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We study the gradient Ricci shrinking soliton equation on rotationally sym-
metric manifolds of dimensions n ≥ 3 and prove that the only complete
metrics on Sn, Rn, and R × Sn−1 that admit shrinking soliton structures are
respectively the round, flat, and standard cylindrical metrics.

1. Introduction

Recall that a Riemannian manifold (M, g) is said to be a shrinking gradient Ricci
soliton provided

(1) Rc(g) + ∇∇ f − λg = 0

for some f ∈C∞(M) and λ>0. The analogous objects in the cases λ=0 and λ<0
are known as steady and expanding solitons, respectively, and the triple (g, f, λ) is
referred to as a (gradient) soliton structure on the manifold M . Solitons correspond
to self-similar solutions of the Ricci flow and arise commonly in the analysis of its
singularities.

As is clear from (1), any Einstein metric gives rise, rather trivially, to at least
one soliton structure on a manifold. For non-Einstein examples, it is natural to
consider metrics with many symmetries and perhaps first to look among the class
of rotationally symmetric metrics. In all dimensions greater than one, this class
has been shown to contain complete, nontrivial examples of steady and expanding
solitons; see for example [Ivey 1992; Chow et al. 2007]. However, one does not
expect to find corresponding examples in the shrinking case, and the purpose of
this work is to confirm this expectation. Our main result is a classification theorem:

Theorem 1. Suppose n ≥ 3, and (g, f, λ) is a complete, rotationally invariant
shrinking soliton structure on a on a manifold Mn diffeomorphic to one of Sn , Rn ,
or R × Sn−1. Then

(1) if Mn ∼= Sn , then g is isometric to a round sphere and f ≡ const;

(2) if Mn ∼= Rn , then g is flat;
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(3) if Mn ∼= R × Sn−1, then g is isometric to the standard cylinder dr2
+ω2

0gSn−1

of radius ω0 =
√

(n − 2)/λ and f = f (r) = (n − 2)r2/(2ω2
0) + linear.

This result is known (in greater generality) in dimensions less than four. In dimen-
sion two, Hamilton [1995; 1988] has shown that the only complete metrics that
admit shrinking soliton structures are the flat metric on R2 and the round metric on
S2. In fact, it is not difficult to show that any potential candidate on a surface must
be rotationally symmetric; see [Hamilton 1995]. This observation has also been
used, for example, by Chen, Lu, and Tian [2006] to provide an alternative proof of
the uniqueness of the constant curvature soliton on S2. In a sense, then, our result
is an extension of these two-dimensional findings to higher dimensions.

In dimensions greater than two, gradient solitons need not be rotationally sym-
metric; nevertheless, shrinking solitons have been classified in dimension three in
[Perelman 2003]. There it is shown that the only complete, nonflat examples of
bounded nonnegative sectional curvature are either quotients of the round sphere
S3 or of the standard cylinder S2

× R. As it follows from an estimate of Hamil-
ton and Ivey [1995; 1992] that three-dimensional ancient solutions of bounded
curvature necessarily have nonnegative sectional curvature, Perelman’s argument
effectively classifies all such potential examples. Perelman has further asserted that
the classification stands without the assumption of bounded curvature.

At present, there are no such complete classifications in higher dimensions.
Ancient solutions no longer need have nonnegative sectional curvature, and in-
deed, beginning in dimension four, there are complete examples of non-Einstein
shrinking solitons with curvatures of mixed sign; see for example [Koiso 1990].
However, there are some partial results. A consequence of the recent work of Böhm
and Wilking [2006], for example, is that the only compact shrinking soliton with
2-positive curvature operator is the round sphere. In the Kähler category, Feldman,
Ilmanen, and Knopf [2003] have obtained results similar to our own for U (n)-
invariant Kähler–Ricci shrinking solitons. In particular, their [Proposition 9.2] —
that the flat metric is the only complete U (n)-invariant gradient shrinking soliton
on Cn — is the Kähler analog of the second case of our Theorem 1. Their paper also
provides nontrivial examples of U (n)-invariant gradient solitons (of all types) on
other spaces. Also, Ni [2005] has shown that any complex m-dimensional nonflat
gradient shrinking Kähler–Ricci soliton of positive bisectional curvature must be
compact and isometric-biholomorphic to CPm with the Fubini–Study metric. To-
gether with the aforementioned result of Böhm and Wilking, it is thus reasonable
to expect that Perelman’s three-dimensional result — that there are no complete,
noncompact shrinking solitons of strictly positive sectional curvature — may ex-
tend to higher dimensions. The results of this paper are further evidence in support
of this conjecture.
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To prove Theorem 1, we show first that, under the constraint (1), the rotational
symmetry of a nonflat metric implies the rotational symmetry of the gradient func-
tion. This reduces the proof of the proposition to the study of a certain second order
system of nonlinear ODEs. By a change of variables due to Robert Bryant and Tom
Ivey [Bryant ≤ 1992; Ivey 1992; Chow et al. 2007], we are able to further reduce
the problem to the study of an equivalent first-order system amenable to phase-
plane analysis. For the case Mn ∼= Sn , we show that any candidate metric must
have positive curvature operator and then apply the result of Böhm and Wilking.
It is no doubt possible to prove this case solely from the analysis of the system of
ODEs (without using any of the dynamic properties of the Ricci flow); however
we content ourselves here with a proof by the most readily available means. For
the noncompact cases, we use the criterion of completeness to eliminate all but the
two standard metrics by their asymptotic behavior.

2. The soliton condition for rotationally symmetric manifolds.

2.1. The warped-product metric. Fix n > 1, and let g̃ denote the metric on Sn

of constant sectional curvature 1. For −∞ ≤ A < � ≤ ∞ and positive functions
ω ∈ C∞(A, �), we shall consider the warped-product metric g = dr2

+ω2(r)g̃ on
the cylinder CA,� := (A, �)× Sn . For this metric, there is a standard lemma:

Lemma 2. The metric g = dr2
+ ω(r)2g̃ on C0,� extends to a smooth metric on

B�(0) ⊂ Rn+1 if and only if � > 0 and

lim
r→0

ω(r) = 0, lim
r→0

ω′
= 1, and lim

r→0

d2kω

dr2k (r) = 0 for all k.

The metric extends to a smooth metric on Sn+1 if and only if also � < ∞ and

lim
r→�

ω(r) = 0, lim
r→�

ω′
= −1, and lim

r→�

d2kω

dr2k (r) = 0 for all k.

Proof. See for example [Chow and Knopf 2004, Lemma 2.10]. �

Thus we may accomplish the proof of Theorem 1 by the study of soliton struc-
tures on CA,�. We begin by recording the expressions of a few geometric quantities
associated to g.

The sectional curvatures of g corresponding to two-planes tangent to the ra-
dial direction and to two-planes spanned by two orbital directions (that is, by two
directions tangent to the spherical factor) are respectively

(2) ν1 = −
ω′′

ω
and ν2 =

1−(ω′)2

ω2 .
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More generally, the action of the operator Rm : 32 Mn+1
→ 32 Mn+1 for arbitrary

θ1, θ2
∈ 31Sn is determined by

Rm(θ1
∧ dr) = ν1θ

1
∧ dr and Rm(θ1

∧ θ2) = ν2θ
1
∧ θ2.

From this we see that the range [min{ν1, ν2}, max{ν1, ν2}] contains all the sectional
curvatures of g and that the positivity of the sectional curvature — and also of the
curvature operator Rm — is implied by that of ν1 and ν2.

Finally, we note that the Ricci curvature of g has the form

(3) Rc(g) = −n ω′′

ω
dr2

+ ((n − 1)(1 − (ω′)2) − ωω′′)g̃,

where the prime denotes differentiation with respect to r .

2.2. The soliton equation. A routine computation also shows that for a smooth
function f on CA,�, one has

∇∇ f =


∇0∇0 f = f00,

∇0∇i f = fi0 − (ω′/ω) fi ,

∇i∇ j f = ∇̃i ∇̃ j f + ωω′ f0g̃i j

in local coordinates (θ0
= r, θ i ).1

In these coordinates, (1) implies the equations

0 = f00 − n(ω′′/ω) − λ,(4)

0 = f0i − (ω′/ω) fi ,(5)

0 = ∇̃i ∇̃ j f + [(n − 1)(1 − (ω′)2) − ωω′′
+ ωω′ f0 − λω2

]g̃i j ,(6)

which further reduce to the system

f ′′
− λ = nω′′/ω,

ωω′ f ′
− λω2

= ωω′′
+ (n − 1)((ω′)2

− 1)
(7)

when f is a radial function.
The equations (4)–(6) involve the partial derivatives of f and, despite the rota-

tional symmetry of the metric and the Ricci curvature, there is no a priori reason to
assume that f shares this symmetry. Nevertheless, as we show next, this symmetry
is, in fact, implied unless g is flat, and thus for the proof of Theorem 1, there is no
loss in restricting our attention to the case f = f (r).

1 Here and throughout, when working in coordinates θ0, . . . , θn , we shall use Roman letters to
denote indices 1, . . . , n and use a tilde to denote quantities (Levi-Civita connection, curvature, etc.)
associated to the metric g̃ on Sn . In particular, ∇̃i ∇̃ j f represents the Hessian of f (r, ·) considered
as a function on Sn .
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Proposition 3. Suppose that (g, f, λ) is a complete, rotationally symmetric gradi-
ent shrinking soliton structure on Mn+1 ∼= Sn+1, Rn+1, or R × Sn . Then either f
is rotationally symmetric, or Mn+1 ∼= Rn+1 and g is the flat metric.

Proof. Write g = dr2
+ ω2(r)g̃ for r ∈ (A, �), and fix local coordinates r =

θ0, θ1, . . . , θn on a neighborhood (A, �) × U about any point. Observe that for
each fixed r , Equation (6) is a tensorial identity on Sn , and that we may therefore
differentiate it using the Levi-Civita connection ∇̃ of g̃ to obtain

∇̃k∇̃i ∇̃ j f + ωω′ f0k g̃i j = 0.

Hence ∇̃k∇̃i ∇̃ j f − ∇̃i ∇̃k∇̃ j f = ωω′( f0i g̃ jk − f0k g̃i j ). On the other hand, since
R̃i jkl = g̃il g̃ jk − g̃ik g̃ jl , the standard commutation identities imply

∇̃k∇̃i ∇̃ j f − ∇̃i ∇̃k∇̃ j f = −R̃ki jl g̃lm fm

= −(g̃i j g̃kl − g̃il g̃ jk)g̃lm fm = fi g̃ jk − fk g̃i j .

Combining the two, we find (ωω′ f0i − fi )g̃ jk = (ωω′ f0k− fk)g̃i j , and tracing yields
(n − 1)(ωω′ f0i − fi ) = 0 for all i = 1, . . . , n. Together with (5), we conclude

(8) (n − 1)|∇̃ f |
2
g̃[1 − (ω′)2

] = 0.

Since we assume n > 1, if (X f )(r0, θ0) 6= 0 for some X ∈ T(r0,θ0)Mn+1 tangent
to the Sn factor, we must have |ω′

| ≡ 1 and ω′′
≡ 0 on an interval (a, b) ⊂ (A, �)

containing r0. But, by Equation (2), this means that ν1 = ν2 = 0 on (a, b). We
claim that ν1 = ν2 = 0 on the entire interval (A, �).

Let β = sup{r < � | (ω′)2
= 1 on (a, r)}. If β < �, by equations (6) and (8),

we must have (∇̃∇̃ f )(β, ·) = 0, ω′(β) = σ ∈ {±1}, ω′′(β) = 0, ω(β) > 0,
and f0(β, ·) = σλω(β). Moreover, for some small ε, f is a function only of r
on [β, β + ε), and on this interval, f ′ and ω satisfy the system (7) with the above
initial conditions. But one may check that the functions

ω(r) = σ(r − β) + ω(β) and f ′(r) = λ((r − β) + ω(β))

also satisfy (7) and agree with ω and f at r = β. Therefore, by uniqueness2,
these solutions must coincide and it follows that (ω′)2

= (ω′)2
= 1 on the interval

[β, β + ε), contradicting our choice of β. So g is flat on (a, �) × Sn . Using a

2Writing x = ω′, and u = f ′, we may recast (7) as a first-order system

ω′
= x := F(ω, x, u),

x ′
= xu − λω + (n − 1)(1 − x2)/ω := G(ω, x, u),

u′
= nxu/ω + (n − 1)(n(1 − x2)/ω2

− λ) := H(ω, x, u).

Since F , G, H are C∞ on the region {ω 6= 0}, the asserted uniqueness follows from standard ODE
theory.
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similar argument at the other endpoint a, can show that g must be flat on the entire
cylinder (A, �)× Sn . But this means either ω′

≡ 1 or ω′
≡ −1, so g cannot extend

to a smooth metric on the sphere Sn+1 or to a complete metric on the cylinder. The
only possibility is ω′

≡ 1 and Mn+1 ∼= Rn+1. �

2.3. An equivalent first order system and its linearization. In view of the result
of the last section, we now assume f = f (r). We are interested in solutions
(ω(r), f (r)) to the system (7) for which ω is strictly positive.

As Ivey observes in [Chow et al. 2007], (7) is invariant under translations of r
and f . By introducing the variables x = ω′ and y = nω′

− ω f ′ which share this
invariance and an independent variable t that satisfies dt = 1/ωdr , one obtains the
first order system

(9)

dω/dt = xω,

dx/dt = x2
− xy + n − 1 − λω2,

dy/dt = xy − nx2
− λω2.

Any solution to (7) gives rise to a trajectory of (9) and conversely, from a trajec-
tory (ω(t), x(t), y(t)) of (9), one may recover r , ω(r), and f (r) by a succession
of quadratures; see [Ivey 1992]. Consequently, it suffices to analyze solutions to
the simpler system (9). We take (ω, x, y) as coordinates on the phase space R3

and restrict our attention to trajectories lying in the half space ω > 0.
For n > 1, system (9) has the two equilibrium points P0 := (0, 1, n) and P1 :=

(0, −1, −n). Denoting the right hand side of (9) by 8, one finds

d8P0 = −d8P1 =

 1 0 0
0 2 − n −1
0 −n 1

 ,

which has eigenvalues 2, 1, and 1 − n. Since we assume n ≥ 2, both P0 and P1

are saddle points: P0 (P1) lying at the intersection of a two-dimensional unstable
(stable) manifold and a one-dimensional stable (unstable) manifold. In particular,
there is a one-parameter family of trajectories in the half-space ω > 0 initially
tangent to (1, 0, 0), among which, in light of Lemma 2, lie the trajectories which
give rise to smooth solutions on Sn+1 and Rn+1 (see Examples 5 and 6 below).
Trajectories which correspond to smooth solutions on Sn+1 must, in addition, tend
to P1 as t → ∞ and hence lie in the intersection of the global unstable and stable
manifolds of P0 and P1, respectively.

Remark 4. If L : R3
→ R3 is the map (ω, x, y) 7→ (ω, −x, −y), then from any

solution γ (t) = (ω(t), x(t), y(t)) of (9) on (S, T ), one may obtain a new solution

γ (t) := L (γ (τ (t))) = (ω(τ(t)), −x(τ (t)), −y(τ (t)))
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on an appropriate interval (S, T ), where τ is chosen to satisfy dτ/dt = −1 and the
conditions τ(S) = T and τ(T ) = S.

By use of this device, one immediately finds that the global stable and unstable
manifolds of Pi , Si and Ui for i = 1, 2 are related by L(S0) = U1 and L(U0) = S1.
Moreover, if a set V ⊂ R3 is preserved by the system (9) for increasing t (that is,
γ (t0) ∈ V implies γ (t) ∈ V for t > t0 as long as the solution is defined), then L(V )

is preserved by the system for decreasing t .

2.4. The standard examples. It is worthwhile to recall the standard solutions to
(7) and locate the corresponding solution to (9) in ωxy-space. Theorem 1 says that
this list essentially exhausts the possibilities for complete solutions.

Example 5 (Round sphere). The condition f ≡ const in (7) leads to the constant
curvature soliton structure

ω(r) =
√

n/λ sin(
√

λ/n r) and f (r) = const

on the sphere Sn+1. The corresponding trajectory in ωxy-space is the elliptical arc
{nx2

+ λω2
= n} lying in the plane {y = nx} joining P0 and P1.

Example 6 (Gaussian soliton). The condition ω′
≡ 1 in (7) leads to the flat soliton

structure

(10) ω(r) = r and f (r) = λr2/2 + linear

on Rn+1 and corresponds to the trajectory y =n−ω2 in the plane {x =1} emanating
from P0. Applying the device of Remark 4, one obtains a similar trajectory in the
plane {x = −1}, which satisfies y = −n + λω2 and tends to P1 as t → ∞.

Example 7 (Standard cylinder). The condition ω′
≡ 0 in (7) leads to the structure

ω(r) =
√

(n − 1)/λ and f (r) = λr2/2 + linear

on R × Sn corresponding to the line {(
√

(n − 1)/λ, 0, y)} in ωxy-space.

Remark 8. The flat and cylindrical solutions described in the last two examples are
the only ones for which ω′

≡const, and the corresponding trajectories in ωxy-space
describe the intersections of the planes {x = 1}, {x = 0}, and {x = −1} with the set
{x2

− xy +n −1−λω2
= 0}. This leads to an observation we shall use repeatedly:

the only solutions γ (t) of (9) for which (dx/dt)(t0) = 0 and x(t0) = 1, 0, or −1 at
some t0 are, by uniqueness, those for which x(t) ≡ 1, 0, or −1, respectively.

Finally, we note that by taking λ=0 in the x and y-components of (9) one recov-
ers the analogous system for rotationally symmetric solutions to the steady soliton
equation. Thus the trajectories of (9) that lie in the plane {ω = 0} are naturally
associated with steady soliton structures (although, of course, the warping function
ω(r) of these structures no longer corresponds directly to the ω-coordinate). In



80 BRETT KOTSCHWAR

particular, the (one-dimensional) intersection of the unstable manifold of P0 with
the plane {ω= 0} contains two candidates for a smooth steady soliton on Rn+1: one
with negative sectional curvature near the origin, which turns out to be incomplete,
and one with positive curvature near the origin, which is the well-known Bryant
soliton — a complete steady soliton on Rn+1 of strictly positive curvature.

3. Proof of Theorem 1

In what follows, γ (t) = (ω(t), x(t), y(t)) will represent a trajectory of (9) defined
for t in what we may take to be a maximal interval (S, T ) with −∞ ≤ S < T ≤ ∞.
To reduce the clutter of our expressions, we shall usually suppress the t dependence
of the components of the trajectory.

3.1. Some invariant sets. We begin our analysis of the trajectories by observing
that the second and third derivatives of x(t) have convenient expressions:

Lemma 9. The x-component of any trajectory γ (t) of (9) satisfies

d2x
dt2 = (n − 1)x(x2

− 1) + (3x − y)
dx
dt

,(11)

d3x
dt3 = 2x[(2n − 1)x − y]

dx
dt

+ 2
(dx

dt

)2
+ (3x − y)

d2x
dt2 .(12)

Proof. We compute

d2x
dt2 = (2x − y)

dx
dt

− x2 y + nx3
− λω2x = (n − 1)x(x2

− 1) + (3x − y)
dx
dt

and

d3x
dt3 =

(
(n − 1)(3x2

− 1) +
dx
dt

−
dy
dt

)dx
dt

+ 2
(dx

dt

)2
+ (3x − y)

d2x
dt2

= 2x((2n − 1)x − y)
dx
dt

+ 2
(dx

dt

)2
+ (3x − y)

d2x
dt2 . �

With the above expressions we may easily establish the following qualitative
results on the behavior of trajectories of the system.

Lemma 10. The regions

{x ≥ 1, dx/dt ≥ 0} , {x ≤ −1, dx/dt ≤ 0} , {y ≤ 0}

are preserved under system (9) for increasing t , and

{x ≥ 1, dx/dt ≤ 0} , {x ≤ −1, dx/dt ≥ 0} , {y ≥ 0}

are preserved for decreasing t.
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Proof. By (11), if (dx/dt)(t0)=0 at some t0 with x(t0)>1, then (d2x/dt2)(t0)>0,
and hence both dx/dt and x continue to increase. By Remark 8, we cannot have
dx/dt = 0 and x = 1 simultaneously unless x ≡ 1. The argument for the case
x ≤ −1 and dx/dt ≤ 0 is similar.

To see that {y ≤ 0} is preserved, observe that dy/dt =−nx2
−λω2 < 0 whenever

y = 0.
The preservation of the remaining sets for decreasing t follows by applying

previous results to the trajectory γ (t) = L(γ (τ )) constructed as in Remark 4. �

Lemma 11. (1) If there exists t0 ∈ (S, T ) at which x(t0) = 0, y(t0) ≤ 0, and
(dx/dt)(t0) > 0, then x(t) (and dx/dt) increases until γ (t) enters the region
{x > 1}.

(2) If there exists t0 ∈ (S, T ) at which x(t0) = 0, y(t0) ≥ 0, and (dx/dt)(t0) > 0,
then x(t) < 0 and (dx/dt)(t) > 0 for all t < t0 and there exists a t1 ≤ t0 such
that x(t) < −1 for all t < t1.

In particular, in view of Lemma 10, if the trajectory γ enters the region {x < 0},
either it remains there or eventually lies in the region {x > 1}.

Proof. In case (1), we have y(t) < 0 for all t > t0 by Lemma 10, and we have
(d2x/dt2)(t0) ≥ 0 by Equation (11). Since by (12) (d3x/dt3) > 0 on the region

{x ≥ 0, dx/dt > 0, d2x/dt2
≥ 0},

we have (d2x/dt2)(t) > 0 for all t > t0. Consequently, x(t) > (dx/dt)(t0)(t − t0).
As bounds on x imply bounds on the derivatives of ω and y, the solution cannot
expire while 0 < x < 1. Since the interval (S, T ) is maximal, x > 1 eventually.

Case (2) then follows from case (1) by considering again the trajectory γ (t)
constructed according to the device in Remark 4: If x(t0) = 0, y(t0) ≥ 0, and
dx
dt (t0) > 0, then x(t0) = 0, y(t0) ≤ 0, and (dx/dt)(t0) > 0, and the corresponding
interval of definition (S, T ), satisfying τ(T ) = S and τ(S) = T , will also be max-
imal. �

3.2. Proof of the case Mn+1 ∼= Sn+1.
Theorem 12. Suppose (Sn+1, g) is a rotationally symmetric shrinking soliton.
Then g has positive curvature operator.

Proof. Recall from Section 2.1 that, for a rotationally symmetric metric, the posi-
tivity of the curvature operator is implied by that of the sectional curvatures ν1 and
ν2 which, in the (ω, x, y)-coordinates, have the expressions

ν1 = −
1
ω2

dx
dt

and ν2 =
(1−x2)

ω2 .

Any trajectory γ (t) of system (9) that corresponds to a smooth soliton structure
on the sphere must tend to P0 = (0, 1, n) as t → −∞ and to P1 = (0, −1, −n) as
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t → ∞. Thus, by Lemma 10, we must have −1 < x(t) < 1 (hence ν2(t) > 0) for
all t and dx/dt < 0, at least initially. We wish to show dx/dt < 0 for all t .

By Equation (11) of Lemma 9, d2x/dt2 < 0 at critical points of x in the region
{0 < x < 1}, so dx/dt remains strictly negative on this region and, by Remark 8,
cannot vanish on {x = 0}. Since γ (t) must tend to P1 as t → ∞, it must, in
particular, enter the region {x < 0}, and, in view of Lemma 11, remain there for all
subsequent t . Since d2x/dt2 > 0 at critical points of x in the region {−1 < x < 0},
dx/dt must therefore remain strictly negative if x is to approach −1. So dx/dt < 0
always, and thus for any trajectory emanating from P0 and tending to P1, we have
ν1 > 0 and ν2 > 0 for all t as claimed.

Taking limits, one finds that at the “poles” r = A and r = �, the sectional
curvatures agree and are at least nonnegative. One may therefore apply [Hamilton
1986, Lemma 8.2] to conclude that the curvature operator Rm(g) : ∧

2
→ ∧

2 is of
constant rank and therefore strictly positive everywhere. �

That g has constant sectional curvature then follows immediately from this:

Theorem [Böhm and Wilking 2006, Theorem 1]. On a compact manifold, the
normalized Ricci flow evolves a Riemannian metric with a 2-positive curvature
operator to a limit metric with constant sectional curvature.

That f ≡ const in case (1) of Theorem 1 then follows by substituting ν1 = ν2 =

const into (7) or, alternatively, by considering the identity R+|∇ f |
2
−2λ f = const,

which is valid on any gradient Ricci shrinking soliton; see for example [Chow
et al. 2007]. If f attains its maximum and minimum at the points xM and xm ,
respectively, then the identity implies f (xM) = f (xm) since R is constant.

3.3. The asymptotic behavior of trajectories corresponding to complete, non-
compact metrics. Hereafter, we shall consider solutions γ (t) satisfying one or both
of the conditions ∫ T

t0
ω(σ) dσ = ∞ = lim

t→T
r(t)(13)

and ∫ t0

S
ω(σ) dσ = ∞ = − lim

t→S
r(t)(14)

for any t0 ∈ (S, T ). Condition (13) is necessarily satisfied by any trajectory cor-
responding to a complete metric on Rn+1, and both (13) and (14) are necessarily
satisfied by any trajectory corresponding to a complete metric on R × Sn . As we
shall see, these conditions impose rather stringent conditions on the asymptotic
behavior of a trajectory.

We remark that if γ (t) satisfies (13) then γ (t) = L(γ (τ )) satisfies (14) and vice
versa. Thus, from the following results, which apply to trajectories satisfying the



ON ROTATIONALLY INVARIANT SHRINKING RICCI SOLITONS 83

“forward” condition (13), we may easily obtain corresponding results for trajec-
tories satisfying the “backward” condition (14). These results will be collected in
Lemma 17, below.

We begin with a simple consequence of the forwards extendability condition by
which we may eventually obtain knowledge of the sign of the y-component.

Lemma 13. Along any trajectory γ (t), the quantity Q = y/ω is strictly decreasing.
If γ (t) satisfies (13), then limt→T Q = −∞. In particular, y eventually becomes
negative.

Proof. We compute d Q/dt = −nx2/ω−λω < 0. Integrating, we find that, for any
S < t0 < t < T ,

y
ω

(t) ≤
y
ω

(t0) − λ

∫ t

t0
ω(σ)dσ. �

The following observation is also immediate.

Lemma 14. If γ (t) satisfies (13), then lim supt→T x(t) ≥ 0.

Proof. If x(t) < −δ on some (a, T ) ⊂ (S, T ), then ω(t) ≤ Ce−δt on the same
interval, and γ (t) cannot satisfy (13). �

Thus, in view of Lemma 11, no trajectory satisfying (13) can enter the region
{x < −1}. That no trajectory satisfying (13) can enter the region {x > 1} is true
(as we prove next) but less obvious since ω(t) → ∞. Taken together, Lemmas 11,
14, and 15 prove that any complete metric on Rn+1 satisfies ν2 ≥ 0.

The proof follows the lines of an argument due to Bryant and Ivey (see [Chow
et al. 2007]) demonstrating the incompleteness of a similar trajectory of the steady
soliton system. In fact, if one regards the trajectories of (9) in the plane {ω = 0} as
trajectories of the analogous system for steady solitons (see the remarks at the end
of Section 2.4), then Ivey’s argument pertains to the trajectory in the plane emerging
from P0 in the direction opposite the Bryant soliton. The following lemma then
may be viewed as extending his finding to the neighboring family of trajectories in
the unstable manifold U0 which populate the sector between the flat trajectory with
x ≡ 0 and the plane {ω = 0}. These trajectories correspond to metrics of strictly
negative sectional curvature and are all incomplete. However, Ivey’s argument does
not carry over directly, because, in the expression for dx/dt in the shrinking case,
one has to contend with an additional term (−λω2) of uncooperative sign.

Lemma 15. Suppose x(t0) > 1 and (dx/dt)(t0) > 0 at some t0 ∈ (S, T ). Then∫ T
t0

ω(σ) dσ < ∞.

Proof. We proceed by contradiction. Suppose γ (t) satisfies (13). Then, by (11),
x(t) > 1 and (dx/dt)(t) > 0 for t > t0, and, by Lemma 13, there is a t1 ∈ (t0, T )

such that y(t) < 0 for all t ≥ t1.
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Hence, by (11), we have

(15) d2x
dt2 ≥ (n − 1)x(x2

− 1) + 3x dx
dt

>
3
2

d(x2)

dt
.

Now, since the interval (S, T ) is assumed maximal, and since bounds on x imply
bounds on the derivatives of y and ω, if T < ∞ we must have lim supt→T |x(t)| =
limt→T x = ∞. On the other hand, x(t) is uniformly convex by (15), so even if
T = ∞ we still have limt→T x(t) = ∞. Returning to (15) with this fact in hand,
we find

dx
dt

≥
5
4 x2

+ 1

for all t greater than some t2 ≥ t1. (The coefficient 5/4 is chosen for convenience
and could be replaced by 3/2 − ε for any ε > 0 — below, we merely require it to
be greater than one.) From this equation it follows that T < ∞ and

d
dt

arctan
( x

√
5

2

)
≥

√
5

2
,

which implies x(t) ≤ 4/(5(T − t)) for t sufficiently close to T . Now, since
d log ω/dt = x , integrating and applying this bound yields ω(t) ≤ C2/(T − t)4/5

for some constant C2, contradicting (13). �

Together, Lemmas 10 and 15 allow us to restrict our attention to trajectories that
remain in the region {−1 < x < 1}, and, consequently, to those with infinite exis-
tence time t ∈ (S, ∞), since a trajectory with bounded x cannot satisfy condition
(13) on a interval bounded above. Along such trajectories, y becomes negative and
Lemma 11 implies that eventually x acquires a constant sign. As a consequence,
we obtain the following refinement of Lemma 13:

Lemma 16. If γ (t) is a trajectory of (9) defined on (S, ∞) satisfying condition
(13) and −1 < x(t) < 1, then limt→∞ y(t) = −∞.

Proof. Suppose lim supt→∞ y(t) ≥ −M for some M > 1, and choose tk ∈ (S, ∞)

such that tk ↗ ∞ and y(tk) ≥ −M . Then, by Lemma 13, limk→∞ ω(tk) = 0. Since
x eventually acquires a constant sign, and dω/dt = xω, we must have x(t) ≤ 0
eventually, and ω(t) must tend to 0 outright as t → ∞.

Now, Equation (11) shows that x(t) cannot attain a local maximum on the range
{−1 < x ≤ 0} unless x = 0, and we know x = 0 and dx/dt = 0 simultaneously only
if x ≡ 0, in which case dy =−(n−1)dt . Otherwise, x is eventually monotonic in t
and either increases or decreases to a limit x ∈ [−1, 0]. By the remarks preceding
this lemma, we cannot have x < 0 if the trajectory is to satisfy condition (13). So
assume x = 0, which implies dx/dt > 0 eventually. Then, for any ε, we can choose
tε such that t > tε implies both y(t) < 0 and nx2

+ λω2 < ε. For such t , we have
dy/dt = xy − nx2

− λω2 > −ε.
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Fixing ε < (n − 1)/2, we find, each for k, that y(t) > −M − ε(t − tk) and

dx
dt

(t) = x2
− xy + n − 1 − λω2 >

n−1
2

+ x(tk)(M + (ε(t − tk)),

where, in the last inequality, we used that x is monotonically increasing.
Hence

x(t) − x(tk) >
(n−1

2
+ Mx(tk)

)
(t − tk) + ε

x(tk)
2

(t − tk)2.

For k >> 0, Mx(tk) > −(n − 1)/4, so that the above (with the monotonicity of
x(t)) implies that there exists δ = δ(M, ε, n) > 0 and a subsequence tk j → ∞

such that x(tk j+1) > x(tk j ) + δ for all j . This contradicts that x ↗ 0 and proves
lim supt→∞ y(t) = −∞. �

3.4. Proof of the case Mn+1 ∼= Rn+1. We use the results of the last section.

Proof of claim (2) of Theorem 1. Since the underlying manifold Mn+1 is dif-
feomorphic to Rn+1, the smooth extension of the metric to the origin r = 0 then
requires that S =−∞ and that our solution γ (t)= (ω(t), y(t), ω(t)) of (9) satisfies
limt→−∞ γ (t) = P0 = (0, 1, n).

We claim first that if our trajectory is to satisfy condition (13), then x ≤ 1. For
if ever x > 1, since limt→−∞ x(t) = 1, we would have to have (dx/dt)(t0) > 0 and
x(t0) > 1 at some earlier t0. But then, by Lemmas 10 and 15, the x-component
would blow up too fast for γ (t) to satisfy (13). So we must have x ≤ 1 for all t .

Then, if ever x = 1, we must also have dx/dt = 0 at the same time, which, as
pointed out in Remark 8, happens only if x ≡ 1 — that is, only if γ (t) corresponds
to the flat solution of Example 6. We claim that this is the only trajectory emanating
from P0 that satisfies (13).

We may now assume that x(t) < 1 on our trajectory and that for some t0 (hence
all t < t0), we have (dx/dt)(t0) < 0 and 0 < x(t0) < 1. Since, by Equation (11),
d2x/dt2 is strictly negative at all critical points of x in the region 0 < x < 1, there
are two possibilities for our trajectory: either

(1) x decreases monotonically to a limit x ∈ [0, 1) as t → ∞, or

(2) γ (t) enters the region {x ≤ 0} at some time t = t1.

Knowing that y → −∞ as t → ∞ (in fact, just knowing that eventually y < 0
suffices), we can dispose of case (1) by observing that while x ∈ [0, 1],

(16) d2x
dt2 ≤ (n − 1)x(x2

− 1) + ε
dx
dt

< 0

once y < −ε < 0. Hence x eventually becomes negative.
Now, we also know from Lemma 14 that x cannot tend to a negative limit or

become strictly less than −1 if condition (13) is to be satisfied. Since d2x/dt2 is
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strictly positive at critical points of x in the region {−1 < x < 0}, and since the only
trajectories with critical points of x on the boundary of this region are classified in
Examples 6 and 7 and neither emanate from P0, we face only two alternatives:

(2a) either γ enters the region x > 0 again, or

(2b) x ↗ 0 as t → ∞.

Alternative (2a) is immediately excluded by Lemmas 11 and 15: no trajectory
that emanates from P0 can satisfy x(t0) = 0, dx/dt(t0) > 0, and y(t0) ≥ 0 and no
trajectory that satisfies x(t0) = 0, dx/dt(t0) > 0, and y(t0) ≤ 0 can satisfy (13).

For (2b), we observe that since y → −∞ as t → ∞, we have 3x − y > ε > 0
eventually, and thus we may obtain the analog of Equation (16) for t sufficiently
large

(17) d2x
dt2 = (n − 1)x(x2

− 1) + (3x − y)
dx
dt

> ε
dx
dt

> 0,

which is incompatible with x ↗ 0 as t → ∞.
The trajectory x ≡ 1 is therefore the unique trajectory emanating from P0 satis-

fying (13), and the proof of the case Mn+1 ∼= Rn+1 is complete. �

3.5. Proof of the case Mn+1 ∼= R× Sn. As remarked earlier, the results in Section
3.3 regarding trajectories satisfying the forward extendability condition (13) have
natural analogs for trajectories satisfying the backward version (14).

Lemma 17. (1) Suppose γ (t) satisfies (14).

(a) limt→S Q(t) = ∞ and y is initially positive.
(b) lim inft→S x(t) ≤ 0.
(c) If −1 < x(t) < 1 for all t (so −S = T = ∞), then limt→−∞ y(t) = ∞.

(2) If x(t0) < −1 and (dx/dt)(t0) > 0 at some t0 ∈ (S, T ), then

(18)
∫ t0

S
ω(σ) dσ < ∞.

Proof. Let γ (t) = L(γ (τ (t))) be as in Remark 4. Then

(19)
∫ t0

S
ω(σ) dσ =

∫ T

t0
ω(σ) dσ.

Thus, if γ (t) satisfies (14), then γ (t) satisfies (13) and the claims of part (1) follow
by the application of Lemmas 13, 14, and 16 to γ (t).

For part (2), x(t0) > 1 and (dx/dt)(t0) > 0 if x(t0) < −1 and (dx/dt)(t0) > 0,
so Lemma 15 and Equation (19) yield the inequality (18). �

Now we turn to the remainder of the proof of Theorem 1.
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Proof of claim (3) of Theorem 1. We shall show that the only trajectory γ (t)
satisfying both (13) and (14) is that of Example 7 with x ≡ 0 and ω ≡

√
(n − 1)/λ.

By Lemmas 10 and 15 and case (2) of Lemma 17, we can assume −1 ≤ x(t)≤ 1
and consequently also S = −∞ and T = ∞. Since neither of the trajectories
with x ≡ ±1 can satisfy both conditions (13) and (14), we may in fact assume
−1 < x(t) < 1.

By Lemma 14 and part (b) of Lemma 17, we know lim inft→−∞ x(t) ≤ 0 and
lim supt→∞ x(t) ≥ 0. Thus since d2x/dt2 is strictly positive at critical points of x
in the region {−1 < x < 0} and strictly negative at these critical points in the region
{0 < x < 1}, either γ (t) crosses the plane {x = 0} at some time or its x-component
maintains a constant sign and tends monotonically to 0 as t → ∞ or t → −∞.
We claim that this latter option cannot occur. For, in light of the remarks in the
preceding paragraph, the only ways γ (t) could potentially satisfy the extendability
criteria would be x < 0 and x ↗ 0 as t → ∞, or x > 0 and x ↘ 0 as t → −∞. But
the case x < 0, x ↗ 0 was eliminated in the argument for claim (2), and the case
x ↘ 0 as t → −∞ reduces to the previous one by considering the trajectory γ (t).

Thus, we conclude there must exist a t0 such that x(t0) = 0. If (dx/dt)(t0) 6=

0, then we may assume (dx/dt)(t0) > 0, because the argument we gave in the
case Mn+1 ∼= Rn+1 implies that the only trajectories that satisfy Equation (13) and
(dx/dt)(t0) < 0 initially lie in the region {x < −1} and cannot thus satisfy (14).
However, if (dx/dt)(t0) > 0, then Lemma 11 implies that either again γ (t) lies
initially in the region {x <−1} or eventually in the region {x >1}, in which case, by
Lemma 15 and part (2) of Lemma 17, γ (t) can satisfy at most one of the conditions
(13) and (14).

Thus we can only have (dx/dt)(t0) = 0, which implies that γ coincides with
the trajectory x ≡ 0 and ω ≡

√
(n − 1)/λ as claimed. �
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