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We give a multimensional version of the p-adic heat equation, and show
that its fundamental solution is the transition density of a Markov process.

1. Introduction

In recent years p-adic analysis has received a lot of attention due to its applications
in mathematical physics; see for example [Albeverio and Karwowski 1991; 1994;
Avetisov et al. 2002; Avetisov et al. 2003; Khrennikov 1994; 1997; Kochubei 2001 ;
Rammal et al. 1986; Vladimirov et al. 1994] and references therein. One motivation
comes from statistical physics, in particular, in connection with models describing
relaxation in glasses, macromolecules, and proteins. It has been proposed that
the nonexponential nature of those relaxations is a consequence of a hierarchical
structure of the state space which can in turn be connected to p-adic structures;
see [Avetisov et al. 2002; Avetisov et al. 2003; Rammal et al. 1986]. In [Avetisov
et al. 2002], it was demonstrated that p-adic analysis is a natural basis for the
construction of a wide variety of models of ultrametric diffusion constrained by
hierarchical energy landscapes. To each of these models is associated a stochastic
equation (the master equation). In several cases this equation is a p-adic parabolic
equation of type

ou(x,t) A _
(1) ar TaADE D= F(x1) for x € @, and 1 € (0, T,

u(x, 0) = p(x)
where a is a positive constant, A is pseudodifferential operator, and Q, is the field

of p-adic numbers. The simplest case occurs when n =1 and A is the Vladimirov
operator:

(DY¢)(x) = F; L (E|5Frep(x)) fora >0,
where % is the Fourier transform. The fundamental solution of (1) is a density
transition of a time- and space-homogeneous Markov process that is considered
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the p-adic counterpart of Brownian motion; see [Kochubei 2001; Vladimirov et al.
1994].

It is relevant to mention that in the case n = 1, the fundamental solution of (1)
when A = D“ (also called the p-adic heat kernel) has been studied extensively;
see for example [Blair 1995; Haran 1990; 1993; Ismagilov 1991; Kochubei 2001;
Vladimirov et al. 1994].

A natural problem is to study the initial value problem (1) in the n-dimensional
case. In [Zifiga-Galindo 2008], the second author considered Cauchy’s problem
(1) when

(Ap)(x) =F L (1 fESFrp(x)) fora >0.

Here f (&) is an elliptic homogeneous polynomial in n variables, and the datum ¢
is a locally constant and integrable function. Under these hypotheses, Ziiiga-
Galindo established the existence of a unique solution to Cauchy’s problem (1). In
addition, the fundamental solution is a transition density of a Markov process with
space state (.

In this paper we study Cauchy’s problem (1) when A is the Taibleson pseudo-
differential operator, which is defined through

©) (D) (x) = F (maxy<i<uléi] )P Froep(x))  for p > 0.

Recently Albeverio, Khrennikov, and Shelkovich [2006] studied D? in the context
of the Lizorkin spaces.

We prove existence and uniqueness of the Cauchy problem (1), (2) in spaces
of increasing functions introduced in [Kochubei 1991]; see Theorem 1. We also
associate to the fundamental solution a transition density of a Markov process; see
Theorem 2. These results constitute an extension of the corresponding results in
[Kochubei 2001; Vladimirov et al. 1994].

We want to mention here a relevant comment due to the referee. There exists
a procedure, developed in [Kochubei 2001] for elliptic equations, for reducing
multidimensional problems over @, to one-dimensional problems over appropriate
field extensions. In particular, the Taibleson operator is connected with the unram-
ified extension of Q, of degree n; see [Lemma 2.1]. The fundamental solutions
corresponding to the multidimensional Cauchy problem and the problem over the
unramified extension should be obtained from each other, up to a linear change
of variables, as in the formula [(2.38)] for the elliptic case. Then many properties
of the fundamental solution would follow directly from those known in the one-
dimensional case. In this paper we use an elementary and independent method that
has obvious advantages.
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Let us explain the connection between the results of this paper and those of
[Zaniga-Galindo 2008]. There are infinitely many homogeneous polynomial func-
tions satisfying

|f(E)], = (maxj<i<,|&]|,)? forany & € Q",

where d denotes the degree of f (see Lemmas 14 and 15). Hence the pseudo-

differential operators considered here are a subclass of the ones considered in that

paper. However, the function spaces for the solutions and initial data are completely

different. In this paper the initial datum and the solution to Cauchy problem (1),

(2) are not necessarily bounded or integrable, whereas they are in the other paper.
Finally, our results can be extended to operators of the form

B (Ap)(x) =ao(x, N(DFP)(xX) + Y _ ar(x, (DT @) (x) +bix, g(x)
k=1

fora >1and 0 < ) < --- < a0, < 0, Where ai(x, t) and b(x, t) are bounded
continuous functions. This is done using techniques presented in [Kochubei 2001;
1991; 1988]. These results will appear later elsewhere.

The authors thank the referee for the comment mentioned above.

2. Preliminary results

As a general reference for p-adic analysis we refer the reader to [Taibleson 1975]
and [Vladimirov et al. 1994]. The field of p-adic numbers Q,, is defined as the
completion of the field of rational numbers Q with respect to the non-Archimedean
p-adic norm | - | ,, which is defined as follows: |0], =0; if x e @* and x = p¥a/b,
where a and b are integers coprime to p, then |x|, = p~". The integer y =y (x),
called the p-adic order of x, will be denoted ord(x). We use the same symbol,
|- |p, for the p-adic norm on Q. We extend the p-adic norm to @, as follows:

Ixll, == 1ri1ia<xn|x,~|p for x = (x1, ..., x,) € Q).

Note that [|x ||, = p~ mint=iza{ordCi)},

Any p-adic number x # 0 has a unique expansion x = p? Z?o:() Xj p/, where
y=ord(x) e Zand x; €{0, 1, ..., p—1}. By using this expansion, we define the
fractional part of x € Q,, denoted as {x},, as the rational number

(x) 0 ifx=0ory >0,

X}, = _ .

b pY leyz‘ol xjpl ify <O.

For y € Z, denote by Bj(a) = {x € @}, | lx —all, < p”} the ball of radius p”
with center at a = (ay, ..., a,) € @';, and let B}'} = B;(O). Note that B)’} (a) =
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B,(ay) x --- x By(ay), where B, (a;) ={x; € Q, | |xj —aj;|, < p”} is the one-
dimensional ball of radius p” with center at a; € Q,. The ball B equals the
product of n copies of By(0) = Z,, the ring of p-adic integers.

Letd"x be the Haar measure on (), normalized by the condition that the measure
of By is 1.

A complex-valued function ¢ defined on Q' is called locally constant if for any
x € QY there exists an integer /(x) € Z such that ¢(x +x") =) for x" € B,

A function ¢ : @, — C s called a Schwartz—Bruhat function, or a test function,
if it is locally constant with compact support. The C-vector space of Schwartz—
Bruhat functions is denoted by S(Q'). If ¢ € S(Q}), there exists an integer / > 0
such that (x +x") = ¢(x) for x’ € B”, and x € @7; see for example [Vladimirov
et al. 1994, Lemma 1, page 79]. The largest of such numbers [ = [(¢) is called the
exponent of local constancy of ¢.

Let S (@) denote the set of all functionals (distributions) on S(Q7). All the
functionals on S (@?,) are continuous; see for example [Vladimirov et al. 1994,
Section VI.3].

Given &€ = (&1, ..., &) and x = (x1,...,x,) € Q", weset & -x := Y _, &x;.
The Fourier transform of ¢ € S(Q7) is defined as

Fo©) = [ V0@ d's fore e,
p
where W(—§ - x) = [[/_, W(=&x;) = exp2wi Y _;{—&x;},). The function
W(ax;) =exp2mwi Y i {ax;}p) is called the standard additive character of Q,,.
The Fourier transform is a linear isomorphism from S(Q’,) onto itself.

2.1. The Taibleson operator. We set

1—pe—n

This function is called the p-adic gamma function. The function

Il n
ka(x)zT for v € R\ {0, n} and x € Q",
Iy (@)

is called the multidimensional Riesz kernel, it determines a distribution on § (@’Z,)
as follows. If a # 0, n and ¢ € S(Q7), then

l_p_n 1_p—0( a—n n
@) (ko). 00) = {00 + o /” e

1 _ —o
T e pa_n f X015 (@(x) — @(0) d"x.
-p Ixl,<1
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Then k, € S’(@’;) for o € R\ {0, n}. In the case @ = 0, by passing to the limit in
(4), we obtain
(ko(x), p(x)) := ii_%(ka(X), @(x)) = ¢(0),
that is, ko(x) = &(x), the Dirac delta function, and then k, € S’(@’;) for o € R\ {n}.
It follows from (4) that for o > 0,

1—p®

(&) (k—a(x), @(x)) = m/@n 1% (@(x) — ¢(0)) d"x.

Lemma 1 [Taibleson 1975, Theorem I11.4.5]. As an element of S’ (Q%), (Fke)(x)
equals ||x||;"‘ for a # n.

Definition 1. The Taibleson pseudodifferential operator D7 for o > 0 is defined
as
(DFp)(x) =F L (IEII5F—zp) for g € S(@)).

As a consequence of the previous lemma and (5), we have

1—p°
6) (D7e)(x) = (k_g*@)(x)= T—pan

oa—n

[ et —n —on ay.

The right side of (6) makes sense for a wider class of functions, for example, for
locally constant functions ¢(x) satisfying

[ el <ce.
lxllp=1

3. The p-adic heat equation and the Taibleson operator

In this paper we consider the Cauchy problem

au(x 1) DY =
o) +a(DJu)(x,t) f(x,t)] for x € @) and r € (0, T,

u(x, 0) = g(x)

where a > 0, « > 0, and D7 is the Taibleson operator. In this section we show
that (7) is a multidimensional analogue of the p-adic heat equation introduced in
[Vladimirov et al. 1994].

3.1. The fundamental solution. The fundamental solution for the Cauchy prob-
lem (7) is defined as

(8) Z(x,1) ::/ W(x-&)e @IEl gng.

Lemma 2. The fundamental solution has the properties

(i) Zxr, 1) = (1= p ™) xll," g g He @I — e merpll
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(i) Z(x, z)—Z( D LB ) [ for x 0

— p—am—n
p

(i) Z(x,t) =0 forallx € @Z andt € (0, T].

Proof. (i) By expanding Z(x, t) as

Z(x.1)= Z f el ae,

k—foo EH[)
and applying
P —p™ if xll, < p7,
/ W(x-&)d"g =1 —pp™ if flxll, = p~+,
el =p 0 if x|, > p~*t1,

(see [Taibleson 1975, Lemma II1.4.1]), we obtain

o

_ _ _ _ —k —1\a _ _ —1\a

@) Z@.n==p xl," Y pFrem P TIIT x| me e P
k=0

Note that by the previous expansion Z(x, t) is a real-valued function.
(i1) By using the Taylor expansion of ¢* in (9), and by exchanging the order of
summation and summing the geometric progression, we find that

Z(x, r)_Z( Dk _1_1’% (at)™|lx]|,*™ =" for x # 0.

—am—n

(iii) Let €2/ (x) denote the characteristic function of the ball B”,(0). Then F$2; =
p~"'Q_;. The last part follows from this observation by means of the calculation

o0
Zx,)= ) e “fp’“/ W(x-&)d"E
I=—00 &l ,=p'
= Z e~ (p"DQ_y(x) — p" VR4 (1)
|=—00
o0
= Y ple " — e " () 2 0. 0
[=—00

Lemma3. Z(x,1) < Ct(t"/* +||x],) " fort >0and x € QY.
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Proof. Let [ an integer such that p!~! < ¢!/ < p!. Then

10) Z(x,1) < /

e*‘”“f”‘; dn"i:</ efapot(l—l)”g’_-”z d,,ls: e,a”pf(lfl)g”t; dn(i:
Q

) @ @
=p / e~ d"y = Co(a) p™"p~"" < Crt "2
Q

n
p

On the other hand, if [|x||, > t1/¢ by applying Lemma 2(ii), we have

o0 Cm
(11) Ze0) <Nl D0 =2 el < Catlxll, o
m=1 ’

These inequalities imply the result as follows. If ||x|[, > th/e, by (11),
Z(x, 1) < Cst|lx ]|, %" < 2% Car (0% + ||x |1 ,) "
If x|, < £'/%, by (10),
Z(x, 1) < Cyit 7" < 29MnCyr (e 4 x| ) T O

Lemma 3 shows in particular that the function Z(x, t) belongs, with respect
to x, to L1 (@) N L(Q}).
Corollary 1. f Zx,t)d"x=1.

Q,

3.2. The spaces 9, and pseudodifferentiability of the fundamental solution.

Definition 2. Denote by 9, for A > 0 the set of complex-valued locally constant
functions ¢ (x) on @’[g such that |@(x)| < C(p)(14+]|x ||?)). If the function ¢ depends
also on a parameter ¢, we shall say that ¢ € N, uniformly with respect to t if its
constant C and its exponent of local constancy /() do not depend on ¢.

Lemma 4. If ¢ € M, for . < «, with o as in (7), then

(12) lim [ Z(x—§ 0p&)d"s =¢(x).

t—0t n
Q@

Proof. By Corollary 1, Lemma 2(iii), and Lemma 3, we have

[ ze—enp@ds—pw| =] [ z6-E0wE —o) s

s/@ Z(x— £, Do) — 90| d"E

n
P

SC/@ 1+ lx = Elp) ™€) — ()| d"E =1 1 (x, 1),

n
P
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Let n be the exponent of locally constancy of ¢. Since ¢ € 91, for A < «, we can
rewrite I (x, t) as

1<x,z>=Cf”s H 1A+ 1 —x[) " @€) — p(x)| d"E
—x|[[p>p"

<nLi(x,n)+ I(x, 1),

with
L+ €]
Li(x,t) = Clt/ 1 P —d"¢,
le—xi,=pn V4 [lx — &l p)etn
Iy(x, 1) := Ctlp(x)| V4 )1E —x] ) T d g,
||§—)CHI,>p’7

Now, since « > 0 and 7 > 0, we have I(x, ) < Cyt|e(x)|, and since A < «,

Li(x,t)<C t(C +/ Il — Il dng)
1 -x’ -~ 1 3 R o
zllp>p" Il t"
» A
<C1I(C3+f Md”§+ Md”é)
) pr<teista, NT0p57 elp=txt, NT1p%H
— CIZ(C4()C) +/ %Hndng) _ Cson.
el xt, 1715
Therefore
lim ’/ Z(x =&, &) d"E _(p(x)‘ < lim Cg(x)t =0. 0
=0t @ t—0t

For reference, we summarize the properties of the fundamental solution:
Proposition 1. The fundamental solution has the properties
(i) Z(x,1) =0 forallx e Q) andt € (0, T];
(ii) f@,; Z(x,t)d"x =1 foranyt > 0;
(i) if ¢ € S(QY), then lim(x, 1) (x),0) f@%Z(x —n,D)e(md"n = ¢(xo);
iv) Z(x,t+1t) = fmZ(x —y,0DZ(y,t"Yd"y fort,t > 0.

Proof. (1), (i1), and (iii) are already established (see Lemma 2(iii), Corollary 1, and
Lemma 4). The last assertion is proved as follows: since e~ I, e ! (@;’,),

NF(Z(y, 1) * Z(y, 1))

f Z(x =y, t)Z(y,)d"y =%
Q G (e~an €N} ganlly
z

s
P

(x, 11 +12). (]
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Proposition 2. [fb >0, 0 <A <a, and x € Q), then

Ib.0= | G+l —Elp) g, dE < Ch (1 + IIx]1}),
p

where the constant C does not depend on b or x.

Proof. Let m be an integer such that p”~! < b < p”. Then
B+ llx =)™ < (" - lx =€l

and

I, x)<I(p" ' x)= f@ "Myl —El) T EN, 4"

=p Ve A4 1 p" = p ) T EN, dE
@

= p VOO A (1p" k= llp) T Il d™
@
= pm=DO= (1, ply).
Let p"~'x =y and ||ly|, = p'. Wehave I (1, y) = I, (y)+ L(y) + I5(y), where
-1
L) = Z/ A+ Ny =nll,) ™" lInll} d"n,
k=—00 |

— 77”1):[”(

12()’)— (1 ”y 77”[7) * n||77||)L d"ﬂ,
p
”77”17_[7[

o0
L(y) = § 1 — |t d" .
3(») /ump:pk( + 1y —nllp) mll,d"n

k=I+1

The result follows from the following estimates:
Claim A. [;(y) < Co(1+ Iyl )" "lIylI5™.
Claim B. 1>(y) < Ci|lyl’.
Claim C. Ir(y) < C,.
Indeed, from the claims we have I (1, y) < C3(1 + ||y||?,), and by (13),

I(b,x) < C3p" D= (14 pU=™*x13)
< C3p "I+ x]5) < Ch™“(1+IIx]13).
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Proof of Claim A.

-1
I — 1 o —a—n A 4"
1(y) E /unn,,:pk( + 1y —nllp) Il d™n

k=—00
-1
=1 =p™U+Iyl) " Y p*E < Cot+ 1yl "Iy I,

k=—o00
where Co = (1 —p™™)p~>"/1 — p~>7". U
Proof of Claim B. Let y € Q, such that |¥], = p’ = ||yl ,. Then

Iz(y)Z/ L+ 1ly =nllp)~*"lnll; d"n
Inll,=p!

—l [ Ay =5 T

lInll,=p'
= ||y||;—“/ Uyl + e = nll,) ™" d™y,  withu=5"y.
Inllp,=1

We set A, ={n € @}, | IInll, =1and [u—nll,=p~"} form € N, and for I a
nonempty subset of {1, 2, ..., n}, we have

Apr=meAyllui—nilp=p " ifieland |u; —n;|, < p "ifi ¢},

where u = (uy,...,u,) and n = (1, ..., n,) € @}, with |Inll, = llull, = 1.
With this notation we have A,, € J; A;,; and

vol(A,. ) < (p™ (1 — p_l))|1|(p—m—1)n—|1\’

where |/| denotes the cardinality of /. Then

vol(An) = Y (7)) (p (1= p~Mlpm =ty = o,

171=0

and

o0
L(y) = ||y||;—“2f Uyl "+ llu=nll,) ™" d"n
m=0 A

m

o0
< IyI5 > Ayl + ™y p
m=0
|;\J_a = -1 —o—n gn
> A1, + 1l )~ " d™n
Inll,=p=™

m=0

Iyl
-
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}\‘_

Iyl

1—p™

sc;nyu;—“/ Ayl + il )" d"y
@,

[t ey
Inll,=<1

=ci||y||§;“/ Ayl + 11, vl )~ " d™n
Q@
=Ci||y||§,+"f@ U+ [Fnll,) " d"y

P

e ||y||§,/ I+ Izl ™" d"e < Cilyll. O
@

Proof of Claim C.

I — 1 —o—n Adn
) Z/M”p:pkwnnnp) Il ™y

k=l+1
5/ (U Inll,) ="l d"n = C. 0
Q;
This completes the proof of Proposition 2. (]

Lemma S. If o > 0, then

1

13)  lxlly, = m /t;u" IyIL ™" (W(=x-y)—1Dd"y forallx € Q.
p P

Proof. This is a slight change of the proof of [Kochubei 2001, Proposition 2.3]. [

Lemma6. If 0 <y <a, then

(DLZ)(x, 1) = / WGl gy,

14

Proof. By Lemma 2(ii), Z(x —y,t) = Z(x, t) for ||y|| < ||x||. Then we can use
(6) to calculate (D} Z)(x, 1):

(D} Z)(x, 1) = —— )/@||y||;y—"(2(x—y,r>—Z(x,r>>d"y

) (—y
1

Cp (=) Jivlp=lixll,
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We now use Lemma 3 to obtain

1 g _y_
(D Z)(x. Dl < ‘W\fu iyl 242G Dyl dy
p =Y Yp=

llxllp

(14) < 00.

This shows that (D; Z)(x,t) exists. We now compute this function explicitly.
We set

ZM (x, 1) ::/ W(x-&)e sl gre
&N, <p™

Then Z™(x, t) is bounded and locally constant as function of x, and the exponent
of local constancy is m. From these observations and by using Lemma 2(ii) and
(6), we calculate

(D} Z")(x, 1) = — ] / Iyl ™(2Z™ =y, 0) = Z™ (x. 0) d"y
@n

ry(—y) Jan

1 / —y—n 7 (m) (m) n
= Iyl "(Z" (x —y, 1) — Z"(x, 1)) d"y
T (=) Jiyipspmn " F
1 o _ o
ZTf Il1,” / e w (- (W(=y-m) = 1) d"nd"y
Cp (=) Jiylp>p™ I, <pm

:/ et ()
Inll,<p"

1 / __

x (—or— IV (¥ =y ) = Dd"y ) "
Iy (=y) Jistp=pn 7

Note that if ||y]|, < p~", then W (—y-n) =1 for all  such that ||n||, < p™. Using

this observation and Lemma 5, (D;Z )Y (x, t) becomes

_ o 1 __
e~ Ilp g (x - ) —f Iy57 (W (=y-n) —1)d"y)d"n
—Anl,ﬁp’” <F§:n)(—7/) (3 d )

= [ el
Inllp,=p™
By the dominated convergence theorem and (14) we have

(D}Z)(x. 1) =/ e 1Mo (x - ) Inll d"n. O
Q

"
P

Lemma 7. We have

%(x 1) = —a/ W(x-&)|E%e N gne
ot ’ o p )

n
P

0Z y
E(x, t)y=—a(DyZ)(x,t) for 0 <y <a.
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Proof. The first part follows by applying the dominated convergence theorem. The
second part follows from the first one by Lemma 6. O
Lemma 8. We have
L0 = caves gy,
(D} Z)(x, )] < Ca"V* + |l )7 7"

Proof. The proof uses the same reasoning as the proof of Lemma 3. U

Corollary 2. / (D} Z)(x,)d"x =0
@

3.3. The Cauchy problem for the multidimensional p-adic heat equation.

Theorem 1. Let p(x), f(x,t) € M, 0 <Xt < «a be continuous functions. Then the
Cauchy problem

du(x,t)

(15) o TaDru)(x,0) = f(x, 1)

u(x,0) = p(x)

witha > 0 and « > 0, has a continuous solution in 9, given by

} for x € @’; andt € (0,T],

16 ux.n= [ za-snp© e+ [ ([ ze-gr-nsend)d
@ 0o May

Let u(x, t) be the first summand in (16), and let u,(x, t) be the second.
The theorem will proved through the following lemmas.

Lemma 9. The solution u(x, t) belongs to M, uniformly with respect to t and
satisfies the initial conditions of Theorem 1.

Proof. We first show that u;(x, ) € 2, uniformly with respect to 7. Since ¢ is
locally constant, there exists an / € N such that ¢ (§ +y) = (&) forany ||y, < p~.
By the change of variables y —& = —n in u(x, t), we have that u;(x, t) is locally
constant. Now using Lemma 3 and Proposition 2, we have |u (x, t)| < C(1+]x|)*,
and thus u;(x, t) € 91, uniformly with respect to ¢.

By similar reasoning, one shows that u,(x, ¢) is locally constant in x and that
lus(x, )] < CT (14| x|)*. Therefore u(x, t) =u;(x, t)+us(x, t) € MM, uniformly
with respect to t.

We now show lim;_, o+ u(x, t) = ¢(x). By Lemma 4, lim, o+ u;(x, 1) = ¢(x),
and lim,_, o+ uo(x,t) =0, since |uz(x, )| < Ct(1+ ||x|)* fort < T. O

We now compute the partial derivatives of u;(x, t), ua(x, t) with respect to t.

Lemma 10. %(x,t) =/n %(x —& DpE)d"E.
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Proof. The result follows by the dominated convergence theorem. U
Lemma 11.
9 ! 3z
Y= [([ Sa-sr-n0En - faod)dor o,
0 Nar

Proof. Let

Z(x—£1—1)f(E 1) d"s) d,

t—h
uz,h(x,t) ::A (/;D

where £ is a small positive number. Then (u;(x, 7 +1") —up(x, t))/t’ equals

t—h /
(17 / (/ Z(x—&Et+1'—T)—Z(x—&,t—7) f(g,r)d”s)dr
0 Q;

t,

t—h+t' ,
+/ (/ Z(x—E,t+t'—1)—Z(x—£&,t—1) f(g,ﬂd”g)dr
t Q

—h v

t—h+t'
), (]
t t—h Q

By taking " — 07, the first integral in (17) tends to

=horoaz )
| ([ Fe-er—orenas)

1
P

n
14

n
4

Z(x—£1—1)f(E 1) d"é}) d.

n
p

By using the continuity of the functions

(Z(x =& 14+t —0) = Z(x =&, 1 = 1) f(§,7)d"E,

Q,

[ ze-ei-nsenas

Q,

with respect to 7, the second integral tends to zero. The third integral tends to

Jon Z(x — &, ) f(§,t —h) d". Hence

n
p

. (M ez n
2hien = [ (/@ZW()C—S,t—r)f(S,r)d ) dr
+ [ ze—emsei—na

P
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This expression can be rewritten as

t—h
ay Bien = [ ([ Fe-ei-nue - e ae)s

B
t—h

([ Ha-si-orcoas)

0 @n 81

4

+/ Z(x =& h(fE t—h)— f(& 1)d"E

@
+[ ze-emsenae

Q,

The first integral contains no singularity at # = t due to Lemma 8 and the local
constancy of f. By Corollary 2, the second integral in (18) is equal to zero. The
third can be written as the sum of the integrals over {§ € @; [ 1§, < p™} and
its complement; one integral is estimated using the uniform continuity of f, while
the other contains no singularity. Hence this integral tends to zero as /& approaches

zero from the right. By Lemma 4, the fourth integral tends to f(x, ) as h — 0F;
therefore

%(’”):/0 (f aa—f(x—SJ—T)(f(S,r)—f(x,t))d”s)dwrf(x,z). 0

)4
As a consequence of Lemmas 10-11, we obtain a proposition:

Proposition 3.

ou 0Z n
0 1) =/7’ 82 (v —&.0p©) d"

(.

We now consider the action of the operator D; forO<y <aonu(x,t). Wefirst
note that (D;u)(x, t) is defined if ¥ > A. This follows from (6) using u(x, t) € MN,;.

L - 1= DT~ [, 0)d"E) dT+ f(x,1).

n
p

Lemma 12. Let . <y <. Then
Dpuen = [ D 2e—c 0@ d'.

Proof. Let Z,, (x, t) := (D} Z)(x,t) and

1

19 Z )= ——
19 Zys0) = 15—

/“l MG =y = 20 )y
Yiip=p~
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By the Fubini theorem
1
T (—y)

1 / —n n n

. / (Z(x—y—£.1)— Z(x — £, 0)p(E) d"E ) d"y

ry’(—y) ly=p (@; )
1 o

e —/ V17 (Z =y — .0 — Z(x — £, 1) d"y) d"E

/@’; <F§))(—V) ly=p )

_ /@ Z,1(x— £, Dp(&) d".

n
p

f VI =y 0 =i (e, 0)dy
Iyllp>p~

Let m be a fixed positive integer. Then the last integral can be expressed as

/ Zy,z(x—é,t)w(é)d"é”r/ Zy1(x =&, DpE)d"E.
lx=&llp=p~™ x—&ll,<p=™

Now if ||x||, > p~™ and [ > m, then Z, ;(x,t) = Z, (x, 1), and

_
Iy (—y)

=/ Zy(x =, Dp) d"E + f Zyi(x— &, Dp(E) d"8
lx—=€l,zp le—&ll,<p

20) f||| 7Gx =y, 1) — i Cx, 1)) d”y
ylp>p~

for [ > m. Now using Fubini’s theorem and taking lim;_, o,, we obtain that

1) lim Zyi(x =&, Dp§)d"§

=00 Jx—g|,<p=™

1
= Iyl ™ =
Lv 7o (—y)

x(/ (Z(x =€ =y, D)= Z(x = £, 0)9() d"¢ ) d"y
x=&lp<p=™

_ 1
B /|x—5|p<pm Iy’ (—y)
X(f@n Iy, "™ (Z(x —& —y, 1) — Z(x — &, t))d”y)rp(é)d"é

P

_ / Z,(x— £, Dp(§) d"¢.
Ix—=&llp,<p™

Since ||y||;y_"(u1(x — y,t) —ui(x,)) is integrable as function of y (because
ui(x,t) e M, for y > A by Lemma 9), the result follows by taking lim;_, o, in (20)
and using (21). O
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Lemma 13. Let . <y <. Then
D= [ ([ @fpa-si-nrends)dr
o \ay

Proof. We set us j(x,t) 1= Ot_h(f@,, Z(x—y,t—0)f(y,0)d"y)d6. Then
)4

1
T (—y)

1 / —y—n
= vl
T =) Jistpspt 7

x(/ot_h( R e e R O ) d"g)dr)d"y

t—h
~[ (] zat-er-orenae)
0 Q

n
14

vl " (uon(x —y, t) —usp(x,1))d"y
Iylp=p=
P

with Z,, ;(x, t) as in (19). We now note that

Zye, )= [ wx-£)PE)e Il g,
@,
where
1 L
P($)=n—/ Iy " (Y (=y-&)—1d"y.
: T (=) Jiytpspt 7

By reasoning similar to that in [Kochubei 2001, page 142], we have

211115

[P(§)] < —m,
ITp (=9I

/ llull, ™" d"u = Cl&I7,
a1

whence |Z,;(x,1)| < C'. Also, if ||x —&]|, > p~¢=D then Z, ;(x — &, — 1) =
Z,(x —§&,t—1). Therefore

t—h
/ (/ Z,(x—&t—1)f(&, t)d”§> dt
0 @'ﬁ
t—h
:/ </ Zy(x—é,t—r)f(é,r)dng)dr
0 Ix=&,>p=0=D

t—h
+/ (f Z%l(x—?f—f)f(f;‘,r)d”é)dr.
0 lx—& 1, <p=0=D
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By taking / — oo, we obtain that

t—h
D= ([ Wipa-t-orends)d
0 @,
t—h
- [ ([ @iz e n-re o) ar

t—h
= ([ . @ineseogE s mas)

x—¢|>p~!
where [/ is the exponent of local constancy of f (&, t) (see Corollary 2). Finally,
since us j, € JM; uniformly in i (see Lemma 3), by taking 7 — 0 and using the
dominated convergence theorem, we have the announced formula. O

As a consequence of Lemmas 7, 12, and 13, we obtain the following result.

Proposition 4. We have

(DY) (x, 1) = /@ (D}~ E, Dp(E) d'

+[ ([ oy -er-nue - o) an
0 May

aDju.n=- [ Lu-ene@ds
@n

V4

_f (f 82 (et DT~ D) d"E) dr,
0 Q

. Ot
P
for0 <y <a.

Proof of Theorem 1. By Lemma 9, u(x, t) € 91, uniformly with respect to ¢z, and
u(x, t) satisfies the initial condition of Theorem 1. By Propositions 3 and 4, u(x, t)
is a solution of Cauchy problem (15). U

3.4. Taibleson operator and elliptic pseudodifferential operators. For a polyno-
mial g(x) € Z,[x1, ..., x,], we denote by g(x) € F,[xi,...,x,] its reduction
modulo p, that is, the polynomial obtained by reducing the coefficients of g(x)
modulo p. Let f(x) € Z,[x1, ..., x,] with f(0) = 0 be a nonconstant homoge-
neous polynomial of degree d such that f(x) # 0. We say that f(x) is elliptic
modulo p if {x € [F'I’7 | f(x) = 0} = {0}, and that f(x) is elliptic over Q, if
{x e @} | f(x) =0} ={0}. Note that if f elliptic modulo p, then f is elliptic
over Q,.

If 1 is a nonempty subset of {1,...,n}, we define f;(x) as the polynomial
mapping obtained by restricting f(x) to the set Ty :={x € Z}, | x; #0 < i € I}.
Likewise, we define f(x) by restricting f(x) to T; :={x € Fylxi #0 < i eI}
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Definition 3. Let f(x) € Z,[x1, ..., x,] with f(0) = 0 be a nonconstant homo-
geneous polynomial of degree d with coefficients in Z;. We say that f(x) is
strongly elliptic modulo p if f;(x) is elliptic modulo p for every nonempty subset
Iof{l,...,n}.

Example 1. Let f(x) =x? —vy?, withv € Zy\ (Z;)z, where
2._ _ .2
(Z,)":=={xeZ, |x =y forsomeyeZ}.
Then f(x) is strongly elliptic modulo p.

Lemma 14. There are infinitely many strongly elliptic polynomials modulo p.

Proof. The proof is by induction on n, the number of variables. The case n =1 is
clear. Assume that the result is true for 1 <n <k and k > 2. Let g(xy, ..., xr)
be a strongly elliptic polynomial modulo p of degree d. Set any v € Z such
that v does not have an [-th root in I]:; for some [ > 2, and f(x1,..., Xp+1) =
g(xt, ..., xp)l — lelfil- Then f(xi, ..., xx+1) is strongly elliptic modulo p. [

Lemma 15. Let f(x) € Zp[x1, ..., x,] with f(0) =0 be a nonconstant homoge-
neous polynomial of degree d with coefficients in Z;. If f(x) is strongly elliptic
modulo p, then

(22) f Gy = Ixll forx € @,

Proof. We set A :={(z1,...,2n) € Z’; such that [z;[, =1 for some i}. Since f(x)
is elliptic over Q,

(up.eal F@IP XIS < 1) < (infoeal £ @IIx]E,

(see [Zuiiiga-Galindo 2008, Lemma 1]). Thus, to prove the result it is sufficient to
show that | f|, |4= 1. Given a nonempty subset I of {1, ..., n}, we define

Aj={x € Asuchthat [x;|=1<iel}.

Then | J; A; is a partition of A when [ runs through all nonempty subsets of

{1,...,n}, and to show (22), it sufficient to prove that | f| ,,| A = 1 for every
nonempty subset /.

Without loss of generality we may assume that / = {1,...,r} for 1 <r <n.
Thus, if x € Ay, then x; eZ;< fori=1,...,r,andx; € pZ,fori=r+1,...,n,and

f(x)= fr(x) #0, since f is strongly elliptic modulo p; therefore | f| p | 4 = 1. O

4. Markov processes and fundamental solutions

Theorem 2. The fundamental solution Z(x, t) is a transition density of a time- and
space-homogeneous nonexploding right-continuous strict Markov process without
discontinuities of the second kind.
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Proof. By Proposition 1(iv), the family of operators

©) f)(x) = /@ ZG—n. 0 fand™y

P

has the semigroup property. We know that Z(x, #) > 0 and that ®(¢) preserves the
function f(x) = 1 (see Proposition 1). Thus ®(r) is a Markov semigroup. The
required properties of the corresponding Markov process follow from Proposition
1 and general theorems of the theory of Markov processes; see [Dynkin 1961] and
also [Vladimirov et al. 1994, Section XVI]. O
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