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THREE-DIMENSIONAL TRANSONIC SHOCKS IN A NOZZLE

ZHOUPING XIN AND HUICHENG YIN

This paper concerns the following transonic shock phenomena in a three-
dimensional de Laval nozzle described by Courant and Friedrichs: Given
the appropriately large receiver pressure pr , if the upstream flow is still
supersonic behind the throat of the nozzle, then at a certain place in the
widening part of the nozzle a shock front intervenes, and the gas is com-
pressed and slowed down to subsonic speed. The position and the strength
of the shock front are automatically adjusted so that the end pressure at
the exit becomes pr . We study this problem for the inviscid steady potential
equation. In this case, the transonic shock is a free boundary dividing the
hyperbolic region and the elliptic region in the nozzle. One main result is
that for a general class of nozzles, such a transonic shock solution is unique
if the shock exists and is assumed to pass through a fixed point. We also
construct a class of de Laval nozzles such that the transonic shock phenom-
ena do not occur for the generally given large pressures at the exit for the
potential flow model.

1. Introduction and the main results

This is a continuation of our study of the well-posedness of the problem of a mul-
tidimensional transonic shock to the steady flow through a general curved nozzle
[Xin and Yin 2005a]. Our focus is on transonic flows with shocks in a general
three-dimensional nozzle, which is an important subject in gas dynamics [Bers
1954; Courant and Friedrichs 1948; Fletcher 1991a; 1991b]. In particular, we are
concerned with the following transonic phenomena in a De Laval nozzle as posed
by Courant and Friedrichs [1948, p. 386]: Given an appropriately large receiver
pressure pr , if the upstream flow is still supersonic behind the throat of the nozzle,
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then at a certain place in the widening part of the nozzle, a shock front intervenes,
and the gas is compressed and slowed down to subsonic speed. The position and
the strength of the shock front are automatically adjusted so that the end pressure
at the exit becomes pr .

In [Xin and Yin 2005a], we established the well-posedness of the structure men-
tioned above of the transonic flow with shocks in a general two-dimensional nozzle
for a class of pressures which are induced by appropriate boundary conditions at
the exit of the nozzle. However, as shown by Courant and Friedrichs [1948, p. 377],
the flow through a duct should be considered as a steady, isentropic, irrotational
flow with cylindrical symmetry and should be determined by solving the three-
dimensional potential flow equations with appropriate boundary conditions. Thus,
one major goal of this paper is to treat the well-posedness or ill-posedness of
such a transonic flow pattern with a multidimensional shock in a general three-
dimensional nozzle with a slowly-varying cross section. For other discussions on
transonic flows and transonic flows with shocks and recent studies on multidi-
mensional transonic shocks, refer to [Xin and Yin 2005a; 2005b; Xin et al. 2008]
and the references therein; see also [Čanić et al. 2000; Chen and Feldman 2003;
Morawetz 1956; 1958; 1964; 1957; 1986].

Suppose that there is a uniform supersonic flow (u1, u2, u3) = (q−, 0, 0) with
constant density ρ0 > 0 and which comes from minus infinity; suppose also the
flow enters the nozzle. We assume throughout that the nozzle wall is of a small
perturbation of a cylindrical surface {x : x2

2 + x2
3 = 1 for −1 ≤ x1 ≤ 1}. In addition,

the flow in the nozzle is assumed to be irrotational and isentropic; see [Alt et al.
1985; Bers 1954; Courant and Friedrichs 1948; Majda 1991] and again the papers
of Morawetz.

Let ϕ(x) be the potential of velocity, that is, (∂1ϕ, ∂2ϕ, ∂3ϕ)= (u1, u2, u3). Then
Bernoulli’s law implies

(1-1) 1
2 |∇ϕ|

2
+ h(ρ) ≡ C0 =

1
2q2

−
+ h(ρ0),

where h(ρ) is the specific enthalpy. For the given equation of state P = P(ρ) with
P ′(ρ) = c2(ρ) > 0 for ρ > 0, we have h′(ρ) = c2(ρ)/ρ.

Since h′(ρ) > 0, one then can define the inverse function of h(ρ) to be H(s),
namely,

(1-2) ρ = H(C0 −
1
2 |∇ϕ|

2).

The equation of continuity becomes

3∑
i=1

∂i (∂iϕH) = 0,
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which can be rewritten as

(1-3)
3∑

i=1

((∂iϕ)2
− c2)∂2

i ϕ + 2
∑

1≤i< j≤3

∂iϕ∂ jϕ∂2
i jϕ = 0.

It is easy to verify that (1-3) is strictly hyperbolic for |∇ϕ| > c(ρ) and strictly
elliptic for |∇ϕ| < c(ρ).

Suppose that the wall of the nozzle is given by (x2
2 + x2

3)1/2
= f (x) for −1 ≤

x1 ≤ 1, such that

(1-4) |∇
α
x ( f (x) − 1)| ≤ ε for −1 ≤ x1 ≤ 1 and |α| ≤ k0,

where k0 ∈ N and k0 ≥ 7.
Without loss of generality and for convenience, we assume that

(1-5) f (−1, x2, x3) = 1,

f (1, x2, x3) = 1,

∇
α
x f (x)

∣∣
x1=−1 = 0 for 1 ≤ |α| ≤ k0.

When the uniform supersonic flow (q−, 0, 0) enters the entry of the nozzle, then
the potential ϕ−(x) in the nozzle will be determined by the initial boundary value
problem for a quasilinear wave equation given by

(1-6)



∑
i=1,2,3

((∂iϕ−)2
−c2

−
)∂2

i ϕ−+2
∑

1≤i< j≤3

∂iϕ−∂ jϕ−∂2
i jϕ− = 0,

ϕ−

∣∣
x1=−1 = −q−,

∂1ϕ−

∣∣
x1=−1 = q−,

∂1 f ∂1ϕ−+
∑

i=2,3(∂i f −xi/ f )∂iϕ− = 0 on (x2
2 +x2

3)1/2
= f (x),

where c− = c(ρ−) and ρ− = H(C0 −
1
2 |∇ϕ−|

2).
It follows from Lemma 2.1 that (1-6) has a C5 solution ϕ−(x) in the nozzle

{(x1, x2, x3) : −1 ≤ x1 ≤ 1, (x2
2 + x2

3)1/2
≤ f (x)}. Also |∇

α
x (ϕ−(x)−q−x1)| ≤ Cε

holds for |α| ≤ 5.
Suppose the pressure P̃+(x2, x3)= P(ρ̃+(x2, x3)) at the exit x1 = 1 of the nozzle

is appropriately larger than that in the entry, where

ρ̃+(x2, x3) ∈ C4({(x2, x3) : (x2
2 + x2

3)1/2
≤ f (1, x2, x3)})

is a small perturbation of the constant density ρ+ or, more precisely,

|∇
α
x2,x3

(ρ̃+(x2, x3) − ρ+)| ≤ ε for 0 ≤ |α| ≤ 4,

where the density ρ+ and the constant velocity |∇ϕ| = q+ satisfy the relations

(1-7) 1
2q2

+
+ h(ρ+) = C0, ρ+q+ = ρ0q−, q+ < c(ρ+).
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Then we expect that there appears a transonic shock 6 : x1 = ξ(x2, x3) in the
nozzle. To assure uniqueness of the flow pattern as in [Xin and Yin 2005a], we
also require that the shock 6 goes through a specified point x̃0

= (0, x̃0
2 , x̃0

3) at the
fixed boundary, that is,

(1-8) ξ(x̃0
2 , x̃0

3) = 0, with ((x̃0
2)2

+ (x̃0
3)2)1/2

= f (x̃0).

Let ϕ+(x) be the velocity potential across the shock 6. Then the potential is
continuous across the shock 6 [Bers 1954; Courant and Friedrichs 1948], that is,

(1-9) ϕ+(x) = ϕ−(x) for x ∈ 6

and ∇ϕ must satisfy the Rankine–Hugoniot condition

(1-10) [∂1ϕH ] −

∑
i=2,3

∂iξ [∂iϕH ] = 0 on 6.

Furthermore, the entropy should satisfy the physical condition

(1-11) H(C0 −
1
2 |∇ϕ−|

2) < H(C0 −
1
2 |∇ϕ+|

2) on 6.

At the exit of the nozzle, the given pressure satisfies

(1-12) H(C0 −
1
2 |∇ϕ+|

2) = ρ̃+(x2, x3) on x1 = 1.

Finally, the no-flow boundary condition on the wall of the nozzle says

(1-13) ∂1 f ∂1ϕ+ +

∑
i=2,3

(∂i f − xi/ f )∂iϕ+ = 0 on (x2
2 + x2

3)1/2
= f (x).

We will use the notations

� =
{
(x1, x2, x3) : −1 < x1 < 1, (x2

2 + x2
3)1/2 < f (x)

}
,

�+ =
{
(x1, x2, x3) : ξ(x2, x3) < x1 < 1, (x2

2 + x2
3)1/2 < f (x)

}
,

S =
{
(x2, x3) : (ξ(x2, x3), x2, x3) ∈ 6

}
,

where the last is the projection of the shock surface 6 on the (x2, x3)-plane. Also,

0̃1 = 6 ∩
{
(x1, x2, x3) : (x2

2 + x2
3)1/2

= f (x)
}
,

0̃2 =
{
(1, x2, x3) : (x2

2 + x2
3)1/2

= f (1, x2, x3)
}
,

|d0̃1
| = dist(x, 0̃1) for x ∈ 6 and (x2, x3) ∈ S,

|dx | = min{dist(x, 0̃1), dist(x, 0̃2)} for x ∈ �+.

Our first main result concerns the uniqueness of the solution to the Equation
(1-3) with the boundary conditions (1-8)–(1-13).
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Theorem 1.1 (uniqueness). Suppose that (1-4), (1-5), and (1-7) hold. Then for
suitably small ε > 0, Equation (1-3) with boundary conditions (1-8)–(1-13) has
no more than one pair of solutions (ϕ+(x), ξ(x2, x3)) with the following regularity
properties:

(i) For k = 2, 3 and (x2, x3) ∈ S,

ξ(x2, x3) ∈ C1,1−δ0(S) ∩ C3(S),

‖ξ(x2, x3)‖C1,1−δ0 (S) ≤ Cε,

|∇
k
x2,x3

ξ(x2, x3)| ≤
Cε

|d0̃1
|k−2+δ0

.

Here and below δ0 ∈ (0, 1/3) is a fixed constant.

(ii) ϕ+(x) ∈ C1,1−δ0(�+) ∩ C3(�+) such that

‖ϕ+(x) − q+x1‖C1,1−δ0 (�+) ≤ Cε,

|∇
k
x ϕ+(x)| ≤

Cε

|dx |
k−2+δ0

for k = 2, 3 and x ∈ �+.

Remark 1.2. It follows from the regularity theory of the second order elliptic
equations with the cornered boundaries (see for example [Lieberman 1988]) that
the assumptions on the regularity of the solution (ϕ+(x), ξ(x2, x3)) in Theorem 1.1
are plausible. See also Theorem 1.8 below.

Remark 1.3. If the end pressure ρ̃(x2, x3) in (1-12) is given on a C4-smooth sur-
face x1 = g(x2, x3) with |∇

α
x2,x3

(g(x2, x3) − 1)| ≤ ε for 0 ≤ |α| ≤ 4 and (x2, x3) ∈

{(x2, x3) : (x2
2 + x2

3)1/2
≤ f (1, x2, x3)}, then by an analogous proof, one can show

that Theorem 1.1 also holds in this case. This remark will be useful in proving
Theorem 1.5 below.

Remark 1.4. To prove Theorem 1.1 (see Section 2), we will reformulate the prob-
lem (1-3) with (1-8)–(1-13) by introducing the partial hodograph transformation

(1-14)
X1 = 1 −

1−x1
1−x1+ϕ−(x)−ϕ+(x)

,

X i = xi/ f (x) for i = 2, 3.

The transformation (1-14) changes the domain �+ into

Q+ = {(X1, X2, X3) : 0 < X1 < 1, X2
2 + X2

3 < 1}.
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Define a new unknown function V (X) = 1− x1 +ϕ−(x)−ϕ+(x). Then it follows
from a direct computation that Equation (1-3) with the boundary conditions (1-8)–
(1-10) and (1-12)–(1-13) can be reformulated as (see Section 2)∑

i, j=1,2,3

ai j (X, V, ∇X V )∂2
X i X j

V + F0(X, V, ∇X V ) = 0 in Q+,

G(X, V, ∇X V ) = 0 on X1 = 0,

H
(

C0 −
1
2

(
(1 + ∂x1 V − ∂1ϕ−)2

+

∑
i=2,3

(∂xi V − ∂iϕ−)2
))

= ρ̃+(x) on X1 = 1,

and, on X2
2 + X2

3 = 1,∑
j=1,2,3

( ∑
i=2,3

(xi/ f − ∂i f )∂xi X j − ∂1 f ∂x1 X j

)
∂X j V

= ∂1 f (1 − ∂1ϕ−) +

∑
i=2,3

(xi/ f − ∂i f )∂iϕ−.

Here the variable x = (x1, x2, x3) is a function of X = (X1, X2, X3) and V (X).
By the regularity theory of second order elliptic equations with cornered bound-

aries and the fact that the vector field ∂θ ≡ X2∂X3 −X3∂X2 is simultaneously tangent
to the surfaces X1 = 0, X1 = 1, and X2

2 + X2
3 = 1, it is actually valid to assume

more regularity of V (X) with respect to θ by requiring

(1-15) ‖∂θ V ‖C1,1−δ0 (Q+) ≤ C0ε and sup
X∈Q+

Rk−2+δ0
X |∇

k
X∂θ V | ≤ C0ε

for k = 2, 3, where RX = X1(1 − X1) + 1 − (X2
2 + X2

3). For more details, see
Lemma 5.3.

Next we turn to the nonexistence of solutions to the transonic shock problem
with general given pressure p(ρ̃+(x)) at the exit of the nozzle.

Suppose that the nozzle wall is C5-regular for −1 ≤ x1 ≤ 1 and that it consists
of two surfaces 51 and 52, where 51 includes the converging part of the nozzle
and 52 is a cone-shaped surface in −1/2 ≤ x1 ≤ 1 (that is, the widening part of
the nozzle) whose vertex is (x0

1 , 0, 0) with x0
1 < 0 and |x0

1 | sufficiently large. Also
suppose 51 and 52 are close to the cylindrical surface {x : x2

2 +x2
3 = 1, −1 ≤ x1 ≤

1}. More precisely, we assume that 52 is given by x2
2 +x2

3 = (x1 −x0
1)2tg2α0(α0 >

0), where tgα0 =1/(1−x0
1). Then 52 is close to the cylinder x2

2 +x2
3 =1 in −1/2≤

x1 ≤ 1 for sufficiently large |x0
1 |, since x2

2 +x2
3 = (x1 −x0

1)2/(1 − x0
1)2. In addition,

we assume that the transonic shock goes through some fixed point x̃0 = (x̃0
1 , x̃0

2 , x̃0
3)

at 52 with r0
= ((x̃0

1 −x0
1)2

+(x̃0
2)2

+(x̃0
3)2)1/2

=−x0
1 , and the supersonic incoming

flow is symmetric in −x0
1 − 1/4 ≤ r ≤ −x0

1 with r = ((x1 − x0
1)2

+ x2
2 + x2

3)1/2

(that is, the potential ϕ−(x) depends only on r for −x0
1 − 1/4 ≤ r ≤ −x0

1 ) and is
a small perturbation of the constant state (ρ0, q−, 0, 0). By the hyperbolicity, one
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can obtain a supersonic flow ϕ−(x) in the global nozzle that which is symmetric
in −x0

1 − 1/4 ≤ r ≤ (1 − x0
1) sec α0 and close to q−x1. Furthermore, the boundary

condition (1-12) is replaced by

(1-12)′ H(C0 − 1/2|∇ϕ+|
2) = ρ+ on r = (1 − x0

1) sec α0,

where the constant density ρ+ is determined by (1-7).
To study the transonic problem with the boundary condition (1-12)′ we may

introduce as in Remarks 1.3 and 1.4 the partial hodograph transformation

(1-14)′
X1 = 1 −

g(x2, x3)−x1
g(x2, x3)−x1+ϕ−(x)−ϕ+(x)

,

X i = xi/ f (x) for i = 2, 3

with g(x2, x3) = x0
1 + ((1− x0

1)2 sec2 α0 − (x2
2 + x2

3))1/2 and f (x) = (x1 − x0
1)tgα0.

Under the transformation (1-14)′, �+ is changed onto

Q+ = {(X1, X2, X3) : 0 < X1 < 1, X2
2 + X2

3 < 1}.

Define a new unknown function W (X)= g(x2, x3)−x1+ϕ−(x)−ϕ+(x). Then we
proceed as in Remark 1.4: for any solution to the problem (1-3) with (1-8)–(1-11),
(1-12)′, and (1-13) in same regularity class as set forth in Theorem 1.1, one may
also assume that W (X) satisfies

(1-15)′
‖(X2∂X3 − X3∂X2)W‖C1,1−δ0 (Q+) ≤ C0ε,

sup
X∈Q+

Rk−2+δ0
X |∇

k
X (X2∂X3 − X3∂X2)W | ≤ C0ε for k = 2, 3,

with RX = X1(1 − X1) + 1 − (X2
2 + X2

3).
Then from Theorem 1.1 and the assumption (1-15)′, we can show the following

nonexistence result.

Theorem 1.5 (nonexistence). If the nozzle wall consists of 51 and 52 as described
above, then one can find supersonic incoming flows that are small perturbations of
(ρ0, q−, 0, 0) such that the problem (1-3) with (1-8)–(1-11), (1-12)′, and (1-13) has
no transonic shock solution (ϕ+(x), ξ(x2, x3)) with the regularity and estimates
stated in Theorem 1.1 and (1-15)′.

Remark 1.6. For the arbitrarily given and appropriately large pressure p(ρ̃+(x))

at the exit, Theorem 1.5 states that the transonic problem (1-3) in the nozzle with a
shock can not occur. Moreover, it follows from the proof of Theorem 1.5 that the
assumption (1-8) is actually not needed, that is, even if one adjusts the position of
the possible shock at the widening part in −1/4 ≤ x1 ≤ 1, the transonic shock does
not exist yet; see Remark 4.7.
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Remark 1.7. For complete Euler equations, if the widening part of the nozzle
walls are straight and the corresponding supersonic incoming flow in the widening
part is symmetric, then it can be proved that the transonic shock wave pattern can
occur when the scope of pressure at the exit of the nozzle is appropriately given
(it plays a crucial role in the proof that the entropies are different on two sides of
the shock surface for the complete Euler system). The details can be found in [Xin
and Yin 2005b; Xin et al. 2008].

Despite the nonexistence result in Theorem 1.5, we can find a class of pressures
(although we do not give the pressure directly at the exit) that are induced by the
oblique derivative boundary conditions (1-12)′′ so that the transonic shock problem
(1-3) has a unique solution and satisfies the boundary conditions

(1-12)′′ ∂1ϕ+ + b2(x)∂2ϕ+ + b3(x)∂3ϕ+ + b1(x)ϕ+ = g(x) on x1 = 1.

Here bi (x) ∈ C3(�) for i = 1, 2, 3 g(x) ∈ C3(�), and λ ≤ b1(1, x2, x3) ≤ 3 for
(x2, x3) ∈ {(x2, x3) : (x2

2 + x2
3)1/2

= f (1, x2, x3)}, where 3 and λ are two positive
constants. Also, |∇

α(g(x) − (1 + b1(x)x1)q+)| + |∇
αb2(x)| + |∇

αb3(x)| ≤ ε for
0 ≤ |α| ≤ 3 and x ∈ �. With the same notations as in Theorem 1.1, the main
existence result can be stated as follows:

Theorem 1.8. Let the assumptions (1-4), (1-5), and (1-7) hold. Then for suitably
small ε > 0, there exists a unique transonic pair (ϕ(x), ξ(x2, x3)) such that ϕ(x)

is piecewise smooth, that is,

ϕ(x) =

{
ϕ−(x) if x1 < ξ(x2, x3),

ϕ+(x) if x1 > ξ(x2, x3)

and (ϕ(x), ξ(x2, x3)) solve the problem (1-3), (1-9)–(1-11), (1-12)′′, and (1-13).
Moreover, for a given constant 0 < δ0 < 1/3, there exists a constant C indepen-

dent of ε with the following properties.

(i) Regularity of supersonic flow: ϕ−(x) ∈ C5(�) solves the initial-boundary
value problem (1-6) in �. Also ‖ϕ−(x) − q−x1‖C5(�) ≤ Cε.

(ii) Regularity of the shock surface:

ξ(x2, x3) ∈ C1,1−δ0(S) ∩ C3(S), ‖ξ(x2, x3)‖C1,1−δ0 (S) ≤ Cε,

|∇
k
x2,x3

ξ(x2, x3)| ≤ Cε/|d0̃1
|
k−2+δ0 for k = 2, 3 and (x2, x3) ∈ S.

(iii) Regularity of the subsonic flow: ϕ+(x) ∈ C1,1−δ0(�+) ∩ C3(�+) admits the
estimates ‖ϕ+(x) − q+x1‖C1,1−δ0 (�+) ≤ Cε and |∇

k
x ϕ+(x)| ≤ Cε/|dx |

k−2+δ0

for k = 2, 3 and x ∈ �+.

(iv) Entropy condition: The entropy must satisfy the physical condition (1-11) on
the shock 6.
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Remark 1.9. It should be noted that the main assumption in Theorems 1.1, 1.5,
and 1.8 is that the wall of the nozzle is a small perturbation (1-4) of a straight cylin-
der. This is in general necessary for the existence of such a transonic shock wave
pattern. This is because for nozzles that deviate significantly from a flat cylinder,
there may be supersonic shocks in the supersonic region, or supersonic bubbles
surrounded by subsonic flow; see [Bers 1954; Courant and Friedrichs 1948].

Obviously, combining Theorem 1.1 with Theorem 1.8 yields the following result
on the existence and uniqueness for a class of pressures at the exit of the nozzle.

Theorem 1.10 (Existence and uniqueness for a class of pressures at the exit). If
ρ̃+(x2, x3) in (1-12) and a specified point in (1-8) are determined by Theorem 1.8,
then the problem (1-3) with (1-8)–(1-13) has a unique transonic shock solution.

We now comment on the proof of the main results. Some of the main diffi-
culties are that (1-3) is a mixed-type quasilinear equation and the shock surface
is a free boundary with nonlinear boundary condition (1-10). In order to prove
Theorem 1.1, the main strategy of the analysis comes from our treatment on the
two-dimensional problem in [Xin and Yin 2005a]. First, we introduce a new par-
tial hodograph transformation that maps the domain �+ into the fixed domain
Q+ = {(X1, X2, X3) : 0 ≤ X1 ≤ 1, X2

2 + X2
3 ≤ 1} as in [Xin and Yin 2005a]; see also

[Chen et al. 2002; Majda and Thomann 1987; Meı̆rmanov 1980]. Under this trans-
formation, the quasilinear potential Equation (1-3), whose coefficients contain only
the first order derivatives of ϕ(x), becomes a new second order nonlinear equation
with coefficients and source term containing the unknown function V (X) and its
first order derivatives ∇X V (X). Correspondingly, the boundary conditions (1-10)–
(1-13) are also changed into new nonlinear boundary conditions containing V (X)

and ∇X V (X). It is crucial in our analysis that we can choose the partial-hodograph
transformation so that the coefficients of V (X) and ∇X V (X) in the second order
elliptic equation and the coefficients of V (X) in the boundary conditions are all
suitably small in an appropriately weighted space; we thus avoid the possible ap-
pearance of a negative eigenvalue for the resulting linear equation on v(X). A
key element in the proof of Theorem 1.1 is deriving ‖v(X)‖H2 = 0 for the solution
v(X) by the multiplier method rather than establishing ‖v‖L∞ =0 by the maximum
principle, since it seems difficult [Lieberman and Trudinger 1986] to obtain ‖v‖L∞

by the maximum principle due to the structures of the equation and boundary condi-
tions on v(X). To prove Theorem 1.8, we will use the Schauder fixed point theorem
to solve the corresponding nonlinear elliptic equation on Q+ which is the result of
the generalized hodograph transformation in Section 2. Weighted Hölder spaces
will be used to treat the possible singularities due to the corners of the domain
[Čanić et al. 2000; Gilbarg and Hörmander 1980; Lieberman and Trudinger 1986;
Lieberman 1988; 1987; Xin and Yin 2005a]. In addition, one can use the maximum
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principle to derive the uniform L∞-estimate by use of (1-12)′′. Although the main
strategy for proving Theorem 1.1 and Theorem 1.8 is similar to the approach we
used for the two-dimensional case [Xin and Yin 2005a], much more delicate a
priori estimates are needed to overcome certain difficulties occurring in the three-
dimensional case. In particular, more complicated and careful analyses are needed
for the estimates near shock and fixed boundaries. Finally, based on Theorem 1.1
and making full use of the symmetric properties of nozzle wall 52, the supersonic
incoming flow in the widening part for −1/4 ≤ x1 ≤ 1/4, and the end constant
pressure, we can show that the pressure at the exit is uniquely determined by the
supersonic incoming flow for the transonic solution with a shock. The main idea
is that we can derive an ordinary differential equation using the symmetry of the
nonlinear equation, the nozzle wall, and the boundary conditions, provided we as-
sume that the transonic shock exists with respect to an appropriately large pressure
at the exit. The reduction procedure is rather delicate and complicated but leads to
the desired nonexistence result, Theorem 1.5.

Next, we note that there have been many studies on transonic problems, as we
mentioned in [Xin and Yin 2005a]. See also [Alt et al. 1985; Čanić et al. 2000;
Chen and Feldman 2003] and the references therein. In particular, we mention Alt,
Caffarelli, and Friedman’s study [1985] of the existence and uniqueness of axially
symmetric compressible subsonic flows of jets and cavities. They use a variational
approach to solve such a free boundary problem. However, it seems that we are
not able to adapt their analysis because we have different conditions on both the
free and fixed boundaries and because our problem is truly 3-dimensional.

The rest of the paper is organized as follows. In Section 2, we introduce a
generalized partial hodograph transformation and reformulate the original problem
(1-3) with the boundary conditions (1-9)–(1-13) in terms of the new variables. In
addition, we carry out some basic estimates of the coefficients in the resulting
problem. Section 3 derives the H 2-norm estimate for the solution v(X) to the
linear problem that emerged in Section 2. This directly yields v(X) ≡ 0, that is,
it completes the proof of Theorem 1.1. In Section 4 we show with the help of
Theorem 1.1 the nonexistence result in Theorem 1.5. Finally, Section 4 gives the
proof of Theorem 1.8.

From now on, we conventionally take O(ε) and O(Mε) to mean that there is
a generic constant C such that |O(ε)| ≤ Cε and |O(Mε)| ≤ C Mε, respectively,
where C is independent of M and ε.

2. The reformulation of Theorem 1.1 and the generalized hodograph
transformation

After determining ϕ−(x) by solving the initial-boundary value problem (1-6),
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the nonlinear mixed-type equation (1-3) with (1-8)–(1-13) can be reduced to a
boundary value problem for a second order quasilinear elliptic equation with a
free boundary (the transonic shock). In this section, we reduce this free bound-
ary value problem on �+ to a boundary value problem on a fixed domain Q+ =

{(X1, X2, X3) : 0 < X1 < 1, X2
2 + X2

3 < 1} by introducing a generalized hodograph
transformation and a coordinate transformation. First, we estimate the potential
ϕ−(x) for the supersonic flow.

Lemma 2.1. Assume that (1-4) and (1-5) hold. Then (1-6) has a unique solution
ϕ−(x) ∈ C5(�) such that ‖ϕ−(x) − q−x1‖C5(�) ≤ Cε for small ε > 0, where C is
independent of ε.

Proof. Note that ϕ̃(x) = ϕ−(x) − q−x1 satisfies

(2-1) ((q− + ∂1ϕ̃)2
− c2

−
)∂2

1 ϕ̃ + 2(q− + ∂1ϕ̃)
∑

i=2,3

∂i ϕ̃∂2
1i ϕ̃

+

∑
i=2,3

((∂i ϕ̃)2
− c2

−
)∂2

i ϕ̃ + 2∂2ϕ̃∂3ϕ̃∂2
23ϕ̃ = 0,

and

(2-2)
ϕ̃(x)

∣∣
x1=−1 = ∂1ϕ̃(x)

∣∣
x1=−1 = 0,

∂1 f ∂1ϕ̃ +

∑
i=2,3

(∂i f − xi/ f )∂i ϕ̃ = −q−∂1 f on (x2
2 + x2

3)1/2
= f (x),

where c− = c
(
H(C0 −

1
2(|q− + ∂1ϕ̃|

2
+ |∂2ϕ̃|

2
+ |∂3ϕ̃|

2))
)
.

It follows from (1-5) that the initial-boundary values in (2-1) and (2-2) satisfy
the compatibility conditions up to the (k0−1)-st order. Since q− > c(ρ0), (2-1)
and (2-2) are strictly hyperbolic with respect to the x1-direction for small pertur-
bations of a constant solution. Using the standard energy estimate for the linear
wave equation with the initial-boundary conditions and the Picard iteration (see
for example [John 1990]), (2-1) and (2-2) have for small ε > 0 the unique solution
ϕ̃(x) ∈

⋂k0
i=0 C i ([−1, 1], H k0−i (�)), and there exists a constant C independent of

ε such that
k0∑

i=0

‖ϕ̃(x)‖C i ([−1,1],H k0−i (�)) ≤ Cε.

Hence the Sobolev’s imbedding theorem implies that Lemma 2.1 holds. �

We now reduce the free boundary value problem (1-3) with (1-8)–(1-13) to a
fixed boundary value problem. Without loss of generality, we will henceforth as-
sume that q− − q+ = 1 unless otherwise stated. Define new independent variables
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as

(2-3) X i =

{
1 −

1−x1
1−x1+ϕ−(x)−ϕ+(x)

if i = 1,

xi/ f (x) if i = 2, 3.

It is expected that |∂α
x (ϕ+(x)−q+x1)| ≤ Cε for 0 ≤ |α| ≤ 1. Consequently, one

has ∂1(ϕ−(x)−ϕ+(x)) = ∂1(ϕ−(x)−q−x1)− ∂1(ϕ+(x)−q+x1)+q− −q+ > 1/2
for small ε and all x ∈ �+. This implies ϕ−(x) > ϕ+(x) when x1 > ξ(x2, x3). It
follows that (2-3) is an invertible transformation from the domain �+ to

Q+ = {(X1, X2, X3) : 0 ≤ X1 ≤ 1, X2
2 + X2

3 ≤ 1}.

Furthermore, the boundaries x1 = ξ(x2, x3), x1 = 1, and (x2
2 + x2

3)1/2
= f (x) are

transformed into X1 = 0, X1 = 1, and X2
2 + X2

3 = 1, respectively.
Now, as in [Xin and Yin 2005a], we define a new unknown function

(2-4) V (X) = 1 − x1 + ϕ−(x) − ϕ+(x).

One would expect that V (X) = 1 + O(ε) and ∇X V (X) = O(ε). These properties
are important in the later analysis. It now follows from (2-3) and (2-4) that

(2-5) xi =

{
1 + (X1 − 1)V (X) if i = 1,

xi (1 + (X1 − 1)V (X), X2, X3) if i = 2, 3.

Here xi (1 + (X1 − 1)V, X2, X3) ∈ C5 for i = 1, 2 on X and V ; this follows from
the smoothness of f (x) and the assumption (1-5). Direct calculations yield

(2-6)

∂x j X1 = D(X, V, ∇V )
(
δi j − (X1 − 1)

∑
i=2,3

∂X i V ∂x j X i

)
for j = 2, 3,

∂x j X i = f −2( f δi j − xi∂x j f )

= δi j + O(ε) for i = 2, 3 and j = 1, 2, 3,

and

(2-7)

∂2
x j xk

X1 =

∑
i,l=1,2,3

b jk
il ∂2

X i Xl
V + b jk

0 for j, k = 1, 2, 3,

∂2
x j xk

X i = − f −2(δi j∂xk f + δik∂x j f + xi∂
2
x j xk

f ) + 2 f −3xi∂x j f ∂xk f

= O(ε) for i = 2, 3 and j, k = 1, 2, 3,

where

D(X, V, ∇V ) =
(
V + (X1 − 1)∂X1 V

)−1
,
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and

(2-8)

b jk
il ≡ b jk

il (X, V, ∇V )

=
1
2 D(X, V, ∇V )(1 − X1)(∂xk Xl∂x j X i + ∂xk X i∂x j Xl),

b jk
0 ≡ b jk

0 (X, V, ∇V )

= −D(X, V, ∇V )
(
2∂xk X1∂x j X1 + ∂xk X2∂x j X1 + ∂x j X2∂xk X1

+ (X1 − 1)∂2
x j xk

X2 + ∂x j X3∂xk X1

+ ∂xk X3∂x j X1 + (X1 − 1)∂2
x j xk

X3
)
∇X V .

We note that for suitably small ε, the functions D(X, V, ∇V ), b jk
il (X, V, ∇V ) and

b jk
0 (X, V, ∇V ) are all smooth functions of X , V , and ∇X V .

In terms of the new variables (2-3) and (2-4), Equation (1-3) becomes

(2-9)
∑

i, j=1,2,3

ai j (X, V, ∇X V )∂2
X i X j

V + F0(X, V, ∇X V ) = 0,

where

(2-10)

ai j (X, V, ∇X V ) =

∑
k,l=1,2,3

ãkl(ϕ+)(∂xk X i∂xl X j + bkl
i j ∂X1 V ),

F0(X, V, ∇X V ) =

∑
i,k=1,2,3

ãik(ϕ+)
(

bik
0 ∂X1 V +

∑
j=2,3

∂X j V ∂2
xi xk

X j

)
−

∑
i,k=1,2,3

(
ãik(ϕ+) − ãik(ϕ−)

)
∂2

xi xk
ϕ−.

Here the matrix (ãik) is defined by

ãi j (ϕ) =

(∂x1ϕ)2
− C2(∇ϕ) ∂x1ϕ∂x2ϕ ∂x1ϕ∂x3ϕ

∂x1ϕ∂x2ϕ (∂x2ϕ)2
− C2(∇ϕ) ∂x2ϕ∂x3ϕ

∂x1ϕ∂x3ϕ ∂x2ϕ∂x3ϕ (∂x3ϕ)2
− C2(∇ϕ)


i j

with sound speed C(∇ϕ) = c(H(C0 −
1
2 |∇ϕ|

2)). In deriving (2-9) from (1-3), we
have used the Equation (1-6). It is important to note that the quasilinear Equation
(2-9) is uniformly elliptic in Q+ provided that ε is suitably small.

This and other important properties of ai j (X, V, ∇X V ) and F0(X, V, ∇X V ) will
be listed in Lemma 2.4 below.

Next, we transform the boundary conditions in terms of the new variables. First,
it follows from (1-9) that the Rankine–Hugoniot condition (1-10) is equivalent to∑

i=1,2,3

[∂iϕH ]∂i (ϕ+ − ϕ−) = 0 on x1 = ξ(x2, x3),
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which in the new coordinates takes the form

(2-11) G(X, V, ∇X V ) = 0 on X1 = 0,

where

G(X, V, ∇X V ) = H
(

C0 −
1
2

(
(1 + ∂x1 V − ∂1ϕ−)2

+

∑
i=2,3

(∂xi V − ∂iϕ−)2
))

×

(
(∂1ϕ− − ∂x1 V − 1)(1 + ∂x1 V ) +

∑
i=2,3

(∂iϕ− − ∂xi V )∂xi V
)

−

(
∂1ϕ−(1 + ∂x1 V ) +

∑
i=2,3

∂iϕ−∂xi V
)

H(C0 −
1
2 |∇ϕ−|

2).

Analogously, (1-12) and (1-13) are transformed respectively into

(2-12) H
(

C0 −
1
2

(
(1 + ∂x1 V − ∂1ϕ−)2

+

∑
i=2,3

(∂xi V − ∂iϕ−)2
))

= ρ̃+(x)

on X1 = 1 and, on X2
2 + X2

3 = 1,

(2-13)
∑

j=1,2,3

( ∑
i=2,3

(xi/ f − ∂i f )∂xi X j − ∂1 f ∂x1 X j

)
∂X j V

= ∂1 f (1 − ∂1ϕ−) +

∑
i=2,3

(xi/ f − ∂i f )∂iϕ−.

Here the variable x = (x1, x2, x3) is a function of X = (X1, X2, X3) and V (X). It
will be clear that (2-11) and (2-12) represent nonlinear uniform oblique derivative
boundary conditions for (2-9).

Finally, it follows from (1-8) and the transformation (2-3) that

(2-14) V (X̃0) = 1,

where X̃0
= (X̃0

1, X̃0
2, X̃0

3) = (0, x̃0
2/ f (x̃0), x̃0

3/ f (x̃0)).
Hence the major problem is reduced to studying the quasilinear Equation (2-9)

on the domain Q+ with nonlinear boundary conditions (2-11)–(2-14).
It follows from the assumptions in Theorem 1.1 that V (X) ∈ C1,1−δ0(Q+) ∩

C3(Q+ \
⋃2

i=1 0i ) such that

(2-15) ‖V (X) − 1‖C1,1−δ0 (Q+) ≤ Cε, |∇
k
X V (X)| ≤

Cε

|RX |k−2+δ0
for k = 2, 3,

where
01 = {(0, X2, X3) : X2

2 + X2
3 = 1},

02 = {(1, X2, X3) : X2
2 + X2

3 = 1},

RX = X1(1 − X1) + 1 − (X2
2 + X2

3).
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Next we examine the nonlinear boundary conditions (2-11)–(2-13) so that we
can treat the uniqueness result in Theorem 1.1.

Consider the boundary condition for V on X1 = 0 first. Note that the boundary
condition (2-11) can be rewritten on X1 = 0 as

(2-16)
∑

i=1,2,3

B1i (X, V, ∇X V )∂X i V +B1(X, V, ∇X V )(V −1)=−G(X, 1, 0, 0, 0),

with

B1i (X, V, ∇X V ) =

∫ 1

0
∂∂Xi V G(X, θ(V − 1) + 1, θ∇X V )dθ for i = 1, 2, 3,

B1(X, V, ∇X V ) =

∫ 1

0
∂V G(X, θ(V − 1) + 1, θ∇X V )dθ.

Due to (2-15), the following estimates hold for the coefficients of (2-16)

Lemma 2.2. We have

(2-17)
∑

k=0,...,3

|∇
k
X G(X, 1, 0, 0, 0)| ≤ Cε,

and

B11(X, V, ∇X V ) = − ρ+(q+ − q−)(c2(ρ+) − q2
+
)/c2(ρ+)(1 + O(ε)),(2-18)

B1i (X, V, ∇X V ) = O(ε) for i = 2, 3,(2-19)

B1(X, V, ∇X V ) = O(ε),(2-20)

and, for k = 1, 2,

(2-21)
2∑

i=1

|∇
k
X B1i (X, V, ∇X V )| + |∇

k
X B1(X, V, ∇X V )| = O

(
ε

Rk−1+δ0

)
.

The proof of this lemma is given in the Appendix.
It follows from q+ < c(ρ+), q+ < q−, and (2-18) that B11(X, V, ∇X V ) 6= 0 for

small ε. Thus one can rewrite (2-16) as

(2-22) ∂X1 V +

∑
i=2,3

B̃1i (X, V, ∇X V )∂X i V + B̃1(X, V, ∇X V )(V − 1)

= B̃10(X, V, ∇X V ) on X1 = 0,

where the coefficients satisfy the estimates

B̃1i (X, V, ∇X V ) = O(ε), ∇
k
X B̃1i (X, V, ∇X V ) = O(ε/Rk−1+δ0),

B̃1(X, V, ∇X V ) = O(ε), ∇
k
X B̃1(X, V, ∇X V ) = O(ε/Rk−1+δ0),

for k = 1, 2 and i = 0, 2, 3. These follow from Lemma 2.2.
Next we determine the boundary condition for V (X) on X1 = 1.
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Set

G̃(X, V, ∇X V ) = H
(
C0 −

1
2

(
(1 + ∂x1 V − ∂1ϕ−)2

+
∑

i=2,3(∂xi V − ∂iϕ−)2))
−H(C0 −

1
2q2

+
).

Because H(C0 −
1
2q2

+
) = ρ+, (2-12) becomes G̃(X, V, ∇X V ) = ρ̃+(x) − ρ+ on

X1 = 1. As in (2-22), a direct computation yields

(2-23) ∂X1 V +
∑

i=2,3 B̃2i (X, V, ∇X V )∂X i V + B̃2(X, V, ∇X V )(V − 1)

= B̃20(X, V, ∇X V )(ρ̃+(x) − ρ+) on X1 = 1,

where

B̃2i (X, V, ∇X V ) = O(ε),

B̃2(X, V, ∇X V ) = O(ε),

∇
k
X B̃2i (X, V, ∇X V ) = O(ε/Rk−1+δ0),

∇
k
X B̃2(X, V, ∇X V ) = O(ε/Rk−1+δ0)

for k = 1, 2 and i = 0, 2, 3.
Similarly, we can obtain the boundary condition for V (X) on X2

2 + X2
3 = 1 from

(2-24)
∑

i=1,2,3

B̃3i (X, V, ∇X V )∂X i V + B̃3(X, V )(V − 1) = 0 on X2
2 + X2

3 = 1.

The properties of B̃3i and B̃3 are described by the following lemma, whose proof
we omit.

Lemma 2.3. Under the assumptions in (2-15), we have

B̃31(X, V, ∇X V ) = O(ε),

B̃3i (X, V, ∇X V ) − X i = O(ε),

∇
k
X B̃31(X, V, ∇X V ) = O(ε/Rk−1+δ0),

∇
k
X (B̃3i (X, V, ∇X V ) − X i ) = O(ε/Rk−1+δ0),

for k = 1, 2 and i = 2, 3. Also

∇
k
X B̃3(X, V ) =

{
O(ε) if k = 0, 1,

O(ε/Rk−2+δ0) if k = 2, 3.

In addition, we need more information on ai j (X, V, ∇X V ) and F0(X, V, ∇X V ).
In the following lemma, we list some important estimates of ai j and F0 which will
be used later.
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Lemma 2.4. It follows from (2-15) that

a11(X, V, ∇X V ) = (q2
+

− c2
+
)(1 + O(ε)),

ai j (X, V, ∇X V ) = O(ε), for 1 ≤ i < j ≤ 3,

ai i (X, V, ∇X V ) = −c2
+
(1 + O(ε)) for i = 2, 3,

F0(X, V, ∇X V ) = O(ε),

∇
k
X ai j (X, V, ∇X V ) = O(ε/Rk−1+δ0) for k = 1, 2,

∇
k
X F0(X, V, ∇X V ) = O(ε/Rk−1+δ0) for k = 1, 2.

The proof of this lemma is sketched in the Appendix.
So far we have outlined the linearization of the Equation (2-9) and the boundary

conditions (2-11)–(2-13) and derived some estimates on the corresponding coeffi-
cients. In the subsequent section, we will focus on the uniqueness of the solution
to the problem (2-9) with (2-22), (2-23), (2-24), and (2-14).

3. The proof of uniqueness

In this section, we will use the preparations of Section 2 to prove Theorem 1.1.
Suppose that there are two solutions (ϕ1

+
(x), ξ 1(x2, x3)) and (ϕ2

+
(x), ξ 2(x2, x3))

to the Equation (1-3) with (1-8)–(1-13) and that these satisfy the corresponding
regularity conditions in Theorem 1.1. Then through the general partial hodograph
transformation (2-3), we get two corresponding solutions V1(X) and V2(X) to
Equation (2-9) with the boundary conditions (2-22), (2-23), (2-24), and (2-14).
Moreover, V j (X) ∈ C1,1−δ0(Q+) ∩ C3(Q+ \

⋃2
i=1 0i ) for j = 1, 2 and satisfy the

estimates in (2-15). Our aim is to prove V1(X) ≡ V2(X) in Q+.
Set v(X)= V1(X)−V2(X). Then it follows from the Equation (2-9) with (2-22),

(2-23), (2-24), and (2-14) that

(3-1)



∑
i, j=1,2,3

ai j (X, V1, ∇X V1)∂
2
X i X j

v

+

∑
i=1,2,3

bi (X)∂X i v+c(X)v = 0 for X ∈ Q+,

∂X1v+
∑

i=2,3 γ1i (X)∂X i v+d1(X)v = 0 on X1 = 0,

∂X1v+
∑

i=2,3 γ2i (X)∂X i v+d2(X)v = 0 on X1 = 1,∑
i=1,2,3 γ3i (X)∂X i v+d3(X)v = 0 on X2

2 +X2
3 = 1,

v(X̃0) = 0.

Due to (2-15), Lemmas 2.1–2.4, and the assumption on ρ̃+(x), we have the
following estimates for bi (X), c(X), and γi j (X), di (X).
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Lemma 3.1. The functions bi (X), c(X) lie in C1(Q+\
⋃2

i=1 0i ), and γi j (X), di (X)

lie in C1(Q+ \
⋃2

i=1 0i ) ∩ C1−δ0(Q+). They satisfy the estimates∑
i=1,2,3

|∇
k
X bi (X)| + |∇

k
X c(X)| ≤ Cε/Rk+δ0 for k = 0, 1,

∑
j

‖γi j‖C1−δ0 +

∑
j=1,2,3

‖d j‖C1−δ0 ≤ Cε for i = 1, 2,

∑
j=2,3

‖γ3 j − X j‖C1−δ0 + ‖γ31‖C1−δ0 ≤ Cε,

∑
j

|∇
k
Xγi j | +

∑
j=1,2,3

|∇
k
X d j | ≤ Cε/Rk−1+δ0 for i = 1, 2 and k = 1, 2,

∑
j=2,3

|∇
k
X (γ3 j − X j )| + |∇

k
Xγ31| ≤ Cε/Rk−1+δ0 for k = 1, 2.

As noted in [Xin and Yin 2005a, Section 4], since c(X) and di (X) for i = 1, 2, 3
can change their signs and c(X) has singularities (that is, |c(X)| → ∞ as X1 → 0
or X1 → 1), it seems difficult to derive v ≡ 0 by directly applying the maximum
principle. Thus, we intend to establish ‖v‖H2(Q+) = 0 by energy estimates. To this
end, we first need an inequality of Poincaré type.

Lemma 3.2. If u(X) ∈ H 2(Q+) and u(X̃0) = 0, then there exists a constant C
independent of u such that

(3-2)
∫

Q+

|u|
2d X ≤ C

∫
Q+

(|∇u|
2
+ |∇

2u|
2)d X.

Proof. This lemma can be proved by a technique in [Maz’ja 1985].
Indeed, if (3-2) does not hold, then for each m ∈ N, there exists a function

um ∈ H 2(Q+) with um(X̃0) = 0 such that∫
Q+

|um |
2d X > m

∫
Q+

(|∇um |
2
+ |∇

2um |
2)d X.

Let vm = um/‖um‖L2(Q+). Then vm has the properties

(i) ‖vm‖L2(Q+) = 1;

(ii) vm(X̃0) = 0;

(iii) vm ∈ H 2(Q+);

(iv)
∫

Q+
(|∇vm |

2
+ |∇

2vm |
2)d X < 1/m.

If follows from (i) and (iv) that there exist a subsequence {vm j } ⊂ {vm} and a
function v ∈ H 2(Q+) such that vm j ⇀ v in H 2(Q+). Then (iv) implies that v = C
for almost all X ∈ Q+. In addition, vm j ⇀ v in H 2(Q+) implies vm j → v in
C(Q+). Thus v(X̃0) = 0, and so v ≡ 0. But this contradicts ‖v‖L2(Q+) = 1. �
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Lemma 3.3. Let v be a solution to the problem (3-1). If v has the regularities and
estimates of (2-15), then, for suitably small ε, we have v(X) ≡ 0.

Proof. The proof will be divided into three steps.

Step 1: Estimate of ‖∇v‖L2( Q+). Multiplying v on both sides of (3-1) and inte-
grating by parts on Q+, we get

(3-3) −

∫
Q+

∑
i, j=1,2,3

ai j∂iv∂ jvd X =

5∑
i=1

I5,

where

I1 =

∫
Q+

∑
i, j=1,2,3

∂i ai j∂ jvvd X, I4 = −

∫
X2

2+X2
3=1

∑
i=2,3

( ∑
j=1,2,3

ai j∂ jvv
)

X i d S,

I2 =

∫
X1=0

∑
j=1,2,3

a1 j∂ jvvd S, I5 = −

∫
Q+

( ∑
i=1,2,3

bi (X)∂iv + c(X)v
)
vd X.

I3 = −

∫
X1=1

∑
j=1,2,3

a1 j∂ jvvd S,

We treat the Ii individually.

(i) Estimate of I1.
For a small constant δ > 0, there exists a constant Cδ > 0 such that∣∣∣ ∑

i, j=1,2,3

∂i ai j∂ jvv

∣∣∣ ≤ δ|∇v|
2
+ Cδ

∑
i, j=1,2,3

|∇ai j |
2
|v|

2.

Hence by Lemma 2.4, Sobolev’s imbedding theorem, and Lemma 3.2, we have

|I1| ≤ δ

∫
Q+

|∇v|
2d X + Cδε

2
(∫

Q+

|v|
4d X

)1/2

≤ δ

∫
Q+

|∇v|
2d X + Cδε

2
∫

Q+

(|∇v|
2
+ |∇

2v|
2)d X.

(ii) Estimate of I2 and I3.
We only estimate I2; the estimate of I3 is similar. Decompose I2 as I2 = I21+I22,

where

I21 =

∫
X1=0

a11∂1vvd S and I22 =

∫
X1=0

∑
j=2,3

a1 j∂ jvvd S.
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By the boundary conditions in (3-1), the trace theorem, Lemma 3.1, and Lemma
3.2, we have

|I21| ≤ Cε

∫
X1=0

(|v|
2
+ |∇v|

2)d S ≤ Cε

∫
Q+

(|∇v|
2
+ |∇

2v|
2)d X.

A similar estimate holds for I22 due to Lemma 2.4. Thus

|I2| ≤ Cε

∫
Q+

(|∇v|
2
+ |∇

2v|
2)d X.

(iii) Estimate of I4.
It follows from the boundary conditions in (3-1), Lemma 2.3, and Lemma 2.4

that

|I4| ≤

∫
X2

2+X2
3=1

∣∣∣X2
∑
j 6=2

a2 j∂ jv + X3
∑
j 6=3

a3 j∂ jv

∣∣∣|v|d S

+

∫
X2

2+X2
3=1

∣∣(a22 + c2
+
)X2∂2v + (a33 + c2

+
)X3∂3v

∣∣|v|d S

+ c2
+

∫
X2

2+X2
3=1

∣∣(γ32 − X2)∂2v + (γ33 − X3)∂3v
∣∣|v|d S

+ c2
+

∫
X2

2+X2
3=1

∣∣γ31∂1v + d3v
∣∣|v|d S

≤ Cε

∫
X2

2+X2
3=1

(|v|
2
+ |∇v|

2)d S.

Hence by the trace theorem and Lemma 3.2, we get

|I4| ≤ Cε

∫
Q+

(|∇v|
2
+ |∇

2v|
2)d X.

(iv) Estimate of I5.

|I5| ≤ Cε

∫
Q+

(|∇v| + |v|)|v|

Rδ0
d X ≤ Cε

∫
Q+

(|∇v|
2
+ |∇

2v|
2)d X.

Substituting all the above estimates of the Ii into (3-3), we obtain for small δ > 0
and ε > 0 that

(3-4)
∫

Q+

|∇v|
2d X ≤ Cε

∫
Q+

|∇
2v|

2d X.

Step 2: Estimate of ‖∇∂1v‖L2( Q+). Set wi = ∂iv for i = 1, 2, 3. Then w1 satisfies

(3-5)
∑

i, j=1,2,3

ai j∂
2
i jw1 +

∑
i, j=1,2,3

∂1ai j∂iw j +∂1

( ∑
i=1,2,3

bi (X)∂X i v+c(X)v
)

= 0,
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and

(3-6)

w1 +

∑
i=2,3

γ1iwi + d1v = 0 on X1 = 0,

w1 +

∑
i=2,3

γ2iwi + d2v = 0 on X1 = 1,

∑
i=1,2,3

γ3i∂iw1 +

∑
i=1,2,3

∂1γ3iwi + d3w1 + ∂1d3v = 0 on X2
2 + X2

3 = 1.

Multiplying both sides of (3-5) and (3-6) by w1 and integrating by parts in Q+,
we have

(3-7) −

∫
Q+

∑
i, j=1,2,3

ai j∂iw1∂ jw1d X =

5∑
i=1

Ji ,

where

J1 =

∫
Q+

∑
i, j=1,2,3

∂i ai j∂ jw1w1d X −

∫
Q+

∑
i, j=1,2,3

∂1ai j∂iw jw1d X,

J2 =

∫
X1=0

∑
j=1,2,3

a1 j∂ jw1w1d S,

J4 = −

∫
X2

2+X2
3=1

∑
i=2,3

( ∑
j=1,2,3

ai j∂ jw1w1

)
X i d S,

J3 = −

∫
X1=1

∑
j=1,2,3

a1 j∂ jw1w1d S,

J5 = −

∫
Q+

∂1

( ∑
i=1,2,3

bi (X)∂X i v + c(X)v
)
w1d X.

Now we estimate the Ji separately.

(i) Estimate of J1.
By Lemma 2.4, Sobolev’s imbedding theorem, and δ0 < 1/2, we get

|J1| ≤ δε

∫
Q+

∑
j=1,2,3

|∇w j |
2d X + Cδε

∫
Q+

(|w1|
2
+ |∇w1|

2)d X.

Substituting (3-4) into the above expression yields

|J1| ≤ C(δε + Cδε)

∫
Q+

|∇
2v|

2d X.

(ii) Estimate of J2 and J3.
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Decompose J2 as J2 = J21 + J22 with

J21 =

∫
X1=0

∑
j=2,3

a1 j∂ jw1w1d S and J22 =

∫
X1=0

a11∂1w1w1d S.

We treat the term J21 first. Integrating by parts leads to

2J21 = −

∫
X1=0

∑
j=2,3

∂ j a1 jw
2
1d S +

∫
L

∑
j=2,3

a1 j X jw
2
1dl,

where L = {X : X1 = 0, X2
2 + X2

3 = 1}.
The first term on the right hand side above can be treated by Lemma 2.4 and

Sobolev’s imbedding theorem, giving∣∣∣∫
X1=0

∑
j=2,3

∂ j a1 jw
2
1d S

∣∣∣ ≤ C
∫

X1=0

εw2
1

Rδ0
d S ≤ Cε

∫
Q+

(|w1|
2
+ |∇w1|

2)d X.

It is more difficult to treat the second term in 2J21 because one cannot use the
trace theorem to directly control

∫
L |w1|

2dl by
∫

Q+
(|w1|

2
+ |∇w1|

2)d X . To over-
come this difficulty, we will use

∫
L |∂θv|

2dl to control
∫

L |w1|
2dl, since

∫
L |∂θv|

2dl
can be estimated by the trace theorem; here ∂θ = X2∂3 − X3∂2.

Indeed, it follows from the trace theorem that

(3-8)
∫

L
|∂θv|

2dl ≤ ‖v|L‖
2
H1(L)

≤ C
∫

Q+

(|v|
2
+ |∇v|

2
+ |∇

2v|
2)d X.

Additionally, by the boundary conditions in (3-1) and the expression of ∂θv, we
find that, on L ,

(3-9)

w1 +
∑

i=2,3 γ1iwi + d1v = 0,∑
i=1,2,3 γ3iwi + d3v = 0,

X2w3 − X3w2 = ∂θv.

By Lemma 3.1, we obtain from (3-9) that on the curve L

(3-10) wi = Ci1(X)d1v + Ci2(X)d3v + Ci3(X)∂θv for i = 1, 2, 3,

where |Ci j (X)| ≤ C .
It follows from (3-10), (3-8), Lemma 3.2, and (3-4) that∣∣∣∫

L

∑
j=2,3

a1 j X jw
2
1dl

∣∣∣ ≤ Cε

∫
L
|w1|

2dl

≤ Cε

∫
L
(|∂θv|

2
+ |v|

2)dl ≤ Cε

∫
Q+

|∇
2v|

2d X.
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Hence

|J21| ≤ Cε

∫
Q+

|∇
2v|

2d X.

We now estimate the term J22. From (3-1), we derive that

∂1w1 = −
1

a11

( ∑
j=2,3

a1 j∂ jw1 +

∑
i, j=2,3

ai j∂iw j +

∑
i=1,2,3

bi (X)∂X i v + c(X)v
)
.

Then

|J22| ≤ |J21| + |J ′

22| +

∣∣∣∫
X1=0

( ∑
i=1,2,3

bi (X)∂X i v + c(X)v
)
w1d S

∣∣∣
with J ′

22 = −
∫

X1=0
∑

i, j=2,3 ai j∂iw jw1d S.

Substituting the boundary condition in (3-1) into J ′

22 yields

J ′

22 =

∫
X1=0

∑
i, j=2,3

ai j∂iw j

( ∑
k=2,3

γ1kwk + d1v
)

d S.

Since ∂iw jwk =
1
2(∂i (w jwk)−∂k(wiw j )+∂ j (wiwk)), treatment analogous to that

of J21 gives |J ′

22| ≤ Cε
∫

Q+
|∇

2v|
2d X . Thus

|J2| ≤ Cε

∫
Q+

|∇
2v|

2d X.

(iii) Estimate of J4.
Set J4 = J41 + J42 with

J41 = −

∫
X2

2+X2
3=1

∑
i=2,3

X i ai1∂1w1w1d S and J42 = −

∫
X2

2+X2
3=1

∑
i, j=2,3

X i ai j∂ jw1w1d S.

Since

J41 = −
1
2

∫
X2

2+X2
3=1

∂1

( ∑
i=2,3

X i ai1w
2
1

)
d S +

1
2

∫
X2

2+X2
3=1

∑
i=2,3

∂1(X i ai1)w
2
1d S,

we have

|J41| ≤ Cε

∫
L

|w1|
2dl + Cε

(∫
X2

2+X2
3=1

|w1|
4d S

)1/2
≤ Cε

∫
Q+

|∇
2v|

2d X.

Next we estimate J42. In terms of the cylindrical coordinates

(3-11) X1 = X1, X2 = r cos θ, X3 = r sin θ,
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we have

J42 = −

∫ 1

0

∫ 2π

0

(
(a22 cos2 θ + a33 sin2 θ + a23 sin 2θ)∂rw1w1

+ (a23 cos 2θ + (a33 − a22) sin θ cos θ)∂θw1w1

)
dθd X1.

It follows from the third boundary condition in (3-6) that, on X2
2 + X2

3 = 1,

∂rw1 = D11(X)∂1w1 + D12(X)∂θw1 +

∑
i=1,2,3

Di
13(X)wi + D14(X)v,

where |D11(X)| + |D12(X)| ≤ Cε,

|∇ D11(X)| + |∇ D12(X)| ≤
Cε

Rδ0
, and

∑
i=1,2,3

|Di
13(X)| + |D14(X)| ≤

Cε

Rδ0
.

By Lemma 2.4, integration by parts, and (3-8), we get

|J42| ≤ Cε
(∫

Q+

(|w1|
2
+ |∇w1|

2)d X +

∫
L
|∂θv|

2dl +

∫
L

|v|
2

R2δ0
dl

)
≤ Cε

∫
Q+

|∇
2v|

2d X.

Hence we have |J4| ≤ Cε
∫

Q+
|∇

2v|
2d X.

(iv) Estimate of J5.

|J5| ≤ Cε
(∫

Q+

|∇v|
2
+ |v|

2

R1+δ0
d X +

∫
Q+

|∇
2v||∇v|

Rδ0
d X

)
.

Since H 1(Q+) ⊂ L6(Q+) and 0 < δ0 < 1/3, we have∫
Q+

|∇v|
2

R1+δ0
d X ≤

(∫
Q+

d X
R3(1+δ0)/2

)2/3(∫
Q+

|∇v|
6d X

)1/3

≤ C
∫

Q+

(
|∇v|

2
+ |∇

2v|
2
)

d X,

∫
Q+

|v|
2

R1+δ0
d X ≤ C

(∫
Q+

|v|
6d X

)1/3
≤ C

∫
Q+

(|v|
2
+ |∇v|

2)d X,

∫
Q+

|∇
2v||∇v|

Rδ0
d X ≤

∫
Q+

|∇
2v|

2d X +

∫
Q+

|∇v|
2

R2δ0
d X

≤ C
∫

Q+

(|∇v|
2
+ |∇

2v|
2)d X.

It follows that |J5| ≤ Cε
∫

Q+
|∇

2v|
2d X .
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Finally, substituting the estimates of Ji for i = 1, . . . , 5 into (3-7) yields

(3-12)
∫

Q+

|∇∂1v|
2d X ≤ Cε

∫
Q+

|∇
2v|

2d X.

Step 3: Estimate of
∑

k=2,3 ‖∇∂kv‖L2( Q+). Since wk = ∂kv for k = 2, 3 satisfies∑
i, j=1,2,3

ai j∂
2
i jwk +

∑
i, j=1,2,3

∂kai j∂iw j + ∂k

( ∑
i=1,2,3

bi (X)∂X i v + c(X)v
)

= 0,

and

∂1wk +
∑

i=2,3 γ1i∂iwk +
∑

i=2,3 ∂kγ1iwi + ∂k(d1v) = 0 on X1 = 0,

∂1wk +
∑

i=2,3 γ2i∂iwk +
∑

i=2,3 ∂kγ2iwi + ∂k(d2v) = 0 on X1 = 1,∑
i=1,2,3 γ3iwi + d3v = 0 on X2

2 + X2
3 = 1,

multiplying these equations by wk and integrating by parts in Q+ gives

(3-13) −

∫
Q+

∑
k=2,3

∑
i, j=1,2,3

ai j∂iwk∂ jwkd X =

5∑
i=1

Ki ,

where

K1 =

∫
Q+

∑
k=2,3

∑
i, j=1,2,3

∂i ai j∂ jwkwk d X −

∫
Q+

∑
k=2,3

∑
i, j=1,2,3

∂kai j∂iw jwk d X,

K2 =

∫
X1=0

∑
k=2,3

∑
j=1,2,3

a1 j∂ jwkwk d S,

K3 = −

∫
X1=1

∑
k=2,3

∑
j=1,2,3

a1 j∂ jwkwk d S,

K4 = −

∫
X2

2+X2
3=1

∑
k=2,3

∑
i=2,3

( ∑
j=1,2,3

ai j∂ jwkwk

)
X i d S,

K5 = −

∫
Q+

∑
k=2,3

∂k

( ∑
i=1,2,3

bi (X)∂X i v + c(X)v
)
wk d X.

We can treat the terms Ki for i = 1, 2, 3, 5 like we treated the Ji for i = 1, 2, 3, 5
in Step 2. That is, we have

(3-14) |K1| + |K2| + |K3| + |K5| ≤ Cε

∫
Q+

|∇
2v|

2d X.
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However, it seems difficult to control |K4| in terms of Cε
∫

Q+
|∇

2v|
2d X since

it contains a term

−

∫
X2

2+X2
3=1

|∂θv|
2d S

with no small coefficients. So additional care is needed. Our main observation is
that

(3-15) K4 −

∫
X2

2+X2
3=1

a22|∂θv|
2d S ≥ −Cε

∫
Q+

|∇
2v|

2d X,

which, together with (3-13) and (3-14), yields the derived estimate.
We now verify (3-15). First we decompose K4 as K4 = K41 + K42 with

K41 = −

∫
X2

2+X2
3=1

∑
k=2,3

( ∑
i=2,3

ai1∂1wkwk X i

)
d S,

K42 = −

∫
X2

2+X2
3=1

∑
k=2,3

∑
i, j=2,3

ai j X i∂ jwkwk d S.

In a similar way as for J41, we can show

|K41| ≤ Cε

∫
L
|wk |

2dl + Cε
(∫

X2
2+X2

3=1
|wk |

4d S
)1/2

≤ Cε

∫
Q+

|∇
2v|

2d X.

It remains to estimate K42. Using the cylindrical coordinate transformation
(3-11), we have K42 = K ′

42 + K ′′

42 with

K ′

42 = −

∫
X2

2+X2
3=1

a22(∂
2
r v∂rv + ∂2

rθv∂θv − (∂θv)2)d S,

K ′′

42 =

∫
X2

2+X2
3=1

(
E11(X)∂2

r v+E12(X)∂2
rθv+E13(X)∂2

θ v+E14(X)∂rv+E15(X)∂θv
)

×
(
H1(θ)∂rv + H2(θ)∂θv

)
d S,

where
∑5

i=1|E1i(X)| ≤ Cε,
∑5

i=1|∇E1i (X)| ≤ Cε/Rδ0 , and Hi (θ) for i = 1, 2 are
smooth functions on θ .

From (3-1), we have on X2
2 + X2

3 = 1

(3-16) ∂2
r v = E21(X)∂2

1v + E22∂
2
θ v + E23(X)∂2

1rv + E24(X)∂2
1θv

+ E25(X)∂2
rθv + E26(X)∂θv + E27∂rv + E28(X)v,

where |E21| + |E22| ≤ C ,

5∑
j=1

|∇E2 j |+

8∑
j=6

|E2 j |≤
Cε

Rδ0
,

5∑
j=3

|E2 j |+|E28|≤Cε,

8∑
j=6

|∇E2 j |≤
Cε

R1+δ0
.
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Additionally, it follows from the boundary conditions in (3-1) that

(3-17) ∂rv = E31(X)∂1v + E32(X)∂θv + E33(X)v on X2
2 + X2

3 = 1,

where
∑

j=1,2,3|E3 j | ≤ Cε and
∑

j=1,2,3|∇E3 j | ≤ Cε/Rδ0 .
Substituting (3-16) and (3-17) into K ′

42 yields

K ′

42 =

∫
X2

2+X2
3=1

a22(∂θv)2d S +

∣∣∣∫
X2

2+X2
3=1

G(∂1v, ∂2
1v, ∂θv, ∂2

θ v, ∂2
1θv)d S

∣∣∣
with

G(∂1v, ∂2
1v, ∂θv, ∂2

θ v, ∂2
1θv) = E51(X)∂2

1v∂1v + E52(X)∂2
1v∂θv + E53(X)∂2

θ v∂1v

+ E54(X)∂2
θ v∂θv + E55(X)∂2

1θv∂1v

+ E56(X)∂2
1θv∂θv + E57(X)(∂1v)2

+ E58(X)∂1v∂θv + E59(X)(∂θv)2

+ N1(X)∂2
1vv + N2(X)∂2

θ vv + N3(X)∂1vv + N4(X)∂θvv + N5(X)v2,

where

6∑
i=1

|∇E5i (X)| +

9∑
i=7

|E5i (X)| ≤
Cε

Rδ0
,

6∑
i=1

|E5i (X)| ≤ Cε,

9∑
i=7

|∇E5i (X)| ≤
Cε

R1+δ0
,

2∑
j=1

|∇N j (X)| +

5∑
j=3

|N j (X)| ≤
Cε

Rδ0

2∑
j=1

|N j (X)| ≤ Cε,

5∑
j=3

|∇N j (X)| ≤
Cε

R1+δ0
.

Similar to the treatment of J42 in Step 2, we have∣∣∣∫
X2

2+X2
3=1

Gd S
∣∣∣ ≤ Cε

(∫
X2

2+X2
3=1

|∇v|
2
+|v|

2

Rδ0
d S +

∫
L

(
|∇v|

2
+

|v|
2

R2δ0

)
dl

)
≤ Cε

∫
Q+

|∇
2v|

2d X.

By the same method, we can conclude that |K ′′

42| ≤ Cε
∫

Q+
|∇

2v|
2d X . Thus it

follows from (3-13)–(3-15) that

(3-18)
∫

Q+

∑
k=2,3

|∇wk |
2d X +

∫
X2

2+X2
3=1

|∂θv|
2d S ≤ Cε

∫
Q+

|∇
2v|

2d X.

Adding (3-12) and (3-18), we obtain∫
Q+

|∇
2v|

2d X +

∫
X2

2+X2
3=1

|∂θv|
2d S ≤ Cε

∫
Q+

|∇
2v|

2d X.
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Hence if we choose ε such that Cε < 1/2, then
∫

Q+
|∇

2v|
2d X = 0. In light of

Lemma 3.2, we obtain ∫
Q+

(|v|
2
+ |∇v|

2
+ |∇

2v|
2)d X = 0.

Thus v ≡ 0, and the proof of Lemma 3.3 is completed. �

Proof of Theorem 1.1. Based on Lemma 3.3, it follows from the transformation
(2-3) and the definition of V (X) in (2-4) that the solution (ϕ+(x), ξ(x2, x3)) in
Theorem 1.1 is unique. �

4. On the nonexistence

Here, we study the potential equation and the nonexistence of its transonic shock
wave patterns for a class of nozzles. In particular, we will prove Theorem 1.5.

It is more convenient to analyze the transonic shock problem in the class of
nozzles given in the Theorem 1.5 in the spherical coordinates

(4-1) x1 = x0
1 + r cos α, x2 = r sin α cos θ, x3 = r sin α sin θ

with 0 ≤ α ≤ α0 and 0 ≤ θ < 2π .
In these coordinates, Equation (1-3) for ϕ+ can be written as

(4-2) c2(H+)
( 1

r2 ∂r (r2∂rϕ+) +
1

r2 sin α
∂α(sin α∂αϕ+) +

1
r2 sin2 α

∂2
θ ϕ+

)
−

1
2

(
∂rϕ+∂r +

1
r2 sin2 α

∂θϕ+∂θ +
1
r2 ∂αϕ+∂α

)
(|∇ϕ+|

2) = 0,

where

H+ = H(C0 −
1
2
((∂rϕ+)2

+
1

r2 sin2 α
(∂θϕ+)2

+
1
r2 (∂αϕ+)2)).

Suppose that the shock surface 6 : x1 = ξ(x2, x3) is given by r = r(θ, α) − x0
1

with 0 ≤ θ < 2π and 0 ≤ α ≤ α0, and the fixed point x̃0 is expressed by

x̃0
= (x0

1 + r0 cos α0, r0 sin α0 cos θ̃0, r0 sin α0 sin θ̃0)

with r0
= ((x0

1 − x̃0
1)2

+ (x̃0
2)2

+ (x̃0
3)2)1/2. Since 6 goes through the point x̃0 and

r0
= −x0

1 , we have

(4-3) r(θ̃0, α0) = 0.

In addition, the corresponding boundary conditions (1-9), (1-10), (1-12), and (1-13)
become

(4-4)
ϕ+ = ϕ− on 6,

∂αϕ+ = 0 on 52.
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On 6, they become

(4-5)
((

∂rϕ+∂r +
1

r2 sin2 α
∂θϕ+∂θ +

1
r2 ∂αϕ+∂α

)
(ϕ+ − ϕ−)

)
H+

−

((
∂rϕ−∂r +

1
r2 sin2 α

∂θϕ−∂θ +
1
r2 ∂αϕ−∂α

)
(ϕ+ − ϕ−)

)
H− = 0.

Finally, on r = r1 = (1 − x0
1) sec α0, they become

(4-6) H
(

C0 −
1
2
(
(∂rϕ+)2

+
1

r2 sin2 α
(∂θϕ+)2

+
1
r2 (∂αϕ+)2))

= ρ+,

It follows from Theorem 1.1 and Remark 1.3 that the solution in Theorem 1.5 is
unique if it exists and satisfies the regularity assumptions in Theorem 1.1. However,
by the symmetric properties of the widening part of the nozzle and the supersonic
incoming flow, one can improve the regularities of ϕ+ in �+ as follows:

Proposition 4.1. Under the regularity assumptions in Theorem 1.1 and (1-15)′,
for any fixed constant δ′

0 with δ0 < δ′

0 < 1, the solution pair (ϕ+(x), ξ(x2, x3)) to
the problem (1-3) with (1-8)–(1-11), (1-12)′, and (1-13) has the following higher
regularities in �+:

(i) ξ(x2, x3) ∈ C2,1−δ′

0(S) ∩ C3(S) and ‖ξ(x2, x3)‖C2,1−δ′0 (S)
≤ Cε.

(ii) ϕ+(x) ∈ C2,1−δ′

0(�+) such that ‖ϕ+(x) − q+x1‖C2,1−δ′0 (�+)
≤ Cε.

Remark 4.2. In fact, we can show that ξ(x2, x3)∈C2,1−δ0(S)∩C3(S) and ϕ+(x)∈

C2,1−δ0(�+). But the regularities in Proposition 4.1 are enough for the proof of
Theorem 1.5.

Proof. It suffices to show ϕ+(x) ∈ C2,1−δ′

0(�+).
To this end, as in Section 2, we will use a partial hodograph transformation to

rewrite the problem (4-2)–(4-6) as a fixed boundary value problem.
Set

(4-7)

r̃ = −x0
1 +

(
1 −

r1−r
r1−r +ϕ−(r)−ϕ+(r, θ, α)

)
(r1 + x0

1),

θ̃ = θ,

α̃ = α

and V (r, θ, α) = r1 − r + ϕ−(r) − ϕ+(r, θ, α), where r1 = (1 − x0
1) sec α0.

In terms of (4-7), the domain �+ is transformed into the domain

Q+ =
{
(r̃ , θ̃ , α̃) : −x0

1 < r̃ < r1, 0 ≤ θ < 2π, 0 ≤ α < α0
}
.
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Then, a direct computation yields

r = r1 −
r1−r̃

r1+x0
1

V, ∂rϕ+ = −1 + ϕ′

−
(r) − ∂r V, ∂2

r ϕ+ = ϕ′′

−
(r) − ∂2

r V,

∂αϕ+ = −∂αV,

∂θϕ+ = −∂θ V,

∂r V = A0(r1 + x0
1)∂r̃ V,

∂αV = A0V ∂α̃V,

∂2
αV = ∂α̃(∂αV ) + ∂r̃ (∂αV )∂αr̃ ,

∂2
θ V = ∂θ̃ (∂θ V ) + ∂r̃ (∂θ V )∂θ r̃ ,

∂2
rαϕ+ = −∂2

rαV,

∂2
rθϕ+ = −∂2

rθ V,

∂2
r V = ∂r̃ (∂r V )∂r r̃ ,

∂θ V = A0V ∂θ̃ V,

∂2
αϕ+ = −∂2

αV,

∂2
θ ϕ+ = −∂2

θ V,

∂2
rθ V = ∂r̃ (∂θ V )∂r r̃ ,

∂2
rαV = ∂r̃ (∂αV )∂r r̃ ,

where A0 = 1/(V + (r̃ − r1)∂r̃ V ). Here

∂r r̃ =
r1+x0

1
V

+
(r1−r̃)∂r V

V
, ∂αr̃ =

(r1−r̃)∂αV
V

, ∂θ r̃ =
(r1−r̃)∂θ V

V
.

Next we study the relations among ∂θ̃ V, ∂r̃ V, ∂2
θ̃

V, ∂2
r̃ V and (X2∂X3 − X3∂X2)W

in (1-15)′.
It follows from (4-1), (4-7), and (1-14)′ that

(4-8)

X1 = 1 − (((1 − x0
1)2 sec2 α0 − r2 sin2 α̃)1/2

− r cos α̃)/W,

X2 = ctgα0tgα̃ cos θ̃ ,

X3 = ctgα0tgα̃ sin θ̃ ,

where

W = ((1 − x0
1)2 sec2 α0 − r2 sin2 α̃)1/2

− r cos α̃ + V − r1 + r,

r = r1 − ((r1 − r̃)/(r1 + x0
1))V .

Since θ̃ = arctg(X3/X2) and α̃ = arctg(tgα0(X2
2 + X2

3)
1/2, we have

∂X2 θ̃ = −tgα0 sin θ̃/(tgα̃), ∂X3 θ̃ = tgα0 cos θ̃/(tgα̃),

∂X2 α̃ = tgα0 cos θ̃/(1 + tg2α̃), ∂X3 α̃ = tgα0 sin θ̃/(1 + tg2α̃)

and

∂X2 = ∂X2 θ̃∂θ̃ + ∂X2 α̃∂α̃ + ∂X2 r̃∂r̃ = tgα0

(
−

sin θ̃

tgα̃
∂θ̃ +

cos θ̃

1+tg2α̃
∂α̃

)
+ ∂X2 r̃∂r̃ ,

∂X3 = ∂X3 θ̃∂θ̃ + ∂X3 α̃∂α̃ + ∂X3 r̃∂r̃ = tgα0

(cos θ̃

tgα̃
∂θ̃ +

sin θ̃

1+tg2α̃
∂α̃

)
+ ∂X3 r̃∂r̃ .
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Hence

(4-9)
X2∂X3 − X3∂X2 = ∂θ̃ + (X2∂X3 − X3∂X2)r̃∂r̃ ,

(X2∂X3 − X3∂X2)α̃ = 0.

In addition, it follows from the first equality in (4-8) and (1-15)′ that

(4-10) (X2∂X3 − X3∂X2)r = p1(r̃ , θ̃ , α̃)

with
p1(r̃ , θ̃ , α̃) =

g
W∂r g

(X2∂X3 − X3∂X2)W ∈ C1,1−δ0(Q+),

g(r, α̃) = ((1 − x0
1)2 sec2 α0 − r2 sin2 α̃)1/2

− r cos α̃,

and ‖p1(r̃ , θ̃ , α̃)‖C1,1−δ0 (Q+) ≤ Cε. Thus, by the relation of V and W , (4-9), (4-10),
and (1-15)′, we can derive that

(4-11) (X2∂X3 − X3∂X2)V = p2(r̃ , θ̃ , α̃) ∈ C1,1−δ0(Q+)

with ‖p2(r̃ , θ̃ , α̃)‖C1,1−δ0 (Q+) ≤ Cε.
In terms of r = r1 − ((r1 − r̃)/(r1 + x0

1))V , we have

(X2∂X3 − X3∂X2)r =
(X2∂X3 −X3∂X2)r̃

r1+x0
1

V −
r1−r̃

r1+x0
1
(X2∂X3 − X3∂X2)V .

Combining this with (4-10) and (4-11) yields (X2∂X3 − X3∂X2)r̃ = p3(r̃ , θ̃ , α̃),
where p3(r̃ , θ̃ , α̃) ∈ C1,1−δ0(Q+) and ‖p3(r̃ , θ̃ , α̃)‖C1,1−δ0 (Q+) ≤ Cε.

Therefore, it follows from (4-9) that

(4-12) ∂θ̃ V = p2(r̃ , θ̃ , α̃) − p3(r̃ , θ̃ , α̃)∂r̃ V

and

(4-13)



∂2
θ̃

V = ∂θ̃ p2(r̃ , θ̃ , α̃) − ∂θ̃ p3(r̃ , θ̃ , α̃)∂r̃ V −
(

p3(r̃ , θ̃ , α̃)

×
(
∂r̃ p2(r̃ , θ̃ , α̃) − ∂r̃ p3(r̃ , θ̃ , α̃)∂r̃ V − p3(r̃ , θ̃ , α̃)∂2

r̃ V
))

= p4(r̃ , θ̃ , α̃) + p2
3(r̃ , θ̃ , α̃)∂2

r̃ V,

∂2
r̃ θ̃

V = p5(r̃ , θ̃ , α̃) − p3(r̃ , θ̃ , α̃)∂2
r̃ V,

∂2
α̃θ̃

V = p6(r̃ , θ̃ , α̃) − p3(r̃ , θ̃ , α̃)∂2
r̃ α̃V,

with pi (r̃ , θ̃ , α̃) ∈ C1−δ0(Q+) and ‖pi (r̃ , θ̃ , α̃)‖C1−δ0 (Q+) ≤ Cε for i = 4, 5, 6.
Then, direction computations show that the solution to the problem (4-2)–(4-6)

solves the two-dimensional problem

(4-14) a11(r̃ , θ̃ , α̃)∂2
r̃ V + 2a12(r̃ , θ̃ , α̃)∂2

r̃ α̃V + a22(r̃ , θ̃ , α̃)∂2
α̃V = f (r̃ , θ̃ , α̃),
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with

(4-15)

∂α̃V = 0 on α̃ = α0,

G1(r̃ , θ̃ , α̃, V, ∂r̃ V, (∂α̃V )2) = 0 on r̃ = −x0
1 ,

G2(r̃ , θ̃ , α̃, V, ∂r̃ V, (∂α̃V )2) = ρ+ on r̃ = r1,

where ai j (r̃ , θ̃ , α̃) and f (r̃ , θ̃ , α̃) are given explicitly by (A.6) and (A.7) respec-
tively, and G1 and G2 are derived from the nonlinear boundary conditions in (4-4)–
(4-6) by expressing ∇r,θ,αϕ+ in terms of the transformation (4-7) and then using
(4-12).

By the regularity assumptions in Theorem 1.5 and (4-13), one can check that,
near the curves l̃1 = 6 ∩ {α = α0} and l̃2 = {(r1, θ̃ , α0) : 0 ≤ θ̃ < 2π}, we have
ai j (r̃ , θ̃ , α̃) ∈ C1−δ0 and f (r̃ , θ̃ , α̃) ∈ C1−δ0 . Also, the second order equation in
(4-14) and (4-15) is uniformly elliptic, and Gi (r̃ , θ̃ , α̃, V, ∂r̃ V, (∂α̃V )2) with i = 1
is C1,1−δ0-regular with respect to (r̃ , θ̃ , α̃); for i = 2, it is C4-regular with respect
to (V, ∂r̃ V, (∂α̃V )2). Furthermore, it follows from ∂αϕ+ = ∂αV = ∂α̃V = ∂θϕ+ = 0
on α = α̃ = α0 that a12(r̃ , θ̃ , α0) ≡ 0 and ∂α̃Gi (r̃ , θ̃ , α0, V, ∂r̃ V, (∂α̃V )2) ≡ 0 on
α̃ = α0. (For the proof that ∂θϕ+ ≡ 0 on l̃1, see Proposition 4.3 below.)

Next, we use a reflection technique to improve the regularity of V in Q+.
Without loss of generality, we consider the solution to (4-14) and (4-15) in the

domain D ≡ [−x0
1 , −x0

1 + δ; θ0 − δ, θ0 + δ; α0 − δ, α0 + δ] (that is, a small neigh-
borhood near the intersection curve l̃1) with a small constant δ > 0. To this end,
we need to extend those quantities involved in this domain.

Thus, set

V (r̃ , θ̃ , α̃) =

{
V (r̃ , θ̃ , α̃) if α0 − δ ≤ α̃ ≤ α0,

V (r̃ , θ̃ , 2α0 − α̃) if α0 ≤ α̃ ≤ α0 + δ,

ai i (r̃ , θ̃ , α̃) =

{
ai i (r̃ , θ̃ , α̃), if α0 − δ ≤ α̃ ≤ α0,

ai i (r̃ , θ̃ , 2α0 − α̃) if α0 ≤ α̃ ≤ α0 + δ,

a12(r̃ , θ̃ , α̃) =

{
a12(r̃ , θ̃ , α̃), if α0 − δ ≤ α̃ ≤ α0,

−a12(r̃ , θ̃ , 2α0 − α̃) if α0 ≤ α̃ ≤ α0 + δ,

f (r̃ , θ̃ , α̃) =

{
f (r̃ , θ̃ , α̃), if α0 − δ ≤ α̃ ≤ α0,

f (r̃ , θ̃ , 2α0 − α̃) if α0 ≤ α̃ ≤ α0 + δ,

Gi (r̃ , θ̃ , α̃, V , ∂r̃ V , (∂α̃V )2) =


Gi (r̃ , θ̃ , α̃, V , ∂r̃ V , (∂α̃V )2)

if α0 −δ ≤ α̃ ≤ α0,
Gi (r̃ , θ̃ , 2α0 − α̃, V , ∂r̃ V , (∂α̃V )2)

if α0 ≤ α̃ ≤ α0 +δ.
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Then, V ∈ C1,1−δ0(D) satisfies

(4-16)
a11(r̃ , θ̃ , α̃)∂2

r̃ V + 2a12(r̃ , θ̃ , α̃)∂2
r̃ α̃V + a22(r̃ , θ̃ , α̃)∂2

α̃V = f (r̃ , θ̃ , α̃),

G1(r̃ , θ̃ , α̃, V , ∂r̃ V , (∂α̃V )2) = 0 on r̃ = −x0
1 ,

where ai j (r̃ , θ̃ , α̃), f (r̃ , θ̃ , α̃) ∈ C1−δ0(D), G1 is C1,1−δ0(D)-regular with respect
to (r̃ , θ̃ , α̃), and the nonlinear boundary condition G1 is uniformly oblique.

It follows from the regularity assumptions in Theorem 1.5 and the interior reg-
ularity theory for uniformly elliptic equations that

V ( · , θ̃ , · ) ∈ C2,1−δ0([−x0
1 , −x0

1 + δ; α0 − δ, α0 + δ] \ (−x0
1 , α0))

for each θ̃ ∈ [θ0 − δ, θ0 + δ] for suitably small δ. The regularity of V at (−x0
1 , α0)

can also be improved by modifying the proof of [Lieberman and Trudinger 1986,
Theorem 1.1]. More precisely, we first consider the boundary value problem

(4-16)′


a11(r̃ , θ̃ , α̃)∂2

r̃ U + 2a12(r̃ , θ̃ , α̃)∂2
r̃ α̃U + a22(r̃ , θ̃ , α̃)∂2

r̃ α̃U = f (r̃ , θ̃ , α̃),

G1(r̃ , θ̃ , α̃, V , ∂r̃U, (∂α̃U )2) = 0 on r̃ = −x0
1 ,

U = V on 0,

where 0 = {(r̃ , α̃) : (r̃ + x0
1)2

+ (α̃ −α0)
2
= δ2

}. Equation (4-16)′ is solved on the
half disk R, which is surrounded by 0 and r̃ = −x0

1 . Indeed, it can be solved by
studying a linearized problem as follows: For any W ∈ B, where

B = {W ∈ C2,1−δ0(R) : ||W − (r1 + x0
1)||C2,1−δ0 (R) ≤ Mε}

with a positive constant M to be chosen, consider

(4-16)′′


a11(r̃ , θ̃ , α̃)∂2

r̃ U + 2a12(r̃ , θ̃ , α̃)∂2
r̃ α̃U + a22(r̃ , θ̃ , α̃)∂2

α̃U = f on R,

U = V on 0,

g1(r̃ , θ̃ , α̃)∂r̃U + g2(r̃ , θ̃ , α̃)∂α̃U = g(r̃ , θ̃ , α̃)

where

g1(r̃ , θ̃ , α̃) =

∫ 1

0

(
∂∂r̃ V G1(r̃ , θ̃ , α̃, t (r1 + x0

1) + (1 − t)V ,

(1 − t)∂r̃ W, (1 − t)(∂α̃W )2)
)
dt,

g2(r̃ , θ̃ , α̃) =

∫ 1

0

(
∂(∂α̃V )2 G1(r̃ , θ̃ , α̃, t (r1 + x0

1) + (1 − t)V ,

(1 − t)∂r̃ W, (1 − t)(∂α̃W )2)
)
dt ∂α̃W,

g(r̃ , θ̃ , α̃) = −

∫ 1

0

(
∂V G1(r̃ , θ̃ , α̃, t (r1 + x0

1) + (1 − t)V ,

(1 − t)∂r̃ W, (1 − t)(∂α̃W )2)
)
dt (V − (r1 + x0

1)).
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Note that V ∈ C2,1−δ0(0) due to the interior regularity. So one can apply
the standard theory for second order uniformly elliptic equations with mixed-type
boundary conditions to derive the existence and a uniform estimate for the solution
to the problem (4-16)′′; see [Lieberman and Trudinger 1986; Gilbarg and Trudinger
2001; Nazarov and Plamenevsky 1994]. Then it can be checked that there exists
a suitable M so that the Schauder fixed point theorem can be applied to yield a
solution U ∈ B to the problem (4-16)′ for suitably small ε. Note that we have used
the fact that V = r1 + x0

1 satisfies both the equation and the boundary condition in
(4-16). It follows from the uniqueness of the solution to the problem (4-16)′ in the
class C1,1−δ0(R)∩C2,1−δ0(

◦

R) (here
◦

R denotes the interior of the close disk R) that
V ( · , θ̃ , · ) = U ( · , θ̃ , · ) for each θ̃ ∈ [θ0 − δ/2, θ0 + δ/2]. Thus we have shown

||V (·, θ̃ , ·) − (r1 + x0
1)||C2,1−δ0 (R) ≤ Cε

for each θ̃ ∈ [θ0 − δ/2, θ0 + δ/2].
Next, we improve the regularity of V with respect to θ̃ . Let δ′

0 ∈ (δ0, 1) be a
fixed constant. For any θ̃1 and θ̃2 in [θ0 − δ/2, θ0 + δ/2] with θ̃1 6= θ̃2, it follows
from (4-16) that W1(r̃ , θ̃1, θ̃2, α̃)= (V (r̃ , θ̃1, α̃)−V (r̃ , θ̃2, α̃))|θ̃1− θ̃2|

δ′

0−1 satisfies

a11(r̃ , θ̃ , α̃)∂2
r̃ W1 + 2a12(r̃ , θ̃ , α̃)∂2

r̃ α̃W1 + a22(r̃ , θ̃ , α̃)∂2
α̃W2 = f0(r̃ , θ̃ , α̃)

and

g11(r̃ , θ̃1, θ̃2, α̃)∂r̃ W1 + g12(r̃ , θ̃1, θ̃2, α̃)∂α̃W1 + g13(r̃ , θ̃1, θ̃2, α̃)W1

= g10(r̃ , θ̃1, θ̃2, α̃)

on r̃ = −x0
1 , with f0( · , θ̃1, θ̃2, · ) ∈ Cδ′

−δ0 and g1 j ( · , θ̃1, θ̃2, · ) ∈ C1,δ′

0−δ.
For (r̃ , α̃) ∈ [−x0

1 , −x0
1 + δ; α0 − δ, α0 + δ], it follows from the maximum prin-

ciple that

|W1(r̃ , θ̃1, θ̃2, α̃)| ≤ C
(
‖W1(−x0

1 + δ, θ̃1, θ̃2, · )‖L∞[α0−δ,α0+δ]

+ ‖W1( · , θ̃1, θ̃2, α0 ± δ)‖L∞[−x0
1 ,−x0

1+δ]

+ ‖ f0( · , θ̃1, θ̃2, · )‖L∞ + ‖g10( · , θ̃1, θ̃2, · )‖L∞

)
≤ Cε.

It follows from standard estimates for second order elliptic equations that

‖W1( · , θ̃1, θ̃2, · )‖C2,δ′0−δ0 [−x0
1 ,−x0

1+δ/2;α0−δ/2,α0+δ/2]

≤ C
(
‖W1( · , θ̃1, θ̃2, · )‖L∞[−x0

1 ,−x0
1+δ;α0−δ,α0+δ]

+ ‖ f0( · , θ̃1, θ̃2, · )‖Cδ′0−δ0 + ‖g10( · , θ̃1, θ̃2, · )‖C1,δ′0−δ0

)
.

Hence V (r̃ , θ̃ , α̃) belongs to

C1−δ′

0
(
[θ0 − δ/2, θ0 + δ/2], C2,δ′

0−δ0[−x0
1 , −x0

1 + δ/2; α̃0 − δ/2, α̃0 + δ/2]
)
.
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It follows from this and (4-13) that V (r̃ , θ̃ , α̃) ∈ C2,1−δ′

0(D).
A similar result holds near l̃2. This yields

(4-17) V (r̃ , θ̃ , α̃) ∈ C2,1−δ′

0(Q+) and ‖V − (r1 + x0
1)‖

C2,1−δ′0 (Q+)
≤ Cε.

Consequently, Proposition 4.1 is proved. �

Next, we prove ∂θϕ+(r, θ, α0) ≡ 0 on the intersection curve l̃1 = 6 ∩ {α = α0};
this will be used to find the value of ∂θ̃ V (r̃ , θ̃ , α̃) at the fixed point (−x0

1 , θ̃0, α0).

Proposition 4.3. We have ∂θϕ+(r, θ, α0) ≡ 0 on the intersection curve

l̃1 = {(−x0
1 , θ, α0) : 0 ≤ θ < 2π}.

Proof. First we show that the shock surface 6 is perpendicular to the fixed bound-
ary 52.

Indeed, it follows from the continuity of ϕ on 6 in (4-4)–(4-6) that

ϕ+(r(θ, α)− x0
1 , θ, α) = ϕ−(r(θ, α)− x0

1).

Thus one can derive easily that

∂rϕ+(r(θ, α)− x0
1 , θ, α)∂αr(θ, α)+ ∂αϕ+(r(θ, α)− x0

1 , θ, α)

= ∂rϕ−(r(θ, α)− x0
1 , θ, α)∂αr(θ, α).

It follows from ∂αϕ+(θ, α0) = 0 and [∂rϕ] 6= 0 that ∂αr(θ, α0) ≡ 0. This implies
that 6 is perpendicular to the fixed boundary 52.

To show that ∂θϕ+(r, θ, α0) ≡ 0 on l̃1, we note that due to the symmetry of ϕ−,
the boundary condition in (4-4)–(4-6) becomes

(4-18)
(
(∂rϕ+∂r +

1
r2 sin2 α

∂θϕ+∂θ +
1
r2 ∂αϕ+∂α)(ϕ+ − ϕ−)

)
H+

− ∂rϕ−∂r (ϕ+ − ϕ−)H− = 0

on 6.
Since it follows from the assumptions in Theorem 1.5 that ϕ+ ∈ C2(�+) and

|∇
2ϕ+(r(θ, α), θ, α)| ≤ Cε/|α − α0|

δ0 for α 6= α0 and near the curve l̃1 and also
since r(θ, α) ∈ C1,1−δ0[0, 2π; α0/2, α0] and |∂αr(θ, α)| ≤ Cε|α − α0|

1−δ0 due to
(4-17), we arrive at

(4-19) lim
α→α0

(
∇

2ϕ+(r(θ, α)− x0
1 , θ, α)∂αr(θ, α)

)
= 0.

Differentiating (4-18) with respect to α, and using (4-19) together with the bound-
ary condition ∂αϕ+(r, θ, α0) ≡ 0 yield, on the intersection curve l̃1, that(

2H+ −
(∂θϕ+)2 H ′

+

r2 sin2 α0

) cos α0

r2 sin3 α0
(∂θϕ+)2(r, θ, α0) ≡ 0,
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where we have used Proposition 4.1. This yields ∂θϕ+(r, θ, α0) ≡ 0 on l̃1. It
remains to derive the equation for l̃1. By ϕ+(r(θ, α)−x0

1 , θ, α)=ϕ−(r(θ, α)−x0
1),

we have on α = α0 that

∂rϕ+(r(θ, α0) − x0
1 , θ, α0)∂θr(θ, α0) + ∂θϕ+(r(θ, α0) − x0

1 , θ, α0)

= ∂rϕ−(r(θ, α0) − x0
1 , θ, α0)∂θr(θ, α0).

It follows from ∂θϕ+(r(θ, α0)−x0
1 , θ, α0)= 0 and [∂rϕ] 6= 0 that ∂θr(θ, α0)≡ 0.

This implies r(θ, α0) ≡ r(θ̃0, α0) = 0. Thus l̃1 is a circle given by

{(−x0
1 , θ, α0) : 0 ≤ θ < 2π}. �

We now show ϕ+(x) is independent of θ under the assumptions of Theorem 1.5.

Proposition 4.4. (ϕ+(r, θ, α), r(θ, α)) is independent of the variable θ .

Proof. First, it will be more convenient here to use cylindrical coordinates (since
α = 0 is singular for the transformation (4-1)). These are

x1 = x1, x2 = ρ cos θ, x3 = ρ sin θ

with ρ = (x2
2 + x2

3)1/2 and 0 ≤ θ < 2π .
Then the Equation (1-3) for ϕ+ can be rewritten as

(4-20)
(
(∂1ϕ+)2

− c2(H+)
)
∂2

1ϕ+ + 2∂1ϕ+∂ρϕ+∂2
1ρϕ+ +

2∂1ϕ+∂θϕ+

ρ2 ∂2
1θϕ+

+
(
(∂ρϕ+)2

− c2(H+)
)
∂2
ρϕ+ +

2∂ρϕ+∂θϕ+

ρ2 ∂2
ρθϕ+

+
1
ρ2

(
(∂θϕ+)2

ρ2 − c2(H+)
)
∂2
θ ϕ+ −

c2(H+)∂ρϕ+

ρ
−

∂ρϕ+(∂θϕ+)2

ρ3 = 0,

where H+ = H
(
C0 −

1
2

(
(∂1ϕ+)2

+ (∂ρϕ+)2
+ (1/ρ2)(∂θϕ+)2

))
and ∂i = ∂xi for

i = 1, 2, 3.
Suppose that the shock surface 6 is given by x1 = 4(ρ, θ). By the assumption

of Theorem 1.5,

(4-21) 4(((x̃0
2)2

+ (x̃0
3)2)1/2, θ̃0) = x̃0

1 .

The boundary conditions are ϕ+ = ϕ− on 6, tgα0∂1ϕ+ − ∂ρϕ+ = 0 on 52,

[∂1ϕH ]∂1(ϕ+ − ϕ−) − ∂ρϕ−{∂ρ(ϕ+ − ϕ−)}H−

+ {(∂ρϕ+∂ρ + (1/ρ2)∂θϕ+∂θ )(ϕ+ − ϕ−)}H+ = 0 on 6,

H
(
C0 −

1
2

(
(∂1ϕ+)2

+ (∂ρϕ+)2
+ (1/ρ2)(∂θϕ+)2))

= ρ+

on (ρ2
+ (x1 − x0

1)2)1/2
= r1,
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Now we will rewrite the problem (4-20) with the given shock surface and bound-
ary conditions using the partial hodograph transformation

x̃1 = 1 − (1 − x1)/(1 − x1 + ϕ−(x1, ρ)− ϕ+(x1, ρ, θ)),

ρ̃ = ρ/((x1 − x0
1)tgα0),

θ̃ = θ,

and V (x̃1, ρ̃, θ̃ ) = 1 − x1 + ϕ−(x1, ρ)− ϕ+(x1, ρ, θ).
Then as in Section 2, it follows from a direct computation and the assumptions

in Theorem 1.5 that w = ∂θ̃ V satisfies

(4-22)



∑
i, j=1,2,3

ai j (y)∂2
yi y j

w

+

∑
i=1,2,3

bi (y)∂yi w+c(y)w = 0 for y ∈ Q+

∂y1w+
∑

i=2,3 γ1i (y)∂yi w+d1(y)w = 0 on y1 = 0,

∂y1w+
∑

i=2,3 γ2i (y)∂yi w+d2(y)w = 0 on y1 = 1,∑
i=1,2,3 γ3i (y)∂yi w+d3(y)w = 0 on y2 = 1,

where y = (y1, y2, y3)= (x̃1, ρ̃, θ̃ ), Q+ ={y : 0 < y1 < 1, 0 ≤ y2 < 1, 0 ≤ y3 < 2π}.
Let δ>0 be a suitably small fixed constant with δ<1 and Qδ

+
= Q+∩{y2 ≥δ}. Then

bi (y), c(y)∈C1(Qδ
+
\
⋃2

i=1 0i ) and γi j (y), di (y)∈C1(Qδ
+
\
⋃2

i=1 0i )∩C1−δ0(Qδ
+
).

On Qδ
+

, these coefficients satisfy the estimates∑
i=1,2,3

|∇
k
y bi (y)| + |∇

k
y c(y)| ≤ Cε/Rk+δ0 for k = 0, 1,

∑
j

‖γi j‖C1−δ0 +

∑
j=1,2,3

‖d j‖C1−δ0 ≤ Cε for i = 1, 2,

∑
j

|∇
k
Xγi j | +

∑
j=1,2,3

|∇
k
X d j | ≤ Cε/Rk−1+δ0 for i = 1, 2 and k = 1, 2,

∑
j=2,3

|∇
k
X (γ3 j − X j )| + |∇

k
Xγ31| ≤ Cε/Rk−1+δ0 for k = 1, 2,

‖γ31 − tgα0‖C1−δ0 + ‖γ32 + 1‖C1−δ0 + ‖γ33‖C1−δ0 ≤ Cε,

where 01 ={y : y1 =0, y2 =1, 0≤ y3 <2π}, 02 ={y : y1 =1, y2 =1, 0≤ y3 <2π},
and R = y1(1 − y1) + 1 − y2

2 . Near y2 = 0, the above coefficients are C3-smooth
with respect to the coordinates X = (X1, X2, X3) with X1 = y1, X2 = y2 cos y3,
and X3 = y2 sin y3; for details, see the treatments of the transformation (2-3).

Next we determine the value w(0, 1, θ̃0).
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Since ∂θ V (x̃1, ρ̃, θ̃ ) = −∂θϕ+(x1, ρ, θ), it follows from Proposition 4.3 that

(4-23) ∂θ V (x̃1, ρ̃, θ̃ ) ≡ 0 on 01.

Because x̃1 = 1−1− x1/V and by (4-23), we have ∂θ x̃1 = (1− x1)/V 2∂θ V ≡ 0
on 01. Thus ∂θ̃ V = ∂θ V − ∂x̃1 V ∂θ x̃1 ≡ 0 on 01. This implies

(4-24) w(0, 1, θ̃0) = 0.

By analogous arguments for Theorem 1.1, we can show that the problem (4-22)
together with (4-24) has a unique solution w ≡ 0. It follows from ∂θ V = V w/(V −

(1 − x̃1)∂x̃1 V ) that ∂θ V = ∂θϕ+ ≡ 0 in �+. �

Since Proposition 4.4 says (ϕ+(r, θ, α), r(θ, α)) ≡ (ϕ+(r, α), r(α)), Equation
(4-2) with (4-3)–(4-6) can be simplified as

(4-25)



c2(H+)
( 1

r2 ∂r (r2∂rϕ+)+
1

r2 sin α
∂α(sin α∂αϕ+)

)
−

1
2

(
∂rϕ+∂r +

1
r2 ∂αϕ+∂α

)
(|∇ϕ+|

2) = 0,

r(θ̃0, α0) = 0,

ϕ+ = ϕ− on 6,((
∂rϕ+∂r +

1
r2 ∂αϕ+∂α

)
(ϕ+−ϕ−)

)
H+

−

((
∂rϕ−∂r +

1
r2 ∂αϕ−∂α

)
(ϕ+−ϕ−)

)
H− = 0 on 6,

H
(

C0−
1
2
((∂rϕ+)2

+
1
r2 (∂αϕ+)2)

)
= ρ+ on r = (1−x0

1) sec α0,

∂αϕ+ = 0 on 52

with H+ = H(C0 − (1/2)((∂rϕ+)2
+ (1/r2)(∂αϕ+)2)).

Next we show that

(4-26) lim
α→0+

∂αϕ+ = 0.

Indeed, it follows from direct computations and the assumptions on the regular-
ity of ϕ+(x) in �+ that ∂rϕ+, ∂αϕ+, ∂2

r ϕ+, ∂2
rαϕ+ and ∂2

αϕ+ are uniformly bounded
near α = 0 (that is x1-axis in the interior of �+). In addition, the first equation in
(4-25) shows that

cos α∂αϕ+ =

(
(r2∂rϕ+∂r +∂αϕ+∂α)(|∇ϕ+|

2)

2c2(H+)
− r2∂2

r ϕ+ − 2r∂rϕ+ − ∂2
αϕ+

)
sin α.

Consequently, limα→0+ ∂αϕ+ = 0 holds.
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Now we show that (ϕ+(r, α), r(α)) is in fact independent of α under the as-
sumptions of Theorem 1.5.

Proposition 4.5. Under the assumptions in Theorem 1.5, if (ϕ+(r, α), r(α)) solves
problem (4-25), then it is independent of the variable α for α ∈ [0, α0].

Remark 4.6. The idea of the proof of Proposition 4.5 is based on the following
observation:

Let u be a solution to the Laplace equation 1u = 0 in R3. If u is independent
of the variable θ , then it satisfies

∂2
r u +

∂2
αu
r2 +

2∂r u
r

+
∂αu

r2tgα
= 0 for r > 0 and 0 < α < π.

Setting w = ∂αu, we have

∂2
r w +

∂2
αw

r2 +
2∂rw

r
+

1
r2tgα

∂αw −
1

r2 sin2 α
w = 0 for r > 0 and 0 < α < π .

This equation for w has a maximum principle since the coefficient of w is negative
for 0 < α < π .

Proof of Proposition 4.5. We will use the same notations as in the proof of Propo-
sition 4.1. Differentiating the first equation in (4-14) and (4-15) with respect to
α̃ and noting that V ∈ C2,1−δ0(Q+) ∩ C3(Q+ \ {α = 0}) (the regularity of V has
been given in the proof of Proposition 4.1) is independent of θ , then we get that
w = ∂α̃V satisfies

(4-27) a11(r̃ , α̃)∂2
r̃ w + 2a12(r̃ , α̃)∂2

r̃ α̃w + a22(r̃ , α̃)∂2
α̃w + 2∂α̃a12∂r̃w

+ ∂α̃a22∂α̃w +
∂α̃a11
a11

( f − 2a12∂r̃w − a22∂α̃w) = ∂α̃ f,

where ai j (r̃ , α̃) and f (r̃ , α̃) can be obtained from ai j (r̃ , θ̃ , α̃) and f (r̃ , θ̃ , α̃) by
setting pi (r̃ , θ̃ , α̃) ≡ 0 in the proof procedure of Proposition 4.1 and dropping all
the terms involving derivatives with respect to θ (or θ̃ ).

Then, in terms of the concrete expressions of (∂α̃a11/a11) f , ∂α̃a11, ∂α̃ f , and
the special term (1/r2tgα)∂αϕ+ in f (r̃ , α̃), one can derive from (4-25)–(4-27),
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Proposition 4.1, and a direct but tedious computation that w = ∂α̃V satisfies

(4-28)



−a11(r̃ , α̃)∂2
r̃ w−2a12(r̃ , α̃)∂2

r̃ α̃w−a22(r̃ , α̃)∂2
α̃w

+b1(r̃ , α̃)∂r̃w+b2(r̃ , α̃)∂α̃w+b0(r̃ , α̃)w = 0,

lim
α→0+

w = 0,

w = 0 on α̃ = α0,

−∂r̃w+d11(r̃ , α̃)∂α̃w+d10(r̃ , α̃)w = 0 on r̃ = −x0
1 ,

∂r̃w+d21(r̃ , α̃)∂α̃w+d20(r̃ , α̃)w = 0 on r̃ = r1,

where

bi (r̃ , α̃) ∈ C1(−x0
1 , r1; 0, α0) for i = 0, 1, 2,

ai j (r̃ , α̃), di j (r̃ , α̃) ∈ C1
[−x0

1 , r1; 0, α0],

|di j (r̃ , α̃)| ≤ C(ε + 1/r),

|b1(r̃ , α̃)| ≤ C, b0(r̃ , α̃) =
1

r2 sin2 α

(
1 + O(1/r) + O(ε)

)
,

b2(r̃ , α̃) contains the singular factor 1/(tgα̃), and the generic constant C depends
only on ρ0 and q− for large X0.

In addition, there exists a constant C0 > 0 which is independent of ε such that
for any ξ = (ξ1, ξ2) ∈ R2, we have

∑
i, j=1,2 ai j (r̃ , α̃)ξiξ j ≥ C0|ξ |

2.

Set w(r̃ , α̃) = exp
(
(ε1/2

+ X−1/2
0 )(r̃ − (r1 − x0

1)/2)2
)
w̃(r̃ , α̃). It follows from

(4-28) that

− a11(r̃ , α̃)∂2
r̃ w̃ − 2a12(r̃ , α̃)∂2

r̃ α̃w̃ − a22(r̃ , α̃)∂2
α̃w̃

+ b̃1(r̃ , α̃)∂r̃ w̃ + b2(r̃ , α̃)∂α̃w̃ + b̃0(r̃ , α̃)w̃ = 0,

lim
α→0+

w̃ = 0,

w̃ = 0 on α̃ = α0,

−∂r̃ w̃ + d11(r̃ , α̃)∂α̃w̃ + d̃10(r̃ , α̃)w̃ = 0 on r̃ = −x0
1 ,

∂r̃ w̃ + d21(r̃ , α̃)∂α̃w̃ + d̃20(r̃ , α̃)w̃ = 0 on r̃ = r1,

where b̃0 = b0 + O(ε1/2
+ X−1/2

0 ) and d̃i0 = di0 + (ε1/2
+ X−1/2

0 )(r1 + x0
1).

Since r2 sin2 α ≤ r2 sin2 α0 < 2 holds for r ∈ [−x0
1 −

1
4 , r1], then for small ε and

large X0 we have b̃0 ≥ 1/4.
In addition, for small ε > 0 and large X0, we have d̃i0 ≥ (ε1/2

+ X−1/2
0 )/4 since

r1 + x0
1 ≥ 1.
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Thus, by the maximum principle for second order elliptic equations (for exam-
ple, see [Gilbarg and Trudinger 2001, Corollary 3.2 and Theorem 3.1’s remark])
we conclude that w̃ ≡ 0.

This implies ∂αV = 0. Hence, ∂αϕ+ ≡ 0. �

From now on, we will use the notations (ϕ+(r), 0) instead of (ϕ+(r, α), r(α)).
Then the problem (4-25) can be rewritten as

(4-29)



c2(H+)∂r (r2∂rϕ+)−
r2

2
∂rϕ+∂r (|∂rϕ+|

2) = 0,

ϕ+ = ϕ− on r = −x0
1 ,

∂rϕ+H+−∂rϕ−H− = 0 on r = −x0
1 ,

H(C0−
1
2(∂rϕ+)2) = ρ+ on r = r1,

with H+ = H(C0 −
1
2(∂rϕ+)2).

Since 1
2(∂rϕ+(r))2

+ h(ρ+(r)) ≡ C0, it follows from the equations above that

(4-30)



(
2(C0−h(ρ+(r)))−c2(ρ+(r))

)
∂rρ+(r)

+
4ρ+(r)

r
(C0−h(ρ+(r))) = 0 for −x0

1 ≤ r ≤ (1−x0
1) sec α0,

ρ2
+
(r)(C0−h(ρ+(r))) = ρ2

−
(r)(C0−h(ρ−(r))) on r = −x0

1 ,

ρ+(r) = ρ+ on r = r1.

Let ρ−(−x0
1) = ρ0. Then ρ+(−x0

1) = ρ+ by the Rankine–Hugoniot condition in
(4-30). Thus the problem (4-30) can be reduced to

(4-31)


(
2(C0−h(ρ+(r)))−c2(ρ+(r))

)
∂rρ+(r)+

4ρ+(r)

r
(C0−h(ρ+(r))) = 0,

ρ+(−x0
1) = ρ+,

ρ+((1−x0
1) sec α0) = ρ+.

However, it follows from the first equation in (4-31) that ∂rρ+(r) > 0 holds for
subsonic flows in the domain {r : −x0

1 ≤ r ≤ r1}. Hence the problem (4-31) has no
solution.

Proof of Theorem 1.5. Let the nozzle be given as in Theorem 1.5. We determine the
supersonic incoming flow by solving the following initial-boundary value problem
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for a hyperbolic equation:



∑
i=1,2,3

((∂iϕ−)2
− c2

−
)∂2

i ϕ− + 2
∑

1≤i< j≤3

∂iϕ−∂ jϕ−∂2
i jϕ− = 0,

ϕ−

∣∣
((x1−x0

1 )2+x2
2+x2

3 )1/2=−x0
1
= 0,

∂rϕ−

∣∣
((x1−x0

1 )2+x2
2+x2

3 )1/2=−x0
1
= q−,

∂1 f ∂1ϕ− +
∑

i=2,3(∂i f − xi/ f )∂iϕ− = 0 on 51 ∪ 52,

where (x2
2 + x2

3)1/2
= f (x) represents the nozzle wall 51 ∪ 52.

Then for any given constant pressure pr 6= p0
r (here p0

r is determined by the first
two equations in (4-31)), we have shown by (4-31) that the problem (1-3) with
(1-8)–(1-13) has no transonic shock solution (ϕ+(x), ξ(x2, x3)) with the regulari-
ties and estimates stated in Theorem 1.5. �

Remark 4.7. When the assumption (1-8) is removed, it follows from Propositions
4.1–4.5 that the transonic solution is actually symmetric under the assumptions of
Theorem 1.5 when the shock lies in the widening part with −1/4 ≤ x1 ≤ 1. In that
case, the potential equations on two sides of the shock r = r0 with −x0

1 − 1/4 <

r0 < r1 can be rewritten ∂r (r2∂rϕ−(r)ρ−(r)) ≡ 0 and ∂r (r2∂rϕ+(r)ρ+(r)) ≡ 0. By
the right hand conditions on the shock in (4-29), we have r2∂rϕ+(r)ρ+(r)≡ m0 for
r ≥ r0 with m0 =

(
r2∂rϕ−(r)ρ−(r)

)∣∣
r=−x0

1−1/4. This, together with the Bernoulli’s
law

1
2(∂rϕ+(r))2

+ h(ρ+(r)) ≡ m1 with m1 =
( 1

2(∂rϕ−(r))2
+ h(ρ−(r))

)∣∣
r=−x0

1−1/4

yields that the end pressure at r = r1 is uniquely determined by the supersonic
coming flow even if we adjust the position r0 of the shock. Thus the transonic
shock in a nozzle does not exist for the potential flow equation and for arbitrarily
given end pressure. But for the compressible Euler system, this is not the case
(since the Bernoulli’s constants or entropies on either side of the shock surface are
different in the Euler system); see [Xin and Yin 2005b; Xin et al. 2008].

5. The proof of Theorem 1.8

In this section, we will prove Theorem 1.8. We use the notations of Section 2.
Under the transformation (2-3), it follows from Equation (1-3) and the boundary
conditions (1-9), (1-10), (1-11), (1-12)′′, and (1-13) that the unknown function
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V (X) defined in (2-4) satisfies the following second order equation with the cor-
responding nonlinear boundary conditions:

(5-1)



∑
i, j=1,2,3

ai j (X, V, ∇X V )∂2
X i X j

V +F0(X, V, ∇X V ) = 0 in Q+,

G(X, V, ∇X V ) = 0 on X1 = 0,∑
j=1,2,3

( ∑
i=2,3

(xi/ f −∂i f )∂xi X j −∂1 f ∂x1 X j

)
∂X j V

= ∂1 f (1−∂1ϕ−)+
∑

i=2,3

(xi/ f −∂i f )∂iϕ− on X2
2 +X2

3 = 1,

∑
k=1,2,3

∂x1 Xk∂Xk V +

∑
l=2,3

∑
k=1,2,3

bl(x)∂xl Xk∂Xk V +b1(x)V

= −1+∂1ϕ−+b2(x)∂2ϕ−+b3(x)∂3ϕ−

+b1(x)(1−x1+ϕ−(x))−g(x) on X1 = 1.

We now establish existence, uniqueness and regularity results for problem (5-1).

Theorem 5.1. Let δ0 ∈ (0, 1/3) be a given constant. Assume that (1-4)–(1-7)
hold. Then there exist positive constants ε0 and C depending only on ρ+, q+ and
δ0 such that for any ε ∈ (0, ε0), the problem (5-1) has a unique solution V (X) ∈

C1,1−δ0(Q+) ∩ C3,δ0(Q+ \
⋃2

i=1 0i ) with the estimates

‖V (X) − 1‖C1,1−δ0 ≤ Cε,

|∇
k
X V (X)| ≤ Cε/|RX |

k−2+δ0 for k = 2, 3,

sup
X,Y∈Q+\

⋃2
i=1 0i

∑
k=3

|dX,Y |
1+2δ0 |∇

k V (X) − ∇
k V (Y )|

/
|X − Y |

δ0 ≤ Cε,

and

‖∂θ V (X)‖C1,1−δ0 ≤ Cε,

|∇
k
X∂θ V (X)| ≤ Cε/|RX |

k−2+δ0 for k = 2, 3,

sup
X,Y∈Q+\

⋃2
i=1 0i

∑
k=3

|dX,Y |
1+2δ0 |∇

k∂θ V (X) − ∇
k∂θ V (Y )|

/
|X − Y |

δ0 ≤ Cε,

where

01 = {(0, X2, X3) : X2
2 + X2

3 = 1}, 02 = {(1, X2, X3) : X2
2 + X2

3 = 1},

RX = X1(1 − X1) + 1 − (X2
2 + X2

3), dX,Y = min{RX , RY },

∂θ = X2∂3 − X3∂2.
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Once Theorem 5.1 is proved, then Theorem 1.8 can be deduced easily from
Theorem 5.1 and the generalized partial hodograph transformation (2-3) and (2-4).

The basic strategy for proving Theorem 5.1 is to generalize the proof for the
two-dimensional case [Xin and Yin 2005a]. We will use the following Schauder
fixed point theorem.

Theorem 5.2 [Gilbarg and Trudinger 2001, Theorem 11.1]. Let K be a compact,
convex subset of a Banach space B, and let J be a continuous mapping from K
into itself. Then J has a fixed point in K.

To prove Theorem 5.1, we choose the Banach space B to be the weighted Hölder
space H−(2−δ̃0)

3,δ0/2 (Q+) with constant δ̃0 ∈ (δ0, 1/3), where

H (−m+β)

k,α (Q+) ≡

{
W (X) ∈ Cm−1,1−β(Q+) ∩ Ck,α(Q+ \

2⋃
i=1

0i ) such that

‖W‖Cm−1,1−β ≤ C;

sup
X

|RX |
|l|−m+β

|∇
l
X W | ≤ C for m ≤ |l| ≤ k;

sup
X,Y∈Q+\

⋃2
i=1 0i

∑
|l|=k

|dX,Y |
k+α−m+β |∇

l V (X)−∇
l V (Y )|

|X −Y |α
≤ C

}
for k ≥ m ≥ 1, k, m ∈ N and 0 < α, β < 1.

B is equipped with the norm

‖W‖
−(2−δ̃0)
3,δ0/2 = ‖W‖C1,1−δ̃0 +

∑
|l|=2,3

sup
X

|RX |
|l|−2+δ̃0 |∇

l
X W |

+ sup
X,Y∈Q+\

⋃2
i=1 0i

∑
|l|=3

|dX,Y |
1+δ̃0+δ0/2 |∇

l V (X)−∇
l V (Y )|

|X −Y |δ0/2 .

It can be shown that B is a Banach space (since H (−m+β)

k,α (Q+) is a Banach space
with the similar norm; see [Gilbarg and Hörmander 1980; Gilbarg and Trudinger
2001]). The role of RX in B is to measure the loss of regularity of W (X) near the
circles 01 and 02. Sometimes, the subscript X in RX is omitted for convenience.

Next define a subset K of B as

K = {W (X) : W ∈ H−(2−δ0)
3,δ0

(Q+), ∂θ W ∈ H−(2−δ0)
3,δ0

(Q+),

‖W − 1‖
−(2−δ0)
3,δ0

≤ Mε, ‖∂θ W‖
−(2−δ0)
3,δ0

≤ Mε},

where M ≥ 1 is a constant to be chosen later.
It is clear that K is a convex subset of B and that K is also compact in B; see

[Gilbarg and Hörmander 1980].
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We now define a continuous mapping J , which maps K into itself, by solving an
appropriate boundary value problem for some second order linear elliptic equation
on a fixed domain with linear boundary conditions; this problem is an appropriate
linearization of the nonlinear problem (5-1). More precisely, for any W ∈ K, we
define J : K → K by

(5-2) J W = Ṽ + 1

where Ṽ is required to solve the equation

(5-3)
∑

i, j=1,2,3

ai j (X, W, ∇X W )∂2
X i X j

Ṽ + F0(X, W, ∇X W ) = 0 in Q+.

Motivated by (2-16), we require Ṽ to satisfy the linear boundary condition on
X1 = 0 given by∑

i=1,2,3

B1i (X, W, ∇X W )∂X i Ṽ + B1(X, W, ∇X W )(W − 1) = G(X, 1, 0, 0, 0).

Since B11(X, W, ∇X W ) 6= 0 for small ε, this equation can be rewritten as

(5-4) ∂X1 Ṽ +

∑
i=2,3

B̃1i (X, W, ∇X W )∂X i Ṽ + B̃1(X, W, ∇X W ) = 0 on X1 = 0,

where the coefficients satisfy

‖B̃1i (X, W, ∇X W )‖
−(1−δ0)
2,δ0

+ ‖∂θ B̃1i (X, W, ∇X W )‖
−(1−δ0)
2,δ0

= O(Mε),

‖B̃1(X, W, ∇X W )‖
−(1−δ0)
2,δ0

+ ‖∂θ B̃1(X, W, ∇X W )‖
−(1−δ0)
2,δ0

= O(ε),

for i = 1, 2, 3. This follows from Lemma 2.2. That B̃1(X, W, ∇X W ) = O(ε) will
be critical for determining the constant M in K.

Analogously, we require that Ṽ satisfies boundary conditions

(5-5)

∂X1 Ṽ +

∑
i=2,3

B̃2i (X, W, ∇X W )∂X i Ṽ + B0(X, W )Ṽ + B̃2(X, W, ∇X W ) = 0,

∑
i=1,2,3

B̃3i (X, W, ∇X W )∂X i Ṽ + B̃3(X, W, ∇X W ) = 0,

on X1 = 1 and X2
2 + X2

3 = 1, respectively. B̃2i (X, W, ∇X W ) and B̃2(X, W, ∇X W )

have the same estimates as B̃1i (X, W, ∇X W ) and B̃1(X, W, ∇X W ), respectively,
and

λ/2 < B0(X, W ) < 23,

‖B0(X, W )‖
−(2−δ0)
3,δ0

+ ‖∂θ B0(X, W )‖
−(2−δ0)
3,δ0

= O(Mε).
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In addition,

‖B̃31(X, W, ∇X W )‖
−(1−δ0)
2,δ0

+ ‖∂θ B̃31(X, W, ∇X W )‖
−(1−δ0)
2,δ0

= O(Mε),

‖B̃3i (X, W, ∇X W ) − X i‖
−(1−δ0)
2,δ0

+ ‖∂θ (B̃3i (X, W, ∇X W ) − X i )‖
−(1−δ0)
2,δ0

= O(Mε),

‖B̃3(X, W )‖
−(2−δ0)
3,δ0

+ ‖∂θ B̃3(X, W )‖
−(2−δ0)
3,δ0

= O(ε).

for i = 2, 3.
Since B0(X, W ) > λ/2, it follows from the maximal principle that

(5-6) |Ṽ | ≤ C0ε,

where the constant C0 > 0 is independent of M and ε.
With the basic L∞ estimate of Ṽ in (5-6), we now can derive the required higher

order estimates for Ṽ in order to define the mapping J in (5-2). The desired esti-
mates are stated in the following proposition.

Lemma 5.3. Assume that W ∈ K. If Ṽ (X) ∈ H−(2−δ0)
3,δ0

(Q+) is a solution of (5-3)
with the boundary conditions (5-4) and (5-5), then for small ε > 0, there exists a
constant C0 > 0 independent of M and ε such that

‖Ṽ ‖
−(2−δ0)
3,δ0

≤ C0ε and ‖∂θ Ṽ ‖
−(2−δ0)
3,δ0

≤ C0ε.

Proof. Without loss of generality and for simplicity, we may assume

a11 = −1 + O(Mε), a22 = −1 + O(Mε), a33 = −1 + O(Mε).

Otherwise, we can use the transformation

X ′

1 = X1/(c2
+

− q2
+
)1/2, X ′

2 = X2/c+, X ′

3 = X3/c+

such that the coefficients of the resulting equation satisfy the above requirements.
Set

61 = {X : X1 = 0, X2
2 + X2

3 < 1},

63 = {X : X1 = 1, X2
2 + X2

3 < 1}.

62 = {X : 0 < X1 < 1, X2
2 + X2

3 = 1},

Then ∂ Q+ =
⋃

i=1,2,3 6i . Consider a subdomain Q1 of Q+ with the property that
∂ Q1∩∂ Q+ lies in the interior of ∂ Q+. Then by the classical Schauder estimates on
second order elliptic equations with the uniform oblique derivative boundary con-
ditions (see [Ladyzhenskaya and Ural’tseva 1968; Lieberman 1987]), there exists a
constant C(‖B̃ki‖C1,1−δ0 (Q1)

, ‖B̃3 j‖C1,1−δ0 (Q1)
) for k = 1, 2, i = 2, 3, and j = 1, 2, 3

such that

(5-7) ‖Ṽ ‖C2,1−δ0 (Q1)
≤ C

(
‖Ṽ ‖L∞(Q+) +‖F0‖C1−δ0 (Q+) +

∑
i=1,2,3

‖B̃i‖C1,1−δ0 (Q+)

)
.
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Thus our main task is to estimate the derivatives of Ṽ near the circles 01 and
02. To this end, without loss of generality we consider only the problem in a small
neighborhood G(r0) = {X : |X − P0| < r0} of P0 = (0, 1, 0).

We will use the cylindrical coordinates (3-11) and let Z1 = X1, Z2 = r , and
Z3 = θ . Then in the domain

G ′(r0) = G(r0) ∩ {Z : Z1 ≥ 0, 1 − δ ≤ Z2 ≤ 1, −r0 ≤ Z3 ≤ r0},

with a constant δ ∈ (0, 1), Equation (5-3) and boundary conditions (5-4) and (5-5)
can be rewritten as

(5-8)



∑
i, j=1,2,3

Ai j (Z)∂2
Zi Z j

Ṽ +

∑
i=1,2,3

Mi (Z)∂Zi Ṽ = F(Z),

∂Z1 Ṽ +
∑

i=2,3 N1i (Z)∂Zi Ṽ = G1(Z) on Z1 = 0,

∂Z2 Ṽ +N21(Z)∂Z1 Ṽ +N23(Z)∂Z3 Ṽ = G2(Z) on Z2 = 1,

where ∑
i=1,2,3 ‖Mi (Z)‖

−(1−δ0)
2,δ0

≤ C(1 + Mε),∑
i, j=1,2,3 ‖Ai j (Z) + δi j‖

−(1−δ0)
2,δ0

≤ C(r0 + Mε),∑
i=1,2 ‖Gi (Z)‖

−(1−δ0)
2,δ0

+ ‖F(Z)‖
−(1−δ0)
2,δ0

≤ Cε,

‖N12(Z)‖
−(1−δ0)
2,δ0

+‖N13(Z)‖
−(1−δ0)
2,δ0

+‖N21(Z)‖
−(1−δ0)
2,δ0

+‖N23(Z)‖
−(1−δ0)
2,δ0

≤C Mε,

with the weight RZ = (Z2
1 + (Z2 −1)2)1/2 and dZ ,Z ′ = min(RZ , RZ ′). The generic

constant C > 0 is independent of M, ε, and r0.
Define a C∞ function χ(Z) such that

χ(Z) =

{
1 if (|Z1|

2
+ |Z2 − 1|

2
+ |Z3|

2)1/2
≤ r0/2,

0 if (|Z1|
2
+ |Z2 − 1|

2
+ |Z3|

2)1/2
≥ (2/3)r0.

Let Ṽ1(Z) = χ(Z)Ṽ . Then it follows from (5-8) that V1(Z) satisfies the elliptic
equation with boundary conditions given by

(5-9)

∑
i, j=1,2,3

Ai j (Z)∂2
Zi Z j

Ṽ1+

∑
i=1,2,3

Mi (Z)∂Zi Ṽ1 = F ′(Z),

∂Z1 Ṽ1+
∑

i=2,3 N1i (Z)∂Zi Ṽ1 = G ′

1(Z) on Z1 = 0,

∂Z2 Ṽ1+N21(Z)∂Z1 Ṽ1+N23(Z)∂Z3 Ṽ1 = G ′

2(Z) on Z2 = 1,

Ṽ1 = 0 on (|Z1|
2
+|Z2−1|

2
+|Z3|

2)1/2
= r0.
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Combining this with the Schauder interior estimate (5-7), we derive easily that
F ′(Z) and G ′

i (Z) have the same properties as F(Z) and Gi (Z).
Now, by choosing δ = 1 − δ0 and α = 1 − δ0 in [Lieberman 1988, 3.4] and

noting that the angle between Z1 = 0 and Z1 = 1 is π/2, we can check carefully
the proof of [Lieberman 1988, Lemma 3.1] to verify that its conclusions still hold
in this case; see [Xin and Yin 2005a] for details. Using this and (5-6), we find that
for small r0 and Mε, we have ‖Ṽ1‖

−(2−δ0)
2,1−δ0

≤ C0ε, where C0 is a uniform generic
constant.

Moreover, by using an argument similar to that of [Gilbarg and Trudinger 2001,
Theorem 6.17] for the higher regularities of solutions to the second order elliptic
equations there, it follows from [Lieberman 1988, Lemma 3.1] that

(5-10) ‖Ṽ1‖
−(2−δ0)
3,δ0

≤ C0ε.

Next we improve the estimates of the tangential derivatives of Ṽ1.
Set U = ∂3Ṽ1. It follows from (5-9), (5-10) and the assumption on the tangent

regularities of W (X) that∑
i, j=1,2,3

Ai j (Z)∂2
Zi Z j

U +

∑
i=1,2,3

Mi (Z)∂Zi U = F1(Z),

∂Z1U +
∑

i=2,3 N1i (Z)∂Zi U = H1(Z) on Z1 = 0,

∂Z2U + N21(Z)∂Z1U + N23(Z)∂Z3U = H2(Z) on Z2 = 1,

U = 0 on (|Z1|
2
+ |Z2 − 1|

2
+ |Z3|

2)1/2
= r0,

where ∑
i=1,2 ‖Hi (Z)‖

−(1−δ0)
2,δ0

+ ‖F1(Z)‖
−(1−δ0)
2,δ0

≤ Cε.

Analogously, we can obtain ‖U‖
−(2−δ0)
3,δ0

≤ Cε. Combining this with (5-10)
shows that Lemma 5.3 holds. �

Due to (5-6) and Lemma 5.3 and by the continuity method given in [Gilbarg and
Trudinger 2001] (see also [Nazarov and Plamenevsky 1994] or [Lieberman 1988,
Lemma 2.3]), the linear Equation (5-3) with the boundary conditions (5-4) and
(5-5) is solvable in the space K. Furthermore, (5-6) and Lemma 5.3 imply that we
can choose the constant C0 as the constant M in K. Hence the mapping J , which
is defined in (5-2), maps from K into K. Moreover, by the maximal principle and
the estimates in Lemma 5.3, J is a continuous mapping from K → K. We are now
ready to complete the proof of Theorem 5.1:

Proof of Theorem 5.1. It follows from Lemma 5.3 that the mapping J satisfies the
all requirements of Theorem 5.2. By the choice of J , the existence of a solution
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in Theorem 5.1 follows. In addition, the maximal principle in [Lieberman 1987]
implies the uniqueness in Theorem 5.1. This completes the proof. �

Proof of Theorem 1.8. Part (i) of Theorem 1.8 follows directly from Lemma 2.1.
By the regularity and uniqueness of V (X) in Theorem 5.1, one concludes that

the inverse transformation (2-3) has the properties:

x1(X), x2(X), x3(X) ∈ C1,1−δ0(Q+) ∩ C3,δ0(Q+).

Since the shock 6: x1 = ξ(x2, x3) corresponds to X1 = 0 in Q+, we have
ξ(x2, x3) ∈ C1,1−δ0(S) ∩ C3,δ0(S), where S represents the open projection set of
6 onto the (x2, x3)-plane. Also, by using the properties of V (X) in Theorem 5.1,
we easily verify the remaining conclusions (ii), (iii), and (iv) in Theorem 1.8. This
complete the proof. �

Appendix

In this appendix, we will give some details on the properties of the transonic shock
problem after the generalized hodograph transformation in Section 2 and some
exact formulas used in the proofs of Proposition 4.1. In particular, we will prove
Lemma 2.2 and Lemma 2.4.

Proof of Lemma 2.2. We start with the proof of (2-17). By definition, we have

G(X, 1, 0, 0, 0) =

(
H

(
C0 −

1
2

(
(1 − ∂1ϕ−)2

+
∑

i=2,3(∂iϕ−)2)
)
(∂1ϕ− − 1)

− H(C0 −
1
2 |∇ϕ−|

2)∂1ϕ−

)
(x)

with x = (x1, x2, x3) given by x1 = X1 and x i = x i (X1, X2, X3) for i = 2, 3.
More precisely, (x2, x3) is determined by

X2 = x2( f (x))−1 and X3 = x3( f (x))−1.

Using Lemma 2.1 and the assumption that q− − q+ = 1, we compute that

G(X, 1, 0, 0, 0) =

(
H

(
C0 −

1
2(q− − 1)2

+ O(ε)
)
(q− − 1 + O(ε))

− H
(
C0 −

1
2q2

−
+ O(ε)

)
(q− + O(ε))

)
(x)

=
(
H

(
C0 −

1
2(q− − 1)2)(q− − 1) − H

(
C0 −

1
2q2

−

)
q−

)
+ O(ε)

= (ρ+q+ − ρ0q−) + O(ε) = O(ε),

where we have used ρ+q+ = ρ0q−; see (1-7). Thus |G(X, 1, 0, 0, 0)| ≤ Cε. Simi-
larly, noting also (1-4), we have∑

k=1,2,3

|∇
k
X G(X, 1, 0, 0, 0)| ≤ Cε,
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which proves (2-17).
Next, we verify the rest of the lemma, namely, (2-18)–(2-21). Direct calculations

based on (2-5) and (2-6) show that

(A.1)

∂x1
∂V

= X1 − 1,

∂xk
∂V

= (X1 − 1)∂X1 f (1 − (X2∂x2 f + X3∂x3 f ))−1 Xk,

∂(∂xi V )

∂(∂X j V )
= D(X, V, ∂X V )V

∂ X j

∂xi
,

∂(∂iϕ−)

∂V
=

∑
j=1,2,3

∂2
i jϕ−(x)

∂x j

∂V
,

∂(∂iϕ+)

∂V
=

∑
j=1,2,3

(
∂2

i jϕ−(x)
∂x j

∂V
− ∂X j V

∂

∂V

(
∂ X j

∂xi

))
,

for k = 2, 3, and i, j = 1, 2, 3. Define

G(∇ϕ+, ∇ϕ−) =
∑

j=1,2,3[∂ jϕH ]∂ j (ϕ+ − ϕ−).

Then G(X, V, ∇X V ) = G(∇ϕ+, ∇ϕ−), and
(A.2)

∂∂Xi V G = −V D(X, V, ∇X V )
∑

k=1,2,3

∂∂kϕ+
G ∂ X i

∂xk
,

∂V G =

∑
k=1,2,3

(
∂∂kϕ+

G ∂(∂kϕ+)

∂V
+ ∂∂kϕ−

G ∂(∂kϕ−)

∂V

)
,

∂∂i ϕ+
G =

∑
j=1,2,3

(
[∂ jϕH ]δi j + (H+δi j − ∂ jϕ+∂iϕ+H ′

+
)(∂ jϕ+ − ∂ jϕ−)

)
,

∂∂i ϕ−
G = −

∑
j=1,2,3

(
[∂ jϕH ]δi j + (H−δi j − ∂ jϕ−∂iϕ−H ′

−
)(∂ jϕ+ − ∂ jϕ−)

)
,

for i = 1, 2, 3. We can obtain from (2-6) and (2-15) that

(A.3) ∂x j X i = δi j + O(ε) for i, j = 1, 2, 3,

and it follows from (A.1), (A.3), and Lemma 2.1 that(
∂(∂iϕ±)

∂V

)
(X, V ) = O(ε), for i = 1, 2, 3,(

∂(∂xi V )

∂(∂X j V )

)
(X, V, ∇X V ) = δi j + O(ε) for i, j = 1, 2, 3.
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Note that

(A.4) ∂∂i ϕ±
G =

±
ρ+(q+−q−)(c2(ρ+)−q2

+
)

c2(ρ+)
(1 + O(ε)) if i = 1,

O(ε) if i = 2, 3.

Indeed, recall that we have assumed that q− − q+ = 1; then it follows from
V (X) = 1 − x1 + ϕ−(x) − ϕ+(x) that ∂iϕ+ = ∂iϕ− − δ1i − ∇X V ∂ X/∂xi . So one
can derive from Lemma 2.1 and (A.3) that

(A.5) ∂iϕ± =

{
q± + O(ε) if i = 1,

O(ε) if i = 2, 3.

On the other hand, the Bernoulli’s law, (1-1), and (1-2) imply that c2(ρ)= H/H ′.
Hence, we obtain from (A.2) and (A.5) that

∂∂1ϕ+
G = [∂1ϕH ] +

(
H+(∂1ϕ+ − ∂1ϕ−) −

∑
j=1,2,3

(∂ jϕ+∂1ϕ+H ′

+
)(∂ jϕ+ − ∂ jϕ−)

)
= (∂1ϕ+H+ − ∂1ϕ−H−) + H+(∂1ϕ+ − ∂1ϕ−)

(
1 − (∂1ϕ+)2 H ′

+

H+

)
+ O(ε)

=
ρ+(q+−q−)(c2(ρ+)−q2

+
)

c2(ρ+)
(1 + O(ε)).

The other estimates in (A.4) can be obtained similarly.
Substituting the computations above into expressions for B1i and B1 yields

B1i (X, V, ∇X V ) =

 −
ρ+(q+−q−)(c2(ρ+)−q2

+
)

c2(ρ+)
(1 + O(ε)) if i = 1,

O(ε) if i = 2, 3,

B1(X, V, ∇X V )(W − 1) = O(ε).

These prove (2-18)–(2-20). The other property (2-21) can be verified similarly.
Hence the proof of Lemma 2.2 is completed. �

Next, we sketch the proof of Lemma 2.4.

Proof of Lemma 2.4. The proof will be sketched since it involves mostly tedious
computations. By (2-10), we have

a11(X, V, ∇X V ) =

∑
k=1,2,3

(
(∂kϕ+)2

− c2
+

)(
(∂xk X1)

2
+ bkk

11∂X1 V
)

+

∑
k 6=l

∂kϕ+∂lϕ+(∂xk X1∂xl X1 + bkl
11∂X1 V ).

Taking into account (A.3), (A.5), (2-6) and (2-15), we can get from the above
that

a11(X, V, ∇X V ) = (q2
+

− c2
+
)(1 + O(ε)).
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Similarly, for i = 2, 3,

ai i (X, V, ∇X V ) =

∑
k=1,2,3

(
(∂kϕ+)2

− c2
+

)(
(∂xk X i )

2
+ bkk

ii ∂X1 V
)

+

∑
k 6=l

∂kϕ+∂lϕ+(∂xk X i∂xl X i + bkl
i i ∂X1 V )

= −c2
+
(∂xi X i )

2
+ O(ε) = −c2

+
(1 + O(ε)),

and, for i 6= j ,

ai j (X, V, ∇X V ) =

∑
k=1,2,3

(
(∂kϕ+)2

− c2
+

)(
∂xk X i∂xk X j + bkk

i j ∂X1 V
)

+

∑
k 6=l

∂kϕ+∂lϕ+(∂xk X i∂xl X j + bkl
i j ∂X1 V ) = O(ε).

Next, we derive the estimate |blk
0 (X, V, ∇X V )| = O(ε) from (2-6)–(2-8), (A.3),

and (2-15). This with (2-10) and Lemma 2.1 leads to |F0(X, V, ∇X V )| = O(ε).
The rest of Lemma 2.4 follows from similar arguments and direct computations.

This proves Lemma 2.4. �

Next, we provide the explicit expressions of the coefficients for the second order
equation in (4-14) and (4-15) in the proof of Proposition 4.1.

(A.6)

a11(r̃ , θ̃ , α̃) = −

(
1 −

(∂rϕ+)2

c2(H+)

)
((r̃ − r1)A2

0∂r̃ V − A0)(r1 + x0
1)∂r r̃

+
2(r̃ −r1)

r2c2(H+)
∂rϕ+∂αϕ+ A2

0V ∂α̃V ∂r r̃−
r̃ −r1

r2

(
1−

(∂αϕ+)2

r2c2(H+)

)
A2

0V ∂α̃V ∂αr̃

−
r̃ −r1

r2 sin2 α

(
1 −

(∂θϕ+)2

r2 sin2 αc2(H+)

)
A2

0V ∂θ̃ V ∂θ r̃

+
2∂rϕ+∂θϕ+

r2 sin2 αc2(H+)
(r̃ − r1)A2

0V ∂θ̃ V ∂r r̃ +
2∂αϕ+∂θϕ+

r4 sin2 αc2(H+)
(r̃ − r1)A2

0V ∂θ̃ V ∂αr̃

+
1

r2 sin2 α

(
1 −

(∂θϕ+)2

r2 sin2 αc2(H+)

)
A0V p3

(
A0∂θ̃ V (r̃ − r1) + p3 − ∂θ r̃

)
+

2∂rϕ+∂θϕ+

r2 sin2 αc2(H+)
A0V p3∂r r̃ +

2∂αϕ+∂θϕ+

r4 sin2 αc2(H+)
A0V p3∂αr̃ .

a12(r̃ , θ̃ , α̃) = −
1

r2c2(H+)
∂rϕ+∂αϕ+ A0V ∂r r̃

−
1

2r2

(
1 −

(∂αϕ+)2

r2c2(H+)

)(
(r̃ − r1)A2

0V ∂α̃V − A0V ∂αr̃
)

+
∂αϕ+∂θϕ+

r4 sin2 αc2(H+)
(r̃ − r1)A2

0V ∂θ̃ V +
2∂αϕ+∂θϕ+

r4 sin2 αc2(H+)
A0V p3.

a22(r̃ , θ̃ , α̃) =
1
r2

(
1 −

(∂αϕ+)2

r2c2(H+)

)
A0V,
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(A.7) f (r̃ , θ̃ , α̃) =
∂αϕ+

r2tgα
+

2
r
∂rϕ+

+
∂rϕ+(∂αϕ+)2

r3c2(H+)
+

(
1 −

(∂rϕ+)2

c2(H+)

)(
ϕ′′

−
(r) + 2A2

0(r1 + x0
1)(∂r̃ V )2∂r r̃

)
+

2
r2c2(H+)

∂rϕ+∂αϕ+

(
A0∂r̃ V ∂α̃V − 2A2

0V ∂r̃ V ∂α̃V
)
∂r r̃

−
1
r2

(
1 −

(∂αϕ+)2

r2c2(H+)

)(
∂α̃V − A0V ∂α̃V + ∂r̃ V ∂αr̃ − 2A0V ∂r̃ V ∂αr̃

)
A0∂α̃V

−
1

r2 sin2 α

(
1−

(∂θϕ+)2

r2 sin2 αc2(H+)

)(
A0(∂θ̃ V )2

−A2
0V (∂θ̃ V )2

−A2
0(r̃−r1)V ∂θ̃ V p5

+ A0V p4 + A0∂r̃ V ∂θ̃ V ∂θ r̃ + A0V p5∂θ r̃ − 2A2
0V ∂θ̃ V ∂r̃ V ∂θ r̃

)
+

2∂rϕ+∂θϕ+

r2 sin2 αc2(H+)

(
A0(∂r̃ V ∂θ̃ V + V p5) − 2A2

0V ∂θ̃ V ∂r̃ V
)
∂r r̃

+
2∂αϕ+∂θϕ+

r4 sin2 αc2(H+)

(
A0(∂r̃ V ∂θ̃ V + V p5)∂αr̃ + A0(∂α̃V ∂θ̃ V + V p6)

−2A2
0V ∂θ̃ V ∂r̃ V ∂αr̃ − A2

0V ∂θ̃ V ∂α̃V
)

+
∂rϕ+(∂θϕ+)2

r3 sin2 αc2(H+)
+

∂αϕ+(∂θϕ+)2 cos α

r4 sin3 αc2(H+)
.
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