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CLASSIFICATION OF IRREDUCIBLE INTEGRABLE MODULES
FOR TWISTED TOROIDAL LIE ALGEBRAS
WITH FINITE-DIMENSIONAL WEIGHT SPACES

S. ESWARA RAO AND PUNITA BATRA

This paper classifies irreducible, integrable modules for “twisted toroidal
Lie algebras” with finite-dimensional weight spaces. We prove that these
modules turn out to be modules of appropriate direct sums of finitely many
copies of affine Kac-Moody Lie algebras.

Introduction

Let g be a finite-dimensional simple Lie algebra over the complex field C. Let
A, = C[tlil, R tfl] be a Laurent polynomial ring in » commuting variables
t1,t, ..., t,. For n > 1, we consider the multiloop Lie algebra g®<[3[t1il, R t,;“].
The universal central extension of g®@ C[¢{™, ..., £'] is called a toroidal Lie al-
gebra. If n = 1, then it is well known that the universal central extension of a loop
algebra g® C[+*'] is one-dimensional. In this case, the universal central extension
is an affine Kac—Moody Lie algebra. On the other hand, in the toroidal case, that
is, when n > 1, the universal central extension is infinite-dimensional. Toroidal
Lie algebras are described in [Rao and Moody 1994]. Representations of toroidal
Lie algebras have been studied in [Berman and Billig 1999] and [Rao 2004].

In Section 1, we define the twisted toroidal Lie algebra “t(w)”, where u is a
Dynkin diagram automorphism of g of order m. In the one variable case, T(u)
is just the twisted affine Kac—-Moody Lie algebra [Kac 1990]. Rao [1993] gave
some representations of the twisted affine Kac—Moody Lie algebra. Batra [2004]
classified finite-dimensional irreducible representations of the twisted multiloop
Lie algebras.

In this paper, we twist several variables at the same time, because twisting one
variable restricts the class of twisted toroidal Lie algebras to one for each variable.
By twisting several variables, we are covering a larger class of twisted toroidal Lie
algebras. Now GL(n, Z), the group of n x n matrices with entries in Z, acts on Z"
naturally, and an element of GL(n, Z) defines an automorphism of the nontwisted
toroidal Lie algebra “t”. This automorphism is change of coordinates as described
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in Section 1. We consider 7 (i) up to a suitable change of coordinates, and in this
way, we can reduce the number of twisted variables to a minimum of two variables;
see Remark 1.1.

Among all the modules of a toroidal Lie algebra, the so-called integrable mod-
ules (where the real root spaces act locally nilpotently) are very important since
they are the ones that lift to representations of the corresponding group. Rao [2004]
classified irreducible integrable modules for nontwisted toroidal Lie algebras with
finite-dimensional weight spaces. Here we classify the irreducible integrable mod-
ules for twisted toroidal Lie algebras having finite-dimensional weight spaces,
where the center acts nontrivially. Some of the ideas used in [Rao 2004] go through
here, but this is a more complex case and needs new ideas.

In Section 1, we describe the root system for 7 (u) and the Weyl group of (),
and we define integrable 7 (w)-modules. In Section 2, we define central operators
on an irreducible module for T(w). In this paper we classify those irreducible
integrable t(u)-modules V with finite-dimensional weight spaces in which some
zero degree generators of the center of 7(u) act nontrivially. Then by change of
coordinates, we assume that one of the zero degree generators of the center of
7(w), namely “K,”, acts nontrivially, while the others act trivially. Assuming that
K, acts as a positive integer, we prove in Proposition 2.6 the existence of a highest
weight vector in V.

In Section 3, we give the notion of a non-graded 7(w)-module V (), define
the graded t(u)-module V (¥), and, in Proposition 3.3, establish a one-to-one
correspondence between non-graded and graded modules. So our problem re-
duces to classifying irreducible integrable non-graded t(u)-modules. In Section
4, we prove that any such non-graded module is actually a module for (gas ®
Cliit', ... 5D Nt (w), where g = g ®Clt,,, £, ' 1@ CK,, is an affine Lie al-
gebra. In Proposition 4.1, we give the conditions under which the Lie algebra
homomorphism ¢ (i) from (gag ® C[llﬂ, e tf_ll]) NT(w) to @ gasr (the direct
sum of finitely many copies of g.fr) becomes surjective. In Proposition 5.3, we
prove that non-graded modules are zero on kernel of ¢ (), and hence the non-
graded modules actually become modules for € gas. It is well known that the
irreducible integrable modules of @ gasr are tensor products of irreducible highest
weight modules [Rao 2005]. The main result of this paper is Theorem 3.4. Proved
in Section 5, it says that any irreducible integrable module for () with finite-
dimensional weight spaces, on which the center acts nontrivially, is an irreducible
component of V() ® C[tlil, e tf_ll].

We consider cases m = 2 and m = 3 separately. The modules for t(u), where
w is a Dynkin diagram automorphism of order 3, are worked out in Section 6.
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1. Preliminaries

Let g be a finite-dimensional simple Lie algebra of rank d over the complex field
C. Let b be a Cartan subalgebra of g. Fix a positive integer n > 2. Let A =
A, = (D[tlil, ..., tX!] be a Laurent polynomial ring in n commuting variables
f,ty,....ty. Form=(my,...,m,)€Z" lett” =t/"" - - -1," € A. Then gy =g®A
can be made into a Lie algebra by defining

(X Y@r]=[X,Y]®r"

for X,Y egand r,s € Z". Suppose 24 is a complex vector space with basis
{t"K;|1<i<n, meZ"}, and suppose d4 is the subspace of 24 spanned by
{>_mit”K; | m € Z"}. Let (-,-) be a nondegenerate, symmetric, g-invariant
bilinear form on g. Let 7o = g ® A @ Q4/d4 be a Lie algebra defined by

e (XL Y®L]=[X, YIRS + (X, Y)Y rit" P K; and

e Qy/dy is central in Tp.

The Lie algebra 7y is the universal central extension of g&® A [Morita and Yoshii
1985] and is naturally Z"-graded. To reflect this fact, we consider a bigger Lie alge-
bra. Let T = 79 ® D, where D is the complex linear span of derivations dy, . .., d.
We now define a Lie algebra structure on t by

di, X@t*1=riXQ®t" forreZ"and1<i <n,
[d,-,thj]=r,-trKj fOI'L'EZn andlfi,jfn,
[di,d;j]=0 for1 <i,j<n.

We call t the nontwisted toroidal Lie algebra. We will now define the twisted
toroidal Lie algebra. Let i be a Dynkin diagram automorphism of g of order m
and € a primitive m-th root of unity. Let S = {ij, i2,...,ix} C {1,2,...,n} for
k > 0. Define an automorphism of 7, again denoted by u, such that

WX ®17) = (T u(X) B,
(T KD) = ()T K,
p(di) = d.

It can be easily checked that u is an automorphism of t of order m. The sub-
algebra of u-fixed points of t is called the twisted toroidal Lie algebra and is
denoted by t(u). Since u leaves h invariant, we let h(u) be the u-fixed points of

h under u. Letting m = 2, we have the decomposition g = go @ g1 of g, where
go={Xeg|pu(X)=X)and g = (X € g| n(X) = eX).
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Suppose (X, Y) # 0 implies X, Y € gg or X, Y € g;. Then the center of the
twisted toroidal Lie algebra, which we denote by (24/d )0, will be

(QA/dA)O = span{t™ K; | m;, + - - - +m; =0 (mod 2)}.
Also u leaves g ® A invariant. Let (g ® A),, be the u-fixed points of g ® A. Then
T(W) = (g® A) ®(Ra/ds)’ ® D.

It is known from [Berman and Krylyuk 1995] that (g ® A), & (24/d4)? is the
universal central extension of (g ® A),.. Let to(n) = (g @ A),, & (SZA/dA)O.

Change of coordinates. We recall that GL(n, Z), the group of n x n matrices with
entries in Z and determinant &1, acts naturally on Z". Denote the action as Am
for A € GL(n, Z) and m € 7". We define an automorphism on t by

AXQ" =X,
Ad(D)S =d(A0)rAS,  where d(t5)f =Y rittHK;.

Let (d|,...,d})=(AT)7'(di,...,d,). Then define A(d;) =d for 1 <i <n. It
is easy to check that A is an automorphism on 7. This automorphism is nothing
but the change of coordinates. For example, set s; = 4% where ler, ..., en} is the
standard basis of Z". Then clearly

Crsi', ... s =cr, .. et

*Yn ’'n

Remark 1.1. We will consider t(x) up to a suitable change of coordinates. In
this process, the set S will be changed. In general, the set § can be reduced to a
minimum of two element set. Consider an example: Let © be a Dynkin diagram
automorphism of g of order 2. Let S = {iy, ip, ..., ik} C{1,2,...,n}. We assume
that k is odd. Put

S| =1ty - t,'k, 2 =1t 83 = tj, 1iy, e , Sk = tik—Ztik—l .
Fori e{1,2,...,n}— S, we puts; =¢;. Then it is easy to see that
+1 +1 +1 +1 +1 +1 +1 +1
Cls; ,...,sk]=(C[tl.1,...,tl-k] and C[s; ", ...,s, 1=C[t;,....1; ]
Now the set S changes with new variables sy, s, ..., s,, and S = {1, 2}.

We note that () depends on the set S. But in this paper, we use a change
of coordinates to reduce S to {1, n}. So we are not including § in the notation of

T(W).

Assume
b=poY_ CKi®) | Cd,
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which is a Cartan subalgebra of . Consider u-fixed points §(u) of § under .
Then () = h(w) ®Y.!_, CK; ® Y ", Cd; is a Cartan subalgebra of (). It is
well known that g, the fixed point subalgebra of g under w, is a simple Lie algebra
[Kac 1990], and h(w) is a Cartan subalgebra of go.

Letay, a, ..., o7 € h(w)™ be the simple roots of gg. For 1 <i </, we extend the
a; to h(w)* by defining o; (K ;) =;(d;) =0for 1 < j <n. Letay,...,a)’ €bh(n)
be the coroots of go. For 1 <i < n, define §; € h(1)* and w; € h()* by

8i(a}) =0, wi(a]) =0 forl<j<lI,
§i(dj)=38;;, wid;))=0 for 1 <j <n,
Then it is easy to see that o, a2, ..., 0, 381,...,8,, wi, ..., w, is a C-basis of

h(w*.

Recall that the nondegenerate, symmetric, g-invariant bilinear form (-, -) re-
mains nondegenerate on gg as well as on h(it). The form (-, -) induces a nonde-
generate form (-, -) on h(w)* defined as

(i, o) = (i, ) for1<i,j<lI,

(@i, 8j) =0=(a;, w;) forl <i<land1<j<n,
(6i,6j) =0=(w;, wj),

(i, wj) = dij for1 <i, j <n.

For m = (my, ..., my,) € Z", define 8,, = ) m;8; and note that (8,,, 8,,) = 0.
Root system for T(p). Let m = 2. Then

(1) =go® > Ci"®g1® > Ci"@(Ra/da)’®D.
mi +-tmi, =0 (mod 2) mj +-tmj =1 (mod 2)

Let A be the roots of gg and Ay be the short roots of go. Notice that the nonzero
weights of the go-module g; are all short roots of gy except in Aél)
Define

Are ={a+6pm | € Ag, mj; +---+m; =0 (mod 2)}
Jloe+8m [ € A), mi +-+ +m;, =1 (mod 2)}
and Ajm = {6,y |m e Z"}. Let A = Are U Ajy. For o € A, let
T ={x € () | [h, x] = a(h)x for all i € h(p)}.

Then clearly 7 (u) =
to h(w).

wea To 18 the root space decomposition of 7(u) with respect
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Define

AL ={a+8,la>0, m,>00ra <0, m, >1}, A =8y | my > 1},

A® = {8,, | m, = 0}.
Then AT = AfUA] and A== —A". Further A= ATUAUA™. Leta € A.
Then @ € A if and only if (o, o) # 0.
Coroots. Let o € Ay. Then

oV = Zgzl ni(lailz/lalz)ai\’ for o = Zgzl n;o;.
It is easy to check that az(er¥') = 2. Suppose « € Ay, and « = 8 + 8,,. Then define
a¥ =BY+Q/IB1) Y miK;.
Weyl group of T(n). For o € A, we define a reflection
ra tH(W* =B, A d =A@ )a.

Let W be the group generated by r,,® € Ap. Then it is easy to prove that
(wA, wu) = (A, u) for all w € W. W is called the Weyl group of t(u).
Definition 1.2. A module V of 7(u) is said to be integrable if

« V= EBkeﬁ(u)* Vi, where V, ={v e V | hv=A(h)v for all h € h(n)};

e For all @ +6,, € Are and v € V, there exists an integer k = k(c, m, v) such
that (X, ® t”)*v = 0, where X, is the root vector corresponding to root .

Lemma 1.3. Suppose V is an irreducible integrable module for T (u) with finite-
dimensional weight spaces. Let P (V') denote the set of all weights of V. Then

1) P(V) is W-invariant,

(i1) dim Vj, =dim Vy,, forw € W and A € P(V);
(iii) ifa € Are and A € P(V), then M(a") € Z;

(iv) ifa € Areand A € P(V), and if M(a¥) > 0, then A —a € P(V).

(v) A(K;) is a constant integer for all . € P(V), fori =1,2,...,n.
Proof. The proof is standard. O

From now on we will consider 7(u) up to a change of coordinates. Recall that
u leaves the algebra B = C[tlil, R tf_ll] invariant. Let B, be the u-fixed points
of B. Now B can be seen as a group algebra of Z"~!. Similarly, B,, can be seen
as a group algebra of subgroup I' of Z"~! of index 2. But by Remark 1.1, one can
change the basis so that I' = 2¢,Z @ e2/ & - - - @ e,—1Z. Thus we conclude that it
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is possible to change coordinates so that S = {1, n}. In this case when m =2, we
have for X € g that

M(X®t12m1tm2 . tmn 1 2m,,) _ M(X) ®l‘1mll‘m2 . tm"_ltzm”,

n—1 Iy n—1 "n
(X®12m1+1 my t’TnIII’%mn) _ (X)®12m1+1 my t:;”_n;ll,’%mn’
M(X ®l‘1m1l‘m2 . t:lﬂnll 3mn+1) _ _M(X) ®t1m1l‘m2 . tr:nnflt,%m"+l,
M(X®t2m1+lt£nz . t;nnll 3mn+l) _M(X)®t2ml+1 my tr'lnnlltr%mn+l
So
tw=Pao®2" B, Pa®" B,
meZ meZ
P B, Pa @it B, Pa/da)’ P D.
meZ meZ
where B, = C[tlﬂ, tzi], e, tni_ll].

Let Q be the Z-lattice spanned by «1, ..., o, §,. Recall go ® Clt,, ¢ _1] & CK,
is an affine Lie algebra, which need not be a subalgebra of 7(u). Let 8 be the
highest root of the finite root system Ag. Let ¢g = — + ;. Then it is well known
that {aq, ..., a;, ap} forms a system of simple roots for go ® C[#,, t, -1® CK,.

Let Q(,u) be the root lattice of t(w). This is a Z-lattice spanned by «1, ..., o,
81y...,6,. For A, w e Q(u), we say A > p if

A_Mzzgzoniai forO<n; eZ.

Hence A > 0 means A > 0 and A # 0. Now consider the twisted affine Lie algebra,
g® C[t,f, tn_Q] Dy tn(lf)[t2 t‘z] @ CK,,, which is also a subalgebra of t(u). Its
positive roots are also positive in the above sense.

2. Central operators

The purpose of this paper is to classify irreducible integrable modules for 7 (u)
with finite-dimensional weight spaces with respect to the Cartan subalgebra h(11),
where the center acts nontrivially. We first get information on a (fixed) irreducible
module V for t(x) with finite-dimensional weight spaces.

Definition 2.1. A linear map Z : V — V is called a central operator of degree
m € 7" if Z commutes with the 79(u) action and

diZ—7Zd; =m;Z foralli.

For example, ™ K; is a central operator of degree m and " K;t*K; is a central
operator of degree r + s.
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Lemma 2.2. « Let Z be a central operator of degree m such that Zv # 0 for
some v € V. Then Zw # 0 for every nonzero w € V.

o Let Z be a nonzero central operator of degree m. Then there exists a central
operator T on V of degree —m such that ZT =T Z =1d.

o Let Z1 and Z, be nonzero central operators of degree m on V. Then there
exists a scalar A such that Z, = AZ».

Proof. The proofs are easy and given in [Rao 2004]. O

Theorem 2.3. Let V be an irreducible module for t(u) with finite-dimensional
weight spaces with respect to the Cartan subalgebra h(i). Let

L={meZ"|t2K; #0o0nV for some i}.

Let (L) be the subgroup of 7" generated by L. Suppose rank(L) =k < n. Then up
to a coordinate change,

(1) there exist nonzero positive integers ki, ..., ky and nonzero central opera-
tors Z1,Zy, ..., Zy of degrees (k1,0,...,0),...,(0,...,k,0,...,0), re-
spectively;

(1) k <n;

(i) t*K; #0on V implies thati > k+1andryy =---=r, =0;

(iv) there exists a proper submodule W of to(1) @ Dy, where Dy, is the linear span
of {di+1, ..., dy}, such that V /W has finite-dimensional weight spaces with
respect to h(uw) P Y '_, CK; @ Dx.

Proof. The proofs are exactly the same as those of [Rao 2004, Theorem 4.5]. [

Theorem 2.4. With the notation above, suppose there is an element in (Q4/d4)°
that acts nontriviallyon V. Then k =n — 1.

Proof. The proof is the same as that of [Rao 2004, Proposition 4.8]. O

Proposition 2.5. Let T(u) be the quotient of T(u) by all nonzero-degree central
operators. Suppose V is a module for T (i) with finite-dimensional weight spaces.
Then the zero-degree central operators K; for 1 <i <n act triviallyon V.

Proof. The proof follows from [Rao 2004]. O

Let V be an irreducible integrable module for t(®) with finite-dimensional
weight space. Choose coordinates using Theorems 2.3 and 2.4, so that " K; # 0
on V implies m, =0 and i = n.

Proposition 2.6. Let V be as above. Suppose K, acts as positive integer. Then
there exists A € P(V) such that A +n+ 6, &€ P(V) for all n > 0, where 8,y =
Z;’:—ll m;8;, and for all m' = (my, my, ..., m,_1).
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Proof. The proof uses lemmas from [Rao 2004]; these we enclose in brackets.
Notice that go afr = go ® (E[t,%, t,;z] @ CK,, is an affine subalgebra of 7(u). Then
V is a module for gg 4fr. Now, arguing as in [Lemma 2.8], we conclude that

(%) there exists a A € P(V) such that A +n ¢ P(V) for all n > 0.
Next we prove that
(k%) A+n+8 ¢ P(V)foralln>0o0rA+n—6 ¢ P(V)forall n>0.

For proving (), first we get A € P(V) such that A +n ¢ P(V) for all n > 0.
Suppose L +1n+ 6, € P(V) for some n > 0. Then, arguing as in [Lemma 2.8], we
getn’>0suchthat A\+n+68 +n € P(V)and A+n+68;+n +n" ¢ P(V) for all
n”>0.Alsoforall n”” >0, A+n+8i+n+n"=8i=r+n+n"+n"¢ P(V),
since n+n'+n" > 0.

Case 2.6a. m = 2.

Suppose that there existsaA € P(V) suchthat A+n ¢ P(V) and A+n+68, ¢ P(V)
forall n>0. If A+ +38, ¢ P(V) forall «+6,, € AL, then we are done. Suppose
A+a+38, € P(V)forsomea+6, €Al Let u =A+a+65,.

We claim u + 8+ 68, ¢ P(V) for all B+ 3, € AL. Supposing it is false, let

w+B+8; € P(V) for some B+ 3, € AfL.
Case 2.6al. (¢ + B+, + 385, a+8u) > 0.

Leto =a'+38,,, where 8,y = Zl’-‘;ll m;8;,and B = B'+3y, where §y = Z?:_ll 5i8i,
where o', 8’ > 0 and &', B’ € go,afr-

Suppose a + 3, € Are. Then by [Lemma 1.4(2)] we have A + o + 8 + 8, +
8s((a+684)Y) > 0, since A(a +8y)" > 0.

By Lemma 1.3(iv), A +a + B + 6, + 65 — (a +8y) € P(V). This implies
A+ B +8m+85 € P(V). We note that B’ +6,, + 85 > 0. Since o + 8,, and S +
are in A7, the n-th component m, of m and the n-th component s, of s are > 0.
Hence '+ 68, + 85 > 0. So A+ B’ +8,, + 85 € P(V), which contradicts ().

Suppose o+ ¢ Are. Then o+, —381 € Are. Then by [Lemma 1.4(2)] we have
Atoa+B+8m+38s((e+8y—381)") > 0. Notice that A(8;) =0 forevery 1 <i <n—1.
Thus by Lemma 1.3(v), A+a+B+8,+8; —a—8y+8 = A+,3’+8m +85+61 €
P (V). Again as above ' +8,, +85 > 0. So A+ B’ +8,, + 85 + 81 € P(V), which
contradicts (k).

Case 2.6a2. (a + B+, + 385, B+35) > 0.

This can be done as in Case 2.6al.

Case 2.6a3. (o +pB+36, +8s, 0+ B+ 8, +85) > 0.

Note that (¢ + 8 +8, + 85, a+B+8m+85) = (o' + B, &'+ B’). Thus the cases
(@ + pB',a’y > 0and (¢’ + B’, B’) > 0 are already done. Note that o, 8’ are in
affine root system and ( -, - ) is a semipositive definite form in the affine root lattice.
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So we are left with the case (¢’ + B’, ¢’ + ') = 0. Thus by standard arguments,
o'+ B’ =18, for some [ > 0, and further (o' + 8, ') = (&’ + B, B’} =0. Now either
o or &’ +8; € AfL. In any case, A@’Y) > 0. (Since A+a/, A+a’+8; ¢ P(V), by
(%) and (*%).)

Suppose A(a’") > 0.

Subcase 1. Suppose o + 8y € Are. Then by [Lemma 1.4(2)] we have A +a + B+
Sm+8s(( +38¢)Y) > 0, since (@ + B+ 8 + 85, ¢ +8y) = (&' + p',a’) =0. By
Lemma 1.3(iv), A+a+B+8u+8s —a —8y =A+p +8, +8; € P(V), which
contradicts (x) since B’ + 8,, + 85 > 0.

Subcase 2. Suppose a+3,—81 € Are. Then by [Lemma 1.4(2)] we have A+a+B+
Sm+8s((a+8y—581)Y) > 0. By Lemma 1.3(iv), A+a+B+8,+8;—a—8y+81 =
A+ B +8y+38s+81 € P(V), which contradicts (xx) since '+ 8,, + 85 > 0.

Suppose A(a’") =0.

Subcase 1. Suppose o + 8y € Are. Then A((—p' +18, + 8, +385)") =I1(8,) >0
since/ >0and A(8,) = K, > 0. Now A4a+B+8,,+8;((—B'+18, 48, +84)) > 0.
So by Lemma 1.3(iv), A+a+B+8u+8s—a' =8 —8y =A+p'+8,+8,€ P(V),
which contradicts (x) since B+ 8,, + 85 > 0.

Subcase 2. o + 8, — 81 € Ay can be handled similarly.

This concludes the proof of Proposition 2.6. O

3. Classification of integrable 7 (x)-modules

Let gafr = g Cl 1, t,;l] @ CK,. Consider gaff®([3[t1i1, R tf_ll]@D and consider
the subalgebra (h & CK,) ® C[tlil, el t;c_ll]. Let

H=t(uw)N((h&CK,)QCl, ..., ).

Let H=H@®D. We have proved in Proposition 2.6 that there exists a A € P (V) such
that Vj, is a “highest weight” space. In fact it is easy to see that @, Vi, is also
a highest weight space. Let @, Viys, , = V*. Note that H is a graded abelian Lie
algebra and V* is a graded H-module. Since V is irreducible, it follows by weight
arguments that V* is a graded irreducible H module. From known facts [Rao

20041, it follows that V* is isomorphic to a subalgebra E of (D[tlil, et ] such

> 'n—1
that each nonzero homogeneous element of E is invertible. Then the H module
action on V* can be described by a Z"~! graded map from H to E, which we call
¥. Now consider the evaluation map E(1) : E — C defined by 2 + 1. Denote the
composition map E(1) o ¥ as ¥. In what follows, we prove that for such ¥ and
Y there exist an irreducible module V (i) and a non-graded irreducible module

V (i), and we prove that V = V(). We will also indicate how to get V(i)
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from V (i), and conversely. Thus our problem reduces to classifying V (¥), and
it suffices to describe i, which is a map from H — C.

Nongraded and graded modules for t(j). We recall from Section 1 that A =
AreUAim, and A=ATUAUA~. Let to(u) = J = (g® A),, ® (R4 /d)°. Then
J=JT®J® J-, where

Jt= EBO:EA+ Ja, JT = EBaeA* Jo, JO = @O(EAO Ja

Note that H = J°. For any Lie algebra g, let U(g) be the universal enveloping
algebra.

Let ¥ : JO — C be a linear map. We make the one-dimensional vector space
CvaJ* & J°® Cd,-module by defining

hov=1v(h)v forheJ? Xv=0 forXeJ¥, d,v=dv for some d € C.

We consider the induced Verma module

M) =UU ™) ® g 0004, CV-

From standard arguments, M (1) has a proper maximal submodule and hence a
unique irreducible quotient V (1), which is the non-graded module for 7 (w).
We define
g:J0—cCl, T 1= A,

Letm = (my,...,my) €Z", andlet m' = (my,...,m,_1) € 7", Define
Fht) =y h@ ).
Let E = image¥. Let b = (b1, by,...,b,_1) € C"'. Define a 7(u)-module
structure on V() ® A,—; by the action
XM =(XQ@t"v) @+ forevery v € V(¥),
X@t" eto(pn), t* € Ay,
di. (V@) = (b, +s)v Rt forl<i<m-—1),
d,. (V1) = (d,v) @15,

Lemma 3.1. E is an irreducible J° ® D-module if and only if each nonzero ho-
mogeneous element of E is invertible.

Proof. This follows from methods from [Rao 2004]. O

Proposition 3.2. Let E, i and ¥ be as above. Suppose every nonzero homoge-
neous element of E is invertible. Then V() ® A, is completely reducible as a
t(w)-module, and all components are isomorphic up to a grade shift.

Proof. This follows from methods from [Rao 1995]. O
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We recall that T(u) = J @ D. Let ¥, ¥ and E be as above. Make E a J* @
J° @ D-module by defining that J* acts trivially on E and

h@tmt) =y (h @)™ fortf e E, h@t” e JO,
d; .(t%) = (b; + s)t2 forl<i<n-—1,
dy.(t2) = 0.

Let M(¥) = U(J7) ® +gsoep E. By standard arguments, let V(i) be the
irreducible quotient of M (). V (¥) is the graded module for t(w).

Proposition 3.3. Suppose E is a J° @ D-irreducible module. Then a component
of V() ® A1 is isomorphic to V() as a t(w)-module for some suitable b.

Proof. The proof is same as in [Rao 2004, Proposition 3.5]. 0
The following is the main result of this paper.

Theorem 3.4. Any irreducible, integrable module for T (j1) with finite-dimensional
weight spaces, on which the center acts nontrivially, is an irreducible component
of V(W) ® A,—1, where V () is the non-graded module for t(i1).

Outline of the proof. By Proposition 3.3, there is a one-to-one correspondence
between graded and non-graded modules for 7(u). So it suffices to classify the
non-graded modules for t(u). We will prove this theorem in Section 5.

4. Going to the affine Kac-Moody Lie algebra

Let V be an irreducible integrable module for t(u) with finite-dimensional weight
spaces. Also we know that if #2K; #~ 0 on V, then m, = 0 and i = n. We have

To(p) = @ go®12" B, @ g0t B,

meZ meZ
@ g1 @t B, EB g1t B, EB(QA/CZA)O-

meZ meZ
Let gatt = g ® Clty, 1, 1@ CK,,. We define a map
0:7— gur@ClT 15,7 1@ D
by
X®tm}_)(Xt}’};nn)®tm/7 Wherem/:(m],...,mn_l),
0 ifi #n and m, =0,
2K — {K,®t2 ifi =nandm, =0,
0 if m, #0,

dir—>d; forl<i<n.
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It is easy to check that 6 defines a Lie algebra homomorphism and that ker 6 Nt ()
+1 +1
]

is zero on V. Below we give a surjective map ¢ from gag ® (D[tlil, L st
to Py garr (the direct sum of N copies of gf) and prove the conditions under
which ¢ () = ¢|7o(n) is a surjective map from 7o(n) to P ~ Gatt- We also prove
in Proposition 5.3 that the non-graded module V (1) is zero on the kernel of ¢ (w).
Thus V () is a module for € gafr, Which is an affine Kac-Moody Lie algebra on
which the integrable irreducible modules are tensor products of irreducible highest
weight modules [Rao 2005].

Let n > 2 be a positive integer. Foreachi in 1 <i < (n—1), let N; be a positive
integer. Let a; = (a;1, a;2, ..., a;n;) be distinct nonzero complex numbers. Let
I =(i1,i2,...,in—1), where 1 <i; < N;. Let m' = (my, ma, ..., my_1) € 2"\
Let ¢ be a Lie algebra homomorphism defined by

. Clil,..‘,l‘il —)( >: s
¢ : Gatt @ Cl1y 1l @N:NINZMNH_COPES Gaf ) = Gatty

mi my—1 myp my my—1 . .
Xty -1, > (alilazl.z o 'a(n—l)i,,,IX)lfllle§~-§lfln—lan—I )

where X € gaft.

Following the same proof as in [Rao 2004, Lemma 3.11(a)], we see that ¢
is surjective. Let T C {11,12,..., 1Ny} be a maximal set such that a7, # alzj
whenever 1i,1j € T and 1 <i, j < Nj.

Proposition 4.1. Let ¢ () = ¢|to(w). If the cardinality of T is Ny, then ¢ (i) is a
surjective Lie algebra homomorphism from to(1L) t0 Qasry-

Proof. We already know that if m = 2, then g = go & g;. Now there are five cases.

Case 4.1a. Fix m, € Z,and let Y1, Y,, ..., Yy € go. Let

N
2 n 2 Mmp— 2 n 2 n 2 n
DGO (Yo X2 ) = (a2 Y,
i=1

where the b; are complex numbers, X; 2™ tf"”té" 2o etg(p) and 0 <mj <
Nj—1for j=1,...,n—1. So, we have to solve the equation
N
2m,, 2mp _mj my—1 _ 2m,, 2m,, 2m,,
(Z biXit)"al! - -a(nfl)inq) = (Y2 Yot2n L Y2,
i=1

Writing this in matrix form, we must prove that the matrix

_(,2my mp My—1
M = (ay; ay; ---a,"yy,, )
is invertible, where (iy,i2,...,i,—1) for 1 < i; < N; determines the rows and

m'=(@my,my,...,my_1), where0 <m; <N;—1forall 1 <j<n—1,determines
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the columns. Observe that M can be written as a tensor product of other matrices
as

2m
M = (aj;; <i <Ny, 0=mi <N -1 O M2 @ - @ M1,

where
m; .
(1 Mj = (aj,";)lgijSNj,OSijNjfl for j=2,...,n—1.

Let M| = (aizll)lsille.OSmlSer- In other upcoming cases, M will be defined
differently, but the other M; will be the same. If the cardinality of T is Ny, which
means the a%il are all distinct for all 1 <i; < Ny, then M; is a Vandermonde matrix,
so it is invertible. Similarly M> is a Vandermonde matrix because ay; # ay; for all
1 <i, j < Na. So M, is invertible. The other M; for 3 < j < (n — 1) are likewise
invertible. According to a standard result in linear algebra, the determinant of a
tensor product of invertible matrices is nonzero. So M is invertible.

Case 4.1b. Fix m, € Z,and let Y1, Y5, ..., Yy € go. Let

N
2m,+1,.2mi+1_m my— 2m,+1 2m,+1 2m,+1
(D biXity M ) = (Vi Yt Y,
i=1
where the b; are complex numbers and Xit,%m”ltlzm‘“t;” <t e 1o(p) and

0<mj;<Nj—1forl<j<(n—1).So we have to solve the equation

N
2m,+1, 2mi+1_my My—| _ 2m,+1 2m,+1 2m,+1
O bixiymHaf ey ag) )= Yt vt vy,
i=1

Writing this in the matrix form, we have to prove that the matrix

— 2’n1+1 my Mu—1
M = (ay;, " ay; - ag "y )
is invertible, where (i1, i2,...,i,-1),1 < i; < N; determines rows and m =
(my,ma,...,my_1), where 0 <m; < N;—1forall 1 <j < (n—1), determines

the columns. The matrix M is a tensor product of other matrices:
2m+1
M:(a]l'1 )lSille,OSmlilel®M2®"‘®Mn71.

Let M| = (a%::”H)lfi]5N1,05m1§N1—1- Again as above, if the cardinality of T is
Ny, then M, is product of two matrices: one is diagonal matrix whose diagonal

. . 2my ..
entries are app, dj2, ..., ajy, and other is (all.I )1<i| <N, 0<m;<N,—1- S0 M is in-
vertible because the diagonal matrix is invertible and because the other matrix is
a Vandermonde matrix. Similarly the M; for 2 < j < (n — 1) are invertible since
they are Vandermonde matrices. Hence M is invertible.
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Cased.1c. Fixm, € Z,and let Y1, Y>, ..., Yy € g;1. Let

¢ (1) (Zb Xjp 2 2mt e --tf_”[') = (Vi£2", Yot . Yy,
i=1
where the b; are complex numbers and X tnm"tzr'“Jr]z‘gl2 ~ e To(p) and 0 <

m; < N;—1forl<j<(n—1)). As above we must solve the equation

2m, 2mi+1 mz my—1 _ 2my 2m, 2my,
(be; ap, ay "a(nfl)i,,ﬂ)_(yltn ,Yzl‘n ,...,YNl‘n ).
i=l1

For this we must prove that the matrix

s 2mi+1 _mo my_q
M = (aj; " ay; - -ag "y, )
is invertible, where (i1, i2,...,i,—1) for 1 < i; < N; determines the rows and
m' = (my,my,...,my_1), where 0 <m; < N;j—1lforalll <j < @m—1),

determines the columns. Again by Case 4.1b, M is invertible if the cardinality of
Tis N 1.

Case4.1d. Fixm, € Z,and let Y1, Y,, ..., Yy € g;. Let

N
2mu+1,2my m My — 2m,+1 2mu+1 2mu+1
¢(M)<E b Xty e ‘tzz---tnfll)z(YﬂnmJ“ Yot Yy,
i=1

2my,+1 2m1tm2 m,1 1
)

where the b; are complex numbers and X, t t,"] €to() and 0 <
mj < N;—1forl<j<(n—1).So we have to solve the equatlon

2m,+1 _2m mn 1 _ 2m,+1 2m,+1 2m,+1
(ZbXt Hlaal )= (e vy,
i=1

For this we must prove the matrix

2m my_q
= (ay;, a212 A1, )
is invertible, where (i1, i2,...,i,—1) for 1 < i; < N; determines the rows and
m' = (my,my,...,my_1), where 0 <m; < N;j—1lforalll <j < @m—1),

determines the columns. Again, by Case 4.1a, M is invertible if the cardinality of
Tis N 1.

Cased.le. Letcy,ca,...,cy €C. Let

N
¢(M)(Z biKntlzmltgnz T t,’,n,nil) = (c1Kyn, 2Ky, .., N Ky),
i=l
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2m m2 mn 1

where the b; are complex numbers and K1, 1, €to(n) and 0 <m; <

Nj—1forl<j<(n—1). So we must solve

2 n
(melyjlagg aprty, ) = @ Knsc2Kas o enKa).

So, we have to prove that the matrix

— (a2mla . amnfl )

- 1ig 212 (n—1)in—1
is invertible, where (iy, i2,...,i,—1) for 1 < i; < N; determines the rows and
m' = (my,my,...,mu_1), where 0 <m; < N;j—1foralll <j < -1,

determines the columns. Again by Case 4.1a, M is invertible if the cardinality of
Tis N 1.

So if the cardinality of T is Ny, then ¢ (u) is a surjective Lie algebra homomor-
phism from 7o(it) to gafryy. This completes the proof of Proposition 4.1. U

We now define polynomials P; (tlz), P (t), ..., P,_1(t,—1) by

Ny N.f

P =]t -at). Py =[]t —ap) for2<j<m-1.

i=1 I=1
Notation. Denote by (P (t12) Py(1), ..., P,_1(t,_1)) the ideal generated by the
polynomials P; (’1) Py(1), ..., P,_1(t,—1) inside C[tlﬂ, tgH, PN S 1]
Lemma 4.2. If the cardinality of T is Ny, then Ker ¢ () is given by Iy + I, + I3 +

14 + Is, where, for some fixed m € Z,

Li=go®t" (Pi(t]), Pa(t2), ..., Paci(ta—1)),
L=go®t" T (11 PL(t}), Pa(t2), ..., Pui(tn—1)),

=g1®" (1PI]), Pa(t2). ..., Paci(tas1)),
L=g1 " T (PI(t]), Pa(t2), ..., Paci(ta—1)),
Is=K, (P1(t]), P2(t2), ... Puci(ta=)).
Proof. We consider the map

2m . m’ 2m m’
: e t",  where t" € B,
$1:90®1, @N NiNge N, 30O n

2m m 2m ,2my m; Mmp—1
Xo," 1% > (Xt ay; tagp a7 ) <i <N <ig <N -

Let M = (N = NN, --- N,_1) (the dimension of gg). As proved in Proposition
4.1, one can show that ¢ is surjective. Since ¢, is nothing but the evaluation
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map at the roots of P; (tl) P (1), ..., P,_1(t,—1), we have I| C ker ¢p;. Therefore
dim(go ® t,%mtm /1) > M. C0n51der the space

={go®@ 2" ;™" 1 0<m < N;j—1 for 1 <i<(n—1)

Note that ¢ is injective on R since the corresponding matrix is invertible. Also note
that any element of gy ® t,%m ™' can be written as linear combination of elements
of R modulo ;. Thus dim(go®t3mtm//ll) <M, and so dim(go®tgmtm//ll) =M
Therefore I; is the kernel of ¢;. Arguing similarly on the other components of
(), we get that I} + I, + I3 + 14 + Is is the kernel of ¢ (w) if the cardinality of
Tis N 1- Il

5. Proof of the main theorem and propositions

Proof of Theorem 3.4. Let V be an irreducible integrable module for t(®) with
finite-dimensional weight spaces. Then, by Theorems 2.3 and 2.4, there exist up to
a coordinate change nonzero central operators Z1, ..., Z,_1 of respective degrees
(k1,0,...,0),...,0, ..., kp—1,0). Let W={Z;jv—v|veV forl <i<(n—1)}.
We claim that W is a maximal proper J & Cd,,-submodule of V.

Consider Wy = {Zjv—v | v € V}. W; is a proper J & D;-module. Note that
if i # 1, then d; commutes with Z, and hence W) is d;-invariant. Clearly W is
J-invariant. To see that W is proper, just note that W; cannot contain d; weight
vectors. Now consider Wy = {Z,v — v | v € V/W;}. By the above argument, we
can see that W, is a proper J @ D,-module. Continuing this process, we see that
W={Ziv—v|veV forl <i<(n-—1)}is amaximal proper J & Cd,-submodule
of V.

Thus we have proved that W is a maximal proper J @ Cd,-submodule of V and
V/W has finite-dimensional weight spaces with respect to h(u) @& Y -, CK; &
Cd,. Further, we proved in Proposition 2.6 that there exists a > € P (V) such that
A+n+8, ¢ P(V) for every n > 0 and for every m’ € 7"

Let @,, Vits,, = V*. Then it follows that

X, ®£V =0 foralla+38, € Af.

Let V* be the image of V* in V/W, which is known to be finite-dimensional.
JO leaves V* invariant. Notice that J° is an abelian Lie algebra. Thus J° has a
one-dimensional invariant subspace in V*. Let W* be the maximal proper invariant
subspace of V*. Then it is easy to check that V*/ W? is one-dimensional by Lie’s
theorem; otherwise there will be a contradiction to the fact that W* is a maximal
proper subspace. Let V*/W* = Cuv. Let X ® t"v = ¢ (X @ t)v for X @t € J°,
where ¥ : JO — C is a linear map. Now consider the irreducible module V () as
described in Section 3.
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We claim that V () is a to(u) @ Cd,, -irreducible quotient of V / W. This follows
from the fact that the module generated by W* is proper and maximal. Thus we
have an irreducible non-graded module V (¢) for to(u) ®Cd,. Now V(¥ ) Q@ A, —1
can be made as a 7(u)-module as described in Section 3. Now by Propositions
3.2 and 3.3, it follows that any irreducible integrable module for 7 (w) with finite-
dimensional weight spaces is an irreducible component of V() ® A,—1. This

completes the proof of Theorem 3.4. 0
In case m =2, we have B, = C[tlﬂ, tzil, e, t;—L_ll] and ' =2e17® e/ D@
e,—1Z. Notice that e B, if and only if m" € T'. Let
Ti = a0 ®1," By, T =g ®1" 1By,
meZ mezZ
T32@91®13mt13u, T4=€B91®t3m+13w
meZ mezZ
Sot(W) =TI L ®TDT4® (Qa/da)’ ® D. Let T," = T; (DB ep+ Ta)- Let
ai, ..., o be all simple roots of go, and let «;,, . . ., o, be all positive short roots
of g;. Let

SZ{(X1+5m/,...,(xl+5m/, m/GF,

—a1+ 8+ 81+ 8wy~ + 8+ 81+ 8w, 80+ 81+ 8, m' €T,
oy 481+ 8y + 81 48, m' €T,
—aj, + 8+ 8o =i, + 8, + 8, m €T}

Proposition 5.1. Let (S) be the Lie algebra generated by the root spaces corre-
sponding to root « € S. Then

S)=Trohy el ol = P .

acAt

T1(n) = EBBO ® 12" @91 ® 2! @CKn,

meZ meZ

Proof. Let

which is a twisted affine Lie algebra. Let 8 be the weight corresponding to the
highest weight vector of the go-module g; as in [Kac 1990]. Then it is known
from [Kac 1990] that 7;(u) is generated as a Lie algebra by the root spaces cor-

responding to the root basis {«q, ..., a®;, —8 + 8,}. Thus from this we conclude
that (S) contains TIJr ® 7,7, which is the Lie algebra generated by the root spaces
corresponding to the roots oty + 8y, . .., & + 8y, —f + 8y + 8,y for m" € . Also

h(whty, TT1=T" and [h(wtity, w71 =1,T5"T,
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and the root spaces corresponding to the roots o, +81 +8,, . .., o, +81 48, for
m’ €T are in (S) by definition. Thus (S) =T,' @ T,' @ T, © T, O

We will now define the concept of the height ht of a positive root. All roots
of go are given the usual height. Thus if « = > n;«;, then hta = ) n;. Also
hté, = N + 1, where N is the height of the highest root of the finite root system
Ao of go. Leta € AT, Let @ = o’ + 8,y and m,, = 0. Then we define hta = hte'.
Let

_={a17"'7a17 _a]+5}’l+5]9"'5_al+5n+5]98]+5}17
ail +815 "'7aix+817_al’1 +8na R _alv+8n}

Clearly hty < N + 1 for every y € S. It is easy to see that for y’ € AT, there
exists a y € S such that y' =y + 8,y form’ € I and hty < N + 1.

Lemma 5.2. Suppose V (i) has finite-dimensional weight spaces. Then X, ®
1V () = 0 for some cofinite ideal I of <E[tjE2 = -tf_ll] and for all o € A,
including o = 0.

Proof. Let X, be a root vector of root « € —S.For2<i< (n—1), consider the set
{Xq ®tik v |k € Z}, which is contained in the same weight space. Since weight spaces
are finite-dimensional, there exists a nonzero polynomial P; ,(f;) = jaj tij such
that

Xo ® Pia(t)v =0, where Xo® Pio(t)=Y;a;Xe ®1.

[ +1 til +1

Denote by (P) the ideal generated by the polynomial P in C[¢ 5 sl

Claim 5.2a. X, ® (P; «(t;))v=0for2 <i <n—1. Let m" € B,. Then
h@ 1" (Xo ® Pio (1)) = Xo ® Pio()h @ 1™ v+ a () Xy ® 1™ Pig(t)v =0
The first term is zero since & ® " acts as scalar. Thus
Xo @™ (Pig(ti))v=0 for2<i<n-—1.

Let P;i(t;)) =[[_,e5 Pio(ti). We note that X ® B, (P;(t;))v=0for2<i <n—1.
Similarly for t;, consider the set { X, ®t2kv | k € Z}, which is contained in the same

weight space. Since weight spaces are finite-dimensional, there exists a nonzero
polynomial Pj 4(f)) = Z a Jtl such that Xy ® Pj o(t1)v = 0. On similar lines
as above, we prove that

Xo @™ (Pro(t)v=0 form eT.

So we have proved that X, ® B, (P;(#;))v=0for1 <i <n—1.
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Claim 5.2b. For1 <i<n-—1,
X, @ (Pi(t;)))v=0 foreveryy € —AT,  where Yy =n+68y and m, =0.

We will prove this by induction on the height of a positive root. We have already
seen this by Claim 5.2a for all y € —S such that ht y <ht$,. Let y € —A™, where
Y =n+8, and m, =0, and consider X, ® (P;(#;))v for 1 <i < (n—1). We will
prove that X, ® (P;(t;))v is killed by Xg for every B € S. Then by Proposition 5.1,
it follows that X, ® (P;(t;))v is killed by Xy for every B € AT, since S generates
all the positive root spaces. So X, ® (P;(#;))v is a highest weight vector. Since
V() is an irreducible highest weight module, it follows that X, ® (P;(#;))v =0
for every y € —A™, where y = n+36,, and m,, = 0.

Let B S, and let B =a + 3,y fora € S and m’ € T'. Then

Xo @1 X, @ (Pi(t)v =X, ® (P(1;)).- X @™ v+ [Xy, X, ] @ ™ (Pi(t:))v.

The first component is zero since v is a highest weight vector. The second is zero
by induction on the height of a positive root. This proves Claim 5.2b.

Claim 5.2¢c. b ® (P;(t;))v =0 for every b € Jo%andfor1 <i <(n—1).

For any o € —A;g, consider —a¥ @ (Pi(t)v = X_o X0 @ (Pi(t)v — X0 ®
(Pi(;)) X _qv = 0 by Claim 5.2b. Since o" for « € —A will cover all of JO, this
proves Claim 5.2c.

Let I be the ideal Pi(¢(), ..., P,—1(t,—1) generates inside C[tlﬁ, tzil e tf_ll].

It is easy to see that C[tlﬂ, 1‘23El e tni_ll] /1 is finite-dimensional. We consider

W={weV{W)| Xe®Iw=0 for all @, including o = 0},

which is nonempty by the above. It is easy to see that W is a submodule of V ().
Since V () is irreducible, W = V (1/). This completes the proof of Lemma 5.2. [J

Let I’ be the ideal generated by the polynomials Py (tlz), ..., P,_1(t,—1) inside
Cli, 157, ..., 5] That s, let

Ny N.f
I'=(Peh =TTet—ab). Piap =[] —a) for2=j=m-1).
i=1 =1

We observe that the polynomials P; (tlz), ..., P,_1(t,—1) have distinct roots. So
I C I'. Our aim is to prove that X, ® I'v = 0 for all &, including o = 0.
Let o be a simple root of go.

Case 5.2d. Suppose « is a long root.
Let X, € (g0)q and Y, € (go)— such that by, = [Xy, Y] is an slr-copy. Let G,
be the space spanned by X, ® I, Y, ®1I', ho ®I',and K, @ I
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Case 5.2e. Suppose « is a short root.

Let X, € (go)y and Y, € (go)— such that by, = [X,, Y, ] is an slp-copy. Let
X!, € (g1)q and Y, € (g1)—q such that 4, =[X,, Y] is an sly-copy. Let G, be the
space spanned by

X, I, o1, he®1', X, ul',
Y, ', h,®I', [X,.Y,@5'1®I, [X,®,Y,]®I

Case 5.2f. Suppose g is the highest root of the finite root system Ag of go.
Consider

a=—B+8, Xe=X_p®ty, Yo=Xs®t ', hy=I[Xy, Yol=hg+K,.
Let G, be the space spanned by X, @ I', Y, Q1I', hy QI'.
Proposition 5.3. Let o be as in Cases 5.2d, 5.2e, and 5.2f. Then Gyv = 0.

Proof. If we take Lie brackets in G, then the result will contain higher powers
of I’. But I C I'" for large n. So G,/I is solvable. In fact it is nilpotent. Since
I'/I is finite-dimensional, so is G,/I’. By Lie’s theorem, there exists nonzero w
in V(y) such that g ® p(t)w = A(g, p(¢))w for some scalar (g, p(t)), g € Gq,
and p(t) € I'.

Claim 5.3a. G,w =0.

We will prove the proposition for Case 5.2e. For Cases 5.2d and 5.2f, the proof is
based on similar arguments. So suppose « is a short root and let X, € (go),. Then
let X, @ P(H)w = A(Xy, P(#))w for P(t) € I'. This implies (X, ® P(#))"w =
M Xy, P(t))"w. Since V is integrable, (X, ® P(¢))"w = 0 for large m, and
therefore A(X,, P(t)) = 0. Hence X, ® P(t)w = 0. Similarly we can prove that
Y, ® P(t)w =0. We claim that 2, ® P (t)w =0, which follows from the arguments
in [Rao 2001, Proposition 2.1], except that we replace the finite-dimensional V
by integrable V.

Now let X, ® Q(t)tyw = A(X),, Q(t)t;)w for Q(¢) € I'. Then

Xy ® Q1) w = AM(X,, Q)m)"w.

Since V is integrable, (X, ® Q(t)t;)"w = 0. Hence A(X,, Q(t)1;)" = 0, and
therefore A(X),, Q(#)t;) = 0. This implies X, ® Q(¢t)tyw = 0. Similarly we can
prove that Y, ® Q(t)tl_lw =0.

Claim 5.3b. 1, ® Q(1)w =0.
Let i/, ® Q(H)w = A(h!,, Q(1))w and let A = A(h,, Q(1)).
Subclaim 1. 1, ® Q()(Y, @t )"w =AY, @t )"w.
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We prove this by induction on m. Let m = 1 and consider
R,®Q1) (Y, @t Hw= (Y, Hh,® Q) w—2Y,®t; ' QO w =AY, ®t Hw.
Now we assume the claim for m and consider
h,® ) (YL@t )" lw

=Y, @t H(h, ® Q)(Y. @t Y w+[h, ® Q1), Y. @t (Y. @)™ w

=AY, @t Y w27, @ 0 (YL@t w

=Y, @t H" w,
which follows by induction and the fact that Y, ® Q(1)t; Tw=0.
Subclaim 2. X/, ® Q)1 (Y, @t )"w =mAr(Y, @t )" w.
The proof is by induction on m. Let m = 1. Then

X, ®00nY,® z;l)w =Y, ® z;l.X; R Q(Mnw+h, ® Q(Hw = rw.

Now assume the claim for m, and consider

(X, ® Q) (Y, @1y w
=Y, @YX, @ 0¥, @t )" w+h, ® 01 (Y, @1, )" w
=mA(Y, ®t; )" w+AY, @t )" w
=(m+ DAY, @t ) "w.
Since V is integrable, there exists an ng > 0 such that (Y, ® ¢, 1)”Ow =0, and
(Y, @170~ w # 0. Then
AT, @t lw=hl, @ QY. @t w
=[X,® 0, Y, @1 (Y, @) w
=—(no— DAY, @1 H" .

This implies that either ng = 0 or A = 0. But, by choice, ng #~ 0, and hence A = 0.
This proves that &), ® Q(t)w = 0.

Claim 5.3c. [X,, Y. ®1'1® Q'(t)w =0 for Q'(1) e I'.
Let [Xo, ¥, ®1,'1® Q'(Hw = Aw.

Subclaim 3. [X,, Y, ®t'1® Q' ()Y, @1, )"w =AY, ®1; )" w.
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We prove this for m = 1:
[Xe Y @171® Q'(O(Y, ®1; Hw
= (Y, ®4 X, Y @110 Q' (Dw +1[[X,, Y, @110 0'(1), Y, @17 ']
=Y, @t Hw.
This follows by the assumption and the fact that
(X, Yo @1, '1® Q'(0), Y,y @17 '1=0.

In fact X, € go and Y., € g implies that [X,, Y, @1, 1® Q'(1) € 1,001, ' Q' (1).
SO [[Xe, Y, ®17'1® Q'(1), Y, @1, ' € go.u ®1;2Q'(1). Since dimgo, = 1, we
have [[Xq, Y, @17 1@ Q'(1), Y, @1, 1€ Xy ®1;2Q' (1) =0, because X, ® ' =0.
Now assume the claim for m and consider

[Xa. Y ®@171® Q' ()Y, @17 )" 1w
=Y, @t H[X,, Y. @10 (O, @17 " w
[ Xe, Y 01,710 Q' (1), Yy @1, 1Y, @17 )" w
=Y, @t )" w,

because [[ Xy, V), ® tl_l] RQ'M,Y,® tl_l] =0, as proved above.
Subclaim 4. (X, ® Q'())(Y, ®t;)"w =mA(Y, @1t )" w.
We prove this by induction on m. Let m = 1, and consider
Xa® Q' OV, @ Hu=Y,®1; ' Xa® Q' (Hw+[Xo. ¥, @110 Q' (1w = Aw,
because X, ® Q'(1)w = 0.
Let Subclaim 4 be true for m and consider
Xa® Q' (Y@t w

=V, @5 ) (Xa® Q)Y @) w+[Xe® Q). Yo@ 1 1YV, @17 )" w

=mA(Y, @t )" w+AY, @t ) w

= (m+ DAY, @17 )" w (by Subclaim 3).
Since V is integrable, there exists an ng > 0 such that (Y, ® ¢, 1)”O_lw % 0 but
(Y, @t "w = 0. Now

AT, w=[X,, Y, @110 Q' ()Y, @t )™ w
=Xe® Q' )Y@t Yy @1 )" w
— (Y, 05 X ® Q' O, @1 ) w
= —(no— DAY, @1 ) 'w,
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which means either ngp = 0 or A = 0. But by our choice ng # 0, and hence A = 0.
This proves Claim 5.3c. Similarly we can prove that [X), ® t1, Y] ® Q' (t)w =0
for Q'(r) e I'.

Now consider the nonzero submodule W = {w € V() | Gow = 0} of V().
Since V () is irreducible, we have W = V (¢/). Thus the module V (¥) is zero on
I'. Let

Ny Nj
1’ =<P](f12) =1 l_[(tlz—ai.), P](tj) = l_[(tj —aﬂ) for2<j<(n-— 1)>

i=1 =1

In a similar way as above, we can prove that the module V () is zero on I”. So
the module V (i) is zero on kernel ¢ (1) by Lemma 4.2. Thus V (y) is a module

for Py Gar- O

6. When the diagram automorphism is of order 3

We now consider the case when p is a diagram automorphism of g of order 3. We
will prove analogues of Proposition 4.1 and Lemma 4.2 in this case.

In this case also, i leaves f invariant. Let h(u) be the u-fixed points of f, and
let € be a primitive third root of unity. In this case g = go ® g1 @ g—1, where g; is
the eigenspace of i for the eigenvalue €’ for i € {0, 1, —1}. Suppose (X, Y) # 0
implies X, Y e gg or X € g; and Y € g_;. Because of this, the center in the twisted
toroidal Lie algebra, which we denote by (2,4 /d)° will be

(Q4/d)? = span{t2K; | m;, + - - - +m;, =0 (mod 3)}.

Also u leaves g ® A invariant. Let (g ® A),, be the pu-fixed points of g ® A. Then
T(W)=@RA),® (QA/dA)O @ D. It is known from [Berman and Krylyuk 1995]
that (g ® A), @ (S24/d4)? is the universal central extension of (g ® A),. In this
case also we choose the coordinates in such a way that S = {1, n}. Here

tw = Paoen "y gt Peeen TR g
ggo®t3m+2 3mi+1 mz trrzn—”I] ggl ®t3m "!m1+2 m2 t:ln_nfl
gg ®l‘3m+1 3m+1 mz . t:'l_nIl gg ®t3m+2 3m|tm2 . t}T—n]_l
gg 1@ g gg @ e
meZ meZ

Do @2 P (Qa/da) P D.

meZ
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Also let
TO(M) @go®t3m 3m1tm2 . t:?_nil @g ®t3m+l 3m+2 mz . t’TjIl
meZ meZ
3m+2 3m1+1 my Mmp—1 3m 3m1+2 my my—|
@9 X1, Ly -l @9 X1, Ly -l
mezZ mez
3 +1 3m +1 m my_q 3 +2 3m m my—1
@g ®tm 1 2, o @g ®tm 1t2 o
meZ meZ
3m 3m1+1 mz my—1 3m+1,.3my my my—|
@g 11 o @g @M
meZ meZ
3 2 n—
Do onm g2 D (Qasda).
meZ

Root system for t(pn). Let m = 3. Then
T =00® D, 4ty =0 (mod 3 I DG ® X 1y =1 (moa 3) C*
Do ® Zm,-l+.-.+m,-k;1 (mod 3) C1™ B(Qa/dr)° B D.
Let Ay be the roots of go and Ay be the short roots of go. Define

Are ={a+6m | € Ag, mj; +---+m; =0 (mod 3)}
Ua+68mlaeAf, mj+---+m; =1 (mod 3)},

and let Ajy = {5, | m € Z"}. Let A = Are U Ajpy.

Define
Af={a+8u|la>0,m,>0o0ra<0,m,>1}, A =8y | my > 1},
and A = {5,, | my, = 0}. Then AT = AL UA and A= = —A*. Further

A=ATUA°UA". Leta € A. Then @ € A if and only if (&, &) # 0.

Let n > 2 be a positive integer. For eachi in 1 <i < (n—1), let N; be a positive
integer. Let a; = (a;1, a;2, ..., a;n;) be nonzero distinct complex numbers. Let
I =(1,i2...,in—1), where 1 <i; < N;. Let m' = (my,ma, ..., my_y) € 2" .
Letgar=g ® Clt,, t, 1@ CK,. Let ¢ be the Lie algebra homomorphlsm

£1 £l £1
g QCIET 57 Lt e(@ ,>=
g @Clt] 5, ..., ,,_1] NNy Ny Ny copics 99T ) = Baifn
mi 1,,Mm2 Mp—1
Xt i '_’(‘1111“212' Ao i K 1<i <N 1 io <N

where X € gaft.

Following the proof of [Rao 2004, Lemma 3.11(a)], we see that ¢ is surjective.
Let T C {11, 12,..., 1N} be amaximal set such that a3, #afj whenever 1i,1j €T
and 1 <i, j < Ny.
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Proposition 6.1. Let ¢ (1) = ¢|to(w). If the cardinality of T is Ny, then ¢ () is a
surjective Lie algebra homomorphism from to(|L) 10 Gafty-

Proof. We know that if m = 3, then g = go @ g1 ® g—1. Now there are ten cases.

Case 6.1a. We fixm, € Z,and let Y1, Y5, ..., Yy € go. Let

N
3m, 3 n— 3m, 3m, 3m,
¢(M)(ZbiX,-tn’" T -t,’l"_ll) = (V2" Yot L Y,
i=1
where the b; are complex numbers and X;7;™" tf MR € to(p) and 0 <
mj < N;—1forl<j<(n-—1).So, we must solve the equation

N
3m, 3m; _mj my—1 _ 3m 3m 3m
(ZbiXitn "ay! a2i2'“a(n71)in,1)_(yltn Yot L Y.

i=1
Writing this in matrix form, we must prove that the matrix
_ 3my _my my—1
M = (ay; "ay;, - 'a(n—l)i,,_l)

is invertible, where (iy,i2,...,i,—1) for 1 <i; < N; determines the rows and
m'=(my,my,...,m,_1) where 0 <m; < N;—1forall 1 <j<(n—1), determines
the columns. The matrix M is a tensor product of other matrices:

3m
M = (alil )1§i1§N1,0§m1§N1—1 ®M2 Q- ®Mn—1’

where the M; for 2 < j < (n — 1) defined as in Equation (1). Let
M, = (a?zll)lsille,Osmlle—L

If the cardinality of T is N, which means the afil are all distinct forall 1 <i; <Ny,
then M, is a Vandermonde matrix and is therefore invertible. Similarly M, is a
Vandermonde matrix because a; # az;j forall 1 <i, j < N, with i # j. Similarly
M is also invertible for 3 < j < (n — 1). According to a standard result of linear
algebra, the determinant of a tensor product of invertible matrices is nonzero. So
matrix M is invertible.

Case 6.1b. We fix m,, € Z, and let Y1, Y,, ..., Yy € go. Let

n—1 n

N
¢ (w) (Z b XMt R t’”"*l) = (Vi1 Yoty

i=1
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where the b; are complex numbers, X; 3m"+1t13 m1+2t£" e e to(p), and 0 <

mj<Nj—1forl < j<(n-—1).So, we must solve the equatlon

mn 1

N
v 3muy+l 3mi+2 mo my—| _ 3m,+1 3m,+1 3m,+1
(D bixarimettalrPaz apet), ) = (e ey,
i=1

Writing this in matrix form, we must prove that the matrix

_ 3mi+2 _my my_q
M - (alll a212 U a(nfl)infl)
is invertible, where (i1, i2,...,i,—1) for 1 < i; < N; determines the rows and
m' = (my,ma,...,my_1), where 0 <m; < N;—1foralll <j < (@n—1),

determines the columns. The matrix M is a tensor product of other matrices
+
(Clllll )1<11<N|,0<I711<N]—1®M2® " QM,_.

Let M; = (a3m1 )1<i;<N;,0<=m,<N,—1. Again, as above if the cardinality of T is
Ny, then M| is product of two matrices: one is the diagonal matrix whose diago-
nal entries are alzl, alzz, - alle, and the other is (afff])lsilfm,ogmls;vl_l. Since
api #aip # - - - #ain,, we have alzl =+ a122 £t alle . Hence the diagonal matrix
is invertible. The other matrix is a Vandermonde matrix and hence is invertible.
So M is invertible. Similarly the M; for 2 < j < (n — 1) are invertible since they
are Vandermonde matrices. Hence M is invertible.

Case 6.1c. We fixm, € Z,and let Y, Y,, ..., Yy € go. Let

n

N
3,,2'54‘1 n— 3m,+2 3m,+2 3m,+2
B0 (Db Xt 2 ) = (R, Y2y,

where the b; are complex numbers, X; t3m"+2tl3m‘+lt£" g

mj<Nj—1forl <j<(n—1).So, solving the equation

mn 1

€ 19(u), and 0 <

3m +2 3m1+1 my Mpy—| _ 3m,+2 3m,+2 3m,+2
(ZbXt R al ) = (e,

we must prove that the matrix
+
(allll M<ii <Ny, 0<m <N -1 @M ® -+ - Q@ M,,_1,

is invertible. Let M; = (alll 1+ )i<i <N,.0<m,<N,—1. Again, if the cardinality of
T is Nj, then M| is product of two matrices: one is the diagonal matrix whose
diagonal entries are ajj, a2, ..., aiy,, and the other is (affl)lsille,OSmlle,l.
Since ajj #ai2 #- - - #ain,, the diagonal matrix is invertible. And the other matrix
is a Vandermonde matrix and hence invertible. So M is invertible. Similarly the
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M; for 2 < j < (n — 1) are invertible as they are Vandermonde matrices. Hence
M is invertible.

Case 6.1d. If we consider (X,-t,,"fl”t3ml+2tg12 — 1) € 1o(u), where X; € gi,
then the proof of this case is similar to that of Case 6.1b.

Case 6.1e. If we consider (X; t3m"+1t3m‘+lt£"2 1Y) € To(u), where X; € gy,

then the proof of this case is similar to that of Case 6.1(:.

Case 6.1f. If we consider (X;£.™ ¢ 3m1tm2 1) € To(w), where X; € gy, then
the proof of this case is similar to that of Case 6.1a.

n3mi+1 m2 X mn 1

Case 6.1g. If we consider (Xl-tnm 4 t, ) € to(n), where X; € gy,
then the proof of this case is simllar to that of Case 6.10.

Case 6.1h. If we consider (X;z2™ ¢ 3'"'6"2 <oty € (), where X; € gy,
then the proof of this case is similar to that of Case 6.1a.

3mu+2,3m+2 mn
Case 6.1i. If we consider (X;z;"" " ;""" "1 - - ") € to(n), where X; € g_i,

then the proof of this case is similar to that of Case 6.lb.

Case 6.1j. Letcy,cp,...,cy € C. Let

¢(u)(ZbK ARy ') (€1Kn. 2K, ..., cnKn),

3m1 mz tmn—l

where the b; are complex numbers, K1, e
Nj—1forl<j<(n-—1).So, solving the equatlon

€ to(n), and 0 < m; <

3 n
<Zb Kpayay? - -ag ) ]> = (c1Kn, 2Ky, ..., cnKn),

we must prove that the matrix

_ ¢ 3my _my m,_1
= (ay;, Gy, - a(n—l)in,l)

is invertible, where (i1, i2,...,i,—1) for 1 < i; < N; determines the rows and
m' = (my,my,...,my_1), where 0 <m; < N;j —1foralll <j<@m—1),
determines the columns. Again by Case 6.1a, M is invertible if the cardinality of

Tis N 1.
So if the cardinality of T is Ny, then ¢ (u) is a surjective Lie algebra homomor-
phism from 7o(it) tO Gasey - O
We now define polynomials P; (tl) and P(tp), ..., P,_1(t,—1) by

N N;

Py =[]t —aly and P =[]¢j—aj) for2<j<@m-1.
i=1 =1
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Notation (P, (t ), Po(t2), ..., P,—1(t,—1)) denotes the ideal generated by the poly-

L +3 41 +1
nomials Pl(tl) Py(t2), ..., Py_1(ty—y) inside C[#;7, ¢, ..., ]

Lemma 6.2. If the cardinality of T is Ny, then Ker ¢ () is given by Iy + I, + I3 +
Iy+ Is+ Ig + I; + Ig + I + 110, where for some fixed m € Z,
Pi(1})), Px(t2), ..., Puci(ta—1)),

IP(t}), Pa(t2), ..., Pu—1(ta-1)),
1 PI(5), Pa(t2), ..\ Puoi(ta—1)),
Li=gi®5" (P, P(t2), ..., Paci(ta-1)),
Is=g L™ (4 PI(), Pata), ..., Paci(ta)),

L=g®t" |
(17
(
(7
(
Ie=g1 @6 (PI(1]), P2(t2), ..., Pa_i(tn—1)),
(
(
(
(

= go ® tr?m-i-l
L=go®tm"?

L=g_1®4" (t1PI(1), Pa(t2), ..., Paci(tam1)),
Is = g1 @6" (P, Pa(t2), ..., Paci(tam)),
ly=g1®," 2 Pt Pa(12), - .., Paci (ta-1)),
Pi(]), P2(t2), ..., Pu—i(tn—1)).
Proof. We consider the map ¢; defined by

3m 3m1 my my—| @ 3m
£ 2 s £3m,
g® n—1 NNy NNy 90 BT

Mmp—1

3my my 3m 3my _my
th oLt t M (Xt ai, Gy A pyi, VIS SN 1<in 1 <Ngoy -

Lo=K,®

Let M = (N = N1N; - -- N,—1) (the dimension of gg). As in Proposition 6.1, one
can show that ¢; is surjective. Since ¢ is nothing but the evaluation map at the
roots of Pl(tf), Py(t),..., P,_1(t,—1), we have I} C ker ¢1. So

dim(go ® 12" 13 - - 1" /1) = M.
Consider the space

={go @M M 0<m < Nj—1for1<i<(n—1)).

n—1

Any element of gy ® t,?mtf M. " can be written as linear combination of
elements of R modulo /;. Hence ¢, is injective on R modulo /;, since the corre-

sponding matrix is invertible. So R is a spanning set for
’3 n—
(Go® 6"t 1y 1" /1),

and dim(gy ® t3’"t1m1tm2 . ’”" ") < M. So I is the kernel of ¢;. Similarly
arguing on the other components of to(u), we get that Z i—1 1; is the kernel of
¢ (w) if the cardinality of T is Ny. This proves Lemma 6.2. O
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Remark 6.3. The results of Section 5 can be proved similarly in case m = 3.

Note 6.4. The proof of Proposition 2.6 will remain same in case m = 3 except that
for A, A+381, A+261 or A, A+81, A—8; or A, A—381, A—281 will have the properties of
the first paragraph of the proof. We can assume A+n, A+61+n, A+281+n ¢ P(V)
for all n > 0.

Note 6.5. Let V be an integrable irreducible module for the twisted toroidal Lie
algebra t(u) with finite-dimensional weight spaces. Let k be as in Theorem 2.3.
Suppose k > 1 and K; = 0 for all i. Then such a module V does not exist. This
result can be proved in a way similar to the proof of [Rao 2004, Proposition 4.13].
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