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Scharlemann constructed a connected simplicial 2-complex I' with an ac-
tion by the group 7, of isotopy classes of orientation-preserving homeo-
morphisms of S that preserve the isotopy class of an unknotted genus 2
handlebody V. In this paper we prove that the 2-complex I is contractible.
Therefore we get a finite presentation of 7(,.

1. Introduction

Let ¥, be the group of isotopy classes of orientation-preserving homeomorphisms
of S3 that preserve the isotopy class of an unknotted genus g handlebody V. In
[1933], Goeritz proved that 3¢, is finitely generated. In 1977, Goeritz’s theorem
was generalized to arbitrary genus g > 2 by Jerome Powell [1980]. In 2003, Mar-
tin Scharlemann noticed that Powell’s proof contains a serious gap. Scharlemann
[2004] gave a modern proof of Goeritz’s theorem by introducing a simplicial 2-
complex T, with an action by %, that deformation retracts onto a graph I". Given
any two distinct vertices v, v of I', Scharlemann constructed a vertex u in " that is
adjacent to v and “closer” to v (by “closer” we mean the intersection number of u
and 7; see Definition 1). Hence 9, acts on the connected graph I' and is generated
by the isotopy classes of elements denoted by «, B, v, and § (see Section 2 for a
complete description). In this paper we study the geometry of I" by showing that
u is essentially unique (for a precise statement see Proposition 2). We derive the
following theorem.

Theorem 1. The graph T is a tree, and shortest paths can be calculated algorith-
mically.
Note that I is locally infinite. So calculating paths is not trivial. We also get

Theorem 2. (i) #, has generators [a], [B], [v], and [8] and relations [¢]? =
[y =8P = [ay)* = [aéas~"] = [@pap ™1 =1, [yBy] = [aB], and [5]
[y8*y1.

MSC2000: primary 57M60; secondary 57M20.
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2. Preliminaries

We give a description of the 2-complex I' introduced in [Scharlemann 2004], to
which we refer for details about I'.

Let V be an unknotted handlebody of genus two in S, and let W be the closure
of its complement. Let T be the boundary of V. Then T is a genus two Heegaard
surface for 3. Let ¥, denote the group of isotopy classes of orientation-preserving
homeomorphisms of S* that leave the genus two handlebody V invariant. A sphere
P in §3 is called a reducing sphere for T if P intersects T transversely in a simple
closed curve which is homotopically nontrivial on 7'. For any reducing sphere P
for T, let cp denote PN T, and let vp denote the isotopy class of cp on 7.

Definition 1. For any two reducing spheres R, Q for T, define the intersection
number of vg and vy as

Vg Vo = min |cp Nco
R*VQ cR/evR|R ol

CQ/EUQ
where |cg Ncg| is the geometric intersection number of cg with cgr.

Let I" be a complex whose vertices are isotopy classes of reducing spheres for
T. A collection Py, ..., P, of reducing spheres bounds an n-simplex in I" if and
only if vp, - vp; = 4 forall 0 <i # j <n. In fact n < 2; see [Scharlemann and
Thompson 2003, Lemma 2.5]. So I' is a simplicial 2-complex. See Figure 1 for a
local picture of I" and a picture of three curves forming the vertices of a 2-simplex
in I'. Let A be any 2-simplex of I'. We denote by Sa the “spine” of A, which is
the subcomplex of the barycentric subdivision consisting of all closed 1-simplices
that contain the barycenter and a vertex of A. Clearly A deformation retracts onto

Sa. Let
I =|Jsa.
A

So I is a graph. Since no two 2-simplices of I" share an edge [Scharlemann and
Thompson 2003, Lemma 2.5], the simplicial 2-complex I deformation retracts
onto the graph T.

A belt curve on a genus two surface is a homotopically nontrivial separating
simple closed curve. Let P denote a reducing sphere whose intersection with T
is a belt curve, which we denote cp. The reducing sphere P divides S° into two
3-balls B* whose intersections with the genus two surface T are two genus one
surfaces T* = T N B*, each having one boundary component. The surface T~
(respectively T™T) contains two simple closed curves B, Z (respectively C, Y)
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Figure 1. Left: locally I'. Right: three curves forming the vertices
of a 2-simplex in I'.

Figure 2. The curves cp, A, B, C, X, Y, and Z.

meeting at one point. The curve B (respectively C) bounds a nonseparating disc in
W which is homotopically nontrivial in V. The curve Z (respectively Y) bounds
a nonseparating disc in V which is homotopically nontrivial in W. The genus
two surface T contains two disjoint simple closed curves A and X. The curve A
is homotopically nontrivial in V, disjoint from B and C, bounds a nonseparating
disc in W, and intersects Z and Y at one point. The curve X is homotopically
nontrivial in W, disjoint from Z, Y and A, bounds a nonseparating disc in V, and
intersects B and C at one point. See Figure 2.

Throughout this paper, unless otherwise stated, whenever we choose a reducing
sphere R for T such that vg # vp, we will assume that the curve cg intersects cp,
B, C., Y, Z transversely and minimally and intersects A transversely.
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Figure 3. Homeomorphisms «, 8, y and é.

There exist three automorphisms «, 8, y of S> with the following properties.
The automorphism « is an orientation-preserving homeomorphism of S° that pre-
serves V and P and that maps the curves A, B, C to A, B, C respectively by an
orientation-reversing map. The homeomorphism « is the hyperelliptic involution
that preserves every simple closed curve (up to isotopy). The automorphism S is
an orientation-preserving homeomorphism of > that preserves V and P, fixes T~
pointwise, and maps C to C and Y to Y by an orientation-reversing map. Also
|A N B(X)| =2. The automorphism y preserves V and P and maps the curves
cp tocp and A to A by an orientation-reversing map. See Figure 3. Scharlemann
[2004] showed that #; is generated by the isotopy classes [«], [8], [y], and [§],
where § is any orientation-preserving homeomorphism of S3 such that §(V) =
and vp - vs(py = 4. In this paper we will take §, as follows. Consider the genus
two handlebody V as a regular neighborhood of a sphere, centered at the origin,
with three holes. The homeomorphism § is a 27 /3 rotation of V about the vertical
z-axis. See Figure 3.

3. Arc families of reducing spheres on T*

Definition 2. Denote any oriented curve D on T by D and the curve oriented in
the direction opposite to D by D

Orient the curves A, B, C, X, Y, Z in such a way that 82(2) = S(E)) —C and
2 X)=68(Y)=2Z
Definition 3. For any oriented properly embedded arc v C 7%, we may write
[v] € Hi(T%,dT=; 7) as a[u] + b[A] where u = Z and A = B if v C T, and
—
w= Y and A=C ifvC T+. The slope of v is defined to be |a/b| € QT U oo.
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Definition 4. For any reducing sphere Q such that vy # vp, let N(Q, T*, a)
denote the number of arcs in Q N T of slope a.

Definition 5. Up to isotopy, there are natural homeomorphisms Q, W : §3 — §3,

WhereQmapthoWandX,E),g,)—(),?,fto)?, Y,(Z_,X,ﬁ,g,respectively,
and\l—‘mapsWtoWandZ,l_f,C,)_(),17,Z)tOX,E),C,)?,Y,(Z,respectively;

see Figure 4. Let ® = W Q.

Proposition 1. Let Q be a reducing sphere for T such that vg # vp. Then
N(Q,T~,a)=N(Q,T*, 1/a).

Proof. Without loss of generality, we may assume that O = w(P) where w is a
word in o, B, v and §.

We claim ®(cg) = cg. The proof is as follows.

The hyperelliptic involution « preserves the isotopy class of any simple closed
curve on T. After an isotopy, we may assume that a(cp) = cg. Let us write
w as ayas - --a, where a; € {a, BE', y, §'}. The homeomorphism © satisfies
Oa =00, O =00, Oy =ayB®, 05 =350, and O(cp) =cp. Then O(cg) =
O(w(cp)) =O(ajay---ay(cp)) =biby---b,O(cp), where b; is o if a; = «, aff
ifa, =B, ayifa;=y,and § if aq; =6. Sob1by---b,O(cp) =b1by---b,(cp) =
ajay -+ -ap(cp) = w(cp) = cg.

Figure 4. Homeomorphism ® = W Q.
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Since ® maps the curves A, B,C, X, Y, Zto X, Y, Z, A, B, C, respectively, it
takes the arcs of ¢ of slope a on T~ to the arcs of ¢ of slope 1/aon TT. [

Definition 6. For any reducing sphere Q for T such that vy # vp, let F, 5 , denote
the arc family of cp on T+ of slope a.

Lemma 1. Suppose Q is any reducing sphere for T such that vg # vp. Then
N(Q,T7,0) #N(Q, T, 00).

Proof. Suppose that N(Q, T~,0) = N(Q, T, co) = m. The number m cannot
be 0 because the curve ¢y must have an arc of slope 0 in either 7~ or in 7 by
[Scharlemann and Thompson 2003, Lemma 4]. By Proposition 1, N(Q, T*, 0) =
N(Q, T, 00)=mand N(Q,T~,1)=N(Q, T*, 1). The curve ¢y bounds a disc
in V. So ¢p must have a “wave” t [Volodin et al. 1974] with respect to one of the
curves Y or Z. Say itis Y, as illustrated below.

Q.00 ~
Foas
A Y
T+

Then the arc T of ¢ starts at ¥, goes to 7, and then comes back to Y on the
same side without touching Z. So all the arcs of ¢y intersecting Z must intersect
the arc on Y that is bounded by ends of t. Then we get

N(Q,T7,00)+N(Q, T, 1) +2<N(Q,T",00)+N(Q, T, 1),
a contradiction. O

Notation 1. Let Q be a reducing sphere for 7.

e If N(Q,T7,0)=n#0then ey, ep, ..., €on» €1n> €1n—1, - - - , 11 Will denote
consecutive end points on cp of the arcs in F é o» Where eg; and ey ; are end
points of the same arc; hoi, hoa, ..., hons Ains Rin—1, ..., h11 will denote

consecutive end points on cp of the arcs in F 5 > Where hq; and hy; are end
points of the same arc (the existence of h;; is guaranteed by Proposition 1).

® If N(Q7 T_v OO) =m # 0 then gol’ 802, LR ] gOma glmv glmfl, LIRS ] gll Wlll
denote consecutive end points on cp of the arcs in Fj, ., where go; are gi;
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are end points of the same arc; fo1, fo2,---> fom> fims fim—1,--., f11 Will
. . . +

denote consecutive end points on cp of the arcs in F 0.0° where fo; and fi;

are end points of the same arc.

e IfN(Q, T, 1)=p#0then ko, koo, . . ., k()p, klp, klp—la ..., k11 will denote
consecutive end points on cp of the arcs in F’ 5’1 where ko; and ki ; are end

points of the same arc; loy, lo, ..., lop, lip, l1p—1, ..., 111 will denote end
points on cp of the arcs in F 5 |» Where ly; and [ ; are end points of the same
arc.

Lemma 2. Let Q be a reducing sphere for T such that
N@Q,T7,00=n>N(Q,T",00)=m>N(Q,T",1)=0.
Then {fij|i=0,1and j=1,m} C{e;;|i=0,1and j=2,...,n—1}.

Proof. Suppose the contrary, as illustrated below.

Then ¢ does not have a “wave” 1 [Volodin et al. 1974] with respect to the curve
Y or the curve Z. Therefore co cannot bound a disc in V, a contradiction. O

Proposition 2. Let v and v be any two distinct vertices of T such that v - v % 4.
Then there exists unique vertex u of I such that

G) u-v=4,
(i) u-v<v-0v,and

(iii) u -0 < v’ - 0 for any vertex v’ of T such that v' #u and v' - v =4.

Moreover, there is at most one vertex v" of T satisfying v-v' =4 andu-v <
v/ -0 <wv-0. In this case vV - u = 4.

The proposition is illustrated below.
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Proof. Let v and v be any two vertices of I such that v # v and v - v # 4. Since
the group %, is transitive on the vertices of I, we may assume that v = vp and v
is a vertex of I" such that v £ vp and vp - v # 4. Then some word w in «, y, 8 and
6 has w(cp) € v. Let Q denote the reducing sphere w(P). Since Q is not isotopic
to P there must be some arcs in cp N T+, By [Scharlemann 2004, Lemma 4] there
is an arc of ¢g of slope 0 either on 7~ or on T". Suppose it is on 7~. Let ¢;;,
8dq» Krss frus yv, Ly, denote the end points of the arcs of cpN T+ as in Notation 1.
Possible cases for the arc families in cg N T and their configurations, up to the
action of a power of , are the following:

Case . If

N(Q,T7,0) =m, NQ,T7,1/k)=a,
N(Q,T™,00) =0, N, T7,1/(k+1))=0b,

where k > 1, then

N(Q,T",00) =m, N(Q,T",k)=a,
N(Q,T+,0)=0, NQ, T  k+1)=b

by Proposition 1. Scharlemann in [2004, Lemma 5] constructs a reducing sphere
R satisfying (i) and (i1) (that is, vg - vp =4 and vg - vg < vp - vp). We will show
that up to isotopy the reducing sphere R also satisfies (iii). Scharlemann’s reducing
sphere will be given explicitly in the various cases of the proof. Let n = a + b.

Case I.A: n # 0. Let us label end points of the arcs in co N T of slope different
from oo as dy, da, ..., do,. Then it is not hard to show {e;;} Q {d;} by an argument
similar to the proof of Lemma 2.

Case LLA.1: {d;} ¢_ {eij}. See the figure below. Set p = |{e;;} N {h;;}|/2 then
1 < p < m. Consider the curve & shown in the figure. It is easy to see that &
bounds a disc in V and a disc in W. So & is the intersection of a reducing sphere
S with T'. Denote & by cs. The reducing sphere § satisfies vs - vp < |csNcgl| =
2(n—m+2p) <2(n+m)=vp-vg and vg-vp =4.



A PRESENTATION FOR THE AUTOMORPHISMS OF THE 3-SPHERE 209

Claim 1. vs -vg = |csNcgl.
Claim 2. vgi(s)- v, Vgiy(s) Vg > 2(n+m) fori #0.

Proof of Claim 1. It suffices to show that there is no bigon on 7" formed by the
curves cg and cp. We may assume that cg intersects ¢ in a neighborhood N € T
of cp where NN (BUZUCUY) = &. The neighborhood N has two boundary
components N~ and N*. Say N* C T*. The set cs N N consists of four arcs vy,
V2, V3, V4. Assume that end points of the arcs vy, v, v3, and v4 on N~ are lined
up consecutively as N~ Nvy, N” Ny, N~ Nv3, and N~ Nvy. The curve cg has
two arcs a; and a; on T~ of slope 0 and two arcs by and b, on T of slope co.
Assume that v; Na; # @ fori = 1,2 and vi Nb; # . See Figure 5. There are
eight regions Dy, ..., D3 on N that can contain a vertex of a bigon. The regions
Dy, ..., Dg are shown in Figure 5. Any bigon should contain two of them. After
an isotopy, we may assume that a(cg) = cg and a(cs) = c¢s. Then a(D;) = D; 42
fori =1,2,and O({D; |i=1,...,4}) ={D; |i =5, ..., 8} (see Definition 5 for
®). So it is enough to check if D; is a part of a bigon fori =1, 2.

Dq: The region D is part of a region Dy in T whose four consecutive sides are x,
ay, y, and x’, where y € Foo and x, x’ € Fér’k U Fé“’kﬂ. See Figure 6(a). If
51 is a bigon then vy - vp < 2(n +m), a contradiction.

Dy: o If b=0then a # 0. Then D; is part of a region 52 whose five sides are
X, di, ¥, y', x’ where x, x" € Faoo and y, y' € FQ_’l/k. See Figure 6(b).
If D5 is a bigon then vg - vp < 2(n +m), a contradiction.
e If a, b # 0 then D, is part of a region 52 whose five sides are x, ay, y, )/,
x' \~)vhere x,x' € Fér’oo, Y € Fg 1/get1) @nd y' e Fy 1k See Figure 6(c).
If D5 is a bigon then vg - vp < 2(n 4+ m), a contradiction.

By the cases above, vs-vg = |csNcgl.
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Figure 5

Figure 7 shows the intersection of a reducing sphere R’ with the surface 7.
Notice that R’ € v, 5 and vg - v,5 = 4. By an argument similar to the proof of
Claim 1 we can show that vg' - vg = [cgp Ncg| = 4kb +4(k — 1)a +2m + 2n =
Vys- Vg = 2m+2n. O

Proof of Claim 2. We will do the calculation for i = +1. The general case is
similar. We may assume that Bi(cs) and ﬁi)/(CS) intersect cg in a neighborhood
N described in the proof of Claim 1. By an argument similar to the proof of Claim
1, we get

e Vg(s) Vo =4p+2m+6n > 2(n+m). See Figure 8(a).

* Vg-i(5) " Vg =6m +2n —4p > 2(n+m). See Figure 8(b).

* Vgy(s) Vo =4kb+4(k —1a~+4m+2n+2p > 2(n+m). See Figure 9(a).

* Vg-iy(s) Vo =4kb+4(k—1)a+6m+6n—4p > 2(n+m). See Figure 9(b).

This implies that the vertex vg = vg and satisfies the conditions of Proposition
2. O

Case ILA.2: {d;} C{e;;}. See Figure 10. Set p = [{eg;j}N{ho;}|. Then0 < p <m—n.
Either p <m —n—porm —n— p < p. Assume p <m —n — p. Consider the
curve & shown in Figure 10. The curve £ is an intersection of a reducing sphere S
with 7. Denote £ by cg. Notice that vg-vp =4.

By an argument similar to the proof of Case [.A.1, we get
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+ +
xEFQ,kUFQ,Iﬂ»l m€F+,oo

T € F+OO

ai

, _
ot Yy € FQ,l/k

k41 -
Q Yy € FQ,l/k

(a) (b)
x e F&oo

ai

Yy € F@l/k

YELG 1)
(c)

Figure 6

FQayter)
Fgo
F&k
Fg,k+1

+
FQ 0o

Figure 7



212 EROL AKBAS

B es)

Figure 9

* Vs-vg =|csNco|l=2(m —n—2p) <vp-vg =2(n+m);

s Vs Uys) =4

e Uy (s) Vg =4kb+4(k — 1)a+2(m +n) > 2(m +n) (see Figure 11);

* Vgi(s) V0> Vgiy(s) Vo > 2(n+m) fori #0.
This implies that the vertex vg = vs and satisfies the conditions of Proposition 2.
Case .B: n = 0. This is a special case of Case [.A.2.

CaseI: N(Q, T7,0)=mand N(Q,T~,00)=n#0=N(Q, T, 1). In this case,
N(Q,TT,0)=nand N(Q,T",00) =m #0=N(Q,T", 1) by Proposition 1.
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- Fqo

7 Foam Y G

+ +
~ FQ.k U FQ,k+1

T
"
oo

Figure 10
- Q.0

UF,

) Q.1/(k+1)

Q.1/k

Figure 11. The curve cg in the figure is R"NT for some reducing

sphere R’ for T satisfying R" € vy .

By Lemma 1, m # n. Suppose m < n. By Lemma 2,

{eijli=0,1and j=1,....m}C{f;;|i=0,land j=2,....,n—1}.

213

By the argument in [Scharlemann 2004, Lemma 5], we get two nonisotopic reduc-
ing spheres for T that satisfy (i) and (ii). Let us call S the one having an arc on
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Figure 12

T~ of slope 0 and S’ the one having an arc on T of slope 0. Figure 12 shows
the intersections of two reducing spheres R and R’ with T. It is easy to see that
R € vg and R’ € Vg

Let p=|{go;}N{ foj}|. Then0 < p <m—n. Either p <m—n—porm—n—p < p.
Assume p < m —n — p. Then by an argument similar to the proof of Case .A.1,
we can show that 2n+-2m =vp-vg > vp-vg =2n—2m > vp -vg =2(n—m—2p),
VR - Vg =4 and vgi(g) - Vg, Vgi(ry Vg > 2n+2m fori #0.

Case III: N(Q,T7,0) =m, N(Q,T~,00) =n, and N(Q,T~,1) = p where
m,n, p#0. Inthis case, N(Q, T+,0)=n, N(Q, T, 00)=m,N(Q, Tt, ) =p
by Proposition 1. By Lemma 1, m # n. Say m > n.

The curves A, B, C, and cp divide T into four punctured discs Tf_ T, T;r , and
Tb+, where T, UT, =T~ and T;r U TbJr = T*. This division also gives two pairs
of pants Tf_ U T;’ =Prand T U TbJr =Py. Letcy = PrNcp and ¢, = P,Ncp.

Let K be a reducing sphere intersecting the interior of 7~ in a simple closed
curve parallel to cp. The reducing sphere K divides T into two parts. Denote the
one containing the curve B by ¢~ and the one containing the curve C by ¢*. Let
ck=T;NKandch =T, NK.

Suppose that

FooNt"NA=Fy Nt"NA=2,

Fp o Nk \A) = Fg N (ch \A)| = |Fy Nt NA|=n

and that k();, kg, ..., k(’)p, €015 €02 - - - €om» AN 8()15 80 - - - » 8y, ATE CONSECUtivVe

intersection points of the arcs in F, |, F, g and F, ., with cI];, respectively. Locate
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Py
Fo, Nt NPy
-
) FQiOﬂtf ﬂpf
ck _ _
~ FQ’ooﬂt ﬂpf
Eo nttnpy
.
oAt
o Fiontt NPy

+
Fg oo Ntt NPy

Figure 13

arcs of ¢ on T so that
|F§,oom(0'; \A)| = |F5,ooﬂ(ci \A)| = |F§,ooﬂA| =m,
|F5’00A| = |F5’] NA|l=0.

Suppose that lp, ..., lop, fo1, ..., fon. and hoy, ..., ho, are consecutive intersec-
tion points of the arcs in F’ 5’1, F 5,0, and F aoo with ¢, respectively. Suppose 7 is
anarcin F, | whose intersection with c£ is k(. Suppose TNt T\TT)NA #£D. See
Figure 13. By applying a power of 8, we can assume 2 < [co NAN T\ TH)| <
2(p + n + m). By the argument in [Scharlemann 2004, Lemma 5], we get two
nonisotopic reducing spheres for 7T that satisfy (i) and (ii). Let us call S the one
having an arc on T~ of slope 0 and S’ the one having an arc on T of slope 0.

The figures below show intersections of two reducing spheres R, R’ with 7. It
is easy to see that R € vg and R’ € vg'.

Case IILA: {g;;} C {h;;}. See Figure 14. Let x = [{h;;} N {k;;}|/2. Arguing as in
Case LA.1,we get2(n+m+p) =vp-vg > Vg -vg =2(m+p—n) > vg-vg =
2m+p —n —2x), vg-vp =4 and Vgi(R) - VQ> Vgi(R) " VQ > Vp -V for i # 0.

Case II1.B: {g,'j} N {hij} # & and {gij} N {f,J} #*+ O, {e,'j} N {h,’j} = . See Figure
15. Let x = [{k;;} N {h;;}|/2. Arguing as in Case L.A.1, we get 2(n +m + p) =
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e CR!

CR

Figure 14

Vp -V > VR Vo =2(p+n—m+2x) >vg-vg=2(p+n—m), vg-vg =4,
and vgi(g) - Vg, Vgi(r) Vg > vp-vg fori #0.

Case II.C: {g;j} N{hij} # 9D, {gij} N {[fij} # 9, and {e;;} N {h;;} # S. See Figure
16. Let x = |{fij} N {gij}|/2. Arguing as in Case I.A.1, we get 2(n +m + p) =
Vp Vg > Vg Vg =2(m—n+2x+p)>vg-vg=2(m—n—p+2x), vg-vg =4,
and vgi(g) - Vg, Vgi(g) Vg > vp-vg fori #0.

Case IIL.D: {g;;}N{fi;} # 9, {gi;}N{lij} # D, {eij}N{lij} # I, and {e;j} N {h;j} =
@. See Figure 17. Let x = [{g;;} N {/;j}|/2. Arguing as in Case .A.1, we get
2n+m—+p)=vp-vg>Vg-Vg=2p+n+m—2x)>vg-v9=2(p+n—m),
VR - Vg =4, and vgi(g) - Vg, Vgi(gry Vg > Vp - Vg fori #O0.

Case IILE: {g;;}N{ fij} # D, {gij}lij} #9, {e;j}{lij} #2, and {e;;}N{h;;} # 2.
See Figure 18. Let x = |{g;;}N{l;;}|/2. Arguing as in Case .A.1, we get vg-vg =
2m+n+p—2x), vg -vg =2(m+n — p+2x) and vgi(g) - Vg, Vgirr Vo >
2(n+m+ p) fori #0. So vg'-vg = Vg - Vg if and only if p =2x. If p is equal to
2x, then by an argument given in the proof of Lemma 2, we can show that co does
not bound a disc in V. Therefore either vg' - vg > Vg - vg OF Vg - Vg < VR - Vg.
Notice that vg - vg, = 4.

Case IILF: {g;j} N{fij} # 2, {gij} N{lij} # &, and {g;;} N {h;;} # . See Figure
19. Let x = |{gij} N {fij}|/2. Arguing as in Case L.A.1, we get 2(n +m + p) =
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igure 15

F

m—p—n+ax

igure 16

F
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m—+x

Figure 17

m-—p+x

Figure 18

CR
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n—p—=o
m-n+p+x

n—-p—x

Figure 19

Vp Vg > VRV =2m+x+3p—n—+x)>vg-vg=2m+x+p—n-+x),
VR - Vg, =4, and vgi(g) - Vg, Vgi(gry Vg > Vp - Vg fori #O0.

Case IIL.G: {e;;, gij} € {l;j}. See Figure 20. Let x = [{k;;} N {l;;}|/2. Arguing as
in Case LA.1, we get vp -vg > Vg -vg =2(p+m —n) > vg-vg =2(p —m+n),
VR - Vg =4, and vgi(g) - Vg, Vgi(gry Vg > Vp - Vg fori #O0.

Case IILH: {g;;} < {l;;} and {e;;} N {h;;} # @. This case is eliminated by an
argument given in proof of Lemma 2 (the curve cp does not bound a disc in V).
Case IILL: {g;;} N{lij} # @ and {g;;} N {h;;} # @. After applying B! to co we
can assume that cg is as in Figure 21. Let x = [{k;;} N {/;;}|/2 then by arguing as
in Case LA.1, we have 2(n+m + p) =vp-vg > vp-vg =2(m —n+3p —2x) >
Vg Vg =2(m —n+ p), vg-vg, =4, and vgi(g) - Vg, Vgi(g) Vg > vp - Vg for
i #0. O

4. A presentation for 7,

We will first prove Theorem 1. Then by using Bass—Serre theory we will prove
Theorem 2.

Proof of Theorem 1. Suppose that I is not a tree. Then there is a nontrivial loop
in I'. For any loop & in I', let NV (§) denote the number of vertices of £&. Then
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o =min{NV(§) | £ is a nontrivial loop in r } > 0. Since each edge of I" lies on a
single 2-simplex, oo > 8. Let &y be a nontrivial loop in I" such that N V(&) = ap.
Since &g is of minimal length all its vertices are distinct. Let vy be any vertex of &g,
and let vg, vy, v2, V3, ..., Uy,—1 be the consecutive vertices of §y. We may suppose
that vg € I'. Then vg, va, v4, . .., Vy,—2 are vertices of I', and v - Vg2 =vgy—2-v0 =4
for k € {0,2,4,...,00—4}.

We claim v - vg < vg42 - vg for k € {0,2,4, ..., a9 —4}. The proof will be by
induction on the index k, as follows.

If k=0, then vg-vg =0 < vy -vg =4. Assume v - Vg < Vg4 - Vg for k €
{0,2, ..., 00— 6}. If vky4-v9 < Vky2-vg, then vg - vr14 =4 by Proposition 2. Since
Vg * Vk42 = V42 - Vk44 = 4, the vertices vg, Vg2, Vg4 form a 2-simplex A in I'.
Then we get a loop &€ in " with vertices V0s UL, v oy Uks Uy Vkgds Vk45s -+ s Ugg—2s
Vao—1, Where u is the barycenter of A. This contradicts the minimality of «p.

By the claim above, we get vg - Vyy—4 < Vg - Vgy—2. But 4 < vg - vo,—4 and
V0 - Ugy—2 = 4, a contradiction. O

Proof of Theorem 2. Let vy be a vertex of I corresponding to the barycenter of the
2-simplex whose vertices are vp, vspy and vsp). Let E be the edge of " whose
vertices are vp and vy. Let Hp be the subgroup of 3, generated by the elements
that stabilize vp. Let Hy be the subgroup of ¥, generated by the elements that
preserve vy. Let Hg be the group of elements of 3¢, that stabilize the edge E.

e Scharlemann in [2004, Lemma 2] presents Hp as

Hp = ([a], [B], [yl | [al = [y]* = [ay]* = [aBap~ 1= 1, [yBy] = [«B])
E(Z D) 1.

o The subgroup Hy, fixes the set {vp, vs(p), vs2(py}. Therefore

Hy = (18], [e], [y]] [8F =[] = [y)* =[ada~ '8 1 =[ay] =1,
[81=[r8v])
E (L3 X2y D 7,.
 Anelement & of 3 fixes the sets {vp} and {vs(p), vs2(py} if and only if h € HE.
Hence
Hg = (el [y]| [P =y =[ay) =1)
=7, ®7,.
The action of ¥, on the 2-complex I' induces an action of ¥, on the tree r.
The subgroups Hp and H), are the isotropy subgroups of 3, fixing the vertices vp

and vy, respectively. By the standard Bass—Serre theory [Serre 2003], the group
3, is thus a free product of the subgroups Hp and Hj, amalgamated over the
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subgroup Hg:

Ho=Hp x Hy=Z=Z D7) )2y * (Z3%x2y)DZs. O
HE Z@ZZ

2
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