtain∫ r k+1

r k

u′(r)2

r
dr ≥

1
r k+1

∫ r k+1

r k
u′(r)2dr ≥

δ2

Cr k+1 ≥ C4

∫ r k+1

r k

dr
r

.

However, u′(r)2/r is integrable on [r1, ∞) by (2-4). This contradicts the above
estimate, and so we are done. �

Under another assumption on f , we get also the oscillation between two radial
solutions with different initial data.

Proposition 2.5. Suppose that f satisfies Condition 1.1(i) and f ′ is negative in
(0, ∞). Let t0 >α and β > 0 be different constants. Then the graph of uα oscillates
around that of uβ .

Proof. Suppose the contrary. Without losing generality, we may assume that
uα(r) ≥ uβ(r) for r ∈ [r1, ∞) with some r1 > 0. Then setting w = uα − uβ ,
we find w ≥ 0 in [r1, ∞), and w satisfies 1w + f ′(ζ )w = 0 in RN

\ Br1 , where
ζ ∈ (uβ, uα). The boundedness of uα and uβ given by Theorem 2.1 means that
there exists a C > 0 such that − f ′(ζ ) ≥ C . Again the eigenvalue argument as in
the proof of Lemma 2.2 shows that it is impossible. �

Define Z(α, β) to be the first zero of uα − uβ , where α > β > 0. Then by
Proposition 2.5, Z(α, β) < ∞ for all t0 > α > β > 0. If f is also convex in R+

(for example, f (t) = u−p
− C with p, C > 0), then Z(α, β) has the following

monotonicity property.

Corollary 2.6. If f is decreasing, convex in R+, and satisfies Condition 1.1(i),
then for any t0 > α > β > γ > 0, we have min{Z(α, β), Z(α, γ )} ≥ Z(β, γ ).

Proof. Suppose for contradiction that Z(β, γ ) > Z(α, β). Setting z1 = uα − uβ ,
we have z1 > 0 in [0, Z(α, β)) and 1z1 + k1(x)z1 = 0, where

k1(x) := −
f (uα) − f (uβ)

uα − uβ

≤ − f ′(uβ) in ‖x‖ < Z(α, β).
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Next, setting z2 = uβ −uγ , we have z2 > 0 in [0, Z(β, γ )) and 1z2 +k2(x)z2 = 0,
where

k2(x) := −
f (uβ) − f (uγ )

uβ − uγ

≥ − f ′(uβ) ≥ k1(x) in ‖x‖ < Z(β, γ ).

Since z2 > 0 and −1z1 −k2(x)z1 ≤ 0 in BZ(α,β), multiplying by z2 and integrating
by parts, we use z′

1(Z(α, β)) < 0 and a standard ODE argument to get

0 ≥

∫
BZ(α,β)

(−1z1 − k2(x)z1)z2dx = −

∫
∂ BZ(α,β)

∂z1
∂r

z2dσ > 0.

This is of course absurd, and so we get Z(β, γ ) ≤ Z(α, β). This automatically
gives Z(α, γ ) ≥ Z(β, γ ). �

Remark 2.7. By the same proof, we have that if f is strictly convex, the inequality
is strict in Corollary 2.6.

Remark 2.8. Becausee we are interested in rupture solutions, we show only the
“small” α case. For the case α > t0 with suitable assumptions on α, we can prove
without difficulty the analogues of the global existence and oscillatory results of
Theorem 2.1. We leave the proof to interested readers.

Theorem 2.9. Assume that f ∈ C1(0, ∞) satisfies Condition 1.1(i). Let F be
defined by (2-3), and suppose α∗

= sup{s > t0 : F(s) ≥ limt→0+ F(t)}. Then uα

exists globally in R+ if t0 < α < α∗, and there is an increasing sequence {r i
α} such

that for any i ∈ N, r2i+1
α is a local minimum of uα with uα(r2i+1

α ) < t0, while r2i
α is

a local maximum of uα with uα(r i
α) > t0. Also, limr→∞ uα(r) = t0.

Remark 2.10. In particular, if limt→0+ F(t) = −∞, we have α∗
= ∞. Hence for

any α > 0 with α 6= t0, the solution uα to (2-1) oscillates infinitely around t0 and
converges to t0 as r → ∞. Furthermore, Proposition 2.5 and Corollary 2.6 hold if
we change t0 to α∗.

3. Existence of a singular solution

Now we prove the existence of an entire rupture solution of (1-1) under Condition
1.1. Recall that N ≥ 3.

Theorem 3.1. Given f satisfying Condition 1.1, there is a singular radial solution
u0(r) of (1-1) such that u0 ∈ C(RN ), u0(0) = 0, u0(r) > 0 for r ∈ (0, ∞), and
f (u0) ∈ L1

loc(R
N ). Also any singular radial solution of (1-1) oscillates around t0

and converges to t0 as r → ∞.

Proof. The idea is to get a singular solution u0 by taking limit of solutions uα as
α tends to 0+. A key argument is to show that for any r > 0, uα(r) is uniformly
bounded and distinct from 0 for α > 0 small enough.
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Fix t1 ∈ (0, t0] such that f is nonincreasing in (0, t1]. For any α ∈ (0, t1), let
r1(α) = inf{r > 0, uα(r) = t1}; such r1 exists due to the oscillation of uα. Since
f > 0 in (0, t1) and

(3-1) r N−1u′

α(r) =

∫ r

0
f (uα(s))s N−1ds,

we get that uα is increasing in [0, r1] from α to t1; hence f (uα(r)) is decreasing
in [0, r1]. Therefore we have u′

α(r) ≥ f (uα(r))r/N for all r ∈ [0, r1]. Now define
G(t) =

∫ t
0 (1/ f (s))ds for t < t0. The latest estimate for u′

α(r) then implies

G(uα(r)) ≥
r2

2N
+ G(α) ≥

r2

2N
for all r ∈ [0, r1].

Noting that G is increasing in [0, t0), we conclude that

(3-2) uα(r) ≥ G−1
( r2

2N

)
for any α ∈ (0, t1) and r ∈ [0, r1(α)).

Now we will prove that there exists a C1 > 0 such that r1(α) ≥ C1 for small α.
Combining (3-1), (3-2), and the monotonicity of f in (0, t1], we have

u′

α(r) ≤ r1−N
∫ r

0
f ◦ G−1

( s2

2N

)
s N−1ds for r ≤ r1.

Integrating from 0 to r1, we get

(3-3) t1 − α ≤

∫ r1

0
r1−N

∫ r

0
f ◦ G−1

( s2

2N

)
s N−1dsdr

=

∫ r1

0
f ◦ G−1

( s2

2N

)
s N−1

∫ r1

s
r1−N drds

≤
1

N −2

∫ r1

0
f ◦ G−1

( s2

2N

)
sds

=
N

N −2

∫ r2
1 /(2N )

0
f ◦ G−1(σ )dσ =

N
N −2

G−1
( r2

1
2N

)
.

The last equality is obtained by the changes of variable t = G−1(σ ) and G ′
= f −1.

For all 0 < α < t1/2, we obtain finally

(3-4)
r2

1
2N

≥ G
(
(N −2)t1

2N

)
≥ G

( t1
6

)
> 0,

which means that r1(α) is uniformly bounded from below for α > 0 small enough.
The inequalities (3-2), (3-3), and (3-4) are key arguments for our proof, and they
will help us prove some uniform estimates.

We first prove the local existence of a singular solution and then extend it to a
global solution. Noting that uα is increasing as it approaches t1, we have by (3-2)
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and (3-4) that

G−1
(

δ2

2N

)
≤ uα(r) ≤ t1 for all α < δ ≤ r ≤

√
2NC0 =: r∗,

where C0 = G(t1/6).
Using standard elliptic theory and the diagonal process, we obtain a subsequence

such that uαn converges in C1 locally in B∗
r∗

to a u0 satisfying 1u0 = f (u0) in B∗
r∗

.
Otherwise, using (3-2),

(3-5) u0(r) ≥ G−1
( r2

2N

)
for r < r∗.

This estimate leads to f (u0) ∈ L1(B1), as in the end of (3-3). It is not difficult to
see that u0 is a weak solution of (1-1) in Br∗

. Moreover, noting that the estimate
(3-3) is valid for any t ≤ t1, we get by passing α to 0 that

(3-6) u0(r) ≤
N

N −2
G−1

( r2

2N

)
for all r ≤ r∗.

This ensures that limr→0+ u0(r) = 0. It remains to prove that u0 exists over all of
R+. First, we can repeat the argument in the proof of Equation (2-1) to get a first
turning point r1 for u0, and we find u0(r) ≤ u0(r1) whenever the solution exists.
It remains to prove that u0 cannot reach 0 for any r > 0. We distinguish two cases,
first, that limt→0+ F(t) = −∞ and, second, that limt→0+ F(t) ∈ R.

For the first, because −F(u0(r)) ≤ −F(u0(r1)) for r ≥ r1, we know u0 cannot
go near zero by the hypothesis on F , and so u0 exists in all of R+.

For the second, define

F(t) =

∫ t

0
f (s)ds = F(t) +

∫ t0

0
f (s)ds.

Clearly (2-4) holds if we replace F by F . Doing this with uα and passing the limit
α → 0, we have

F(u0(r1)) ≥ (N − 1)

∫ r1

0

u′

0(s)
2

s
ds > 0.

Since F(0)= 0 and F (u0(r))≥ F(u0(r1)) for r ≥ r1 by (2-4), we have u0 ≥ C > 0
for r ≥ r1, and hence u0 is defined in R+.

Finally, as Lemma 2.2 and the proof of Theorem 2.4 are always valid, we obtain
the desired oscillation and asymptotic behavior for any radial rupture solution,
which completes our proof. �
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Remark 3.2. We have rather precise behavior for the limiting solution near the
origin, since

G−1
( r2

2N

)
≤ u0(r) ≤

N
N −2

G−1
( r2

2N

)
.

But we don’t know whether the radial singular solution is unique under the entire
Condition 1.1. For some special cases, we will show some uniqueness result and
more precise asymptotic behavior of u0 at infinity in a forthcoming paper. Also,
under the same assumptions of Proposition 2.5 or Corollary 2.6, the result holds
for β = 0 or γ = 0, respectively.

By the proof, we observe also that Condition 1.1(ii) is sufficient to ensure the
existence of a rupture solution of (1-1) in a small ball. Here we can even erase the
monotonicity condition in Condition 1.1(ii) to get “almost” a local rupture solution
of (1-1). In [Li et al. 2005], a positive rupture solution has been constructed in
small balls under assumption that (q −1)H(t) ≤ t f (t) for 0 ≤ t ≤ A, where q > 1,
H(A) > 0, and H(t) =

∫
∞

t f (s)ds. As indicated in [Li et al. 2005], this condition
guarantees that limt→0+ f (t) = ∞ and essentially holds for nonlinearities such as
f (t) = t−q with q > 1. Here we prove a much more general result.

Theorem 3.3. Let f be continuous in (0, t̃0] such that limt→0+ f (t) = ∞ and

(3-7) lim
t→0+

F̃(t)
f (t)

= 0, where F̃(t) =

∫ t̃0

t
f (s)ds.

Then there exists an r > 0 such that there is a radial function u ∈ C(Br ) satisfying
u(0) = 0 and 1u = f (u) in B∗

r ⊂ RN .

Proof. Taking sufficiently small t̃0 > 0, we can assume that f is positive in (0, t̃0].
For any 0 < 3 ≤ t̃0 and α ∈ (0, 3], define r3 = inf{t > 0, uα(t) = 3}, where uα

is the solution of (2-1). We see that such r3 is well defined, since uα is increasing
in the region before t̃0. The equality (3-1) implies that r N−1u′

α(r) ≥ (C/N )r N for
r ≤ r3, where C = min(0,t̃0] f (t) > 0. Thus

(3-8) r2
3 ≤

2N
C

(3 − α) ≤
2N3

C
for any 0 < α ≤ 3 ≤ t̃0.

On the other hand, there exists a C1 nondecreasing function g(t) such that
F̃(t) ≤ g(t) f (t) in (0, t̃0] and limt→0+ g(t) = 0. Let

Hα(r) = r N
(u′ 2

α

2
+ F̃(uα) −

N
r

g(uα)u′

α

)
for r ∈ [0, rt̃0].

A direct calculation then yields

H ′

α(r) = r N−1[N F̃(uα) − Ng(uα) f (uα) − Ng′(uα)u′2
α + (1 −

1
2 N )u′2

α

]
≤ 0,
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and thus Hα(r) is nonincreasing in [0, rt̃0]. So we get

u′2
α

2
+ F̃(uα) −

N
r

g(uα)u′

α ≤ 0 in [0, rt̃0],

which implies u′
α(r)≤ 2Ng(uα)/r in [0, rt̃0], since F̃ ≥ 0 in (0, t̃0]. We claim there

then exists r∗ > 0 such that rt̃0(α) ≥ r∗ for any α > 0 small enough. To prove this,
consider v as the radial solution of

v′′
+

N −1
r

v′
= C3 = max

[3,t̃0]
f (t)

with v(r3) = uα(r3) = 3 and v′(r3) = u′
α(r3) > 0. It is not difficult to see that

v ≥ uα for r ∈ [r3, rt̃0] and α < 3. Hence, for such r ,

(3-9) uα(r) ≤ v(r) = 3 +
1

N −2

(
u′

α(r3)r3 −
C3r2

3

N

)(
1 −

r2−N

r2−N
3

)
+

C3(r2
− r2

3)

2N

≤ 3 +
u′

α(r3)r3

N − 2
+

C3r2

2N
≤ 3 +

2Ng(3)

N − 2
+

C3r2

2N
.

Fixing 30 > 0 small enough so that

30 +
2Ng(30)

N − 2
≤

t̃0
2

.

By taking r = rt̃0 in (3-9), we obtain r2
t̃0

≥ Nt̃0/C30 for α ≤ 30; so our claim is
true.

Combining this with the estimate (3-8), we have uα(r)∈[Cδ2/2N , t̃0] uniformly
for any 0 < α < δ < min(30, r∗) and r ∈ [δ, r∗]. Using standard elliptic theory and
the diagonal process, we get a subsequence such that uαn converges in C1 locally
in B∗

r∗
to a u0 satisfying 1u0 = f (u0) in B∗

r∗
.

On the other hand, since uα(r) ≤ 3 in [0, r3], we may combine this with (3-9)
and conclude that for all 0 < α ≤ 3 ≤ 30, we have

(3-10) uα(r) ≤ 3 +
2Ng(3)

N − 2
+

C3r2

2N
in [0, r∗].

Passing the limit α → 0+, we find the same estimate holds for u0. Recalling that
limt→0+ g(t) = 0, we can hence choose for any ε > 0 an 3 ∈ (0, ε) such that
g(3) ≤ ε. By (3-10) with now α = 0, we have u0(r) ≤ 8ε for r sufficiently small;
this then yields limr→0 u0(r) = 0. �
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Remark 3.4. The difference between Theorems 3.1 and 3.3 is that in the first
case, Condition 1.1 ensures the existence of a entire weak solution, while this is
not always the case for the second one.

4. An application

One direct consequence of Theorems 2.1 and 3.1 is the structure of radial solutions
to the eigenvalue Neumann problem

(4-1) 1u = λ f (u) in B ⊂ RN ,
∂u
∂ν

= 0 on ∂ B,

where f satisfies Condition 1.1, N ≥ 3, and λ > 0.

Theorem 4.1. Let α∗ be defined as in Theorem 2.9. For any 0 ≤ α < α∗, there is
an increasing sequence {λn(α)} such that for λ = λn , (4-1) has a radial solution
un(r) satisfying un(0) = α. Moreover, the function un − t0 has exactly n zeros for
r ∈ (0, 1). Meanwhile, if α < α∗ and λ 6∈ {λn(α)}, then (4-1) has no radial solution
u satisfying u(0) = α.

Proof. Theorems 2.1, 2.9, and 3.1 provide an entire oscillate radial solution such
that u(0) = α for any 0 ≤ α < α∗.

Using the transformation w(x) = uα(
√

λx), it is easy to see that 1w = λ f (w)

in B and ∂νw(x)=
√

λu′
α(

√
λ) on ∂ B. Thus for λn = (rn

α)2 with {rn
α} the increasing

sequence of positive critical points of uα, we get a solution of (4-1).

On the other hand, if u is a radial solution of (4-1) with α > 0, the function
v(x) = u(

√
λx) satisfies the initial value problem (2-1), and so it coincides with

the unique solution uα. This means that we must have u′(
√

λ) = 0, that is, there
exists an n such that λ = (rn

α)2. �

Appendix: Cases N = 1 and 2

Here we show that the situation is quite different between the dimensions N ≤ 2
and N ≥ 3. Consider Equation (1-3) with f satisfying Condition 1.1. For N = 1,
we have the following result.

Proposition A.1. If u′′
= f (u) with u(0) = α ∈ (0, t0) and u′(0) = 0, then the

solution will be globally defined in R+, and either u is periodic, or u is increasing
and limr→∞ u(r) = ∞.

Proof. Letting F be the primitive of f defined by (2-3), we then have

1
2 u′(r)2

− F(u(r)) = −F(α).

By the variation of F , there exists at most one point β > t0 such that F(β) = F(α).
Hence u′(r) = 0 if and only if u(r) = α or u(r) = β. Since u is increasing near 0,
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we have two possibilities: either u remains increasing or there exists an r0 such
that u(r0)=β. In the first case, u′(r) is uniformly bounded since F ≤ 0; this yields
that u is globally defined in R+, and we conclude limr→∞ u(r) = γ exists. As in
the proof of Theorem 2.1, we must have γ = ∞, since the only zero of f satisfies
f ′(t0) < 0. In the second case, by extending as u(r) = u(2r0 − r) on [r0, 2r0] and
so on, we obtain a periodic solution. �

We should mention that when N = 1, Laugesen and Pugh [2000b] have consid-
ered very carefully the properties of positive periodic solutions or rupture solutions
for thin film equations. We next have the situation in R2:

Proposition A.2. Let N = 2. For any α ∈ (0, t0), the solution uα to (1-3) is always
globally defined on R+. Either uα oscillates around t0 with limr→∞ uα(r) = t0, or
uα is increasing and limr→∞ uα(r) = ∞.

Proof. In fact, either u is increasing, and we can say that 0 ≤ u′
≤ C , and hence

u exists globally and must satisfy limr→∞ uα(r) = ∞; or there exists r1 such that
u′(r1) = 0 and u′′(r1) < 0. Then the rest of the proof of Theorem 2.1 and 2.4 holds
when N = 2. �

All situations can occur. If limt→∞ F(t) = −∞, we see by F(u(r)) ≥ F(α)

that u cannot tend to ∞, and so u must oscillate around t0. An example is when
f (u) = u−p

− C with p, C > 0.
On the other hand, we may consider the case limt→∞ F(t)< limt→0+ F(t) when

N =1. Taking α>0 small enough so that there is no β >α satisfying F(β)= F(α),
we then obtain limr→∞ uα(r) = ∞. For N = 2, we show in the following some
examples in which limr→∞ u(r) = ∞.

Let s1 > 0. Let g be a C1 function on R+ for which g > 0 on [0, s1), g′(s1) < 0,
g is constant near 0, g < 0 on (s1, ∞), and∫

∞

0
sg(s)ds = γ > 0 is convergent.

Define

uα(r) = α +

∫ r

0

1
s

∫ s

0
σg(σ )dσds for α > 0.

Of course, uα is increasing from α to ∞. Let f (t) = g ◦ u−1
α (t) be defined on

[α, ∞). It is clear that f is C1 on [α, ∞) and that f has a single zero t0 = uα(s1)

with f ′(t0) < 0. We need only to extend f on (0, α) by positive values to satisfy
Condition 1.1(ii). We obtain 1uα = f (uα) in R2 with uα(0) = α < t0.
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