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CLASSIFICATION OF IRREDUCIBLE INTEGRABLE MODULES
FOR TWISTED TOROIDAL LIE ALGEBRAS

WITH FINITE-DIMENSIONAL WEIGHT SPACES

S. ESWARA RAO AND PUNITA BATRA

This paper classifies irreducible, integrable modules for “twisted toroidal
Lie algebras” with finite-dimensional weight spaces. We prove that these
modules turn out to be modules of appropriate direct sums of finitely many
copies of affine Kac–Moody Lie algebras.

Introduction

Let g be a finite-dimensional simple Lie algebra over the complex field C. Let
An = C[t±1

1 , . . . , t±1
n ] be a Laurent polynomial ring in n commuting variables

t1, t2, . . . , tn. For n> 1, we consider the multiloop Lie algebra g⊗C[t±1
1 , . . . , t±1

n ].
The universal central extension of g⊗ C[t±1

1 , . . . , t±1
n ] is called a toroidal Lie al-

gebra. If n = 1, then it is well known that the universal central extension of a loop
algebra g⊗C[t±1

] is one-dimensional. In this case, the universal central extension
is an affine Kac–Moody Lie algebra. On the other hand, in the toroidal case, that
is, when n > 1, the universal central extension is infinite-dimensional. Toroidal
Lie algebras are described in [Rao and Moody 1994]. Representations of toroidal
Lie algebras have been studied in [Berman and Billig 1999] and [Rao 2004].

In Section 1, we define the twisted toroidal Lie algebra “τ(µ)”, where µ is a
Dynkin diagram automorphism of g of order m. In the one variable case, τ(µ)
is just the twisted affine Kac–Moody Lie algebra [Kac 1990]. Rao [1993] gave
some representations of the twisted affine Kac–Moody Lie algebra. Batra [2004]
classified finite-dimensional irreducible representations of the twisted multiloop
Lie algebras.

In this paper, we twist several variables at the same time, because twisting one
variable restricts the class of twisted toroidal Lie algebras to one for each variable.
By twisting several variables, we are covering a larger class of twisted toroidal Lie
algebras. Now GL(n,Z), the group of n ×n matrices with entries in Z, acts on Zn

naturally, and an element of GL(n,Z) defines an automorphism of the nontwisted
toroidal Lie algebra “τ”. This automorphism is change of coordinates as described
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in Section 1. We consider τ(µ) up to a suitable change of coordinates, and in this
way, we can reduce the number of twisted variables to a minimum of two variables;
see Remark 1.1.

Among all the modules of a toroidal Lie algebra, the so-called integrable mod-
ules (where the real root spaces act locally nilpotently) are very important since
they are the ones that lift to representations of the corresponding group. Rao [2004]
classified irreducible integrable modules for nontwisted toroidal Lie algebras with
finite-dimensional weight spaces. Here we classify the irreducible integrable mod-
ules for twisted toroidal Lie algebras having finite-dimensional weight spaces,
where the center acts nontrivially. Some of the ideas used in [Rao 2004] go through
here, but this is a more complex case and needs new ideas.

In Section 1, we describe the root system for τ(µ) and the Weyl group of τ(µ),
and we define integrable τ(µ)-modules. In Section 2, we define central operators
on an irreducible module for τ(µ). In this paper we classify those irreducible
integrable τ(µ)-modules V with finite-dimensional weight spaces in which some
zero degree generators of the center of τ(µ) act nontrivially. Then by change of
coordinates, we assume that one of the zero degree generators of the center of
τ(µ), namely “Kn”, acts nontrivially, while the others act trivially. Assuming that
Kn acts as a positive integer, we prove in Proposition 2.6 the existence of a highest
weight vector in V .

In Section 3, we give the notion of a non-graded τ(µ)-module V (ψ), define
the graded τ(µ)-module V (ψ), and, in Proposition 3.3, establish a one-to-one
correspondence between non-graded and graded modules. So our problem re-
duces to classifying irreducible integrable non-graded τ(µ)-modules. In Section
4, we prove that any such non-graded module is actually a module for (gaff ⊗

C[t±1
1 , . . . , t±1

n−1]) ∩ τ(µ), where gaff = g⊗ C[tn, t−1
n ] ⊕ CKn is an affine Lie al-

gebra. In Proposition 4.1, we give the conditions under which the Lie algebra
homomorphism φ(µ) from (gaff ⊗ C[t±1

1 , . . . , t±1
n−1]) ∩ τ(µ) to

⊕
gaff (the direct

sum of finitely many copies of gaff) becomes surjective. In Proposition 5.3, we
prove that non-graded modules are zero on kernel of φ(µ), and hence the non-
graded modules actually become modules for

⊕
gaff. It is well known that the

irreducible integrable modules of
⊕

gaff are tensor products of irreducible highest
weight modules [Rao 2005]. The main result of this paper is Theorem 3.4. Proved
in Section 5, it says that any irreducible integrable module for τ(µ) with finite-
dimensional weight spaces, on which the center acts nontrivially, is an irreducible
component of V (ψ)⊗ C[t±1

1 , . . . , t±1
n−1].

We consider cases m = 2 and m = 3 separately. The modules for τ(µ), where
µ is a Dynkin diagram automorphism of order 3, are worked out in Section 6.
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1. Preliminaries

Let g be a finite-dimensional simple Lie algebra of rank d over the complex field
C. Let h be a Cartan subalgebra of g. Fix a positive integer n ≥ 2. Let A =

An = C[t±1
1 , . . . , t±1

n ] be a Laurent polynomial ring in n commuting variables
t1, t2, . . . , tn . For m = (m1, . . . ,mn)∈Zn , let t m

= tm1
1 · · · tmn

n ∈ A. Then gA =g⊗A
can be made into a Lie algebra by defining

[X ⊗ t r , Y ⊗ t s
] = [X, Y ] ⊗ t r+s

for X, Y ∈ g and r , s ∈ Zn . Suppose �A is a complex vector space with basis
{t m Ki | 1 ≤ i ≤ n, m ∈ Zn

}, and suppose dA is the subspace of �A spanned by
{
∑

mi t m Ki | m ∈ Zn
}. Let ( · , · ) be a nondegenerate, symmetric, g-invariant

bilinear form on g. Let τ0 = g⊗ A ⊕�A/dA be a Lie algebra defined by

• [X ⊗ t r , Y ⊗ t s
] = [X, Y ] ⊗ t r+s

+ (X, Y )
∑

ri t r+s Ki and

• �A/dA is central in τ0.

The Lie algebra τ0 is the universal central extension of g⊗ A [Morita and Yoshii
1985] and is naturally Zn-graded. To reflect this fact, we consider a bigger Lie alge-
bra. Let τ = τ0 ⊕ D, where D is the complex linear span of derivations d1, . . . , dn .
We now define a Lie algebra structure on τ by

[di , X ⊗ t r
] = ri X ⊗ t r for r ∈ Zn and 1 ≤ i ≤ n,

[di , t r K j ] = ri t r K j for r ∈ Zn and 1 ≤ i, j ≤ n,

[di , d j ] = 0 for 1 ≤ i, j ≤ n.

We call τ the nontwisted toroidal Lie algebra. We will now define the twisted
toroidal Lie algebra. Let µ be a Dynkin diagram automorphism of g of order m
and ε a primitive m-th root of unity. Let S = {i1, i2, . . . , ik} ⊂ {1, 2, . . . , n} for
k > 0. Define an automorphism of τ , again denoted by µ, such that

µ(X ⊗ t r )= (ε)ri1+···+rikµ(X)⊗ t r ,

µ(t r Ki )= (ε)ri1+···+rik t r Ki ,

µ(di )= di .

It can be easily checked that µ is an automorphism of τ of order m. The sub-
algebra of µ-fixed points of τ is called the twisted toroidal Lie algebra and is
denoted by τ(µ). Since µ leaves h invariant, we let h(µ) be the µ-fixed points of
h under µ. Letting m = 2, we have the decomposition g = g0 ⊕ g1 of g, where
g0 = {X ∈ g | µ(X)= X} and g1 = {X ∈ g | µ(X)= εX}.
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Suppose (X, Y ) 6= 0 implies X, Y ∈ g0 or X, Y ∈ g1. Then the center of the
twisted toroidal Lie algebra, which we denote by (�A/dA)

0, will be

(�A/dA)
0
= span{t m Ki | mi1 + · · · + mik

∼= 0 (mod 2)}.

Also µ leaves g⊗ A invariant. Let (g⊗ A)µ be the µ-fixed points of g⊗ A. Then

τ(µ)= (g⊗ A)µ ⊕ (�A/dA)
0
⊕ D.

It is known from [Berman and Krylyuk 1995] that (g ⊗ A)µ ⊕ (�A/dA)
0 is the

universal central extension of (g⊗ A)µ. Let τ0(µ)= (g⊗ A)µ ⊕ (�A/dA)
0.

Change of coordinates. We recall that GL(n,Z), the group of n×n matrices with
entries in Z and determinant ±1, acts naturally on Zn . Denote the action as Am
for A ∈ GL(n,Z) and m ∈ Zn . We define an automorphism on τ by

A.X ⊗ t m
= X ⊗ t Am,

A.d(t r )t s
= d(t Ar )t As, where d(t r )t s

=
∑

ri t r+s Ki .

Let (d1
1 , . . . , d1

n )= (AT )−1(d1, . . . , dn). Then define A(di )= d1
i for 1 ≤ i ≤ n. It

is easy to check that A is an automorphism on τ . This automorphism is nothing
but the change of coordinates. For example, set si = t Aei , where {e1, . . . , en} is the
standard basis of Zn . Then clearly

C[s±1
1 , . . . , s±1

n ] = C[t±1
1 , . . . , t±1

n ].

Remark 1.1. We will consider τ(µ) up to a suitable change of coordinates. In
this process, the set S will be changed. In general, the set S can be reduced to a
minimum of two element set. Consider an example: Let µ be a Dynkin diagram
automorphism of g of order 2. Let S = {i1, i2, . . . , ik} ⊂ {1, 2, . . . , n}. We assume
that k is odd. Put

s1 = ti1 ti2 · · · tik , s2 = ti1, s3 = ti1 ti2, . . . , sk = tik−2 tik−1 .

For i ∈ {1, 2, . . . , n} − S, we put si = ti . Then it is easy to see that

C[s±1
1 , . . . , s±1

k ] = C[t±1
i1
, . . . , t±1

ik
] and C[s±1

1 , . . . , s±1
n ] = C[t±1

1 , . . . , t±1
n ].

Now the set S changes with new variables s1, s2, . . . , sn , and S = {1, 2}.
We note that τ(µ) depends on the set S. But in this paper, we use a change

of coordinates to reduce S to {1, n}. So we are not including S in the notation of
τ(µ).

Assume
h̃ = h ⊕

∑n
i=1 CKi ⊕

∑n
i=1 Cdi ,
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which is a Cartan subalgebra of τ . Consider µ-fixed points h̃(µ) of h̃ under µ.
Then h̃(µ) = h(µ)⊕

∑n
i=1 CKi ⊕

∑n
i=1 Cdi is a Cartan subalgebra of τ(µ). It is

well known that g0, the fixed point subalgebra of g under µ, is a simple Lie algebra
[Kac 1990], and h(µ) is a Cartan subalgebra of g0.

Let α1, α2, . . . , αl ∈h(µ)∗ be the simple roots of g0. For 1 ≤ i ≤ l, we extend the
αi to h̃(µ)∗ by defining αi (K j )= αi (d j )= 0 for 1 ≤ j ≤ n. Let α∨

1 , . . . , α
∨

l ∈ h(µ)

be the coroots of g0. For 1 ≤ i ≤ n, define δi ∈ h̃(µ)∗ and wi ∈ h̃(µ)∗ by

δi (α
∨

j )= 0,

δi (K j )= 0,

δi (d j )= δi j ,

wi (α
∨

j )= 0

wi (K j )= δi j

wi (d j )= 0

for 1 ≤ j ≤ l,

for 1 ≤ j ≤ n,

for 1 ≤ j ≤ n,

Then it is easy to see that α1, α2, . . . , αl, δ1, . . . , δn, w1, . . . , wn is a C-basis of
h̃(µ)∗.

Recall that the nondegenerate, symmetric, g-invariant bilinear form ( · , · ) re-
mains nondegenerate on g0 as well as on h(µ). The form ( · , · ) induces a nonde-
generate form 〈 · , · 〉 on h̃(µ)∗ defined as

〈αi , α j 〉 = (αi , α j ) for 1 ≤ i, j ≤ l,

〈αi , δ j 〉 = 0 = 〈αi , w j 〉 for 1 ≤ i ≤ l and 1 ≤ j ≤ n,

〈δi , δ j 〉 = 0 = 〈wi , w j 〉,

〈δi , w j 〉 = δi j for 1 ≤ i, j ≤ n.

For m = (m1, . . . ,mn) ∈ Zn , define δm =
∑

miδi and note that 〈δm, δm〉 = 0.

Root system for τ(µ). Let m = 2. Then

τ(µ)=g0⊗
∑

mi1+···+mik
∼= 0 (mod 2)

Ct m
⊕g1⊗

∑
mi1+···+mik

∼= 1 (mod 2)

Ct m
⊕(�A/dA)

0
⊕D.

Let10 be the roots of g0 and1s
0 be the short roots of g0. Notice that the nonzero

weights of the g0-module g1 are all short roots of g0 except in A(2)2l .
Define

1re = {α+ δm | α ∈10, mi1 + · · · + mik
∼= 0 (mod 2)}⋃

{α+ δm | α ∈1s
0, mi1 + · · · + mik

∼= 1 (mod 2)}

and 1im = {δm | m ∈ Zn
}. Let 1=1re ∪1im. For α ∈1, let

τα = {x ∈ τ(µ) | [h, x] = α(h)x for all h ∈ h̃(µ)}.

Then clearly τ(µ)=
⊕

α∈1 τα is the root space decomposition of τ(µ)with respect
to h̃(µ).
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Define

1+

re = {α+ δm | α > 0, mn ≥ 0 or α < 0, mn ≥ 1},

10
= {δm | mn = 0}.

1+

im = {δm | mn ≥ 1},

Then 1+
=1+

re ∪1+

im and 1−
= −1+. Further 1=1+

∪10
∪1−. Let α ∈1.

Then α ∈1re if and only if 〈α, α〉 6= 0.

Coroots. Let α ∈10. Then

α∨
=

∑l
i=1 ni (|αi |

2/|α|
2)α∨

i for α =
∑l

i=1 niαi .

It is easy to check that α(α∨)= 2. Suppose α ∈1re and α = β+ δm . Then define

α∨
= β∨

+ (2/|β|
2)

∑
mi Ki .

Weyl group of τ(µ). For α ∈1re, we define a reflection

rα : h̃(µ)∗ → h̃(µ)∗, λ 7→ λ− λ(α∨)α.

Let W be the group generated by rα, α ∈ 1re. Then it is easy to prove that
〈wλ,wµ〉 = 〈λ,µ〉 for all w ∈ W . W is called the Weyl group of τ(µ).

Definition 1.2. A module V of τ(µ) is said to be integrable if

• V =
⊕

λ∈h̃(µ)∗ Vλ, where Vλ = {v ∈ V | hv = λ(h)v for all h ∈ h̃(µ)};

• For all α + δm ∈ 1re and v ∈ V , there exists an integer k = k(α, m, v) such
that (Xα ⊗ t m)kv = 0, where Xα is the root vector corresponding to root α.

Lemma 1.3. Suppose V is an irreducible integrable module for τ(µ) with finite-
dimensional weight spaces. Let P(V ) denote the set of all weights of V . Then

(i) P(V ) is W -invariant;

(ii) dim Vλ = dim Vwλ for w ∈ W and λ ∈ P(V );

(iii) if α ∈1re and λ ∈ P(V ), then λ(α∨) ∈ Z;

(iv) if α ∈1re and λ ∈ P(V ), and if λ(α∨) > 0, then λ−α ∈ P(V ).

(v) λ(Ki ) is a constant integer for all λ ∈ P(V ), for i = 1, 2, . . . , n.

Proof. The proof is standard. �

From now on we will consider τ(µ) up to a change of coordinates. Recall that
µ leaves the algebra B = C[t±1

1 , . . . , t±1
n−1] invariant. Let Bµ be the µ-fixed points

of B. Now B can be seen as a group algebra of Zn−1. Similarly, Bµ can be seen
as a group algebra of subgroup 0 of Zn−1 of index 2. But by Remark 1.1, one can
change the basis so that 0 = 2e1Z ⊕ e2Z ⊕ · · · ⊕ en−1Z. Thus we conclude that it
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is possible to change coordinates so that S = {1, n}. In this case when m = 2, we
have for X ∈ g that

µ(X ⊗ t2m1
1 tm2

2 · · · tmn−1
n−1 t2mn

n )= µ(X)⊗ t2m1
1 tm2

2 · · · tmn−1
n−1 t2mn

n ,

µ(X ⊗ t2m1+1
1 tm2

2 · · · tmn−1
n−1 t2mn

n )= −µ(X)⊗ t2m1+1
1 tm2

2 · · · tmn−1
n−1 t2mn

n ,

µ(X ⊗ t2m1
1 tm2

2 · · · tmn−1
n−1 t2mn+1

n )= −µ(X)⊗ t2m1
1 tm2

2 · · · tmn−1
n−1 t2mn+1

n ,

µ(X ⊗ t2m1+1
1 tm2

2 · · · tmn−1
n−1 t2mn+1

n )= µ(X)⊗ t2m1+1
1 tm2

2 · · · tmn−1
n−1 t2mn+1

n .

So

τ(µ)=

⊕
m∈Z

g0 ⊗ t2m
n Bµ

⊕
m∈Z

g0 ⊗ t2m+1
n t1 Bµ⊕

m∈Z

g1 ⊗ t2m
n t1 Bµ

⊕
m∈Z

g1 ⊗ t2m+1
n Bµ

⊕
(�A/dA)

0
⊕

D,

where Bµ = C[t±2
1 , t±1

2 , . . . , t±1
n−1].

Let Q be the Z-lattice spanned by α1, . . . , αl, δn . Recall g0 ⊗ C[tn, t−1
n ]⊕ CKn

is an affine Lie algebra, which need not be a subalgebra of τ(µ). Let β be the
highest root of the finite root system 10. Let α0 = −β+δn . Then it is well known
that {α1, . . . , αl, α0} forms a system of simple roots for g0 ⊗ C[tn, t−1

n ] ⊕ CKn .
Let Q(µ) be the root lattice of τ(µ). This is a Z-lattice spanned by α1, . . . , αl ,

δ1, . . . , δn . For λ,µ ∈ Q(µ), we say λ≥ µ if

λ−µ=
∑l

i=0 niαi for 0 ≤ ni ∈ Z.

Hence λ > 0 means λ≥ 0 and λ 6= 0. Now consider the twisted affine Lie algebra,
g0 ⊗ C[t2

n , t−2
n ]⊕ g1 ⊗ tnC[t2

n , t−2
n ]⊕ CKn , which is also a subalgebra of τ(µ). Its

positive roots are also positive in the above sense.

2. Central operators

The purpose of this paper is to classify irreducible integrable modules for τ(µ)
with finite-dimensional weight spaces with respect to the Cartan subalgebra h̃(µ),
where the center acts nontrivially. We first get information on a (fixed) irreducible
module V for τ(µ) with finite-dimensional weight spaces.

Definition 2.1. A linear map Z : V → V is called a central operator of degree
m ∈ Zn if Z commutes with the τ0(µ) action and

di Z − Zdi = mi Z for all i.

For example, t m Ki is a central operator of degree m and t r Ki t s K j is a central
operator of degree r + s.
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Lemma 2.2. • Let Z be a central operator of degree m such that Zv 6= 0 for
some v ∈ V . Then Zw 6= 0 for every nonzero w ∈ V .

• Let Z be a nonzero central operator of degree m. Then there exists a central
operator T on V of degree −m such that Z T = T Z = Id.

• Let Z1 and Z2 be nonzero central operators of degree m on V . Then there
exists a scalar λ such that Z1 = λZ2.

Proof. The proofs are easy and given in [Rao 2004]. �

Theorem 2.3. Let V be an irreducible module for τ(µ) with finite-dimensional
weight spaces with respect to the Cartan subalgebra h̃(µ). Let

L = {m ∈ Zn
| t m Ki 6= 0 on V for some i}.

Let 〈L〉 be the subgroup of Zn generated by L. Suppose rank〈L〉 = k ≤ n. Then up
to a coordinate change,

(i) there exist nonzero positive integers k1, . . . , kk and nonzero central opera-
tors Z1, Z2, . . . , Zk of degrees (k1, 0, . . . , 0), . . . , (0, . . . , kk, 0, . . . , 0), re-
spectively;

(ii) k < n;

(iii) t r Ki 6= 0 on V implies that i ≥ k + 1 and rk+1 = · · · = rn = 0;

(iv) there exists a proper submodule W of τ0(µ)⊕ Dk , where Dk is the linear span
of {dk+1, . . . , dn}, such that V/W has finite-dimensional weight spaces with
respect to h(µ)

⊕ ∑n
i=1 CKi

⊕
Dk .

Proof. The proofs are exactly the same as those of [Rao 2004, Theorem 4.5]. �

Theorem 2.4. With the notation above, suppose there is an element in (�A/dA)
0

that acts nontrivially on V . Then k = n − 1.

Proof. The proof is the same as that of [Rao 2004, Proposition 4.8]. �

Proposition 2.5. Let τ(µ) be the quotient of τ(µ) by all nonzero-degree central
operators. Suppose V is a module for τ(µ) with finite-dimensional weight spaces.
Then the zero-degree central operators Ki for 1 ≤ i ≤ n act trivially on V .

Proof. The proof follows from [Rao 2004]. �

Let V be an irreducible integrable module for τ(µ) with finite-dimensional
weight space. Choose coordinates using Theorems 2.3 and 2.4, so that t m Ki 6= 0
on V implies mn = 0 and i = n.

Proposition 2.6. Let V be as above. Suppose Kn acts as positive integer. Then
there exists λ ∈ P(V ) such that λ+ η+ δm′ /∈ P(V ) for all η > 0, where δm′ =∑n−1

i=1 miδi , and for all m′
= (m1,m2, . . . ,mn−1).
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Proof. The proof uses lemmas from [Rao 2004]; these we enclose in brackets.
Notice that g0,aff = g0 ⊗C[t2

n , t−2
n ]⊕CKn is an affine subalgebra of τ(µ). Then

V is a module for g0,aff. Now, arguing as in [Lemma 2.8], we conclude that

(∗) there exists a λ ∈ P(V ) such that λ+ η /∈ P(V ) for all η > 0.

Next we prove that

(∗∗) λ+ η+ δ1 /∈ P(V ) for all η > 0 or λ+ η− δ1 /∈ P(V ) for all η > 0.

For proving (∗∗), first we get λ ∈ P(V ) such that λ+ η /∈ P(V ) for all η > 0.
Suppose λ+η+ δ1 ∈ P(V ) for some η > 0. Then, arguing as in [Lemma 2.8], we
get η′

≥ 0 such that λ+η+δ1 +η′
∈ P(V ) and λ+η+δ1 +η′

+η′′ /∈ P(V ) for all
η′′ > 0. Also for all η′′ > 0, λ+ η+ δ1 + η′

+ η′′
− δ1 = λ+ η+ η′

+ η′′ /∈ P(V ),
since η+ η′

+ η′′ > 0.

Case 2.6a. m = 2.
Suppose that there exists a λ∈ P(V ) such that λ+η /∈ P(V ) and λ+η+δ1 /∈ P(V )

for all η> 0. If λ+α+δm /∈ P(V ) for all α+δm ∈1+
re, then we are done. Suppose

λ+α+ δm ∈ P(V ) for some α+ δm ∈1+
re. Let µ= λ+α+ δm .

We claim µ+ β + δs /∈ P(V ) for all β + δs ∈ 1+
re. Supposing it is false, let

µ+β + δs ∈ P(V ) for some β + δs ∈1+
re.

Case 2.6a1. 〈α+β + δm + δs, α+ δm〉> 0.
Let α=α′

+δm′ , where δm′ =
∑n−1

i=1 miδi , and β=β ′
+δs′ , where δs′ =

∑n−1
i=1 siδi ,

where α′, β ′ > 0 and α′, β ′
∈ g0,aff.

Suppose α + δs′ ∈ 1re. Then by [Lemma 1.4(2)] we have λ+ α + β + δm +

δs((α+ δs′)∨) > 0, since λ(α+ δs′)∨ > 0.
By Lemma 1.3(iv), λ + α + β + δm + δs − (α + δs′) ∈ P(V ). This implies

λ+β ′
+ δm + δs ∈ P(V ). We note that β ′

+ δm + δs > 0. Since α+ δm and β+ δs

are in 1+
re, the n-th component mn of m and the n-th component sn of s are ≥ 0.

Hence β ′
+ δm + δs > 0. So λ+β ′

+ δm + δs ∈ P(V ), which contradicts (∗).
Suppose α+δs′ /∈1re. Then α+δs′ −δ1 ∈1re. Then by [Lemma 1.4(2)] we have

λ+α+β+δm +δs((α+δs′ −δ1)
∨)>0. Notice that λ(δi )=0 for every 1≤ i ≤n−1.

Thus by Lemma 1.3(iv), λ+α+β+δm +δs −α−δs′ +δ1 = λ+β ′
+δm +δs +δ1 ∈

P(V ). Again as above β ′
+ δm + δs > 0. So λ+β ′

+ δm + δs + δ1 ∈ P(V ), which
contradicts (∗∗).

Case 2.6a2. 〈α+β + δm + δs, β + δs〉> 0.
This can be done as in Case 2.6a1.

Case 2.6a3. 〈α+β + δm + δs, α+β + δm + δs〉 ≥ 0.
Note that 〈α+β+δm +δs, α+β+δm +δs〉 = 〈α′

+β ′, α′
+β ′

〉. Thus the cases
〈α′

+ β ′, α′
〉 > 0 and 〈α′

+ β ′, β ′
〉 > 0 are already done. Note that α′, β ′ are in

affine root system and 〈 · , · 〉 is a semipositive definite form in the affine root lattice.
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So we are left with the case 〈α′
+ β ′, α′

+ β ′
〉 = 0. Thus by standard arguments,

α′
+β ′

= lδn for some l>0, and further 〈α′
+β ′, α′

〉= 〈α′
+β ′, β ′

〉= 0. Now either
α′ or α′

+ δ1 ∈1+
re. In any case, λ(α′∨)≥ 0. (Since λ+α′, λ+α′

+ δ1 /∈ P(V ), by
(∗) and (∗∗).)

Suppose λ(α′∨) > 0.

Subcase 1. Suppose α+ δs′ ∈1re. Then by [Lemma 1.4(2)] we have λ+α+β+

δm + δs((α+ δs′)∨) > 0, since 〈α+ β + δm + δs, α+ δs′〉 = 〈α′
+ β ′, α′

〉 = 0. By
Lemma 1.3(iv), λ+α+β+ δm + δs −α− δs′ = λ+β ′

+ δm + δs ∈ P(V ), which
contradicts (∗) since β ′

+ δm + δs > 0.

Subcase 2. Suppose α+δs′−δ1 ∈1re. Then by [Lemma 1.4(2)] we have λ+α+β+

δm +δs((α+δs′ −δ1)
∨)> 0. By Lemma 1.3(iv), λ+α+β+δm +δs −α−δs′ +δ1 =

λ+β ′
+ δm + δs + δ1 ∈ P(V ), which contradicts (∗∗) since β ′

+ δm + δs > 0.

Suppose λ(α′∨)= 0.

Subcase 1. Suppose α+ δs′ ∈1re. Then λ((−β ′
+ lδn + δm′ + δs′)∨)= lλ(δn) > 0

since l>0 and λ(δn)= Kn>0. Now λ+α+β+δm+δs((−β
′
+lδn+δm′+δs′)∨)>0.

So by Lemma 1.3(iv), λ+α+β+δm +δs −α
′
−δm′ −δs′ =λ+β ′

+δm +δs ∈ P(V ),
which contradicts (∗) since β ′

+ δm + δs > 0.

Subcase 2. α+ δs′ − δ1 ∈1re can be handled similarly.

This concludes the proof of Proposition 2.6. �

3. Classification of integrable τ(µ)-modules

Let gaff = g⊗C[tn, t−1
n ]⊕CKn . Consider gaff ⊗C[t±1

1 , . . . , t±1
n−1]⊕ D and consider

the subalgebra (h ⊕ CKn)⊗ C[t±1
1 , . . . , t±1

n−1]. Let

H = τ(µ)∩ ((h ⊕ CKn)⊗ C[t±1
1 , . . . , t±1

n−1]).

Let H̃ = H⊕D. We have proved in Proposition 2.6 that there exists a λ∈ P(V ) such
that Vλ is a “highest weight” space. In fact it is easy to see that

⊕
m′ Vλ+δm′ is also

a highest weight space. Let
⊕

m′ Vλ+δm′ = V λ. Note that H is a graded abelian Lie
algebra and V λ is a graded H -module. Since V is irreducible, it follows by weight
arguments that V λ is a graded irreducible H module. From known facts [Rao
2004], it follows that V λ is isomorphic to a subalgebra E of C[t±1

1 , . . . , t±1
n−1] such

that each nonzero homogeneous element of E is invertible. Then the H module
action on V λ can be described by a Zn−1 graded map from H to E , which we call
ψ . Now consider the evaluation map E(1) : E → C defined by t m

7→ 1. Denote the
composition map E(1) ◦ψ as ψ . In what follows, we prove that for such ψ and
ψ there exist an irreducible module V (ψ) and a non-graded irreducible module
V (ψ), and we prove that V ∼= V (ψ). We will also indicate how to get V (ψ)
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from V (ψ), and conversely. Thus our problem reduces to classifying V (ψ), and
it suffices to describe ψ , which is a map from H → C.

Nongraded and graded modules for τ(µ). We recall from Section 1 that 1 =

1re ∪1im, and 1=1+
∪10

∪1−. Let τ0(µ)= J = (g⊗ A)µ⊕ (�A/dA)
0. Then

J = J+
⊕ J 0

⊕ J−, where

J+
=

⊕
α∈1+ Jα, J−

=
⊕

α∈1− Jα, J 0
=

⊕
α∈10 Jα.

Note that H = J 0. For any Lie algebra g, let U (g) be the universal enveloping
algebra.

Let ψ : J 0
→ C be a linear map. We make the one-dimensional vector space

Cv a J+
⊕ J 0

⊕ Cdn-module by defining

h.v =ψ(h)v for h ∈ J 0, Xv = 0 for X ∈ J+, dnv = dv for some d ∈ C.

We consider the induced Verma module

M(ψ)= U (J−)
⊗

J+⊕J 0⊕Cdn
Cv.

From standard arguments, M(ψ) has a proper maximal submodule and hence a
unique irreducible quotient V (ψ), which is the non-graded module for τ(µ).

We define
ψ : J 0

→ C[t±1
1 , . . . , t±1

n−1] = An−1.

Let m = (m1, . . . ,mn) ∈ Zn , and let m′
= (m1, . . . ,mn−1) ∈ Zn−1. Define

ψ(h ⊗ t m)= ψ(h ⊗ t m)t m′

.

Let E = imageψ . Let b = (b1, b2, . . . , bn−1) ∈ Cn−1. Define a τ(µ)-module
structure on V (ψ)⊗ An−1 by the action

X ⊗ t m(v⊗ t s)= (X ⊗ t mv)⊗ t s+m′

for every v ∈ V (ψ),
X ⊗ t m

∈ τ0(µ), t s
∈ An−1,

di .(v⊗ t s)= (bi + si )v⊗ t s for 1 ≤ i ≤ (n − 1),

dn.(v⊗ t s)= (dnv)⊗ t s .

Lemma 3.1. E is an irreducible J 0
⊕ D-module if and only if each nonzero ho-

mogeneous element of E is invertible.

Proof. This follows from methods from [Rao 2004]. �

Proposition 3.2. Let E , ψ and ψ be as above. Suppose every nonzero homoge-
neous element of E is invertible. Then V (ψ)⊗ An−1 is completely reducible as a
τ(µ)-module, and all components are isomorphic up to a grade shift.

Proof. This follows from methods from [Rao 1995]. �
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We recall that τ(µ) = J ⊕ D. Let ψ , ψ and E be as above. Make E a J+
⊕

J 0
⊕ D-module by defining that J+ acts trivially on E and

h ⊗ t m(t s)= ψ(h ⊗ t m)t s+m′

for t s
∈ E, h ⊗ t m

∈ J 0,

di .(t s)= (bi + si )t s for 1 ≤ i ≤ n − 1,

dn.(t s)= 0.

Let M(ψ) = U (J−) ⊗J+⊕J 0⊕D E . By standard arguments, let V (ψ) be the
irreducible quotient of M(ψ). V (ψ) is the graded module for τ(µ).

Proposition 3.3. Suppose E is a J 0
⊕ D-irreducible module. Then a component

of V (ψ)⊗ An−1 is isomorphic to V (ψ) as a τ(µ)-module for some suitable b.

Proof. The proof is same as in [Rao 2004, Proposition 3.5]. �

The following is the main result of this paper.

Theorem 3.4. Any irreducible, integrable module for τ(µ) with finite-dimensional
weight spaces, on which the center acts nontrivially, is an irreducible component
of V (ψ)⊗ An−1, where V (ψ) is the non-graded module for τ(µ).

Outline of the proof. By Proposition 3.3, there is a one-to-one correspondence
between graded and non-graded modules for τ(µ). So it suffices to classify the
non-graded modules for τ(µ). We will prove this theorem in Section 5.

4. Going to the affine Kac–Moody Lie algebra

Let V be an irreducible integrable module for τ(µ) with finite-dimensional weight
spaces. Also we know that if t m Ki 6= 0 on V , then mn = 0 and i = n. We have

τ0(µ)=

⊕
m∈Z

g0 ⊗ t2m
n Bµ

⊕
m∈Z

g0 ⊗ t2m+1
n t1 Bµ⊕

m∈Z

g1 ⊗ t2m
n t1 Bµ

⊕
m∈Z

g1 ⊗ t2m+1
n Bµ

⊕
(�A/dA)

0.

Let gaff = g⊗ C[tn, t−1
n ] ⊕ CKn . We define a map

θ : τ → gaff ⊗ C[t±1
1 , t±1

2 , . . . , t±1
n−1] ⊕ D

by
X ⊗ t m

7→ (Xtmn
n )⊗ t m′

, where m′
= (m1, . . . ,mn−1),

t m Ki 7→


0 if i 6= n and mn = 0,
Kn ⊗ t m if i = n and mn = 0,
0 if mn 6= 0,

di 7→ di for 1 ≤ i ≤ n.
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It is easy to check that θ defines a Lie algebra homomorphism and that ker θ∩τ(µ)

is zero on V . Below we give a surjective map φ from gaff ⊗ C[t±1
1 , t±1

2 , . . . , t±1
n−1]

to
⊕

N gaff (the direct sum of N copies of gaff) and prove the conditions under
which φ(µ) = φ|τ0(µ) is a surjective map from τ0(µ) to

⊕
N gaff. We also prove

in Proposition 5.3 that the non-graded module V (ψ) is zero on the kernel of φ(µ).
Thus V (ψ) is a module for

⊕
N gaff, which is an affine Kac–Moody Lie algebra on

which the integrable irreducible modules are tensor products of irreducible highest
weight modules [Rao 2005].

Let n ≥ 2 be a positive integer. For each i in 1 ≤ i ≤ (n −1), let Ni be a positive
integer. Let ai = (ai1, ai2, . . . , ai Ni ) be distinct nonzero complex numbers. Let
I = (i1, i2, . . . , in−1), where 1 ≤ i j ≤ N j . Let m′

= (m1,m2, . . . ,mn−1) ∈ Zn−1.
Let φ be a Lie algebra homomorphism defined by

φ : gaff ⊗ C[t±1
1 , . . . , t±1

n−1] →

(⊕
N=N1 N2···Nn−1-copies

gaff

)
= gaff N ,

Xtm1
1 · · · tmn−1

n−1 7→ (am1
1i1

am2
2i2

· · · amn−1
(n−1)in−1

X)1≤i1≤N1;...;1≤in−1≤Nn−1,

where X ∈ gaff.
Following the same proof as in [Rao 2004, Lemma 3.11(a)], we see that φ

is surjective. Let T ⊂ {11, 12, . . . , 1N1} be a maximal set such that a2
1i 6= a2

1 j
whenever 1i, 1 j ∈ T and 1 ≤ i, j ≤ N1.

Proposition 4.1. Let φ(µ)= φ|τ0(µ). If the cardinality of T is N1, then φ(µ) is a
surjective Lie algebra homomorphism from τ0(µ) to gaff N .

Proof. We already know that if m = 2, then g = g0 ⊕g1. Now there are five cases.

Case 4.1a. Fix mn ∈ Z, and let Y1, Y2, . . . , YN ∈ g0. Let

φ(µ)
( N∑

i=1

bi X i t2mn
n t2m1

1 tm2
2 · · · tmn−1

n−1

)
= (Y1t2mn

n , Y2t2mn
n , . . . , YN t2mn

n ),

where the bi are complex numbers, X i t
2mn
n t2m1

1 tm2
2 · · · tmn−1

n−1 ∈ τ0(µ) and 0 ≤ m j ≤

N j − 1 for j = 1, . . . , n − 1. So, we have to solve the equation

( N∑
i=1

bi X i t2mn
n a2m1

1i1
am2

2i2
· · · amn−1

(n−1)in−1

)
= (Y1t2mn

n , Y2t2mn
n , . . . , YN t2mn

n ).

Writing this in matrix form, we must prove that the matrix

M = (a2m1
1i1

am2
2i2

· · · amn−1
(n−1)in−1

)

is invertible, where (i1, i2, . . . , in−1) for 1 ≤ i j ≤ N j determines the rows and
m′

= (m1,m2, . . . ,mn−1), where 0 ≤ m j ≤ N j −1 for all 1 ≤ j ≤ n − 1, determines
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the columns. Observe that M can be written as a tensor product of other matrices
as

M = (a2m1
1i1
)1≤i1≤N1,0≤m1≤N1−1 ⊗ M2 ⊗ · · · ⊗ Mn−1,

where

(1) M j := (am j
j i j
)1≤i j ≤N j ,0≤m j ≤N j −1 for j = 2, . . . , n − 1.

Let M1 = (a2m1
1i1
)1≤i1≤N1,0≤m1≤N1−1. In other upcoming cases, M1 will be defined

differently, but the other M j will be the same. If the cardinality of T is N1, which
means the a2

1i1
are all distinct for all 1≤ i1 ≤ N1, then M1 is a Vandermonde matrix,

so it is invertible. Similarly M2 is a Vandermonde matrix because a2i 6= a2 j for all
1 ≤ i, j ≤ N2. So M2 is invertible. The other M j for 3 ≤ j ≤ (n − 1) are likewise
invertible. According to a standard result in linear algebra, the determinant of a
tensor product of invertible matrices is nonzero. So M is invertible.

Case 4.1b. Fix mn ∈ Z, and let Y1, Y2, . . . , YN ∈ g0. Let

φ(µ)
( N∑

i=1

bi X i t2mn+1
n t2m1+1

1 tm2
2 · · · tmn−1

n−1

)
= (Y1t2mn+1

n , Y2t2mn+1
n , . . . , YN t2mn+1

n ),

where the bi are complex numbers and X i t
2mn+1
n t2m1+1

1 tm2
2 · · · tmn−1

n−1 ∈ τ0(µ) and
0 ≤ m j ≤ N j − 1 for 1 ≤ j ≤ (n − 1). So we have to solve the equation

( N∑
i=1

bi X i t2mn+1
n a2m1+1

1i1
am2

2i2
· · · amn−1

(n−1)in−1

)
= (Y1t2mn+1

n , Y2t2mn+1
n , . . . , YN t2mn+1

n ).

Writing this in the matrix form, we have to prove that the matrix

M = (a2m1+1
1i1

am2
2i2

· · · amn−1
(n−1)in−1

)

is invertible, where (i1, i2, . . . , in−1), 1 ≤ i j ≤ N j determines rows and m′
=

(m1,m2, . . . ,mn−1), where 0 ≤ m j ≤ N j − 1 for all 1 ≤ j ≤ (n − 1), determines
the columns. The matrix M is a tensor product of other matrices:

M = (a2m1+1
1i1

)1≤i1≤N1, 0≤m1≤N1−1 ⊗ M2 ⊗ · · · ⊗ Mn−1.

Let M1 = (a2m1+1
1i1

)1≤i1≤N1,0≤m1≤N1−1. Again as above, if the cardinality of T is
N1, then M1 is product of two matrices: one is diagonal matrix whose diagonal
entries are a11, a12, . . . , a1N1 and other is (a2m1

1i1
)1≤i1≤N1, 0≤m1≤N1−1. So M1 is in-

vertible because the diagonal matrix is invertible and because the other matrix is
a Vandermonde matrix. Similarly the M j for 2 ≤ j ≤ (n − 1) are invertible since
they are Vandermonde matrices. Hence M is invertible.
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Case 4.1c. Fix mn ∈ Z, and let Y1, Y2, . . . , YN ∈ g1. Let

φ(µ)
( N∑

i=1

bi X i t2mn
n t2m1+1

1 tm2
2 · · · tmn−1

n−1

)
= (Y1t2mn

n , Y2t2mn
n , . . . , YN t2mn

n ),

where the bi are complex numbers and X i t
2mn
n t2m1+1

1 tm2
2 · · · tmn−1

n−1 ∈ τ0(µ) and 0 ≤

m j ≤ N j − 1 for 1 ≤ j ≤ (n − 1)). As above we must solve the equation( N∑
i=1

bi X i t2mn
n a2m1+1

1i1
am2

2i2
· · · amn−1

(n−1)in−1

)
= (Y1t2mn

n , Y2t2mn
n , . . . , YN t2mn

n ).

For this we must prove that the matrix

M = (a2m1+1
1i1

am2
2i2

· · · amn−1
(n−1)in−1

),

is invertible, where (i1, i2, . . . , in−1) for 1 ≤ i j ≤ N j determines the rows and
m′

= (m1,m2, . . . ,mn−1), where 0 ≤ m j ≤ N j − 1 for all 1 ≤ j ≤ (n − 1),
determines the columns. Again by Case 4.1b, M is invertible if the cardinality of
T is N1.

Case 4.1d. Fix mn ∈ Z, and let Y1, Y2, . . . , YN ∈ g1. Let

φ(µ)
( N∑

i=1

bi X i t2mn+1
n t2m1

1 tm2
2 · · · tmn−1

n−1

)
= (Y1t2mn+1

n , Y2t2mn+1
n , . . . , YN t2mn+1

n ),

where the bi are complex numbers and X i t
2mn+1
n t2m1

1 tm2
2 · · · tmn−1

n−1 ∈ τ0(µ) and 0 ≤

m j ≤ N j − 1 for 1 ≤ j ≤ (n − 1). So we have to solve the equation( N∑
i=1

bi X i t2mn+1
n a2m1

1i1
am2

2i2
· · · amn−1

(n−1)in−1

)
= (Y1t2mn+1

n , Y2t2mn+1
n , . . . , YN t2mn+1

n ).

For this we must prove the matrix

M = (a2m1
1i1

am2
2i2

· · · amn−1
(n−1)in−1

)

is invertible, where (i1, i2, . . . , in−1) for 1 ≤ i j ≤ N j determines the rows and
m′

= (m1,m2, . . . ,mn−1), where 0 ≤ m j ≤ N j − 1 for all 1 ≤ j ≤ (n − 1),
determines the columns. Again, by Case 4.1a, M is invertible if the cardinality of
T is N1.

Case 4.1e. Let c1, c2, . . . , cN ∈ C. Let

φ(µ)
( N∑

i=1

bi Knt2m1
1 tm2

2 · · · tmn−1
n−1

)
= (c1Kn, c2Kn, . . . , cN Kn),
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where the bi are complex numbers and Knt2m1
1 tm2

2 · · · tmn−1
n−1 ∈ τ0(µ) and 0 ≤ m j ≤

N j − 1 for 1 ≤ j ≤ (n − 1). So we must solve

( N∑
i=1

bi Kna2m1
1i1

am2
2i2

· · · amn−1
(n−1)in−1

)
= (c1Kn, c2Kn, . . . , cN Kn).

So, we have to prove that the matrix

M = (a2m1
1i1

am2
2i2

· · · amn−1
(n−1)in−1

)

is invertible, where (i1, i2, . . . , in−1) for 1 ≤ i j ≤ N j determines the rows and
m′

= (m1,m2, . . . ,mn−1), where 0 ≤ m j ≤ N j − 1 for all 1 ≤ j ≤ (n − 1),
determines the columns. Again by Case 4.1a, M is invertible if the cardinality of
T is N1.

So if the cardinality of T is N1, then φ(µ) is a surjective Lie algebra homomor-
phism from τ0(µ) to gaff N . This completes the proof of Proposition 4.1. �

We now define polynomials P1(t2
1 ), P2(t2), . . . , Pn−1(tn−1) by

P1(t2
1 )=

N1∏
i=1

(t2
1 − a2

1i ), Pj (t j )=

N j∏
l=1

(t j − a jl) for 2 ≤ j ≤ (n − 1).

Notation. Denote by 〈P1(t2
1 ), P2(t2), . . . , Pn−1(tn−1)〉 the ideal generated by the

polynomials P1(t2
1 ), P2(t2), . . . , Pn−1(tn−1) inside C[t±2

1 , t±1
2 , . . . , t±1

n−1].

Lemma 4.2. If the cardinality of T is N1, then kerφ(µ) is given by I1 + I2 + I3 +

I4 + I5, where, for some fixed m ∈ Z,

I1 = g0 ⊗ t2m
n 〈P1(t2

1 ), P2(t2), . . . , Pn−1(tn−1)〉,

I2 = g0 ⊗ t2m+1
n 〈t1 P1(t2

1 ), P2(t2), . . . , Pn−1(tn−1)〉,

I3 = g1 ⊗ t2m
n 〈t1 P1(t2

1 ), P2(t2), . . . , Pn−1(tn−1)〉,

I4 = g1 ⊗ t2m+1
n 〈P1(t2

1 ), P2(t2), . . . , Pn−1(tn−1)〉,

I5 = Kn 〈P1(t2
1 ), P2(t2), . . . , Pn−1(tn−1)〉.

Proof. We consider the map

φ1 : g0 ⊗ t2m
n t m′

→

⊕
N=N1 N2··· .Nn−1

g0 ⊗ t2m
n , where t m′

∈ Bµ,

Xt2m
n t m′

7→ (Xt2m
n a2m1

1i1
am2

2i2
· · · amn−1

(n−1)in−1
)1≤i1≤N1;...;1≤in−1≤Nn−1 .

Let M = (N = N1 N2 · · · Nn−1) (the dimension of g0). As proved in Proposition
4.1, one can show that φ1 is surjective. Since φ1 is nothing but the evaluation
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map at the roots of P1(t2
1 ), P2(t2), . . . , Pn−1(tn−1), we have I1 ⊂ kerφ1. Therefore

dim(g0 ⊗ t2m
n t m′

/I1)≥ M . Consider the space

R = {g0 ⊗ t2m
n t2m1

1 tm2
2 · · · tmn−1

n−1 | 0 ≤ mi ≤ Ni − 1 for 1 ≤ i ≤ (n − 1)}.

Note that φ1 is injective on R since the corresponding matrix is invertible. Also note
that any element of g0 ⊗ t2m

n t m′

can be written as linear combination of elements
of R modulo I1. Thus dim(g0 ⊗ t2m

n t m′

/I1)≤ M , and so dim(g0 ⊗ t2m
n t m′

/I1)= M .
Therefore I1 is the kernel of φ1. Arguing similarly on the other components of
τ(µ), we get that I1 + I2 + I3 + I4 + I5 is the kernel of φ(µ) if the cardinality of
T is N1. �

5. Proof of the main theorem and propositions

Proof of Theorem 3.4. Let V be an irreducible integrable module for τ(µ) with
finite-dimensional weight spaces. Then, by Theorems 2.3 and 2.4, there exist up to
a coordinate change nonzero central operators Z1, . . . , Zn−1 of respective degrees
(k1, 0, . . . , 0), . . . , (0, . . . , kn−1, 0). Let W = {Ziv−v | v ∈ V for 1 ≤ i ≤ (n−1)}.
We claim that W is a maximal proper J ⊕ Cdn-submodule of V .

Consider W1 = {Z1v − v | v ∈ V }. W1 is a proper J ⊕ D1-module. Note that
if i 6= 1, then di commutes with Z1, and hence W1 is di -invariant. Clearly W1 is
J -invariant. To see that W1 is proper, just note that W1 cannot contain d1 weight
vectors. Now consider W2 = {Z2v− v | v ∈ V/W1}. By the above argument, we
can see that W2 is a proper J ⊕ D2-module. Continuing this process, we see that
W = {Ziv−v | v ∈ V for 1 ≤ i ≤ (n −1)} is a maximal proper J ⊕Cdn-submodule
of V .

Thus we have proved that W is a maximal proper J ⊕Cdn-submodule of V and
V/W has finite-dimensional weight spaces with respect to h(µ)⊕

∑n
i=1 CKi ⊕

Cdn . Further, we proved in Proposition 2.6 that there exists a λ ∈ P(V ) such that
λ+ η+ δm′ /∈ P(V ) for every η > 0 and for every m′

∈ Zn−1.
Let

⊕
m′ Vλ+δm′ = V λ. Then it follows that

Xα ⊗ t s V λ
= 0 for all α+ δs ∈1+

re.

Let V λ be the image of V λ in V/W , which is known to be finite-dimensional.
J 0 leaves V λ invariant. Notice that J 0 is an abelian Lie algebra. Thus J 0 has a
one-dimensional invariant subspace in V λ. Let W λ be the maximal proper invariant
subspace of V λ. Then it is easy to check that V λ/W λ is one-dimensional by Lie’s
theorem; otherwise there will be a contradiction to the fact that W λ is a maximal
proper subspace. Let V λ/W λ

= Cv. Let X ⊗ t mv =ψ(X ⊗ t m)v for X ⊗ t m
∈ J 0,

where ψ : J 0
→ C is a linear map. Now consider the irreducible module V (ψ) as

described in Section 3.
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We claim that V (ψ) is a τ0(µ)⊕Cdn-irreducible quotient of V/W . This follows
from the fact that the module generated by W λ is proper and maximal. Thus we
have an irreducible non-graded module V (ψ) for τ0(µ)⊕Cdn . Now V (ψ)⊗ An−1

can be made as a τ(µ)-module as described in Section 3. Now by Propositions
3.2 and 3.3, it follows that any irreducible integrable module for τ(µ) with finite-
dimensional weight spaces is an irreducible component of V (ψ) ⊗ An−1. This
completes the proof of Theorem 3.4. �

In case m = 2, we have Bµ = C[t±2
1 , t±1

2 , . . . , t±1
n−1] and 0= 2e1Z⊕e2Z⊕· · ·⊕

en−1Z. Notice that t m′

∈ Bµ if and only if m′
∈ 0. Let

T1 =

⊕
m∈Z

g0 ⊗ t2m
n Bµ,

T3 =

⊕
m∈Z

g1 ⊗ t2m
n t1 Bµ,

T2 =

⊕
m∈Z

g0 ⊗ t2m+1
n t1 Bµ,

T4 =

⊕
m∈Z

g1 ⊗ t2m+1
n Bµ.

So τ(µ) = T1 ⊕ T2 ⊕ T3 ⊕ T4 ⊕ (�A/dA)
0
⊕ D. Let T +

i = Ti
⋂
(
⊕

α∈1+ τα). Let
α1, . . . , αl be all simple roots of g0, and let αi1, . . . , αis be all positive short roots
of g1. Let

S = {α1 + δm′, . . . , αl + δm′, m′
∈ 0,

−α1 + δn + δ1 + δm′, . . . ,−αl + δn + δ1 + δm′, δn + δ1 + δm′, m′
∈ 0,

αi1 + δ1 + δm′, . . . , αis + δ1 + δm′, m′
∈ 0,

−αi1 + δn + δm′, . . . ,−αis + δn + δm′, m′
∈ 0}.

Proposition 5.1. Let 〈S〉 be the Lie algebra generated by the root spaces corre-
sponding to root α ∈ S. Then

〈S〉 = T +

1 ⊕ T +

2 ⊕ T +

3 ⊕ T +

4 =

⊕
α∈1+

τα.

Proof. Let

τ1(µ)=

⊕
m∈Z

g0 ⊗ t2m
n

⊕
m∈Z

g1 ⊗ t2m+1
n

⊕
CKn,

which is a twisted affine Lie algebra. Let β be the weight corresponding to the
highest weight vector of the g0-module g1 as in [Kac 1990]. Then it is known
from [Kac 1990] that τ1(µ) is generated as a Lie algebra by the root spaces cor-
responding to the root basis {α1, . . . , αl,−β + δn}. Thus from this we conclude
that 〈S〉 contains T +

1 ⊕ T +

4 , which is the Lie algebra generated by the root spaces
corresponding to the roots α1 + δm′, . . . , αl + δm′,−β+ δn + δm′ for m′

∈ 0. Also

[h(µ)t1tn, T1
+
] = T2

+ and [h(µ)t1tn, T4
+
] = tn2T3

+,
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and the root spaces corresponding to the roots αi1 +δ1 +δm′, . . . , αis +δ1 +δm′ for
m′

∈ 0 are in 〈S〉 by definition. Thus 〈S〉 = T +

1 ⊕ T +

2 ⊕ T +

3 ⊕ T +

4 . �

We will now define the concept of the height ht of a positive root. All roots
of g0 are given the usual height. Thus if α =

∑
niαi , then htα =

∑
ni . Also

ht δn = N + 1, where N is the height of the highest root of the finite root system
10 of g0. Let α ∈1+. Let α = α′

+ δm′ and mn = 0. Then we define htα = htα′.
Let

S = {α1, . . . , αl,−α1 + δn + δ1, . . . ,−αl + δn + δ1, δ1 + δn,

αi1 + δ1, . . . , αis + δ1,−αi1 + δn, . . . ,−αis + δn}.

Clearly ht γ ≤ N + 1 for every γ ∈ S. It is easy to see that for γ ′
∈ 1+, there

exists a γ ∈ S such that γ ′
= γ + δm′ for m′

∈ 0 and ht γ ≤ N + 1.

Lemma 5.2. Suppose V (ψ) has finite-dimensional weight spaces. Then Xα ⊗

I V (ψ) = 0 for some cofinite ideal I of C[t±2
1 , t±1

2 · · · t±1
n−1] and for all α ∈ 1,

including α = 0.

Proof. Let Xα be a root vector of root α ∈ −S. For 2 ≤ i ≤ (n−1), consider the set
{Xα⊗tk

i v |k ∈Z}, which is contained in the same weight space. Since weight spaces
are finite-dimensional, there exists a nonzero polynomial Pi,α(ti )=

∑
j a j t

j
i such

that

Xα ⊗ Pi,α(ti )v = 0, where Xα ⊗ Pi,α(ti )=
∑

j a j Xα ⊗ t j
i .

Denote by (P) the ideal generated by the polynomial P in C[t±1
1 , t±1

2 , . . . , t±1
n−1].

Claim 5.2a. Xα ⊗ (Pi,α(ti ))v = 0 for 2 ≤ i ≤ n − 1. Let m′
∈ Bµ. Then

h ⊗ t m′

(Xα ⊗ Pi,α(ti ))v = Xα ⊗ Pi,α(ti )h ⊗ t m′

v+α(h)Xα ⊗ t m′

Pi,α(ti )v = 0.

The first term is zero since h ⊗ t m′

acts as scalar. Thus

Xα ⊗ t m′

(Pi,α(ti ))v = 0 for 2 ≤ i ≤ n − 1.

Let Pi (ti )=
∏

−α∈S Pi,α(ti ). We note that Xα⊗ Bµ(Pi (ti ))v = 0 for 2 ≤ i ≤ n −1.
Similarly for t1, consider the set {Xα⊗t2k

1 v | k ∈ Z}, which is contained in the same
weight space. Since weight spaces are finite-dimensional, there exists a nonzero
polynomial P1,α(t1) =

∑
j a2 j t

2 j
1 such that Xα ⊗ P1,α(t1)v = 0. On similar lines

as above, we prove that

Xα ⊗ t m′

(P1,α(t1))v = 0 for m′
∈ 0.

So we have proved that Xα ⊗ Bµ(Pi (ti ))v = 0 for 1 ≤ i ≤ n − 1.
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Claim 5.2b. For 1 ≤ i ≤ n − 1,

Xγ ⊗ (Pi (ti ))v = 0 for every γ ∈ −1+, where γ = η+ δm′ and mn = 0.

We will prove this by induction on the height of a positive root. We have already
seen this by Claim 5.2a for all γ ∈ −S such that ht γ ≤ ht δn . Let γ ∈ −1+, where
γ = η+ δm′ and mn = 0, and consider Xγ ⊗ (Pi (ti ))v for 1 ≤ i ≤ (n −1). We will
prove that Xγ ⊗(Pi (ti ))v is killed by Xβ for every β ∈ S. Then by Proposition 5.1,
it follows that Xγ ⊗ (Pi (ti ))v is killed by Xβ for every β ∈1+, since S generates
all the positive root spaces. So Xγ ⊗ (Pi (ti ))v is a highest weight vector. Since
V (ψ) is an irreducible highest weight module, it follows that Xγ ⊗ (Pi (ti ))v = 0
for every γ ∈ −1+, where γ = η+ δm′ and mn = 0.

Let β ∈ S, and let β = α+ δm′ for α ∈ S and m′
∈ 0. Then

Xα ⊗ t m′

.Xγ ⊗ (Pi (ti ))v = Xγ ⊗ (Pi (ti )).Xα ⊗ t m′

v+ [Xα, Xγ ] ⊗ t m′

(Pi (ti ))v.

The first component is zero since v is a highest weight vector. The second is zero
by induction on the height of a positive root. This proves Claim 5.2b.

Claim 5.2c. b ⊗ (Pi (ti ))v = 0 for every b ∈ J 0 and for 1 ≤ i ≤ (n − 1).
For any α ∈ −1+

re, consider −α∨
⊗ (Pi (ti ))v = X−αXα ⊗ (Pi (ti ))v − Xα ⊗

(Pi (ti ))X−αv = 0 by Claim 5.2b. Since α∨ for α ∈ −1+
re will cover all of J 0, this

proves Claim 5.2c.

Let I be the ideal P1(t1), . . . , Pn−1(tn−1) generates inside C[t±2
1 , t±1

2 · · · t±1
n−1].

It is easy to see that C[t±2
1 , t±1

2 · · · t±1
n−1]/I is finite-dimensional. We consider

W = {w ∈ V (ψ) | Xα ⊗ Iw = 0 for all α, including α = 0},

which is nonempty by the above. It is easy to see that W is a submodule of V (ψ).
Since V (ψ) is irreducible, W = V (ψ). This completes the proof of Lemma 5.2. �

Let I ′ be the ideal generated by the polynomials P1(t2
1 ), . . . , Pn−1(tn−1) inside

C[t±2
1 , t±1

2 , . . . , t±1
n−1]. That is, let

I ′
=

〈
P1(t2

1 )=

N1∏
i=1

(t2
1 − a2

1i ), Pj (t j )=

N j∏
l=1

(t j − a jl) for 2 ≤ j ≤ (n − 1)
〉
.

We observe that the polynomials P1(t2
1 ), . . . , Pn−1(tn−1) have distinct roots. So

I ⊂ I ′. Our aim is to prove that Xα ⊗ I ′v = 0 for all α, including α = 0.
Let α be a simple root of g0.

Case 5.2d. Suppose α is a long root.
Let Xα ∈ (g0)α and Yα ∈ (g0)−α such that hα = [Xα, Yα] is an sl2-copy. Let Gα

be the space spanned by Xα ⊗ I ′, Yα ⊗ I ′, hα ⊗ I ′, and Kn ⊗ I ′.
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Case 5.2e. Suppose α is a short root.
Let Xα ∈ (g0)α and Yα ∈ (g0)−α such that hα = [Xα, Yα] is an sl2-copy. Let

X ′
α ∈ (g1)α and Y ′

α ∈ (g1)−α such that h′
α = [X ′

α, Y ′
α] is an sl2-copy. Let Gα be the

space spanned by

Xα ⊗ I ′,

Y ′

α ⊗ t−1
1 I ′,

Yα ⊗ I ′,

h′

α ⊗ I ′,

hα ⊗ I ′,

[Xα, Y ′

α ⊗ t−1
1 ] ⊗ I ′,

X ′

α ⊗ t1 I ′,

[X ′

α ⊗ t1, Yα] ⊗ I ′.

Case 5.2f. Suppose β is the highest root of the finite root system 10 of g0.
Consider

α = −β + δn, Xα = X−β ⊗ tn, Yα = Xβ ⊗ t−1
n , hα = [Xα, Yα] = hβ + Kn.

Let Gα be the space spanned by Xα ⊗ I ′, Yα ⊗ I ′, hα ⊗ I ′.

Proposition 5.3. Let α be as in Cases 5.2d, 5.2e, and 5.2f. Then Gαv = 0.

Proof. If we take Lie brackets in Gα, then the result will contain higher powers
of I ′. But I ⊂ I ′n for large n. So Gα/I is solvable. In fact it is nilpotent. Since
I ′/I is finite-dimensional, so is Gα/I ′. By Lie’s theorem, there exists nonzero w
in V (ψ) such that g ⊗ p(t)w = λ(g, p(t))w for some scalar λ(g, p(t)), g ∈ Gα,
and p(t) ∈ I ′.

Claim 5.3a. Gαw = 0.

We will prove the proposition for Case 5.2e. For Cases 5.2d and 5.2f, the proof is
based on similar arguments. So suppose α is a short root and let Xα ∈ (g0)α. Then
let Xα ⊗ P(t)w = λ(Xα, P(t))w for P(t) ∈ I ′. This implies (Xα ⊗ P(t))mw =

λ(Xα, P(t))mw. Since V is integrable, (Xα ⊗ P(t))mw = 0 for large m, and
therefore λ(Xα, P(t)) = 0. Hence Xα ⊗ P(t)w = 0. Similarly we can prove that
Yα⊗ P(t)w= 0. We claim that hα⊗ P(t)w= 0, which follows from the arguments
in [Rao 2001, Proposition 2.1], except that we replace the finite-dimensional V
by integrable V .

Now let X ′
α ⊗ Q(t)t1w = λ(X ′

α, Q(t)t1)w for Q(t) ∈ I ′. Then

(X ′

α ⊗ Q(t)t1)mw = λ(X ′

α, Q(t)t1)mw.

Since V is integrable, (X ′
α ⊗ Q(t)t1)mw = 0. Hence λ(X ′

α, Q(t)t1)m = 0, and
therefore λ(X ′

α, Q(t)t1) = 0. This implies X ′
α ⊗ Q(t)t1w = 0. Similarly we can

prove that Y ′
α ⊗ Q(t)t−1

1 w = 0.

Claim 5.3b. h′
α ⊗ Q(t)w = 0.

Let h′
α ⊗ Q(t)w = λ(h′

α, Q(t))w and let λ= λ(h′
α, Q(t)).

Subclaim 1. h′
α ⊗ Q(t)(Y ′

α ⊗ t−1
1 )mw = λ(Y ′

α ⊗ t−1
1 )mw.
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We prove this by induction on m. Let m = 1 and consider

h′

α⊗Q(t)(Y ′

α⊗t−1
1 )w= (Y ′

α⊗t−1
1 )h′

α⊗Q(t)w−2Y ′

α⊗t−1
1 Q(t)w=λ(Y ′

α⊗t−1
1 )w.

Now we assume the claim for m and consider

h′
α ⊗ Q(t)(Y ′

α ⊗ t−1
1 )m+1w

= (Y ′

α ⊗ t−1
1 )(h′

α ⊗ Q(t))(Y ′

α ⊗ t−1
1 )mw+ [h′

α ⊗ Q(t), Y ′

α ⊗ t−1
1 ](Y ′

α ⊗ t−1
1 )mw

= λ(Y ′

α ⊗ t−1
1 )m+1w− 2Y ′

α ⊗ Q(t)t−1
1 (Y ′

α ⊗ t−1
1 )mw

= λ(Y ′

α ⊗ t−1
1 )m+1w,

which follows by induction and the fact that Y ′
α ⊗ Q(t)t−1

1 w = 0.

Subclaim 2. X ′
α ⊗ Q(t)t1(Y ′

α ⊗ t−1
1 )mw = mλ(Y ′

α ⊗ t−1
1 )m−1w.

The proof is by induction on m. Let m = 1. Then

X ′

α ⊗ Q(t)t1(Y ′

α ⊗ t−1
1 )w = Y ′

α ⊗ t−1
1 .X ′

α ⊗ Q(t)t1w+ h′

α ⊗ Q(t)w = λw.

Now assume the claim for m, and consider

(X ′
α ⊗ Q(t)t1)(Y ′

α ⊗ t−1
1 )m+1w

= (Y ′

α ⊗ t−1
1 )(X ′

α ⊗ Q(t)t1)(Y ′

α ⊗ t−1
1 )mw+ h′

α ⊗ Q(t)(Y ′

α ⊗ t−1
1 )mw

= mλ(Y ′

α ⊗ t−1
1 )mw+ λ(Y ′

α ⊗ t−1
1 )mw

= (m + 1)λ(Y ′

α ⊗ t−1
1 )mw.

Since V is integrable, there exists an n0 > 0 such that (Y ′
α ⊗ t−1

1 )n0w = 0, and
(Y ′
α ⊗ t−1

1 )n0−1w 6= 0. Then

λ(Y ′

α ⊗ t−1
1 )n0−1w = h′

α ⊗ Q(t)(Y ′

α ⊗ t−1
1 )n0−1w

= [X ′

α ⊗ Q(t)t1, Y ′

α ⊗ t−1
1 ](Y ′

α ⊗ t−1
1 )n0−1w

= −(n0 − 1)λ(Y ′

α ⊗ t1−1)n0−1w.

This implies that either n0 = 0 or λ= 0. But, by choice, n0 6= 0, and hence λ= 0.
This proves that h′

α ⊗ Q(t)w = 0.

Claim 5.3c. [Xα, Y ′
α ⊗ t−1

1 ] ⊗ Q′(t)w = 0 for Q′(t) ∈ I ′.

Let [Xα, Y ′
α ⊗ t−1

1 ] ⊗ Q′(t)w = λw.

Subclaim 3. [Xα, Y ′
α ⊗ t−1

1 ] ⊗ Q′(t)(Y ′
α ⊗ t−1

1 )mw = λ(Y ′
α ⊗ t−1

1 )mw.
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We prove this for m = 1:

[Xα, Y ′
α ⊗ t−1

1 ] ⊗ Q′(t)(Y ′
α ⊗ t−1

1 )w

= (Y ′

α ⊗ t−1
1 )[Xα, Y ′

α ⊗ t−1
1 ] ⊗ Q′(t)w+ [[Xα, Y ′

α ⊗ t−1
1 ] ⊗ Q′(t), Y ′

α ⊗ t−1
1 ]

= λ(Y ′

α ⊗ t−1
1 )w.

This follows by the assumption and the fact that

[[Xα, Y ′

α ⊗ t−1
1 ] ⊗ Q′(t), Y ′

α ⊗ t−1
1 ] = 0.

In fact Xα ∈ g0 and Y ′
α ∈ g1 implies that [Xα, Y ′

α ⊗ t−1
1 ]⊗ Q′(t) ∈ g1,0 ⊗ t−1

1 Q′(t).
So [[Xα, Y ′

α ⊗ t−1
1 ] ⊗ Q′(t), Y ′

α ⊗ t−1
1 ] ∈ g0,α ⊗ t−2

1 Q′(t). Since dim g0,α = 1, we
have [[Xα, Y ′

α⊗ t−1
1 ]⊗ Q′(t), Y ′

α⊗ t−1
1 ] ∈ Xα⊗ t−2

1 Q′(t)= 0, because Xα⊗ I ′
= 0.

Now assume the claim for m and consider

[Xα, Y ′
α ⊗ t−1

1 ] ⊗ Q′(t)(Y ′
α ⊗ t−1

1 )m+1w

= (Y ′

α ⊗ t−1
1 )[Xα, Y ′

α ⊗ t−1
1 ]Q′(t)(Y ′

α ⊗ t−1
1 )mw

+ [[Xα, Y ′

α ⊗ t−1
1 ] ⊗ Q′(t), Y ′

α ⊗ t−1
1 ](Y ′

α ⊗ t−1
1 )mw

= λ(Y ′

α ⊗ t−1
1 )m+1w,

because [[Xα, Y ′
α ⊗ t−1

1 ] ⊗ Q′(t), Y ′
α ⊗ t−1

1 ] = 0, as proved above.

Subclaim 4. (Xα ⊗ Q′(t))(Y ′
α ⊗ t−1

1 )mw = mλ(Y ′
α ⊗ t−1

1 )m−1w.

We prove this by induction on m. Let m = 1, and consider

Xα⊗ Q′(t)(Y ′

α⊗ t−1
1 )w= Y ′

α⊗ t−1
1 Xα⊗ Q′(t)w+[Xα, Y ′

α⊗ t−1
1 ]⊗ Q′(t)w= λw,

because Xα ⊗ Q′(t)w = 0.
Let Subclaim 4 be true for m and consider

Xα ⊗ Q′(t)(Y ′

α ⊗ t−1
1 )m+1w

= (Y ′

α⊗ t−1
1 )(Xα⊗ Q′(t))(Y ′

α⊗ t−1
1 )mw+[Xα⊗ Q′(t), Y ′

α⊗ t−1
1 ](Y ′

α⊗ t−1
1 )mw

= mλ(Y ′

α ⊗ t−1
1 )mw+ λ(Y ′

α ⊗ t−1
1 )mw

= (m + 1)λ(Y ′

α ⊗ t−1
1 )mw (by Subclaim 3).

Since V is integrable, there exists an n0 > 0 such that (Y ′
α ⊗ t−1

1 )n0−1w 6= 0 but
(Y ′
α ⊗ t−1

1 )n0w = 0. Now

λ(Y ′

α ⊗ t−1
1 )n0−1w = [Xα, Y ′

α ⊗ t−1
1 ] ⊗ Q′(t)(Y ′

α ⊗ t−1
1 )n0−1w

= Xα ⊗ Q′(t)(Y ′

α ⊗ t−1
1 )(Y ′

α ⊗ t−1
1 )n0−1w

− (Y ′

α ⊗ t−1
1 )Xα ⊗ Q′(t)(Y ′

α ⊗ t−1
1 )n0−1w

= −(n0 − 1)λ(Y ′

α ⊗ t−1
1 )n0−1w,
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which means either n0 = 0 or λ = 0. But by our choice n0 6= 0, and hence λ = 0.
This proves Claim 5.3c. Similarly we can prove that [X ′

α ⊗ t1, Yα] ⊗ Q′(t)w = 0
for Q′(t) ∈ I ′.

Now consider the nonzero submodule W = {w ∈ V (ψ) | Gαw = 0} of V (ψ).
Since V (ψ) is irreducible, we have W = V (ψ). Thus the module V (ψ) is zero on
I ′. Let

I ′′
=

〈
P1(t2

1 )= t1
N1∏

i=1

(t2
1 − a2

1i ), Pj (t j )=

N j∏
l=1

(t j − a jl) for 2 ≤ j ≤ (n − 1)
〉
.

In a similar way as above, we can prove that the module V (ψ) is zero on I ′′. So
the module V (ψ) is zero on kernel φ(µ) by Lemma 4.2. Thus V (ψ) is a module
for

⊕
N gaff. �

6. When the diagram automorphism is of order 3

We now consider the case when µ is a diagram automorphism of g of order 3. We
will prove analogues of Proposition 4.1 and Lemma 4.2 in this case.

In this case also, µ leaves h invariant. Let h(µ) be the µ-fixed points of h, and
let ε be a primitive third root of unity. In this case g = g0 ⊕ g1 ⊕ g−1, where gi is
the eigenspace of µ for the eigenvalue εi for i ∈ {0, 1,−1}. Suppose (X, Y ) 6= 0
implies X, Y ∈ g0 or X ∈ g1 and Y ∈ g−1. Because of this, the center in the twisted
toroidal Lie algebra, which we denote by (�A/dA)

0 will be

(�A/dA)
0
= span{t m Ki | mi1 + · · · + mik

∼= 0 (mod 3)}.

Also µ leaves g⊗ A invariant. Let (g⊗ A)µ be the µ-fixed points of g⊗ A. Then
τ(µ)= (g⊗ A)µ⊕ (�A/dA)

0
⊕ D. It is known from [Berman and Krylyuk 1995]

that (g ⊗ A)µ ⊕ (�A/dA)
0 is the universal central extension of (g ⊗ A)µ. In this

case also we choose the coordinates in such a way that S = {1, n}. Here

τ(µ)=

⊕
m∈Z

g0 ⊗ t3m
n t3m1

1 tm2
2 · · · tmn−1

n−1

⊕
m∈Z

g0 ⊗ t3m+1
n t3m1+2

1 tm2
2 · · · tmn−1

n−1⊕
m∈Z

g0 ⊗ t3m+2
n t3m1+1

1 tm2
2 · · · tmn−1

n−1

⊕
m∈Z

g1 ⊗ t3m
n t3m1+2

1 tm2
2 · · · tmn−1

n−1⊕
m∈Z

g1 ⊗ t3m+1
n t3m1+1

1 tm2
2 · · · tmn−1

n−1

⊕
m∈Z

g1 ⊗ t3m+2
n t3m1

1 tm2
2 · · · tmn−1

n−1⊕
m∈Z

g−1 ⊗ t3m
n t3m1+1

1 tm2
2 · · · tmn−1

n−1

⊕
m∈Z

g−1 ⊗ t3m+1
n t3m1

1 tm2
2 · · · tmn−1

n−1⊕
m∈Z

g−1 ⊗ t3m+2
n t3m1+2

1 tm2
2 · · · tmn−1

n−1

⊕
(�A/dA)

0
⊕

D.
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Also let

τ0(µ)=

⊕
m∈Z

g0 ⊗ t3m
n t3m1

1 tm2
2 · · · tmn−1

n−1

⊕
m∈Z

g0 ⊗ t3m+1
n t3m1+2

1 tm2
2 · · · tmn−1

n−1⊕
m∈Z

g0 ⊗ t3m+2
n t3m1+1

1 tm2
2 · · · tmn−1

n−1

⊕
m∈Z

g1 ⊗ t3m
n t3m1+2

1 tm2
2 · · · tmn−1

n−1⊕
m∈Z

g1 ⊗ t3m+1
n t3m1+1

1 tm2
2 · · · tmn−1

n−1

⊕
m∈Z

g1 ⊗ t3m+2
n t3m1

1 tm2
2 · · · tmn−1

n−1⊕
m∈Z

g−1 ⊗ t3m
n t3m1+1

1 tm2
2 · · · tmn−1

n−1

⊕
m∈Z

g−1 ⊗ t3m+1
n t3m1

1 tm2
2 · · · tmn−1

n−1⊕
m∈Z

g−1 ⊗ t3m+2
n t3m1+2

1 tm2
2 · · · tmn−1

n−1

⊕
(�A/dA)

0.

Root system for τ(µ). Let m = 3. Then

τ(µ)= g0 ⊗
∑

mi1+···+mik
∼=0 (mod 3) Ct m ⊕

g1 ⊗
∑

mi1+···+mik
∼=1 (mod 3) Ct m⊕

g−1 ⊗
∑

mi1+···+mik
∼=1 (mod 3) Ct m ⊕

(�A/dA)
0 ⊕

D.

Let 10 be the roots of g0 and 1s
0 be the short roots of g0. Define

1re = {α+ δm | α ∈10, mi1 + · · · + mik
∼= 0 (mod 3)}⋃

{α+ δm | α ∈1s
0, mi1 + · · · + mik

∼= 1 (mod 3)},

and let 1im = {δm | m ∈ Zn
}. Let 1=1re ∪1im.

Define

1+

re = {α+ δm | α > 0,mn ≥ 0 or α < 0,mn ≥ 1}, 1+

im = {δm | mn ≥ 1},

and 10
= {δm | mn = 0}. Then 1+

= 1+
re ∪ 1+

im and 1−
= −1+. Further

1=1+
∪10

∪1−. Let α ∈1. Then α ∈1re if and only if 〈α, α〉 6= 0.
Let n ≥ 2 be a positive integer. For each i in 1 ≤ i ≤ (n −1), let Ni be a positive

integer. Let ai = (ai1, ai2, . . . , ai Ni ) be nonzero distinct complex numbers. Let
I = (i1, i2, . . . , in−1), where 1 ≤ i j ≤ N j . Let m′

= (m1,m2, . . . ,mn−1) ∈ Zn−1.
Let gaff = g⊗ C[tn, t−1

n ] ⊕ CKn . Let φ be the Lie algebra homomorphism

φ : gaff ⊗ C[t±1
1 , t±1

2 , . . . , t±1
n−1] →

(⊕
N=N1 N2···Nn−1-copies

gaff

)
= gaff N ,

Xtm1
1 · · · tmn−1

n−1 7→ (am1
1i1

am2
2i2

· · · amn−1
(n−1)in−1

X)1≤i1≤N1;...;1≤in−1≤Nn−1,

where X ∈ gaff.
Following the proof of [Rao 2004, Lemma 3.11(a)], we see that φ is surjective.

Let T ⊂{11, 12, . . . , 1N1} be a maximal set such that a3
1i 6=a3

1 j whenever 1i, 1 j ∈T
and 1 ≤ i, j ≤ N1.
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Proposition 6.1. Let φ(µ)= φ|τ0(µ). If the cardinality of T is N1, then φ(µ) is a
surjective Lie algebra homomorphism from τ0(µ) to gaff N .

Proof. We know that if m = 3, then g = g0 ⊕ g1 ⊕ g−1. Now there are ten cases.

Case 6.1a. We fix mn ∈ Z, and let Y1, Y2, . . . , YN ∈ g0. Let

φ(µ)
( N∑

i=1

bi X i t3mn
n t3m1

1 tm2
2 · · · tmn−1

n−1

)
= (Y1t3mn

n , Y2t3mn
n , . . . , YN t3mn

n ),

where the bi are complex numbers and X i t
3mn
n t3m1

1 tm2
2 · · · tmn−1

n−1 ∈ τ0(µ) and 0 ≤

m j ≤ N j − 1 for 1 ≤ j ≤ (n − 1). So, we must solve the equation

( N∑
i=1

bi X i t3mn
n a3m1

1i1
am2

2i2
· · · amn−1

(n−1)in−1

)
= (Y1t3mn

n , Y2t3mn
n , . . . , YN t3mn

n ).

Writing this in matrix form, we must prove that the matrix

M = (a3m1
1i1

am2
2i2

· · · amn−1
(n−1)in−1

)

is invertible, where (i1, i2, . . . , in−1) for 1 ≤ i j ≤ N j determines the rows and
m′

= (m1,m2, . . . ,mn−1)where 0≤m j ≤ N j −1 for all 1≤ j ≤ (n−1), determines
the columns. The matrix M is a tensor product of other matrices:

M = (a3m1
1i1
)1≤i1≤N1, 0≤m1≤N1−1 ⊗ M2 ⊗ · · · ⊗ Mn−1,

where the M j for 2 ≤ j ≤ (n − 1) defined as in Equation (1). Let

M1 = (a3m1
1i1
)1≤i1≤N1,0≤m1≤N1−1.

If the cardinality of T is N1, which means the a3
1i1

are all distinct for all 1≤ i1 ≤ N1,
then M1 is a Vandermonde matrix and is therefore invertible. Similarly M2 is a
Vandermonde matrix because a2i 6= a2 j for all 1 ≤ i, j ≤ N2 with i 6= j . Similarly
M j is also invertible for 3 ≤ j ≤ (n − 1). According to a standard result of linear
algebra, the determinant of a tensor product of invertible matrices is nonzero. So
matrix M is invertible.

Case 6.1b. We fix mn ∈ Z, and let Y1, Y2, . . . , YN ∈ g0. Let

φ(µ)
( N∑

i=1

bi X i t3mn+1
n t3m1+2

1 tm2
2 · · · tmn−1

n−1

)
= (Y1t3mn+1

n , Y2t3mn+1
n , . . . , YN t3mn+1

n ),
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where the bi are complex numbers, X i t
3mn+1
n t3m1+2

1 tm2
2 · · · tmn−1

n−1 ∈ τ0(µ), and 0 ≤

m j ≤ N j − 1 for 1 ≤ j ≤ (n − 1). So, we must solve the equation

( N∑
i=1

bi X i t3mn+1
n a3m1+2

1i1
am2

2i2
· · · amn−1

(n−1)in−1

)
= (Y1t3mn+1

n , Y2t3mn+1
n , . . . , YN t3mn+1

n ).

Writing this in matrix form, we must prove that the matrix

M = (a3m1+2
1i1

am2
2i2

· · · amn−1
(n−1)in−1

)

is invertible, where (i1, i2, . . . , in−1) for 1 ≤ i j ≤ N j determines the rows and
m′

= (m1,m2, . . . ,mn−1), where 0 ≤ m j ≤ N j − 1 for all 1 ≤ j ≤ (n − 1),
determines the columns. The matrix M is a tensor product of other matrices

M = (a3m1+2
1i1

)1≤i1≤N1,0≤m1≤N1−1 ⊗ M2 ⊗ · · · ⊗ Mn−1.

Let M1 = (a3m1+2
1i1

)1≤i1≤N1,0≤m1≤N1−1. Again, as above if the cardinality of T is
N1, then M1 is product of two matrices: one is the diagonal matrix whose diago-
nal entries are a2

11, a2
12, . . . , a2

1N1
, and the other is (a3m1

1i1
)1≤i1≤N1,0≤m1≤N1−1. Since

a11 6= a12 6= · · · 6= a1N1 , we have a2
11 6= a2

12 6= · · · 6= a2
1N1

. Hence the diagonal matrix
is invertible. The other matrix is a Vandermonde matrix and hence is invertible.
So M1 is invertible. Similarly the M j for 2 ≤ j ≤ (n − 1) are invertible since they
are Vandermonde matrices. Hence M is invertible.

Case 6.1c. We fix mn ∈ Z, and let Y1, Y2, . . . , YN ∈ g0. Let

φ(µ)
( N∑

i=1

bi X i t3mn+2
n t3m1+1

1 tm2
2 · · · tmn−1

n−1

)
= (Y1t3mn+2

n , Y2t3mn+2
n , . . . , YN t3mn+2

n ),

where the bi are complex numbers, X i t
3mn+2
n t3m1+1

1 tm2
2 · · · tmn−1

n−1 ∈ τ0(µ), and 0 ≤

m j ≤ N j − 1 for 1 ≤ j ≤ (n − 1). So, solving the equation

( N∑
i=1

bi X i t3mn+2
n a3m1+1

1i1
am2

2i2
· · · amn−1

(n−1)in−1

)
= (Y1t3mn+2

n , Y2t3mn+2
n , . . . , YN t3mn+2

n ),

we must prove that the matrix

M = (a3m1+1
1i1

)1≤i1≤N1,0≤m1≤N1−1 ⊗ M2 ⊗ · · · ⊗ Mn−1,

is invertible. Let M1 = (a3m1+1
1i1

)1≤i1≤N1,0≤m1≤N1−1. Again, if the cardinality of
T is N1, then M1 is product of two matrices: one is the diagonal matrix whose
diagonal entries are a11, a12, . . . , a1N1 , and the other is (a3m1

1i1
)1≤i1≤N1,0≤m1≤N1−1.

Since a11 6=a12 6= · · · 6=a1N1 , the diagonal matrix is invertible. And the other matrix
is a Vandermonde matrix and hence invertible. So M1 is invertible. Similarly the
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M j for 2 ≤ j ≤ (n − 1) are invertible as they are Vandermonde matrices. Hence
M is invertible.

Case 6.1d. If we consider (X i t
3mn
n t3m1+2

1 tm2
2 · · · tmn−1

n−1 ) ∈ τ0(µ), where X i ∈ g1,
then the proof of this case is similar to that of Case 6.1b.

Case 6.1e. If we consider (X i t
3mn+1
n t3m1+1

1 tm2
2 · · · tmn−1

n−1 ) ∈ τ0(µ), where X i ∈ g1,
then the proof of this case is similar to that of Case 6.1c.

Case 6.1f. If we consider (X i t
3mn+2
n t3m1

1 tm2
2 · · · tmn−1

n−1 )∈ τ0(µ), where X i ∈ g1, then
the proof of this case is similar to that of Case 6.1a.

Case 6.1g. If we consider (X i t
3mn
n t3m1+1

1 tm2
2 · · · tmn−1

n−1 ) ∈ τ0(µ), where X i ∈ g−1,
then the proof of this case is similar to that of Case 6.1c.

Case 6.1h. If we consider (X i t
3mn+1
n t3m1

1 tm2
2 · · · tmn−1

n−1 ) ∈ τ0(µ), where X i ∈ g−1,
then the proof of this case is similar to that of Case 6.1a.

Case 6.1i. If we consider (X i t
3mn+2
n t3m1+2

1 tm2
2 · · · tmn−1

n−1 ) ∈ τ0(µ), where X i ∈ g−1,
then the proof of this case is similar to that of Case 6.1b.

Case 6.1j. Let c1, c2, . . . , cN ∈ C. Let

φ(µ)
( N∑

i=1

bi Knt3m1
1 tm2

2 · · · tmn−1
n−1

)
= (c1Kn, c2Kn, . . . , cN Kn),

where the bi are complex numbers, Knt3m1
1 tm2

2 · · · tmn−1
n−1 ∈ τ0(µ), and 0 ≤ m j ≤

N j − 1 for 1 ≤ j ≤ (n − 1). So, solving the equation( N∑
i=1

bi Kna3m1
1i1

am2
2i2

· · · amn−1
(n−1)in−1

)
= (c1Kn, c2Kn, . . . , cN Kn),

we must prove that the matrix

M = (a3m1
1i1

am2
2i2

· · · amn−1
(n−1)in−1

)

is invertible, where (i1, i2, . . . , in−1) for 1 ≤ i j ≤ N j determines the rows and
m′

= (m1,m2, . . . ,mn−1), where 0 ≤ m j ≤ N j − 1 for all 1 ≤ j ≤ (n − 1),
determines the columns. Again by Case 6.1a, M is invertible if the cardinality of
T is N1.

So if the cardinality of T is N1, then φ(µ) is a surjective Lie algebra homomor-
phism from τ0(µ) to gaff N . �

We now define polynomials P1(t3
1 ) and P2(t2), . . . , Pn−1(tn−1) by

P1(t3
1 )=

N1∏
i=1

(t3
1 − a3

1i ) and Pj (t j )=

N j∏
l=1

(t j − a jl) for 2 ≤ j ≤ (n − 1).
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Notation 〈P1(t3
1 ), P2(t2), . . . , Pn−1(tn−1)〉 denotes the ideal generated by the poly-

nomials P1(t3
1 ), P2(t2), . . . , Pn−1(tn−1) inside C[t±3

1 , t±1
2 , . . . , t±1

n−1].

Lemma 6.2. If the cardinality of T is N1, then kerφ(µ) is given by I1 + I2 + I3 +

I4 + I5 + I6 + I7 + I8 + I9 + I10, where for some fixed m ∈ Z,

I1 = g0 ⊗ t3m
n 〈P1(t3

1 ), P2(t2), . . . , Pn−1(tn−1)〉,

I2 = g0 ⊗ t3m+1
n 〈t2

1 P1(t3
1 ), P2(t2), . . . , Pn−1(tn−1)〉,

I3 = g0 ⊗ t3m+2
n 〈t1 P1(t3

1 ), P2(t2), . . . , Pn−1(tn−1)〉,

I4 = g1 ⊗ t3m
n 〈t2

1 P1(t3
1 ), P2(t2), . . . , Pn−1(tn−1)〉,

I5 = g1 ⊗ t3m+1
n 〈t1 P1(t3

1 ), P2(t2), . . . , Pn−1(tn−1)〉,

I6 = g1 ⊗ t3m+2
n 〈P1(t3

1 ), P2(t2), . . . , Pn−1(tn−1)〉,

I7 = g−1 ⊗ t3m
n 〈t1 P1(t3

1 ), P2(t2), . . . , Pn−1(tn−1)〉,

I8 = g−1 ⊗ t3m+1
n 〈P1(t3

1 ), P2(t2), . . . , Pn−1(tn−1)〉,

I9 = g−1 ⊗ t3m+2
n 〈t2

1 P1(t3
1 ), P2(t2), . . . , Pn−1(tn−1)〉,

I10 = Kn⊗ 〈P1(t3
1 ), P2(t2), . . . , Pn−1(tn−1)〉.

Proof. We consider the map φ1 defined by

g0 ⊗ t3m
n t3m1

1 tm2
2 · · · tmn−1

n−1 →

⊕
N=N1 N2···Nn−1

g0 ⊗ t3m
n ,

Xt3m
n t3m1

1 tm2
2 · · · tmn−1

n−1 7→ (Xt3m
n a3m1

1i1
am2

2i2
· · · amn−1

(n−1)in−1
)1≤i1≤N1;...;1≤in−1≤Nn−1 .

Let M = (N = N1 N2 · · · Nn−1) (the dimension of g0). As in Proposition 6.1, one
can show that φ1 is surjective. Since φ1 is nothing but the evaluation map at the
roots of P1(t3

1 ), P2(t2), . . . , Pn−1(tn−1), we have I1 ⊂ kerφ1. So

dim(g0 ⊗ t3m
n t3m1

1 tm2
2 · · · tmn−1

n−1 /I1)≥ M .

Consider the space

R = {g0 ⊗ t3m
n t3m1

1 tm2
2 · · · tmn−1

n−1 | 0 ≤ mi ≤ Ni − 1 for 1 ≤ i ≤ (n − 1)}.

Any element of g0 ⊗ t3m
n t3m1

1 tm2
2 · · · tmn−1

n−1 can be written as linear combination of
elements of R modulo I1. Hence φ1 is injective on R modulo I1, since the corre-
sponding matrix is invertible. So R is a spanning set for

(g0 ⊗ t3m
n t3m1

1 tm2
2 · · · tmn−1

n−1 /I1),

and dim(g0 ⊗ t3m
n t3m1

1 tm2
2 · · · tmn−1

n−1 /I1) ≤ M . So I1 is the kernel of φ1. Similarly
arguing on the other components of τ0(µ), we get that

∑10
j=1 I j is the kernel of

φ(µ) if the cardinality of T is N1. This proves Lemma 6.2. �
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Remark 6.3. The results of Section 5 can be proved similarly in case m = 3.

Note 6.4. The proof of Proposition 2.6 will remain same in case m = 3 except that
for λ, λ+δ1, λ+2δ1 or λ, λ+δ1, λ−δ1 or λ, λ−δ1, λ−2δ1 will have the properties of
the first paragraph of the proof. We can assume λ+η, λ+δ1+η, λ+2δ1+η /∈ P(V )
for all η > 0.

Note 6.5. Let V be an integrable irreducible module for the twisted toroidal Lie
algebra τ(µ) with finite-dimensional weight spaces. Let k be as in Theorem 2.3.
Suppose k ≥ 1 and Ki = 0 for all i . Then such a module V does not exist. This
result can be proved in a way similar to the proof of [Rao 2004, Proposition 4.13].
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