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We continue the comparison between lines of minima and Teichmüller geo-
desics begun in our previous work. For two measured laminations ν+ and
ν− that fill up a hyperbolizable surface S and for t ∈ (−∞, ∞), let Lt be
the unique hyperbolic surface that minimizes the length function et l(ν+) +

e−t l(ν−) on Teichmüller space. We prove that the path t 7→ Lt is a Teich-
müller quasigeodesic.

1. Introduction

This paper continues the comparison between lines of minima and Teichmüller
geodesics begun in [Choi et al. 2006]. Let S be a hyperbolizable surface of finite
type and T(S) be the Teichmüller space of S. Let ν+ and ν− be two measured
laminations that fill up S. The associated line of minima is the path t 7→ Lt ∈ T(S),
where Lt = Lt(ν

+, ν−) is the unique hyperbolic surface that minimizes the length
function et l(ν+) + e−t l(ν−) on T(S); see [Kerckhoff 1992] and Section 2 be-
low. Lines of minima have significance for hyperbolic 3-manifolds: infinitesimally
bending Lt along the lamination ν+ results in a quasifuchsian group whose convex
core boundary has bending measures in the projective classes ν+ and ν− and in
the ratio e2t

: 1; see [Series 2005]. In this paper we prove:

Theorem A. The line of minima Lt for t ∈ R is a quasigeodesic with respect to the
Teichmüller metric. In other words, there are universal constants c > 1 and C > 0,
depending only on the topology of S, such that for any a, b ∈ R with a < b, we have

b − a
c

− C ≤ dT(S)(La, Lb) ≤ c(b − a) + C,

where dT(S) is the Teichmüller distance.

An obvious way to approach this would be to compare the time-t surface Lt

with the corresponding surface Gt on the Teichmüller geodesic whose horizontal
and vertical foliations at time t are respectively, etν+ and e−tν− [Gardiner and
Masur 1991]. In [Choi et al. 2006], we did just this. We showed that if neither
surface Lt nor Gt contains short curves, that is, they are both contained in the thick
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part of Teichmüller space, then the Teichmüller distance between them is bounded
above by a uniform constant that is independent of t . More generally, we showed
that the set of curves which are short on the two surfaces coincide. We also showed,
however, that the ratio of lengths of the same short curve on the two surfaces may
be arbitrarily large so the path Lt may deviate arbitrarily far from Gt . It is therefore
not immediately obvious how to derive Theorem A from [Choi et al. 2006]. To
explain our method, we first summarize the results of [Choi et al. 2006] in more
detail.

It turns out that on both Lt and Gt , a curve α is short if and only if at least
one of two quantities Dt(α) and Kt(α) is large. These quantities depend on the
topological relationship between α and the defining laminations ν+ and ν−. They
relate to the modulus of a maximal embedded annulus around α; the modulus of a
flat annulus is approximately Dt(α) and the modulus of an expanding annulus is
approximately log Kt(α); see [Minsky 1992] and Sections 2 and 3 below. We say
that a curve is extremely short if it is less than some prescribed ε0 > 0 depending
only on the topology of S; see Section 2. The essential results in [Choi et al. 2006]
were the following estimates (see Section 2 for notation).

Theorem 1.1 [Choi et al. 2006, Theorems 5.10, 5.13, 7.13, 7.14]. Let α be a simple
closed curve on S. If α is extremely short on Gt then

1
lGt (α)

� max{Dt(α), log Kt(α)},

while if α is extremely short on Lt then

1
lLt (α)

� max
{

Dt(α),
√

Kt(α)
}
.

Theorem 1.2 [Choi et al. 2006, Theorem 7.15]. The Teichmüller distance between
Lt and Gt is given by

dT(S)(Lt , Gt)
+

�
1
2 log max

α

{ lGt (α)

lLt (α)

}
,

where the maximum is taken over all simple closed curves α that are extremely
short in Gt . In particular, the distance between the thick parts of Lt and Gt is
bounded.

It follows from these results that, along intervals on which either there are no
short curves or Dt(α) dominates for all short curves α, the surfaces Lt and Gt

remain a bounded distance apart. However the path Lt may deviate arbitrarily far
from Gt along time intervals on which Kt(α) is large and dominates Dt(α). The
situation is complicated by the fact that as we move along Lt , the family of curves
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which are short at a given point in time will vary with t , so the intervals along
which different curves α are short will overlap.

In addition to the above results from [Choi et al. 2006], there are two main
ingredients in the proof of Theorem A. The first is a detailed comparison of the
rates of change of Kt(α) and Dt(α) with t . Some simple estimates are made in
Lemmas 3.1 and 3.2, with more elaborate consequences drawn in Lemma 5.1 and
especially Lemma 5.2. These results use Minsky’s product regions theorem (see
Theorem 2.4), which allows us to reduce calculations of distance in regions of
Teichmüller space in which a given family of curves is short, to straightforward
estimates in H2. To apply Minsky’s theorem, we need to compare not only lengths
but also twists. We rely on the bounds on twists proved in [Choi et al. 2006] and
reviewed in Theorems 2.8 and 2.9; these enter in a crucial way into the proof of
Lemma 5.1.

The second main ingredient is control of distance along intervals along which
Kt(α) is large. Consider the surface Sα obtained by cutting S along a short curve α

and replacing the two resulting boundary components by punctures. The following
rather surprising result, proved in Section 4, states that on intervals along which
Kt(α) is large, we can estimate the Teichmüller distance by restricting to the Te-
ichmüller space of the surface Sα. In other words, the contribution to Teichmüller
distance in Minsky’s formula 2.4 due to the short curve α itself may be neglected;
see Theorem 4.1 for a precise statement.

Theorem B. If Kt(α) is sufficiently large for all t ∈ [a, b], the distance in T(Sα)

between the restrictions of Ga and Gb to Sα is equal to b − a, up to an additive
error that is bounded by a constant depending only on the topology of S.

The proof of Theorem A requires estimating upper and lower bounds for

dT(S)(La, Lb)

over very large time intervals [a, b]. Given the first of the two ingredients above, the
upper bound is relatively straightforward. The lower bound depends on Theorem B.
The actual application involves a rather subtle inductive procedure based on Lemma
5.2 which shows that at least one term in Minsky’s formula 2.4 always involves a
contribution comparable to b − a.

The paper is organized as follows. Section 2 gives standard background and in-
troduces the twist twσ (ξ, α) of a lamination ξ about a curve α with respect to a hy-
perbolic metric σ . We give the main estimates about twists from [Choi et al. 2006].
In Section 3, we recall from [Choi et al. 2006] the definitions of Dt(α) and Kt(α)

and derive some elementary results about their rates of change with t . In Section
4 we prove Theorem B and in Section 5 we prove Theorem A.
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2. Background

Notation. Since we will be dealing mainly with coarse estimates, we want to avoid
heavy notation and keep track of constants which are universal, in that they do not
depend on any specific metric or curve under discussion. For functions f , g we
write f � g to mean that there are constants c ≥ 1, C ≥ 0, depending only on the
topology of S and the fixed constant ε0 (see below), such that

1
c

g(x) − C ≤ f (x) ≤ cg(x) + C.

We use
f ∗

� g and f
+

� g

to mean that these inequalities hold with C = 0 and c = 1, respectively. The
symbols ≺,

+

≺, ∗

≺, and so on, are defined similarly. In particular, we write X ≺ 1 to
indicate X is bounded above by a positive constant depending only on the topology
of S and ε0.

Short curves. Let C(S) denote the set of isotopy classes of nontrivial, nonpe-
ripheral simple closed curves on S. The length of the geodesic representative of
α ∈ C(S) with respect to a hyperbolic metric σ ∈ T(S) will be denoted lσ (α). In
our dealings with short curves we will have to make various assumptions to ensure
the validity of our estimates, which all require that the length lσ (α) of a “short”
curve is less than various constants, in particular less than the Margulis constant.
We suppose that ε0 > 0 is chosen once and for all to satisfy all needed assumptions,
and say a simple closed curve α is extremely short in σ if lσ (α) < ε0.

Measured laminations and Teichmüller space. We denote the space of measured
laminations on S by ML(S) and write lσ (ξ) for the hyperbolic length of a measured
lamination ξ ∈ ML(S). For ξ ∈ ML(S), we denote the underlying leaves by | ξ |.

Kerckhoff lines of minima. Suppose that ν+, ν−
∈ ML(S) fill up S, meaning that

the sum of (geometric) intersections i(ν+, ξ) + i(ν−, ξ) > 0 for all ξ ∈ ML(S).
Kerckhoff [1992] showed that the sum of length functions

σ 7→ lσ (ν+) + lσ (ν−)

has a unique global minimum on T(S). Moreover, as t varies in (−∞, ∞), the
minimum Lt ∈ T(S) of l(ν+

t ) + l(ν−
t ) for the measured laminations ν+

t = etν+

and ν−
t = e−tν− varies continuously with t and traces out a path t 7→ Lt called the

line of minima L(ν+, ν−) of ν±.

Teichmüller geodesics. A pair of laminations ν+, ν−
∈ML(S) which fill up S also

defines a Teichmüller geodesic G = G(ν+, ν−). The time-t surface Gt ∈ G is the
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unique Riemann surface that supports a quadratic differential qt whose horizontal
and vertical foliations are the measured foliations corresponding to ν+

t and ν−
t

respectively; see [Gardiner and Masur 1991; Levitt 1983]. Flowing distance d
along G expands the vertical foliation by a factor ed and contracts the horizontal
foliation by e−d . By abuse of notation, we denote the hyperbolic metric on the
surface Gt also by Gt , and likewise denote the quadratic differential metric defined
by qt also by qt .

Balance time. For a curve α ∈ C(S) that is not a component of either the vertical
or the horizontal foliation, let tα denote the balance time of α at which

i(α, ν+

t ) = i(α, ν−

t ).

Along G, a curve is shortest near its balance time. More precisely, we have the
following proposition, which follows from [Rafi 2007, Theorem 3.1]:

Proposition 2.1. Choose ε > 0 so that ε < ε0 and suppose that lGtα
(α) < ε. Let

Iα = Iα(ε) be the maximal connected interval containing tα such that lGt (α)< ε for
all t ∈ Iα. Then there is a constant ε′ > 0 depending only on ε such that lGt (α) ≥ ε′

for all t /∈ Iα. (If lGtα
(α) ≥ ε then set Iα = ∅.)

Curves which are components of the vertical foliation ( i(α, ν−) = 0, called
vertical) or the horizontal foliation ( i(α, ν+)=0, called horizontal) are exceptional
but in general easier to handle. In such cases, tα is undefined. However, for reasons
of continuity, it is natural to adopt the convention that when α is vertical tα =

−∞ and when α is horizontal tα = ∞. Moreover, the arguments used to prove
Proposition 2.1 still hold; when α is vertical (respectively, horizontal), we define

Iα = (−∞, c) (respectively, Iα = (d, ∞))

to be the maximal interval where lGt (α) < ε.

Flat and expanding annuli. Let σ be a hyperbolic metric and let q be any qua-
dratic differential metric in the same conformal class. Let A be an annulus in
(S, q) with piecewise smooth boundary. The following notions are due to Minsky
[1992]. We say A is regular if the boundary components ∂0, ∂1 are equidistant from
one another and the curvature along ∂0, ∂1 is either nonpositive at every point or
nonnegative at every point (see [Minsky 1992] or [Choi et al. 2006] for details). We
follow the sign convention that the curvature at a smooth point of ∂ A is positive if
the acceleration vector points into A. Suppose A is a regular annulus such that the
total curvature of ∂0 satisfies κ(∂0) ≤ 0. Then, it follows from the Gauss–Bonnet
theorem that κ(∂1)≥0. We say A is flat if κ(∂0)=κ(∂1)=0 and say A is expanding
if κ(∂0) < 0, and call ∂0 the inner boundary and ∂1 the outer boundary.
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A regular annulus is primitive if it contains no singularities of q in its interior. It
follows that a flat annulus is primitive and is isometric to a cylinder obtained from a
Euclidean rectangle by identifying one pair of parallel sides. An expanding annulus
that is primitive is coarsely isometric to an annulus bounded by two concentric
circles in the plane.

The length of a curve α which is short in (S, σ ) can be estimated by the modulus
of a primitive annulus around it:

Theorem 2.2 [Minsky 1992, Theorem 4.5; Choi et al. 2006, Theorem 5.3]. Sup-
pose α ∈ C(S) is extremely short in (S, σ ). Then for any quadratic differential
metric q in the same conformal class as σ , there is an annulus A that is primitive
with respect to q whose core is homotopic to α such that

1
lσ (α)

� Mod(A).

The modulus of a primitive annulus is estimated as follows:

Theorem 2.3 [Minsky 1992, Theorem 4.5; Rafi 2005, Lemma 3.6]. Let A ⊂ S be
a primitive annulus. Let d be the q-distance between the boundary components ∂0,
∂1. If A is expanding let ∂0 be the inner boundary. Then either

(i) A is flat and Mod A = d/ lq(∂0) = d/ lq(∂1) or

(ii) A is expanding and Mod A � log(d/ lq(∂0)).

Minsky’s product regions theorem. Our main tool for estimating Teichmüller dis-
tance is Minsky’s product regions theorem, which reduces the estimation of the
distance between two surfaces on which a given set 0 of curves is short to a cal-
culation in the hyperbolic plane H2. To give a precise statement, we introduce the
following notation. Choose a pants curves system on S that contains 0, and for a
curve α in the pants system let sα(σ ) be the Fenchel–Nielsen twist coordinate of α.
(Here sα(σ ) = s̃α(σ )/ lσ (α), where s̃α(σ ) is the actual hyperbolic distance twisted
round α; see Minsky [1996] for details.) Let Tthin(0, ε0) be the subset of T(S)

on which all the curves in 0 have length less than ε0 and let S0 be the analytically
finite surface obtained from S by pinching all the curves in 0. By forgetting the
Fenchel–Nielsen length and twist coordinates associated to the curves in 0 but
retaining all remaining Fenchel–Nielsen coordinates, we obtain a projection

50 : T(S) → T(S0).

For each α ∈ 0, let Hα denote a copy of the upper-half plane and let d Hα
denote

half the usual hyperbolic metric on Hα (see [Minsky 1996, Lemma 2.2] for the
factor). Define 5α : T(S) → Hα by 5α(σ ) = sα(σ ) + i/ lσ (α) ∈ Hα. Then the
product regions theorem states:
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Theorem 2.4 [Minsky 1996]. Let σ, τ ∈ Tthin(0, ε0). Then

dT(S)(σ, τ )
+

� max
α∈0

{
dT(S0)(50(σ ), 50(τ )), d Hα

(5α(σ ), 5α(τ ))
}
.

To simplify notation, we write
d Hα

(σ, τ )

instead of d Hα
(5α(σ ), 5α(τ )) and

dT(S0)(σ, τ )

instead of dT(S0)(50(σ ), 50(τ )).
In practice, we usually apply Minsky’s theorem with the aid of the following

estimate from geometry in H2. The hyperbolic distance between two points z1, z2

in H2 is given by

cosh 2d H(z1, z2) = 1 +
| z1 − z2 |

2

2 Im z1Im z2
.

Let σa , σb be two points in Teich(S) at which a curve α is short. Let `a , `b and
sa , sb denote the Fenchel–Nielsen twist coordinate of α at σa , σb respectively. It
follows easily from the above formula that

(2-1) d H2
α
(σa, σb)

+

�
1
2 log max

{
| sa − sb|

2`a`b,
`a

`b
,
`b

`a

}
.

Twists. Our estimates also require taking account of the twist twσ (ν, α) of a lam-
ination ν round α with respect to a hyperbolic metric σ . Following Minsky, we
define

twσ (ν, α) = inf
s̃

lσ (α)
,

where s̃ is the signed hyperbolic distance between the perpendicular projections
of the endpoints of a lift of a geodesic in |ν| at infinity onto a lift of α, and the
infimum is over all lifts of leaves of |ν| which intersect α; see [Minsky 1996] or
[Choi et al. 2006] for details. We write Twσ (ν, α) for | twσ (ν, α)|. Notice that the
twist twσ (ν, α) does not depend on the measure on ν, but only on the underlying
lamination |ν|.

The twist is closely related to the Fenchel–Nielsen twist coordinate. Specifically,
we have:

Lemma 2.5 [Minsky 1996, Lemma 3.5]. For any lamination ν ∈ ML(S) and any
two metrics σ, σ ′

∈ T(S),∣∣(twσ (ν, α)− twσ ′(ν, α))− (sα(σ ) − sα(σ ′))
∣∣ ≤ 4.

Although twσ (ν, α) depends on the metric σ , for ν1, ν2 ∈ ML(S), the difference

twσ (ν1, α)− twσ (ν2, α)
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is independent of σ up to a universal additive constant; see [Minsky 1996; Choi
et al. 2006, Section 4]. This motivates the following definition:

Definition 2.6. For α ∈ C(S) and ν1, ν2 ∈ ML(S), the relative twist of ν1 and ν2

round α is

dα(ν1, ν2) = inf
σ

| twσ (ν1, α)− twσ (ν2, α)|,

where the infimum is taken over all hyperbolic metrics σ ∈ T(S).

(The relative twist dα(ν1, ν2) agrees up to an additive constant with the definition
of subsurface distance between the projections of |ν1| and |ν2| to the annular cover
of S with core α, as defined in [Masur and Minsky 2000, Section 2.4] and used
throughout [Rafi 2005; 2007].)

Rafi [2007] (see also [Choi et al. 2006, Section 5.4]) introduced a similar notion
of the twist twq(ν, α) with respect to a quadratic differential metric q compatible
with σ and proved the following result, which enters into the proof of Theorem
4.1:

Proposition 2.7 Rafi 2007, Theorem 4.3; Choi et al. 2006, Proposition 5.7. Sup-
pose that σ ∈ T(S) is a hyperbolic metric and q is a compatible quadratic differ-
ential metric. For any geodesic lamination ξ intersecting α, we have

| twσ (ξ, α)− twq(ξ, α)| ≺
1

lσ (α)
.

We shall also need the following important estimates of the twist which comple-
ment Theorem 1.1. If α is vertical or horizontal, tα is defined using the convention
discussed following Proposition 2.1.

Theorem 2.8 [Choi et al. 2006, Theorems 5.11, 5.13]. Let α be a simple closed
curve on S. If α is extremely short on Gt then

Tw Gt (ν
+, α) ≺

1
lGt (α)

if t > tα,

Tw Gt (ν
−, α) ≺

1
lGt (α)

if t < tα.

Theorem 2.9 [Choi et al. 2006, Theorems 6.2, 6.9]. Let α be a simple closed curve
on S. If α is extremely short on Lt then

TwLt (ν
+, α) ≺

1
lLt (α)

if t > tα,

TwLt (ν
−, α) ≺

1
lLt (α)

if t < tα.
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3. The length estimates

In this section we discuss the quantities Dt(α) and Kt(α) that appear in the length
estimates in Theorem 1.1.

Let qt be the unit-area quadratic differential metric on Gt whose vertical and
horizontal foliations are etν+ and e−tν−, respectively. In light of Theorems 2.2
and 2.3, to estimate the length of a curve α which is extremely short in Gt , it is
sufficient to estimate the modulus of a maximal flat or expanding annulus around α

in qt . The union of all qt -geodesic representatives of α foliate a Euclidean cylinder
Ft(α), which is the maximal flat annulus whose core is homotopic to α. (The
cylinder is degenerate if the representative of α is unique.) On either side of Ft(α)

is attached a maximal expanding annulus. Let Et(α) be the one of larger modulus.
Up to coarse equivalence, Dt(α) will be the modulus of Ft(α) while log Kt(α) will
be the modulus of Et(α).

The precise definition of Dt(α) is as follows. If α is not a component of |ν±
|,

we define

(3-1) Dt(α) = e−2 |t−tα | dα(ν+, ν−),

where dα(ν+, ν−) is the relative twisting of ν+ and ν− about α as defined above.
If α is vertical, define

Dt(α) = e−2t Mod F0(α)

and if α is horizontal, define

Dt(α) = e2t Mod F0(α),

where F0(α) is the annulus at time t = 0.
The precise definition of Kt(α) is

(3-2) Kt(α) =
dqt

lqt (∂0)
,

where ∂0 is the inner boundary of Et(α) and dqt is the qt -distance between the
inner and outer boundaries of Et(α).

The connection with the definition of Kt(α) in [Choi et al. 2006] and the reasons
why Dt(α) and Kt(α) are coarsely the moduli of Ft(α) and Et(α) respectively are
explained at the end of this section. The estimate for 1/ lGt (α) in Theorem 1.1
follows easily from the above definitions and Minsky’s estimates. The estimate for
1/ lLt (α) in the same theorem required a lengthy separate analysis. The only fea-
tures of these definitions which will concern us here are the estimates in Theorem
1.1 and the relative rates of change of Dt(α) and Kt(α) with time.
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The rate of change of Dt(α) and K t(α). The rate of change of Dt(α) with time
is immediate from (3-1). To estimate the rate of change of Kt(α), note that, since
Et(α) is maximal, dqt in (3-2) is half the qt -length of an essential arc from α to
itself. Since the qt -length of such an arc or a simple closed curve can increase
or decrease at the rate of at most e±t , (3-2) implies that

√
Kt(α) changes (in the

coarse sense) at a rate at most et . More precisely, if Kt(α) is sufficiently large for
all t ∈ [a, b], then

(3-3) e−2 (b−a)Kb(α)
∗

≺ Ka(α)
∗

≺ e2 (b−a)Kb(α).

In combination with (3-1) and Theorem 1.1, it follows that the length of a short
curve along L or G changes at rate at most e2t . More detailed control is given
by the following two lemmas, which should be understood with our convention
on tα to include the case when α is vertical or horizontal. The first shows that
Kt(α) decays as t moves away from tα while the second, illustrated schematically
in Figure 1, compares rates of change of Dt(α) and

√
Kt(α).

Lemma 3.1. The function Kt(α) decays as t moves away from tα. More precisely,

(i) if tα < v < w, then Kv(α)
∗

� Kw(α);

(ii) if v < w < tα, then Kw(α)
∗

� Kv(α).

Proof. Suppose first that α is not a component of |ν±
|. By [Choi and Rafi 2007,

Lemma 2.1] (see also [Rafi 2007, Theorem 2.1]) we have

lqt (α)
∗

� e| t−tα |lqtα
(α)

for any t ∈ R. On the other hand, the length of any curve or arc can increase or
decrease by a factor of at most e±t . Hence, if tα < v < w, then

Kv(α) =
dqv

lqv
(α)

∗

�
dqv

e(v−w)lqw
(α)

=
e(w−v)dqv

lqw
(α)

≥
dqw

lqw
(α)

= Kw(α).

√

Kt(α)

tαtα

Dt(α)

utα

Figure 1. Schematic graphs of Dt(α) and
√

Kt(α). The function
Dt(α) changes at rate e2t while

√
Kt(α) changes at rate at most et .
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A similar argument can be applied in the case when v < w < tα.
If α is vertical, then

lqt (α)
∗

� et lq0(α),

while if it is horizontal
lqt (α)

∗

� e−t lq0(α).

The result then follows in the same way. �

Lemma 3.2. Let Iα be as in Proposition 2.1 and let [a, b] ⊂ Iα. Suppose that
Du(α) =

√
Ku(α) for some u ∈ [a, b] .

(i) If tα < u, then
√

Kt(α)
∗

� Dt(α) for all t ∈ [u, b].

(ii) If u < tα, then
√

Kt(α)
∗

� Dt(α) for all t ∈ [a, u].

Proof. We refer to Figure 1 for a schematic picture of the two graphs. The proof is
based on the fact that

√
Kt(α) decays at a slower rate than Dt(α) as t moves away

from tα. If tα < u, then for any t > u we have

Kt(α) =
dqt

lqt (α)

∗

�
e−(t−u)dqu

e(t−u)lqu (α)
= e−2(t−u)Ku(α).

Therefore, √
Kt(α)

∗

� e−(t−u)Du(α) = e(t−u)Dt(α) ≥ Dt(α).

A similar argument can be applied in the case when u < tα. �

Alternative definitions of Dt(α) and K t(α). The remarks which follow are not
essential for the proof of Theorem A but may be helpful in clarifying background
from [Choi et al. 2006].

The claim that Dt(α) is coarsely equal to the modulus of Ft(α) is justified by
[Choi et al. 2006, Proposition 5.8 (Section 5.6 for the exceptional case)] which
states that ModFt(α) � Dt(α). The proof is an exercise in Euclidean geometry,
combined with Rafi’s comparison Proposition 2.7 between the twist in the quadratic
and hyperbolic metrics. For example, at the balance time tα, the horizontal and
vertical leaves both make an angle π/4 with the qtα -geodesic representatives of α.
Let η be an arc joining the two boundary components of Ftα that is orthogonal to
all the qtα -geodesic representatives of α. In this case, a leaf of ν+

tα or ν−
tα intersects η

approximately (up to an error of 1) lqtα
(η)/ lqtα

(α) times, so the modulus of Ftα (α)

is approximated by
TwFtα

(ν+, α) = TwFtα
(ν−, α),

where twFtα
(and TwFtα

) means the twist in the q-metric restricted to Ftα . The
result would follow by noting that twFtα

(ν+, α) and twFtα
(ν−, α) have opposite

signs, except that dα involves hyperbolic twists on S rather than q-twists in Ftα .
This is resolved using Proposition 2.7; see [Choi et al. 2006] for further details.
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That log Kt(α) is coarsely the modulus of Et(α) follows from Theorem 2.3. The
above is not the definition of Kt(α) given in [Choi et al. 2006], but it is coarsely
equivalent. Specifically, let Y1, Y2 be the (possibly coincident) thick components
adjacent to α in the thick-thin decomposition of the hyperbolic metric Gt . Set

Jt(α) =
1

lqt (α)
max{λY1, λY2}

where λYi is the length of the shortest nontrivial nonperipheral simple closed curve
on Yi with respect to the metric qt . (If either Yi is a pair of pants there is a slightly
different definition; see [Choi et al. 2006].) In [Choi et al. 2006], we took the above
expression for Jt(α) as the definition of Kt(α). [Choi et al. 2006, Proposition 5.9]
shows that if Jt(α) is sufficiently large, then Jt(α)

∗

� Kt(α) with Kt(α) defined as
in (3-2) above.

4. Expanding annuli that persist

It follows from Theorems 1.1 and 1.2 that if Dt(α) ≥
√

Kt(α) for every α that is
short in Gt , then the distance dT(S)(Gt , Lt) is uniformly bounded. Moreover, if Gt is
in the thick part of Teichmüller space, then Lt is too, so that on such intervals Lt is
quasigeodesic. Thus our attention is focused on time intervals along which Kt(α)

is large. This is handled with the following more precise version of Theorem B.

Theorem 4.1. Choose M > 0 to be a constant such that if Kt(α) > M then α

is extremely short in Gt . (This is possible due to Theorem 1.1.) Suppose that
Kt(α) > M for all t ∈ [a, b]. Then

dT(Sα)(Ga, Gb)
+

� b − a.

Corollary 4.2. Let 0 be a family of disjoint curves on S such that Kt(α) > M for
all t ∈ [a, b] and for every α ∈ 0. Then

dT(S0)(Ga, Gb)
+

� b − a.

Proof. We prove the statement of the theorem; the corollary is immediate. The
idea is that for each t ∈ [a, b], we cut the maximal flat annulus around α in (S, qt)

out of S and reglue the two boundary components, obtaining a new surface Gt ;
see Figure 2. The surfaces Gt will also move along a Teichmüller geodesic. In
particular

dT(S)(Ga, Gb) = b − a.

On the other hand, Gt contains the same expanding cylinders round α as Gt so that
KGt

(α) = Kt(α). Consideration of the rate of change of Kt with time shows that
the contribution to the change in Teichmüller distance between Ga and Gb from the
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∂0 ∂′

0

At

Zt

GtGt

Figure 2. Cut out flat annulus and reglue.

expanding cylinders is of the order of log(b−a), so the actual distance b−a must
be realized due to changes in T(Sα).

In more detail, this works as follows. Let F = Fa(α) be the maximal flat annulus
around α in (S, qa). The arcs in F that are perpendicular to ∂ F define an isometry
f from one component of ∂ F to the other. Let Ga be the surface obtained by
removing F and gluing the components of ∂ F together via f (also making sure to
preserve the marking); see the upper two surfaces in Figure 2. Let α be the gluing
curve in Ga . Since the vertical and horizontal foliations of qa match along α, the
surface Ga is naturally equipped with vertical and horizontal foliations ν±

a and
quadratic differential qa , which is assumed to be scaled to have area one. Let {Gt }

be the Teichmüller geodesic corresponding to qa and let q t be the corresponding
family of quadratic differentials. Then

dT(S)(Ga, Gb) = b − a.

Observe that the surface Gt is obtained from Gt by cutting out the maximal flat
annulus Ft = Ft(α). Thus, for each t , we have a natural map

ϕt : (S, qt) \ Ft → (S, q t) \ α

which fixes points but scales the metric. Hence, Kq t (α) = Kt(α) > M on [a, b]

and therefore α is also extremely short in Gt on [a, b]. Applying Theorem 2.4, we
get

(4-1) b − a = dT(S)(Ga, Gb)
+

� max
{
dT(Sα)(Ga, Gb), d H2

α
(Ga, Gb)

}
.

To prove the theorem, it will suffice to establish the following two bounds:

(4-2) d H2
α
(Ga, Gb) ≺ log(b − a),

and

(4-3) dT(Sα)(Ga, Ga) ≺ 1, dT(Sα)(Gb, Gb) ≺ 1.
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The theorem would then follow from (4-1), (4-2), (4-3) and the triangle inequality.

Proof of (4-2). We use the estimate of distance in H2
α from (2-1) in Section 2. Let

σt = Gt , let `t = lσt (α), and let st be the Fenchel–Nielsen twist coordinate of α at
σt . By (2-1) we have

d H2
α
(σa, σb)

+

�
1
2 log max

{
| sa − sb|

2`a`b,
`a

`b
,
`b

`a

}
.

We shall show that the contribution | sa − sb|
2`a`b coming from the twist can be

neglected. By Lemma 2.5, we have

| sa − sb|
+

� | twσa (ξ, α)− twσb(ξ, α)|

for any lamination ξ . By Proposition 2.7 with ξ = ν+ (or ξ = ν−), we have∣∣Twσa (ν
+, α)− Twqa (ν

+, α)
∣∣ ≺

1
`a

,
∣∣Twσb(ν

+, α)− Twqb(ν
+, α)

∣∣ ≺
1
`b

.

In general, if a curve α is short on a surface σ then, by considering the restriction
to F , we can view twq(ν, α) as split into contributions coming from the flat and the
expanding annuli around α. It follows from the Gauss–Bonnet theorem that in an
expanding annulus, two geodesics intersect at most once. Hence the contribution
to twq(ν, α) is essentially contained in F(α); for details see [Rafi 2007] and the
proof of [Choi et al. 2006, Lemma 5.6].

In the present case, there is no flat annulus in q t corresponding to α. Hence the
twistings Twqa (ν

+, α) and Twqb(ν
+, α) are bounded; in fact, they are at most two.

Therefore, | sa − sb|
2`a`b ≺ 1 and we get

d H2
α
(σa, σb)

+

�
1
2 log max

{`a

`b
,
`b

`a

}
.

Since Kqa (α) = Ka(α) and Kqb(α) = Kb(α), it follows from (3-3) that

`a

`b
�

log Kb(α)

log Ka(α)
≺

2(b − a) + log Ka(α)

log Ka(α)
≤

2(b − a)

log M
+ 1.

Similarly for `b/`a , we have the identical bound. Thus (4-2) is proved.

Proof of (4-3). This is a consequence of the following lemma due to Minsky.

Lemma 4.3 [Minsky 1992, Lemma 8.4]. Let X be a closed Riemann surface and
Y ⊂ X an incompressible subsurface. There exists a constant m depending on the
topology of X only, such that if each component of ∂Y bounds an annulus in Y of
modulus at least m, then for any nonperipheral simple closed curve ζ ⊂ Y ,

ExtY(ζ )
∗

� ExtX(ζ ).
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Here ExtY(ζ ) denotes the extremal length of a curve ζ on the surface Y . Note
that although the lemma is stated for closed surfaces, the proof works for surfaces
with punctures as well.

Continuing the proof of (4-3), for t = a, b we claim that

(4-4) Ext Gt(ζ )
∗

� Ext Gt
(ζ )

for every nonperipheral simple closed curve ζ in S \ α. Note that if the maximal
flat annulus Ft(α) at (S, qt) has modulus bounded above by m, then there is a k-
quasiconformal homeomorphism from (S, qt) to (S, q t), where k depends only on
m. This automatically implies that

dT(S)(Gt , Gt) ≺ 1.

Now suppose that Mod Ft(α) > m. In order to apply Lemma 4.3, we take the
following intermediate step illustrated in Figure 2. As usual, Et(α) is an expanding
annulus of maximal modulus around α. One component of ∂ Ft(α) is the inner
boundary ∂0 of Et(α). Let ∂ ′

0 be the other component of ∂ Ft(α) and let At be the
flat annulus contained in Ft(α) that shares ∂ ′

0 as a boundary component and that
has modulus m.

Let Zt be the surface which is obtained from Gt by cutting out Ft(α) \ At and
regluing the boundary components together, shown as the lower surface in Figure 2.
Each boundary component of Zt \∂0 has an annulus, namely Et(α) and At , around
it whose modulus is at least m. Therefore, we can apply Lemma 4.3 to Zt \ ∂0 as
a subsurface of Gt and as a subsurface of Zt to obtain

Ext Gt(ζ )
∗

� Ext Zt\∂0(ζ )
∗

� Ext Zt(ζ ).

Because the modulus of At is bounded above by m, we have as above that Zt and
Gt are k-quasiconformal so that in particular,

Ext Zt(ζ )
∗

� Ext Gt
(ζ ).

This proves (4-4).
Thus it follows from the formulation of Teichmüller distance in [Kerckhoff

1980] and Minsky’s product regions theorem that

dT(Sα)(Gt , Gt)
+

�
1
2 sup

ζ∈C(S\α)

log
Ext Gt(ζ )

Ext Gt
(ζ )

≺ 1,

completing the proof of (4-3). �

5. The Main Theorem

In this section we prove our main result, Theorem A. To estimate dT(S)(La, Lb) we
will apply Minsky’s product regions theorem and verify in turn upper and lower
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bounds on the distance. We start with a lemma which will be used to estimate
d H2

α
(Lv, Lw), where α is a curve which is short along an interval [v, w].

Recall from Proposition 2.1 that Iα = Iα(ε) is the maximal open interval around
tα such that lGt (α) < ε for all t ∈ Iα. It follows from Theorem 1.1 that if a curve
is sufficiently short in Gt , then it is, in the coarse sense, at least as short in Lt . In
particular, we may choose ε =ε1 in Proposition 2.1 small enough that if lGt (α)<ε1,
then lLt (α) < ε0.

Lemma 5.1. Let [v, w] ⊂ Iα(ε1).

(i) If Dt(α) ≥
√

Kt(α) for all t ∈ [v, w], then

d H2
α
(Lv, Lw)

+

� w − v.

(ii) If
√

Kt(α) ≥ Dt(α) for all t ∈ [v, w], then

d H2
α
(Lv, Lw)

+

≺
w − v

2
.

Proof. The proof rests on the formula (2-1) from Section 2 and a careful comparison
of rates of change of lengths and twists. Let `t = lLt (α), and let st be the Fenchel–
Nielsen twist of α at Lt . As in (2-1) we have

(5-1) d H2
α
(Lv, Lw)

+

�
1
2 log max

{
| sv − sw|

2`v`w,
`v

`w

,
`w

`v

}
.

By Lemma 2.5, we have

| sv − sw|
+

�
∣∣ twLv

(ν±, α)− twLw
(ν±, α)

∣∣.
First suppose tα ≤ v < w. Then by Theorem 2.9,

| sv − sw|
2`v`w

∗

≺

( 1
`v

+
1
`w

)2
`v`w

∗

� max
{ `v

`w

,
`w

`v

}
.

Therefore,

d H2
α
(Lv, Lw)

+

�
1
2 log max

{ `v

`w

,
`w

`v

}
.

If Dt(α) ≥
√

Kt(α) for all t ∈ [v, w], so that 1/ lLt (α)
∗

� Dt(α) on [v, w], then

max
{ `v

`w

,
`w

`v

}
∗

� e2(w−v).

If
√

Kt(α) ≥ Dt(α) for all t ∈ [v, w], so that 1/ lLt (α)
∗

�
√

Kt(α) on [v, w], then
by (3-3) and Lemma 3.1, we get√

Kw(α)
∗

≺

√
Kv(α)

∗

≺ ew−v
√

Kw(α),
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from which it follows that

max
{ `v

`w

,
`w

`v

}
∗

≺ ew−v

and the lemma is proved in this case. The case where v < w ≤ tα can be handled
similarly.

Now, suppose v < tα < w and for convenience, translate so that tα = 0. If
√

Kt(α) ≥ Dt(α) for all t ∈ [v, w], the result follows from the triangle inequality

d H2
α
(Lv, Lw) ≤ d H2

α
(Lv, L0) + d H2

α
(L0, Lw)

and is already proved above.
The interesting case is that in which Dt(α)≥

√
Kt(α) for all t ∈ [v, w], in which

case lLt (α) decreases on [v, 0] but then increases again on [0, w]. This means that

max
{ `v

`w

,
`w

`v

}
∗

� e2 |v+w|

and consequently the term

1
2 log max

{ `v

`w

,
`w

`v

}
does not reflect the total distance w − v. Instead, we have to look more carefully
at the term |sv − sw|

2`v`w.
We have

| sv − sw| `v
+

� | twLv
(ν−, α)− twLw

(ν−, α)| `v
+

� TwLw
(ν−, α) `v

where the second equality follows from Theorem 2.9. Similarly,

| sv − sw| `w
+

� | twLv
(ν+, α)− twLw

(ν+, α)| `w
+

� TwLv
(ν+, α) `w.

On the other hand, writing dα = dα(ν+, ν−) for the relative twist as defined in
Section 2, we get

dα`v
+

� | twLv
(ν−, α)− twLv

(ν+, α)| `v
+

� TwLv
(ν+, α)`v,

dα`w
+

� | twLw
(ν−, α)− twLw

(ν+, α)| `w
+

� TwLw
(ν−, α)`w,

where we again made two applications of Theorem 2.9.
Also note that by definition, D0(α) = dα so by Theorem 1.1 we have 1/`0

∗

� dα.
Thus

| sv − sw|
2`v`w

∗

� d2
α`v`w

∗

�
`v

`0

`w

`0
= e2(w−v).

It follows by (5-1) that
d H2

α
(Lv, Lw)

+

� w − v. �
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Before proving our main theorem, we also establish the following rather tech-
nical lemma, which quantifies more precisely the schematic graphs in Figure 1.
Lemma 5.2. Let M be chosen as in Theorem 4.1. Then there exists ε > 0, depend-
ing only on the topology of S, such that for any a, b with [a, b] ⊂ Iα(ε), one of the
following alternatives holds:

(i) Kt(α) > M on [a, b];

(ii) item (i) fails, Dt(α) ≥
√

Kt(α) on a subinterval of the form [a, u] and√
Kb(α)

∗

≺ eu−a
;

(iii) item (i) fails, Dt(α) ≥
√

Kt(α) on a subinterval of the form [u, b] and√
Ka(α)

∗

≺ eb−u .

Proof. By Theorem 1.1, we can choose ε > 0 small enough that if t ∈ Iα(ε) and
if

√
Kt(α) ≥ Dt(α) then Kt(α) > M . Thus if (i) fails, we must have Dw(α) >

√
Kw(α) for some w ∈ (a, b).
Suppose first that Dt(α) >

√
Kt(α) on [a, b], and that (i) fails, so that there is

some c ∈ [a, b] where Kc(α) ≤ M . To check (ii) holds, we only have to verify its
final statement. Since M is fixed, it follows from (3-3) that√

Kb(α)
∗

≺ eb−c
√

Kc(α)
∗

≺ eb−a.

(By the same argument, (iii) also holds in this case.)
Now suppose that Du(α) =

√
Ku(α) for some u ∈ (a, b). We claim that if

tα /∈ [a, b] then (i) holds. Suppose for definiteness that tα < a. By Lemma 3.1 we
have Kt(α)

∗

� Ku(α) on [a, u], and by Lemma 3.2 we have
√

Kt(α)
∗

� Dt(α) on
[u, b]. Hence 1/ lLt (α)�

√
Kt(α) on [u, b]. Therefore, reducing ε >0 if necessary,

we can again ensure Kt(α) > M on [a, b] and (i) holds as claimed.
Suppose now that Du(α) =

√
Ku(α) for some u ∈ [a, b] and that tα ∈ [a, b],

say for definiteness that tα < u. If there is another point u′
∈ [a, tα] such that

Du′(α) =
√

Ku′(α), then again with a suitable adjustment of ε we have Kt(α) > M
on [a, b] (see Figure 1) and we are in case (i). If there is no such point u′, then
Dt(α) ≥

√
Kt(α) on [a, u]. Assuming that in addition (i) fails, there is a point

c ∈[a, b] where Kc(α)≤ M . By Lemma 3.2 we have 1/ lLt (α)
∗

�
√

Kt(α) on [u, b].
Assuming ε is sufficiently small, we deduce that c ∈ [a, u]. Then by Lemma 3.1
we have√

Kc(α)
∗

� e−| tα−c |
√

Ktα (α)
∗

� e−| tα−c |
√

Kb(α) ≥ e−(u−a)
√

Kb(α)

and we are in case (ii). The case where tα > u is handled similarly and results in
(iii). �
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Proof of Theorem A. As noted in Section 1, we prove the theorem by obtaining
separate upper and lower bounds for dT(S)(La, Lb). The upper bound is rela-
tively straightforward but the lower bound requires an inductive procedure based
on Lemma 5.2.

In order to compare two surfaces La , Lb at the ends of a long interval [a, b]⊂ R,
it is convenient to consider separately the curves which are short at a but not at b,
those which are short at b but not at a, and those which are short at both. More pre-
cisely, choose ε to satisfy Lemma 5.2 and then choose ε′

≤ ε as in Proposition 2.1
so that if lGt (α) < ε′ then t ∈ Iα(ε). In particular, if lGa (α) < ε′ and lGb(α) < ε′,
then since Iα(ε) is connected, [a, b] ⊂ Iα(ε). Now define subsets 0a , 0b and 0 of
the curves of length less than ε′ in either Ga or Gb as follows:

0a = {α ∈ C(S) : lGa (α) < ε′, lGb(α) ≥ ε′
},

0b = {α ∈ C(S) : lGb(α) < ε′, lGa (α) ≥ ε′
},

0 = {α ∈ C(S) : lGt (α) < ε′, for t = a, b}.

We begin by establishing some preliminary estimates on distances in the Te-
ichmüller spaces of the subsurfaces obtained by cutting along these curves. By
Minsky’s product regions theorem,

dT(S0)(La, Ga)
+

� max
α∈0a

{
dT(S0∪0a )(La, Ga), d H2

α
(La, Ga)

}
,

dT(S0)(Lb, Gb)
+

� max
α∈0b

{
dT(S0∪0b )(Lb, Gb), d H2

α
(Lb, Gb)

}
.

Now on the one hand, by Theorem 1.2, the thick parts of Ga and La are bounded
distance from one another, as are the those of Gb and Lb. Therefore,

dT(S0∪0a )(La, Ga) ≺ 1 and dT(S0∪0b )(Lb, Gb) ≺ 1.

On the other hand, because the twisting is bounded as in Theorems 2.8 and 2.9,
we have

d H2
α
(La, Ga)

+

≺
1
2 log

lGa (α)

lLa (α)
< 1

2 log
1

lLa (α)
for α ∈ 0a ,

d H2
α
(Lb, Gb)

+

≺
1
2 log

lGb(α)

lLb(α)
< 1

2 log
1

lLb(α)
for α ∈ 0b.

Thus it follows that

(5-2)

dT(S0)(La, Ga)
+

≺
1
2 max

α∈0a

{
log

1
lLa (α)

}
,

dT(S0)(Lb, Gb)
+

≺
1
2 max

α∈0b

{
log

1
lLb(α)

}
.
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We now turn to bounding the distance dT(S)(La, Lb). By Minsky’s product
regions theorem,

(5-3) dT(S)(La, Lb)
+

� max
α∈0

{
dT(S0)(La, Lb), d H2

α
(La, Lb)

}
.

Upper bound. We prove the upper bound dT(S)(La, Lb)
+

≺ 3(b − a) by bounding
the terms on the right hand side of (5-3).

By Lemma 5.1 we have d H2
α
(La, Lb)

+

≺ b − a for each α ∈ 0. We provide an
upper bound for dT(S0)(La, Lb) using the triangle inequality

(5-4) dT(S0)(La, Lb) ≤ dT(S0)(La, Ga) + dT(S0)(Ga, Gb) + dT(S0)(Lb, Gb).

To bound the first and last terms of the right hand side, we will use (5-2) and the
fact that the length lLt (α) of a curve increases at rate at most e2t . More precisely,
notice that if α ∈ 0a then Iα ∩ [a, b] = [a, c) for some c ≤ b. By definition of
Iα, we have lGc(α) = ε. Then it follows from Theorem 1.1 that lLc(α) is bounded
below by a uniform constant that depends only on ε. Therefore, by the observation
following (3-3), we have

log
1

lLa (α)

+

≺ log
lLc(α)

lLa (α)

+

≺ 2(b − a).

Similarly, if α ∈ 0b, then

log
1

lLb(α)

+

≺ 2(b − a).

Therefore, from (5-2) it follows that

dT(S0)(La, Ga)
+

≺ b − a and dT(S0)(Lb, Gb)
+

≺ b − a.

The second term in (5-4) is bounded by Minsky’s product regions theorem:

dT(S0)(Ga, Gb)
+

≺ dT(S)(Ga, Gb) = b − a.

This finishes the proof of the upper bound.

Lower bound. We prove the lower bound dT(S)(La, Lb)
+

� (b − a)/4 by showing
that at least one of the terms in the right hand side of (5-3) is bounded below by
(b − a)/4.

We begin by reducing the problem to a consideration of the curves in 0 only. It
follows from a theorem of Wolpert [1979] that for every γ ∈ C(S),

dT(S)(La, Lb) ≥
1
2

∣∣∣ log
lLb(γ )

lLa (γ )

∣∣∣.
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It follows as before from Theorem 1.1 that if lGt (α) ≥ ε′, then the length lLt (α) is
uniformly bounded below. Therefore, we have∣∣∣ log

lLb(α)

lLa (α)

∣∣∣ +

� log
1

lLa (α)
for α ∈ 0a ,∣∣∣ log

lLa (α)

lLb(α)

∣∣∣ +

� log
1

lLb(α)
for α ∈ 0b.

It follows from the triangle inequality that if either

max
α∈0a

{
log

1
lLa (α)

}
≥

b − a
2

or max
α∈0b

{
log

1
lLb(α)

}
≥

b − a
2

,

the lower bound is proved.
Thus we may assume that

(5-5) max
α∈0a

{
log

1
lLa (α)

}
≤

b − a
2

and max
α∈0b

{
log

1
lLb(α)

}
≤

b − a
2

,

bringing us to the key part of the proof. From Minsky’s product region theorem,
we have

(5-6) b − a = dT(S)(Ga, Gb)
+

� max
α∈0

{
dT(S0)(Ga, Gb), d H2

α
(Ga, Gb)

}
.

We claim that either
dT(S0)(Ga, Gb)

+

� b − a,

or there is some α ∈ 0 such that

d H2
α
(Ga, Gb)

+

� b − a

and such that Lemma 5.2 (ii) or (iii) holds. After proving the claim, we will show
that either alternative implies the required bound on dT(S)(La, Lb). We are going
to use an inductive argument for which it is important to note that we can choose the
additive constant in Minsky’s product regions theorem to be fixed for all surfaces
obtained from S by cutting out any subset of curves in 0.

If the maximum in (5-6) is realized by dT(S0)(Ga, Gb), then obviously

dT(S0)(Ga, Gb)
+

� b − a.

If the maximum in (5-6) is realized by d H2
γ
(Ga, Gb) for some γ ∈ 0, consider

the alternatives for γ in Lemma 5.2. If (i) holds, then by Theorem 4.1 we have
dT(Sγ )(Ga, Gb)

+

� b − a. In this case, we apply Minsky’s product regions theorem
to Sγ , giving

(5-7) b − a
+

� dT(Sγ )(Ga, Gb)
+

� max
δ∈0\γ

{
dT(S0)(Ga, Gb), d H2

δ
(Ga, Gb)

}
.
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Now repeat the same argument; if the maximum in (5-7) is realized by dH2
δ
(Ga, Gb)

for some δ ∈ 0 \ γ that satisfies Lemma 5.2 (i), then apply the product regions
theorem to S{γ,δ}. Eventually, up to a finite number of changes to the additive
constants, either there must be some α ∈ 0 for which d H2

α
(Ga, Gb)

+

� b − a such
that Lemma 5.2 (i) does not hold, or it must be that dT(S0)(Ga, Gb)

+

� b − a. The
claim follows.

Now we show that either alternative implies the required bound. If

dT(S0)(Ga, Gb)
+

� b − a,

then the triangle inequality, (5-2), and the assumption (5-5) give

dT(S0)(La, Lb)
+

� dT(S0)(Ga, Gb) − dT(S0)(La, Ga) − dT(S0)(Lb, Gb)

+

� dT(S0)(Ga, Gb) −
1
2 max

α∈0a

{
log

1
lLa (α)

}
−

1
2 max

α∈0b

{
log

1
lLb(α)

}
+

�
b − a

2
.

Now assume the alternative that there is some α ∈ 0 such that dH2
α
(Ga, Gb)

+

�

b − a and such that Lemma 5.2 (ii) or (iii) holds. Assume (ii) holds: we have
that Dt(α) ≥

√
Kt(α) on an interval [a, u] and consider the following two cases

depending on the length of [a, u]. (Case (iii) can be handled similarly.)
If u − a ≥ (b − a)/2, then the triangle inequality and Lemma 5.1 give

d H2
α
(La, Lb) ≥ d H2

α
(La, Lu) − d H2

α
(Lu, Lb)

+

� (u − a) −
b − u

2

≥
b − a

4
.

(Strictly speaking, it may be that
√

Kt(α) < Dt(α) for some values of t ∈ [u, b].
However, Lemma 3.2 implies that 1/ lLt (α)

∗

�
√

Kt(α) on [u, b], and this is suffi-
cient to guarantee that d H2

α
(Lu, Lb)

+

≺ (b − u)/2; see the proof of Lemma 5.1.)
If u − a < (b − a)/2, then consider the triangle inequality

d H2
α
(La, Lb) ≥ d H2

α
(Ga, Gb) − d H2

α
(Ga, La) − d H2

α
(Gb, Lb).

Similarly to our previous argument, since the twisting is bounded as in Theo-
rems 2.8 and 2.9, we have

d H2
α
(Ga, La)

+

≺
1
2 log

lGa (α)

lLa (α)
and d H2

α
(Gb, Lb)

+

≺
1
2 log

lGb(α)

lLb(α)
.
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Since Da(α) ≥
√

Ka(α) it follows from Theorem 1.1 that

log
lGa (α)

lLa (α)

∗

� 1.

Since Lemma 5.2 (ii) holds, it follows from the assumption u −a < (b −a)/2 that

log
lGb(α)

lLb(α)
< log

1
lLb(α)

+

≺ u − a <
b − a

2
.

Thus, in this case we have

d H2
α
(La, Lb)

+

�
3
4(b − a).

This concludes the proof. �
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