Vol. 237, No. 2, 2008

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Taibleson operators, p-adic parabolic equations and ultrametric diffusion

J. J. Rodríguez-Vega and W. A. Zúñiga-Galindo

Vol. 237 (2008), No. 2, 327–347
Abstract

We give a multimensional version of the p-adic heat equation, and show that its fundamental solution is the transition density of a Markov process.

Keywords
parabolic equations, Markov processes, p-adic numbers, ultrametric diffusion
Mathematical Subject Classification 2000
Primary: 35R60, 60J25
Secondary: 47S10, 35S99
Milestones
Received: 20 November 2007
Revised: 25 January 2008
Accepted: 25 February 2008
Published: 1 October 2008
Authors
J. J. Rodríguez-Vega
Departamento de Matemáticas
Universidad Nacional de Colombia
Ciudad Universitaria, Bogotá D.C.
Colombia
W. A. Zúñiga-Galindo
Centro de Investigación y de Estudios Avanzados del I.P.N.
Departamento de Matemáticas
Av. Instituto Politécnico Nacional 2508
Col. San Pedro Zacatenco
07360 México D.F.
México