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Scharlemann constructed a connected simplicial 2-complex 0 with an ac-
tion by the group H2 of isotopy classes of orientation-preserving homeo-
morphisms of S3 that preserve the isotopy class of an unknotted genus 2
handlebody V . In this paper we prove that the 2-complex 0 is contractible.
Therefore we get a finite presentation of H2.

1. Introduction

Let Hg be the group of isotopy classes of orientation-preserving homeomorphisms
of S3 that preserve the isotopy class of an unknotted genus g handlebody V . In
[1933], Goeritz proved that H2 is finitely generated. In 1977, Goeritz’s theorem
was generalized to arbitrary genus g ≥ 2 by Jerome Powell [1980]. In 2003, Mar-
tin Scharlemann noticed that Powell’s proof contains a serious gap. Scharlemann
[2004] gave a modern proof of Goeritz’s theorem by introducing a simplicial 2-
complex 0, with an action by H2, that deformation retracts onto a graph 0̃. Given
any two distinct vertices v, ṽ of 0, Scharlemann constructed a vertex u in 0 that is
adjacent to v and “closer” to ṽ (by “closer” we mean the intersection number of u
and ṽ; see Definition 1). Hence H2 acts on the connected graph 0̃ and is generated
by the isotopy classes of elements denoted by α, β, γ , and δ (see Section 2 for a
complete description). In this paper we study the geometry of 0 by showing that
u is essentially unique (for a precise statement see Proposition 2). We derive the
following theorem.

Theorem 1. The graph 0̃ is a tree, and shortest paths can be calculated algorith-
mically.

Note that 0̃ is locally infinite. So calculating paths is not trivial. We also get

Theorem 2. (i) H2 has generators [α], [β], [γ ], and [δ] and relations [α]2 =
[γ ]2 = [δ]3 = [αγ ]2 = [αδαδ−1

] = [αβαβ−1
] = 1, [γβγ ] = [αβ], and [δ] =

[γ δ2γ ].
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(ii) H2 ∼= (Z⊕Z2) o Z2 ∗
Z2⊕Z2

(Z3 o Z2)⊕Z2

2. Preliminaries

We give a description of the 2-complex 0 introduced in [Scharlemann 2004], to
which we refer for details about 0.

Let V be an unknotted handlebody of genus two in S3, and let W be the closure
of its complement. Let T be the boundary of V . Then T is a genus two Heegaard
surface for S3. Let H2 denote the group of isotopy classes of orientation-preserving
homeomorphisms of S3 that leave the genus two handlebody V invariant. A sphere
P in S3 is called a reducing sphere for T if P intersects T transversely in a simple
closed curve which is homotopically nontrivial on T . For any reducing sphere P
for T , let cP denote P ∩ T , and let vP denote the isotopy class of cP on T .

Definition 1. For any two reducing spheres R, Q for T , define the intersection
number of vR and vQ as

vR · vQ = min
cR′∈vR
cQ′∈vQ

|cR′ ∩ cQ′ |,

where |cR′ ∩ cQ′ | is the geometric intersection number of cR′ with cQ′ .

Let 0 be a complex whose vertices are isotopy classes of reducing spheres for
T . A collection P0, . . . , Pn of reducing spheres bounds an n-simplex in 0 if and
only if vPi · vPj = 4 for all 0 ≤ i 6= j ≤ n. In fact n ≤ 2; see [Scharlemann and
Thompson 2003, Lemma 2.5]. So 0 is a simplicial 2-complex. See Figure 1 for a
local picture of 0 and a picture of three curves forming the vertices of a 2-simplex
in 0. Let 4 be any 2-simplex of 0. We denote by S4 the “spine” of 4, which is
the subcomplex of the barycentric subdivision consisting of all closed 1-simplices
that contain the barycenter and a vertex of 4. Clearly 4 deformation retracts onto
S4. Let

0̃ =
⋃
4

S4.

So 0̃ is a graph. Since no two 2-simplices of 0 share an edge [Scharlemann and
Thompson 2003, Lemma 2.5], the simplicial 2-complex 0 deformation retracts
onto the graph 0̃.

A belt curve on a genus two surface is a homotopically nontrivial separating
simple closed curve. Let P denote a reducing sphere whose intersection with T
is a belt curve, which we denote cP . The reducing sphere P divides S3 into two
3-balls B± whose intersections with the genus two surface T are two genus one
surfaces T± = T ∩ B±, each having one boundary component. The surface T−

(respectively T+) contains two simple closed curves B, Z (respectively C , Y )
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Γ

Figure 1. Left: locally 0. Right: three curves forming the vertices
of a 2-simplex in 0.

Figure 2. The curves cP , A, B, C , X , Y , and Z .

meeting at one point. The curve B (respectively C) bounds a nonseparating disc in
W which is homotopically nontrivial in V . The curve Z (respectively Y ) bounds
a nonseparating disc in V which is homotopically nontrivial in W . The genus
two surface T contains two disjoint simple closed curves A and X . The curve A
is homotopically nontrivial in V , disjoint from B and C , bounds a nonseparating
disc in W , and intersects Z and Y at one point. The curve X is homotopically
nontrivial in W , disjoint from Z , Y and A, bounds a nonseparating disc in V , and
intersects B and C at one point. See Figure 2.

Throughout this paper, unless otherwise stated, whenever we choose a reducing
sphere R for T such that vR 6= vP , we will assume that the curve cR intersects cP ,
B, C , Y , Z transversely and minimally and intersects A transversely.
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Figure 3. Homeomorphisms α, β, γ and δ.

There exist three automorphisms α, β, γ of S3 with the following properties.
The automorphism α is an orientation-preserving homeomorphism of S3 that pre-
serves V and P and that maps the curves A, B, C to A, B, C respectively by an
orientation-reversing map. The homeomorphism α is the hyperelliptic involution
that preserves every simple closed curve (up to isotopy). The automorphism β is
an orientation-preserving homeomorphism of S3 that preserves V and P , fixes T−

pointwise, and maps C to C and Y to Y by an orientation-reversing map. Also
|A ∩ β(X)| = 2. The automorphism γ preserves V and P and maps the curves
cP to cP and A to A by an orientation-reversing map. See Figure 3. Scharlemann
[2004] showed that H2 is generated by the isotopy classes [α], [β], [γ ], and [δ],
where δ is any orientation-preserving homeomorphism of S3 such that δ(V ) = V
and vP · vδ(P) = 4. In this paper we will take δ, as follows. Consider the genus
two handlebody V as a regular neighborhood of a sphere, centered at the origin,
with three holes. The homeomorphism δ is a 2π/3 rotation of V about the vertical
z-axis. See Figure 3.

3. Arc families of reducing spheres on T±

Definition 2. Denote any oriented curve D on T by D
→

and the curve oriented in
the direction opposite to D

→
by D
←

.

Orient the curves A, B, C , X , Y , Z in such a way that δ2(A
→

)= δ(B
→

)= C
→

and
δ2(X
→

)= δ(Y
→

)= Z
→

.

Definition 3. For any oriented properly embedded arc ν ⊂ T±, we may write
[ν] ∈ H1(T±, ∂T±;Z) as a[µ] + b[λ] where µ = Z

→
and λ = B

→
if ν ⊂ T−, and

µ= Y
→

and λ= C
→

if ν ⊂ T+. The slope of ν is defined to be |a/b| ∈Q+ ∪∞.
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Definition 4. For any reducing sphere Q such that vQ 6= vP , let N (Q, T±, a)

denote the number of arcs in Q ∩ T± of slope a.

Definition 5. Up to isotopy, there are natural homeomorphisms �, 9 : S3
→ S3,

where � maps V to W and A
→

, B
→

, C
→

, X
→

, Y
→

, Z
→

to X
←

, Y
←

, Z
←

, A
→

, B
→

, C
→

, respectively,
and 9 maps W to W and A

→
, B
→

, C
→

, X
→

, Y
→

, Z
→

to A
→

, B
→

, C
→

, X
←

, Y
←

, Z
←

, respectively;
see Figure 4. Let 2=9�.

Proposition 1. Let Q be a reducing sphere for T such that vQ 6= vP . Then
N (Q, T−, a)= N (Q, T+, 1/a).

Proof. Without loss of generality, we may assume that Q = w(P) where w is a
word in α, β, γ and δ.

We claim 2(cQ)= cQ . The proof is as follows.
The hyperelliptic involution α preserves the isotopy class of any simple closed

curve on T . After an isotopy, we may assume that α(cQ) = cQ . Let us write
w as a1a2 · · · an where ai ∈ {α, β±1, γ, δ±1

}. The homeomorphism 2 satisfies
2α = α2, 2β = αβ2, 2γ = αγ2, 2δ = δ2, and 2(cP)= cP . Then 2(cQ)=

2(w(cP)) = 2(a1a2 · · · an(cP)) = b1b2 · · · bn2(cP), where bi is α if ai = α, αβ

if ai = β, αγ if ai = γ , and δ if ai = δ. So b1b2 · · · bn2(cP)= b1b2 · · · bn(cP)=

a1a2 · · · an(cP)= w(cP)= cQ .

PSfrag
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Figure 4. Homeomorphism 2=9�.
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Since 2 maps the curves A, B, C , X , Y , Z to X , Y , Z , A, B, C , respectively, it
takes the arcs of cQ of slope a on T− to the arcs of cQ of slope 1/a on T+. �

Definition 6. For any reducing sphere Q for T such that vQ 6= vP , let F±Q,a denote
the arc family of cQ on T± of slope a.

Lemma 1. Suppose Q is any reducing sphere for T such that vQ 6= vP . Then
N (Q, T−, 0) 6= N (Q, T−,∞).

Proof. Suppose that N (Q, T−, 0) = N (Q, T−,∞) = m. The number m cannot
be 0 because the curve cQ must have an arc of slope 0 in either T− or in T+ by
[Scharlemann and Thompson 2003, Lemma 4]. By Proposition 1, N (Q, T+, 0)=

N (Q, T+,∞)=m and N (Q, T−, 1)= N (Q, T+, 1). The curve cQ bounds a disc
in V . So cQ must have a “wave” τ [Volodin et al. 1974] with respect to one of the
curves Y or Z . Say it is Y , as illustrated below.

Then the arc τ of cQ starts at Y , goes to T−, and then comes back to Y on the
same side without touching Z . So all the arcs of cQ intersecting Z must intersect
the arc on Y that is bounded by ends of τ . Then we get

N (Q, T−,∞)+ N (Q, T−, 1)+ 2≤ N (Q, T+,∞)+ N (Q, T+, 1),

a contradiction. �

Notation 1. Let Q be a reducing sphere for T .

• If N (Q, T−, 0)= n 6= 0 then e01, e02, . . . , e0n , e1n , e1n−1, . . . , e11 will denote
consecutive end points on cP of the arcs in F−Q,0, where e0 j and e1 j are end
points of the same arc; h01, h02, . . . , h0n , h1n , h1n−1, . . . , h11 will denote
consecutive end points on cP of the arcs in F+Q,∞, where h0 j and h1 j are end
points of the same arc (the existence of hi j is guaranteed by Proposition 1).

• If N (Q, T−,∞) = m 6= 0 then g01, g02, . . . , g0m , g1m , g1m−1, . . . , g11 will
denote consecutive end points on cP of the arcs in F−Q,∞, where g0 j are g1 j



A PRESENTATION FOR THE AUTOMORPHISMS OF THE 3-SPHERE 207

are end points of the same arc; f01, f02, . . . , f0m , f1m , f1m−1, . . . , f11 will
denote consecutive end points on cP of the arcs in F+Q,0, where f0 j and f1 j

are end points of the same arc.

• If N (Q, T−, 1)= p 6=0 then k01, k02, . . . , k0p, k1p, k1p−1, . . . , k11 will denote
consecutive end points on cP of the arcs in F−Q,1 where k0 j and k1 j are end
points of the same arc; l01, l02, . . . , l0p, l1p, l1p−1, . . . , l11 will denote end
points on cP of the arcs in F+Q,1, where l0 j and l1 j are end points of the same
arc.

Lemma 2. Let Q be a reducing sphere for T such that

N (Q, T−, 0)= n > N (Q, T−,∞)= m > N (Q, T−, 1)= 0.

Then { fi j | i = 0, 1 and j = 1, m} ⊆ {ei j | i = 0, 1 and j = 2, . . . , n− 1}.

Proof. Suppose the contrary, as illustrated below.

Then cQ does not have a “wave” τ [Volodin et al. 1974] with respect to the curve
Y or the curve Z . Therefore cQ cannot bound a disc in V , a contradiction. �

Proposition 2. Let v and ṽ be any two distinct vertices of 0 such that v · ṽ 6= 4.
Then there exists unique vertex u of 0 such that

(i) u · v = 4,

(ii) u · ṽ < v · ṽ, and

(iii) u · ṽ < v′ · ṽ for any vertex v′ of 0 such that v′ 6= u and v′ · v = 4.

Moreover, there is at most one vertex v′′ of 0 satisfying v · v′′ = 4 and u · ṽ <

v′′ · ṽ ≤ v · ṽ. In this case v′′ · u = 4.

The proposition is illustrated below.
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Proof. Let v and ṽ be any two vertices of 0 such that v 6= ṽ and v · ṽ 6= 4. Since
the group H2 is transitive on the vertices of 0, we may assume that v = vP and ṽ

is a vertex of 0 such that ṽ 6= vP and vP · ṽ 6= 4. Then some word w in α, γ, β and
δ has w(cP) ∈ ṽ. Let Q denote the reducing sphere w(P). Since Q is not isotopic
to P there must be some arcs in cQ∩T±. By [Scharlemann 2004, Lemma 4] there
is an arc of cQ of slope 0 either on T− or on T+. Suppose it is on T−. Let ei j ,
gdq , krs , ftu , h yv, lwz denote the end points of the arcs of cQ∩T± as in Notation 1.
Possible cases for the arc families in cQ ∩ T± and their configurations, up to the
action of a power of β, are the following:

Case I. If

N (Q, T−, 0)= m,

N (Q, T−,∞)= 0,

N (Q, T−, 1/k)= a,

N (Q, T−, 1/(k+ 1))= b,

where k ≥ 1, then

N (Q, T+,∞)= m,

N (Q, T+, 0)= 0,

N (Q, T+, k)= a,

N (Q, T+, k+ 1)= b

by Proposition 1. Scharlemann in [2004, Lemma 5] constructs a reducing sphere
R satisfying (i) and (ii) (that is, vR · vP = 4 and vR · vQ < vP · vQ). We will show
that up to isotopy the reducing sphere R also satisfies (iii). Scharlemann’s reducing
sphere will be given explicitly in the various cases of the proof. Let n = a+ b.

Case I.A: n 6= 0. Let us label end points of the arcs in cQ ∩ T+ of slope different
from∞ as d1, d2, . . . , d2n . Then it is not hard to show {ei j }* {di } by an argument
similar to the proof of Lemma 2.

Case I.A.1: {di } * {ei j }. See the figure below. Set p = |{ei j } ∩ {hi j }|/2 then
1 ≤ p < m. Consider the curve ξ shown in the figure. It is easy to see that ξ

bounds a disc in V and a disc in W . So ξ is the intersection of a reducing sphere
S with T . Denote ξ by cS . The reducing sphere S satisfies vS · vQ ≤ |cS ∩ cQ | =

2(n−m+ 2p) < 2(n+m)= vP · vQ and vS · vP = 4.
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Claim 1. vS · vQ = |cS ∩ cQ |.
Claim 2. vβ i (S) · vQ, vβ i γ (S) · vQ > 2(n+m) for i 6= 0.

Proof of Claim 1. It suffices to show that there is no bigon on T formed by the
curves cS and cQ . We may assume that cS intersects cQ in a neighborhood N ⊆ T
of cP where N ∩ (B ∪ Z ∪C ∪ Y ) = ∅. The neighborhood N has two boundary
components N− and N+. Say N± ⊂ T±. The set cS ∩ N consists of four arcs ν1,
ν2, ν3, ν4. Assume that end points of the arcs ν1, ν2, ν3, and ν4 on N− are lined
up consecutively as N− ∩ ν1, N− ∩ ν2, N− ∩ ν3, and N− ∩ ν4. The curve cS has
two arcs a1 and a2 on T− of slope 0 and two arcs b1 and b2 on T+ of slope ∞.
Assume that νi ∩ a1 6= ∅ for i = 1, 2 and ν1 ∩ b1 6= ∅. See Figure 5. There are
eight regions D1, . . . , D8 on N that can contain a vertex of a bigon. The regions
D1, . . . , D8 are shown in Figure 5. Any bigon should contain two of them. After
an isotopy, we may assume that α(cQ)= cQ and α(cS)= cS . Then α(Di )= Di+2

for i = 1, 2, and 2({Di | i = 1, . . . , 4})= {Di | i = 5, . . . , 8} (see Definition 5 for
2). So it is enough to check if Di is a part of a bigon for i = 1, 2.

D1: The region D1 is part of a region D̃1 in T whose four consecutive sides are x ,
a1, y, and x ′, where y ∈ F−Q,0 and x, x ′ ∈ F+Q,k ∪ F+Q,k+1. See Figure 6(a). If
D̃1 is a bigon then vQ · vP < 2(n+m), a contradiction.

D2: • If b = 0 then a 6= 0. Then D2 is part of a region D̃2 whose five sides are
x , a1, y, y′, x ′ where x, x ′ ∈ F+Q,∞ and y, y′ ∈ F−Q,1/k . See Figure 6(b).
If D̃2 is a bigon then vQ · vP < 2(n+m), a contradiction.

• If a, b 6= 0 then D2 is part of a region D̃2 whose five sides are x , a1, y, y′,
x ′ where x, x ′ ∈ F+Q,∞, y ∈ F−Q,1/(k+1) and y′ ∈ F−Q,1/k . See Figure 6(c).
If D̃2 is a bigon then vQ · vP < 2(n+m), a contradiction.

By the cases above, vS · vQ = |cS ∩ cQ |.
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Figure 5

Figure 7 shows the intersection of a reducing sphere R′ with the surface T .
Notice that R′ ∈ vγ S and vS · vγ S = 4. By an argument similar to the proof of
Claim 1 we can show that vR′ · vQ = |cR′ ∩ cQ | = 4kb+ 4(k − 1)a + 2m + 2n =
vγ S · vQ ≥ 2m+ 2n. �

Proof of Claim 2. We will do the calculation for i = ±1. The general case is
similar. We may assume that β i (cS) and β iγ (cS) intersect cQ in a neighborhood
N described in the proof of Claim 1. By an argument similar to the proof of Claim
1, we get

• vβ(S) · vQ = 4p+ 2m+ 6n > 2(n+m). See Figure 8(a).

• vβ−1(S) · vQ = 6m+ 2n− 4p > 2(n+m). See Figure 8(b).

• vβγ (S) · vQ = 4kb+ 4(k− 1)a+ 4m+ 2n+ 2p > 2(n+m). See Figure 9(a).

• vβ−1γ (S) ·vQ = 4kb+4(k−1)a+6m+6n−4p > 2(n+m). See Figure 9(b).

This implies that the vertex vR = vS and satisfies the conditions of Proposition
2. �

Case I.A.2: {di }⊆{ei j }. See Figure 10. Set p=|{e0 j }∩{h0 j }|. Then 0< p≤m−n.
Either p < m − n − p or m − n − p < p. Assume p < m − n − p. Consider the
curve ξ shown in Figure 10. The curve ξ is an intersection of a reducing sphere S
with T . Denote ξ by cS . Notice that vS · vP = 4.

By an argument similar to the proof of Case I.A.1, we get



A PRESENTATION FOR THE AUTOMORPHISMS OF THE 3-SPHERE 211

Figure 6

Figure 7
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Figure 8

β(cR′)

(a)

β−1(cR′)

(b)

Figure 9

• vS · vQ = |cS ∩ cQ | = 2(m− n− 2p) < vP · vQ = 2(n+m);

• vS · vγ (S) = 4;

• vγ (S) · vQ = 4kb+ 4(k− 1)a+ 2(m+ n)≥ 2(m+ n) (see Figure 11);

• vβ i (S) · vQ , vβ i γ (S) · vQ > 2(n+m) for i 6= 0.

This implies that the vertex vR = vS and satisfies the conditions of Proposition 2.

Case I.B: n = 0. This is a special case of Case I.A.2.

Case II: N (Q, T−, 0)=m and N (Q, T−,∞)=n 6=0= N (Q, T−, 1). In this case,
N (Q, T+, 0) = n and N (Q, T+,∞) = m 6= 0 = N (Q, T+, 1) by Proposition 1.
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Figure 10

Figure 11. The curve cR′ in the figure is R′∩T for some reducing
sphere R′ for T satisfying R′ ∈ vγ S .

By Lemma 1, m 6= n. Suppose m < n. By Lemma 2,

{ei j | i = 0, 1 and j = 1, . . . , m} ⊆ { fi j | i = 0, 1 and j = 2, . . . , n− 1}.

By the argument in [Scharlemann 2004, Lemma 5], we get two nonisotopic reduc-
ing spheres for T that satisfy (i) and (ii). Let us call S the one having an arc on
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Figure 12

T− of slope 0 and S′ the one having an arc on T+ of slope 0. Figure 12 shows
the intersections of two reducing spheres R and R′ with T . It is easy to see that
R ∈ vS and R′ ∈ vS′ .

Let p=|{g0 j }∩{ f0 j }|. Then 0< p≤m−n. Either p <m−n−p or m−n−p < p.
Assume p < m − n− p. Then by an argument similar to the proof of Case I.A.1,
we can show that 2n+2m= vP ·vQ >vR ·vQ = 2n−2m >vR′ ·vQ = 2(n−m−2p),
vR · vR′ = 4 and vβ i (R) · vQ, vβ i (R′) · vQ > 2n+ 2m for i 6= 0.

Case III: N (Q, T−, 0) = m, N (Q, T−,∞) = n, and N (Q, T−, 1) = p where
m, n, p 6= 0. In this case, N (Q, T+, 0)= n, N (Q, T+,∞)=m, N (Q, T+, 1)= p
by Proposition 1. By Lemma 1, m 6= n. Say m > n.

The curves A, B, C , and cP divide T into four punctured discs T−f , T−b , T+f , and
T+b , where T−f ∪ T−b = T− and T+f ∪ T+b = T+. This division also gives two pairs
of pants T−f ∪ T+f = P f and T−b ∪ T+b = Pb. Let c f = P f ∩ cP and cb = Pb ∩ cP .

Let K be a reducing sphere intersecting the interior of T− in a simple closed
curve parallel to cP . The reducing sphere K divides T into two parts. Denote the
one containing the curve B by t− and the one containing the curve C by t+. Let
c f

K = T−f ∩ K and cb
K = T−b ∩ K .

Suppose that

F−Q,0 ∩ t− ∩ A = F−Q,1 ∩ t− ∩ A =∅,

|F−Q,∞ ∩ (c f
K \ A)| = |F−Q,∞ ∩ (cb

K \ A)| = |F−Q,∞ ∩ t− ∩ A| = n

and that k ′01, k ′02, . . . , k ′0p, e′01, e′02, . . . , e′0m , and g′01, g′02, . . . , g′0n are consecutive
intersection points of the arcs in F−Q,1, F−Q,0 and F−Q,∞ with c f

K , respectively. Locate
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Figure 13

arcs of cQ on T+ so that

|F+Q,∞ ∩ (c f
P \ A)| = |F+Q,∞ ∩ (cb

P \ A)| = |F+Q,∞ ∩ A| = m,

|F+Q,0 ∩ A| = |F+Q,1 ∩ A| = 0.

Suppose that l01, . . . , l0p, f01, . . . , f0n , and h01, . . . , h0m are consecutive intersec-
tion points of the arcs in F+Q,1, F+Q,0, and F+Q,∞ with c f , respectively. Suppose τ is
an arc in F−Q,1 whose intersection with c f

K is k ′01. Suppose τ∩(t+\T+)∩A 6=∅. See
Figure 13. By applying a power of β, we can assume 2 ≤ |cQ ∩ A∩ (t+ \ T+)|<
2(p + n + m). By the argument in [Scharlemann 2004, Lemma 5], we get two
nonisotopic reducing spheres for T that satisfy (i) and (ii). Let us call S the one
having an arc on T− of slope 0 and S′ the one having an arc on T+ of slope 0.

The figures below show intersections of two reducing spheres R, R′ with T . It
is easy to see that R ∈ vS and R′ ∈ vS′ .

Case III.A: {gi j } ⊆ {hi j }. See Figure 14. Let x = |{hi j } ∩ {ki j }|/2. Arguing as in
Case I.A.1, we get 2(n+m+ p)= vP · vQ > vR′ · vQ = 2(m+ p−n) > vR · vQ =

2(m+ p− n− 2x), vR · vR′ = 4 and vβ i (R) · vQ, vβ i (R′) · vQ > vP · vQ for i 6= 0.

Case III.B: {gi j } ∩ {hi j } 6= ∅ and {gi j } ∩ { fi j } 6= ∅, {ei j } ∩ {hi j } = ∅. See Figure
15. Let x = |{ki j } ∩ {hi j }|/2. Arguing as in Case I.A.1, we get 2(n +m + p) =
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vP · vQ > vR′ · vQ = 2(p+ n−m + 2x) > vR · vQ = 2(p+ n−m), vR · vR′ = 4,
and vβ i (R) · vQ, vβ i (R′) · vQ > vP · vQ for i 6= 0.

Case III.C: {gi j }∩ {hi j } 6=∅, {gi j }∩ { fi j } 6=∅, and {ei j }∩ {hi j } 6=∅. See Figure
16. Let x = |{ fi j } ∩ {gi j }|/2. Arguing as in Case I.A.1, we get 2(n +m + p) =

vP ·vQ > vR′ ·vQ = 2(m−n+2x+ p) > vR ·vQ = 2(m−n− p+2x), vR ·vR′= 4,
and vβ i (R) · vQ, vβ i (R′) · vQ > vP · vQ for i 6= 0.

Case III.D: {gi j }∩{ fi j } 6=∅, {gi j }∩{li j } 6=∅, {ei j }∩{li j } 6=∅, and {ei j }∩{hi j }=

∅. See Figure 17. Let x = |{gi j } ∩ {li j }|/2. Arguing as in Case I.A.1, we get
2(n+m+ p)= vP ·vQ > vR′ ·vQ = 2(p+n+m−2x) > vR ·vQ = 2(p+n−m),
vR · vR′ = 4, and vβ i (R) · vQ, vβ i (R′) · vQ > vP · vQ for i 6= 0.

Case III.E: {gi j }∩{ fi j } 6=∅, {gi j }∩{li j } 6=∅, {ei j }∩{li j } 6=∅, and {ei j }∩{hi j } 6=∅.
See Figure 18. Let x = |{gi j }∩{li j }|/2. Arguing as in Case I.A.1, we get vR′ ·vQ =

2(m + n + p− 2x), vR · vQ = 2(m + n − p+ 2x) and vβ i (R) · vQ, vβ i (R′) · vQ >

2(n+m+ p) for i 6= 0. So vR′ ·vQ = vR ·vQ if and only if p= 2x . If p is equal to
2x , then by an argument given in the proof of Lemma 2, we can show that cQ does
not bound a disc in V . Therefore either vR′ · vQ > vR · vQ or vR′ · vQ < vR · vQ .
Notice that vR · vR′ = 4.

Case III.F: {gi j } ∩ { fi j } 6=∅, {gi j } ∩ {li j } 6=∅, and {gi j } ∩ {hi j } 6=∅. See Figure
19. Let x = |{gi j } ∩ { fi j }|/2. Arguing as in Case I.A.1, we get 2(n +m + p) =
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Figure 15

Figure 16
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Figure 17

Figure 18
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vP · vQ > vR · vQ = 2(m + x + 3p− n + x) > vR′ · vQ = 2(m + x + p− n + x),
vR · vR′ = 4, and vβ i (R) · vQ, vβ i (R′) · vQ > vP · vQ for i 6= 0.

Case III.G: {ei j , gi j } ⊆ {li j }. See Figure 20. Let x = |{ki j } ∩ {li j }|/2. Arguing as
in Case I.A.1, we get vP ·vQ > vR′ ·vQ = 2(p+m−n) > vR ·vQ = 2(p−m+n),
vR · vR′ = 4, and vβ i (R) · vQ, vβ i (R′) · vQ > vP · vQ for i 6= 0.

Case III.H: {gi j } ⊆ {li j } and {ei j } ∩ {hi j } 6= ∅. This case is eliminated by an
argument given in proof of Lemma 2 (the curve cQ does not bound a disc in V ).

Case III.I: {gi j } ∩ {li j } 6= ∅ and {gi j } ∩ {hi j } 6= ∅. After applying β−1 to cQ we
can assume that cQ is as in Figure 21. Let x = |{ki j } ∩ {li j }|/2 then by arguing as
in Case I.A.1, we have 2(n+m+ p)= vP ·vQ > vR ·vQ = 2(m−n+3p−2x) >

vR′ · vQ = 2(m − n + p), vR · vR′ = 4, and vβ i (R) · vQ, vβ i (R′) · vQ > vP · vQ for
i 6= 0. �

4. A presentation for H2

We will first prove Theorem 1. Then by using Bass–Serre theory we will prove
Theorem 2.

Proof of Theorem 1. Suppose that 0̃ is not a tree. Then there is a nontrivial loop
in 0̃. For any loop ξ in 0̃, let N V (ξ) denote the number of vertices of ξ . Then
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Figure 20
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α0 =min{N V (ξ) | ξ is a nontrivial loop in 0̃ }> 0. Since each edge of 0 lies on a
single 2-simplex, α0 ≥ 8. Let ξ0 be a nontrivial loop in 0̃ such that N V (ξ0)= α0.
Since ξ0 is of minimal length all its vertices are distinct. Let v0 be any vertex of ξ0,
and let v0, v1, v2, v3, . . . , vα0−1 be the consecutive vertices of ξ0. We may suppose
that v0∈0. Then v0, v2, v4, . . . , vα0−2 are vertices of 0, and vk ·vk+2=vα0−2·v0=4
for k ∈ {0, 2, 4, . . . , α0− 4}.

We claim vk · v0 < vk+2 · v0 for k ∈ {0, 2, 4, . . . , α0− 4}. The proof will be by
induction on the index k, as follows.

If k = 0, then v0 · v0 = 0 < v2 · v0 = 4. Assume vk · v0 < vk+2 · v0 for k ∈
{0, 2, . . . , α0−6}. If vk+4 ·v0≤ vk+2 ·v0, then vk ·vk+4= 4 by Proposition 2. Since
vk · vk+2 = vk+2 · vk+4 = 4, the vertices vk , vk+2, vk+4 form a 2-simplex 4 in 0.
Then we get a loop ξ in 0̃ with vertices v0, v1, . . . , vk , u, vk+4, vk+5, . . . , vα0−2,
vα0−1, where u is the barycenter of 4. This contradicts the minimality of α0.

By the claim above, we get v0 · vα0−4 < v0 · vα0−2. But 4 < v0 · vα0−4 and
v0 · vα0−2 = 4, a contradiction. �

Proof of Theorem 2. Let vM be a vertex of 0̃ corresponding to the barycenter of the
2-simplex whose vertices are vP , vδ(P) and vδ2(P). Let E be the edge of 0̃ whose
vertices are vP and vM . Let HP be the subgroup of H2 generated by the elements
that stabilize vP . Let HM be the subgroup of H2 generated by the elements that
preserve vM . Let HE be the group of elements of H2 that stabilize the edge E .

• Scharlemann in [2004, Lemma 2] presents HP as

HP = 〈[α], [β], [γ ] | [α]
2
= [γ ]2 = [αγ ]2 = [αβαβ−1

] = 1, [γβγ ] = [αβ]〉

∼= (Z⊕Z2) o Z2.

• The subgroup HM fixes the set {vP , vδ(P), vδ2(P)}. Therefore

HM =
〈
[δ], [α], [γ ] | [δ]3 = [α]2 = [γ ]2 = [αδα−1δ−1

] = [αγ ]2 = 1,

[δ] = [γ δ2γ ]
〉

∼= (Z3 o Z2)⊕Z2.

• An element h of H2 fixes the sets {vP} and {vδ(P), vδ2(P)} if and only if h∈HE .
Hence

HE = 〈[α], [γ ] | [α]
2
= [γ ]2 = [αγ ]2 = 1〉

∼= Z2⊕Z2.

The action of H2 on the 2-complex 0 induces an action of H2 on the tree 0̃.
The subgroups HP and HM are the isotropy subgroups of H2 fixing the vertices vP

and vM , respectively. By the standard Bass–Serre theory [Serre 2003], the group
H2 is thus a free product of the subgroups HP and HM amalgamated over the
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subgroup HE :

H2 ∼= HP ∗
HE

HM ∼= (Z⊕Z2) o Z2 ∗
Z2⊕Z2

(Z3 o Z2)⊕Z2. �
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