
Pacific
Journal of
Mathematics

METABELIAN SL(n, C) REPRESENTATIONS OF KNOT
GROUPS

HANS U. BODEN AND STEFAN FRIEDL

Volume 238 No. 1 November 2008





PACIFIC JOURNAL OF MATHEMATICS
Vol. 238, No. 1, 2008

METABELIAN SL(n, C) REPRESENTATIONS OF KNOT
GROUPS

HANS U. BODEN AND STEFAN FRIEDL

Dedicated to the memory of Jerry Levine

We give a classification of irreducible metabelian representations from a
knot group into SL(n, C) and GL(n, C). If the homology of the n-fold
branched cover of the knot is finite, we show that every irreducible met-
abelian SL(n, C) representation is conjugate to a unitary representation
and that the set of conjugacy classes of such representations is finite. In
that case, we give a formula for this number in terms of the Alexander poly-
nomial of the knot. These results are the higher rank generalizations of a
result of Nagasato, who recently studied irreducible, metabelian SL(2, C)

representations of knot groups. Finally we deduce the existence of irre-
ducible metabelian SL(n, C) representations of the knot group for any knot
with nontrivial Alexander polynomial.

1. Introduction and statement of results

Given a knot K ⊂ S3, we let XK = S3
\ ν(K ) denote its complement. Gordon and

Luecke [1989] showed that knots are determined by their complements by proving
that, if K1 and K2 are knots and ϕ : X K1 → X K2 a homeomorphism, then K1

and K2 are equivalent. In the case of prime knots, Whitten [1987] proved that the
homeomorphism type of the complement is determined by its fundamental group.
Taken together, these two results reduce the classification of prime knots to that of
knot groups.

Abstract groups are often better understood through their representations. For
example, the knot invariants coming from finite representations of the knot group
are an effective tool for distinguishing knots and constructing knot tables. More
delicate information can be obtained from studying their character varieties; see
[Culler and Shalen 1983] and [Klassen 1991]. For instance, independent work
of Dunfield and Garoufalidis [2004] and Boyer and Zhang [2005] established the
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important result that the A-polynomial detects the unknot, and they prove this by
exhibiting an arc of irreducible SL(2, C) characters on π1(XK ) for any nontrivial
knot.

Since abelian representations of the knot group factor through H1(XK ), they
provide little information beyond that known in classical knot theory. Among
the nonabelian representations, the simplest are those that are trivial on the sec-
ond commutator subgroup π1(XK )(2). Such representations are called metabelian.
Various aspects of metabelian representations of knot groups have been studied by
several authors, and we refer the reader to [Hartley 1979; Abdelghani et al. 2007;
Jebali 2007].

In this paper, we study metabelian SL(n, C) and GL(n, C) representations of
knot groups. We begin by recalling a result of Nagasato on irreducible metabelian
SL(2, C) representations of knot groups. Here and throughout this paper, for any
knot K , we denote its meridian and longitude by µ and λ, respectively.

Theorem 1.1 [Nagasato 2007, Proposition 1.1 and Theorem 1.2]. If K ⊂ S3 is
a knot, then any irreducible metabelian representation α : π1(XK ) → SL(2, C)

satisfies
tr(α(µ)) = 0 and tr(α(λ)) = 2.

Further, there exist only finitely many conjugacy classes of irreducible metabelian
representations of π1(XK ) into SL(2, C), and their number equals

|1K (−1)| − 1
2

.

Xiao–Song Lin [2001, Proposition 4.2] had obtained the same count for the
number of conjugacy classes of irreducible metabelian SU (2) representations. (He
attributed his result to Fox, and Eric Klassen [1991, Theorem 10] proved the same
formula when counting binary dihedral representations.) In particular, Nagasato’s
result implies that every irreducible metabelian SL(2, C) representation is conju-
gate to a unitary one. This property is what one would expect from representations
of finite groups. Although the quotient π1(XK )/π1(XK )(2) is not finite, we will
show that for many n (for instance, whenever n is prime), every irreducible met-
abelian SL(n, C) representation of π1(XK ) factors through a finite group.

Unitary metabelian representations of knot groups have been classified in [Friedl
2003; 2004], and here we give the corresponding classification result for SL(n, C)

and GL(n, C). As a consequence, we derive the following higher rank analogue of
Nagasato’s result. In order to state it precisely, we introduce some notation. Given
a knot K ⊂ S3 and a positive integer n, we let Ln denote the n-fold cyclic branched
cover of S3 branched along K .

Theorem 1.2. Suppose K ⊂ S3 is a knot and n is a positive integer.
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(i) Up to conjugation, any irreducible metabelian representation α : π1(XK ) →

SL(n, C) satisfies α(λ) = I and

α(µ) =


0 . . . 0 ( −1)n+1

1 0 . . . 0
. . .

. . .
...

0 1 0

 .

In particular,
tr(α(µ)) = 0 and tr(α(λ)) = n.

(ii) If H1(Ln) is finite, the number of conjugacy classes of irreducible metabelian
SL(n, C) representations is finite. This number is given by

1
n

#
{
χ : H1(Ln) → S1

| χ does not factor through H1(Ln) → H1(L`) for any `|n
}
.

(iii) If H1(Ln) is finite, every irreducible metabelian SL(n, C) representation of
π1(XK ) is conjugate to a unitary representation.

We know from [Gordon 1978, p. 17] or [Burde and Zieschang 1985, 8.21], for
example, that the n-fold cyclic branched cover Ln has finite first homology group
if and only if no root of the Alexander polynomial 1K (t) is an n-th root of unity.
In that case, the order of the homology group is determined by the Alexander
polynomial by the formula

(1) |H1(Ln)| =

∣∣∣∣∣
n−1∏
j=1

1K (e2π i j/n)

∣∣∣∣∣.
From 1K (1) = 1 and some basic algebra, it follows that 1K (z) 6= 0 for any prime
power root of unity z, we therefore deduce the well known fact that H1(Ln) is finite
whenever n is a prime power. The following is now a straightforward corollary to
Theorem 1.2. Note that when n = 2, this recovers Nagasato’s formula.

Corollary 1.3. If n = pk is a prime power, then H1(Ln) is finite for any knot K
and the number of conjugacy classes of irreducible metabelian SL(n, C) represen-
tations of the knot group is given by

1
pk

(∣∣H1(Lpk )
∣∣− ∣∣H1(L pk−1)

∣∣) .
If n is prime, then L1 = S3 and Equation (1) implies that this number equals

1
n
(∣∣H1(Ln)

∣∣− ∣∣H1(L1)
∣∣)=

1
n

( ∣∣∣∣∣
n−1∏
j=1

1K (e2π i j/n)

∣∣∣∣∣− 1

)
.
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If K is a knot with trivial Alexander polynomial, then Equation (1) shows that
Ln is a homology 3-sphere for each n ≥ 1, and Theorem 1.2 implies there are no
irreducible metabelian SL(n, C) representations of π1(XK ) for any n ≥ 2. In fact, it
is known (see [Livingston 2002, Theorem 1.2], for example) that Ln is a homology
sphere for all n ≥ 1 if and only if K has Alexander polynomial 1K (t) = 1. Using
this, we get the following conclusion.

Corollary 1.4. Any knot with nontrivial Alexander polynomial admits infinitely
many irreducible, pairwise nonconjugate metabelian representations.

This is a consequence of Theorems 3.10 and 3.12, which give more precise in-
formation on conjugacy classes of irreducible metabelian representations for knots
with nontrivial Alexander polynomial. Our proofs make use of the extensive work
on homology groups of n-fold branched covers of knots that began with [Gordon
1972] and was continued in [Riley 1990; González-Acuña and Short 1991; Silver
and Williams 2002], and our existence results of representations are strengthenings
of previous ones (compare [Klassen 1991, Corollary 11]).

It is a straightforward exercise to extend all of these results to knots in homology
spheres. In particular, we see that given a knot in a homology sphere with nontrivial
Alexander polynomial, the knot group admits an irreducible, metabelian SL(n, C)

representation for some n ≥ 2. Of course, any metabelian representation of the
knot group must send the longitude to the identity. It is interesting to compare this
statement to Theorem 1.7 of [Frohman 1993], which shows that if K is a fibered
knot of genus g in a rational homology sphere, then there exists an irreducible
SU (n) representation of the knot group sending the longitude to e2π i/n I for some
2 ≤ n ≤ g + 1.

2. Metabelian representations into GL(n, C)

Preliminaries. A group G is called metabelian if G(2)
= {e}, where G(n) is the

n-th term of the derived series of G which is inductively defined by G(0)
= G and

G(i+1)
= [G(i), G(i)

]. We say a representation ϕ : G → GL(n, C) is metabelian if
it factors through G/G(2).

A representation ρ : G → Aut(Cn) ∼= GL(n, C) is called reducible if there exists
a proper subspace V ⊂ Cn such that ρ restricts to a representation ρ : G → Aut(V ).
Otherwise ρ is called irreducible or simple. If α is the direct sum of simple repre-
sentations, then α is called semisimple.

Given a representation α : G → Aut(V ) we say that χ : G → C∗
= C\{0} is a

weight if there exists a nontrivial v ∈ V such that α(g)(v) = χ(g)(v) for all g ∈ G.
For any weight χ , we set

Vχ = {v ∈ V | α(g)(v) = χ(g)(v) for all g ∈ G} .
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Clearly Vχ is a nontrivial subspace of V . We refer to Vχ as the weight space of χ .
If χ1 and χ2 are distinct weights, then it is not hard to show that Vχ1 ∩ Vχ2 = {0}.
Any abelian group has at least one weight, this follows easily from the fact that
every irreducible representation of an abelian group is one-dimensional [Fässler
and Stiefel 1992, p. 36].

Metabelian quotients of knot groups. Let K ⊂ S3 be a knot. In the following we
denote by X̃K the infinite cyclic cover of XK corresponding to the abelianization
π1(XK ) → Z. Therefore π1(X̃K ) = π1(XK )(1) and

H1(XK ; Z[t±1
]) = H1(X̃K ) ∼= π1(XK )(1)/π1(XK )(2).

The Z[t±1
]-module structure is given on the right hand side by tn

· g := µ−ngµn ,
where µ is the meridian of K .

Given groups G and H together with a homomorphism ϕ : G → Aut(H), the
semidirect product G n H is the group whose underlying set is just G × H and
where the group structure is given by

(g1, h1) · (g2, h2) := (g1 · g2, ϕ(g2)(h1) · h2).

For a knot K , we set π := π1(XK ) and consider the short exact sequence

1 → π (1)/π (2)
→ π/π (2)

→ π/π (1)
→ 1.

Since π/π (1)
= H1(XK ) ∼= Z, this sequence splits and we get isomorphisms

π/π (2) ∼= π/π (1) n π (1)/π (2) ∼= Z n π (1)/π (2) ∼= Z n H1(XK ; Z[t±1
])

g 7→ (g, µ−ε(g)g) 7→ (ε(g), µ−ε(g)g),

where n ∈ Z acts by conjugation by µn on π (1)/π (2) and by multiplication by tn

on H1(XK ; Z[t±1
]). Thus, metabelian representations of π1(XK ) can be viewed as

representations of Z n H1(XK ; Z[t±1
]) and vice versa.

Irreducible GL(n, C) representations of certain semidirect products. In this sec-
tion we present a classification of the irreducible GL(n, C) representations of met-
abelian groups of the form Z n H , where H is a finitely generated Z[t±1

]-module
and where n ∈ Z acts on H by multiplication by tn .

We begin with the prototypical example of a GL(n, C) representation of Zn H .
Fix n ∈ N. Let χ : H → C∗ be a character that factors through H/(tn

− 1) and let
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z ∈ C∗. Then it is easy to verify that

α = α(z,χ) : Z n H → GL(n, C)

( j, h) 7→


0 . . . 0 z
1 0 . . . 0
...

. . .
...

0 . . . 1 0


j 

χ(h) 0 . . . 0
0 χ(th) . . . 0
...

. . .
...

0 0 . . . χ(tn−1h)


defines a representation. Note that α(n, 0) is a diagonal matrix with each diagonal
entry equal to z. Also note that α factors through Z n H/(tn

− 1).
Our first goal is to determine which representations α(z,χ) are irreducible. We

say that a character χ : H → C∗ has order k if

k = min
{
` ∈ N | χ factors through H/(t`

− 1)
}
.

Given a character χ : H →C∗, let t iχ be the character defined by (t iχ)(h)=χ(t i h).
Obviously, if χ has order n, then tnχ = χ. Conversely, the next lemma shows that
the order of any character χ : H → C∗ which factors through H/(tn

− 1) divides
n.

Lemma 2.1. If χ : H → C∗ is a character which factors through both H/(tn
− 1)

and H/(t`
− 1), then χ also factors through H/(tgcd(n,`)

− 1).

Proof. An easy exercise shows that gcd(tn
− 1, t`

− 1) = tgcd(n,`)
− 1 in the

polynomial ring Q[t], and using the Euclidean algorithm, we find polynomials
p(t), q(t) ∈ Q[t] with (tn

−1)p(t)+ (t`
−1)q(t) = tgcd(n,`)

−1. Since the leading
coefficients of tn

−1 and t`
−1 are units in Z, we can arrange that p(t), q(t) lie in

Z[t].
For any h ∈ H , we have

χ
(
(tgcd(n,`)

− 1)h
)
= χ

[
((tn

− 1)p(t) + (t`
− 1)q(t))h

]
= χ

[
(tn

− 1)p(t)h
]
+ χ

[
(t`

− 1)q(t)h
]
= 0. �

We can now determine which representations α(z,χ) are irreducible.

Lemma 2.2. Suppose χ : H → C∗ is a character that factors through H/(tn
− 1)

and z ∈ C∗. Then α(z,χ) : Z n H → GL(n, C) is irreducible if and only if the
character χ has order n.

Proof. Throughout this proof, let α = α(z,χ) and suppose χ has order n. Denote by
γ : H → GL(n, C) the restriction of α to H = 0× H ⊂ Zn H , and let {e1, . . . , en}

be the standard basis of Cn . Then γ restricts to a representation on Cei that is
given by t i−1χ for i = 1, . . . , n. Since χ has order n it follows that the characters
χ, tχ, . . . , tn−1χ : H →C∗ are pairwise distinct. Clearly any H -invariant subspace
of Cn must be of the form ⊕

r
i=1Ceni for some {n1, . . . , nr } ⊂ {1, . . . , n}. Let
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T = α(1, 0) and notice that T (ei ) = ei+1 (with indices taken modulo n). It follows
that α(Z, 0) acts transitively on the subspaces Cei . In particular we see that the
only proper subrepresentation of α is the zero space. This concludes the proof that
α is irreducible.

Now suppose χ has order ` < n. It is a straightforward exercise to show that
α is reducible. We will skip this part of the proof since it is also an immediate
consequence of the proof of Theorem 2.3. �

The next result presents a classification of all irreducible GL(n, C) representa-
tions of semidirect products of the form Z n H .

Theorem 2.3. (i) Any irreducible representation α : Z n H → GL(n, C) is con-
jugate to α(z,χ) for a character χ : H → C∗ of order n and some z ∈ C∗.

(ii) If χ1, χ2 : H → C∗ are characters of order n and z1, z2 ∈ C∗, then α(z1,χ1) is
conjugate to α(z2,χ2) if and only if z1 = z2 and χ1 = tkχ2 for some k.

Proof. We first prove (ii). For convenience, we set α1 = α(z1,χ1) and α2 = α(z2,χ2).
First assume that α1 and α2 are conjugate. Note that

z1(−1)n+1
= det(α1(1, 0)) = det(α2(1, 0)) = z2(−1)n+1.

Now denote by γi the restriction of αi to H . Clearly the weights of γi are given by

χi , tχi , . . . , tn−1χi .

Also recall that tn+kχi = tkχi . Since the sets of weights of γ1 and γ2 have to agree
it now follows immediately that χ1 = tkχ2 for some k.

Now assume z1 = z2 and χ1 = tkχ2 for some integer k. Then it is easy to check
that, for any ( j, h) ∈ Z n H, we have

0 . . . 0 z1

1 . . . 0 0
...

. . .
...

0 . . . 1 0


−k

α1( j, h)


0 . . . 0 z1

1 . . . 0 0
...

. . .
...

0 . . . 1 0


k

= α2( j, h).

We now prove (i). Let α : Z n H → GL(n, C) be an irreducible representation.
We denote by γ the resulting representation H → 0 × H → Z n H

α
−→ GL(n, C).

Since H is abelian there exists at least one weight χ : H → C∗. Let ` be the
order of χ , we write ` = ∞ if χ does not factor through H/(t`

−1) for any `. For
i = 0, . . . , ` − 1 we consider the weight spaces

Vi :=
{
v ∈ Cn

| γ (h)(v) = χ(t i h)(v).
}

Since χ, tχ, . . . , t`−1χ are different we obtain that V0 ⊕ V1 ⊕ · · · ⊕ V`−1 embeds
in Cn .
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Now recall that the group structure of Z n H is given by

( j1, h1)( j2, h2) = ( j1 + j2, t j2h1 + h2)

In particular for any h ∈ H , we have

( j, 0)(0, t j h) = ( j, t j h) = (0, h)( j, 0).

Therefore, setting T = α(1, 0), we see that

T jα(0, t j h) = α( j, 0)α(0, t j h) = α( j, t j h) = α(0, h)α( j, 0) = α(0, h)T j .

It follows that T jγ (t j h) = γ (h)T j , and for v ∈ V0, we see that

γ (h)T jv = T jγ (t j h)v = T jχ(t j h)v = χ(t j h)T jv.

Hence T j induces a map V0 → V j (where we take indices modulo `) which is
an isomorphism with inverse T − j . This shows dim(V j ) = dim(V0) ≥ 1 for j =

1, . . . , `−1, which together with the fact that V0 ⊕ V1 ⊕· · ·⊕ V`−1 embeds in Cn ,
implies that ` ≤ n, in particular ` is finite.

T ` induces an isomorphism of V0. Let v be an eigenvector of T `
: V0 → V0 and

let W be the subspace of Cn spanned by {v, T v, . . . , T `−1v}. Clearly α restricts
to a representation of W , and so irreducibility of α implies ` = dim(W ) = n. It is
straightforward to see that, in terms of the basis v, T v, . . . , T n−1v, the representa-
tion α is given by α(z,χ), where z is the eigenvalue corresponding to the eigenvector
v of T `. �

3. Metabelian representations into SL(n, C)

Metabelian SL(n, C)-representations. In this section we apply the previous re-
sults to give a classification of irreducible metabelian SL(n, C) representations of
knot groups. We begin with an elementary observation.

Lemma 3.1. Two representations α, β : G → SL(n, C) that are conjugate over
GL(n, C) are also conjugate over SL(n, C).

Proof. Assume that there exists a matrix P ∈GL(n, C) such that Pα(g)P−1
=β(g)

for all g ∈ G. Then let z be an n-th root of det(P). Clearly det(z−1 P) = 1 and
(z−1 P)α(g)(z−1 P)−1

= β(g) for all g ∈ G. �

As before, we suppose H is a finitely generated Z[t±1
]-module and we consider

SL(n, C) representations of the semidirect product ZnH , where n ∈Z acts on H by
multiplication by tn . Throughout this section, we make the additional assumption
on H that multiplication by t − 1 is an isomorphism. Notice first that this holds
for the principle application we have in mind. Indeed, the long exact sequence in
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homology

· · · → Hi+1(XK ; Z) → Hi (X̃K ; Z)
t−1
−−→ Hi (X̃K ; Z) → Hi (XK ; Z) → · · ·

shows that H = H1(XK ; Z[t±1
]) has this property.

Lemma 3.2. Let H be a Z[t±1
]-module such that multiplication by t − 1 is an

isomorphism, χ : H → C∗ a character that factors through H/(tn
−1), and z ∈ C∗.

Set α = α(z,γ ). Then for any ( j, h) ∈ Z n H we have

det(α( j, h)) = (−1)(n+1) j z j .

Proof. Let χ be a character that factors through H/(tn
−1) and let ( j, h) ∈ Zn H .

It is straightforward to see that

det(α( j, h)) = (−1)(n+1) j z j
n−1∏
i=0

χ(t i h) = (−1)(n+1) j z jχ

(
n−1∑
i=0

t i h

)
.

Since multiplication by t − 1 is an isomorphism on H , we have h′
∈ H with

(t − 1)h′
= h. Thus

χ

(
n−1∑
i=0

t i h

)
= χ

(
n−1∑
i=0

t i (t − 1)h′

)
= χ

(
(tn

− 1)h′
)
= 1,

since χ factors through H/(tn
− 1). �

If H is a Z[t±1
]-module such that multiplication by t − 1 is an isomorphism,

and χ : H → C∗ is a character of order n, then it follows from Lemma 3.2 that, for
( j, h) ∈ Z n H, setting

αχ ( j, h) =


0 . . . 0 (−1)n+1

1 . . . 0 0
...

. . .
...

0 . . . 1 0


j 

χ(h) 0 . . . 0
0 χ(th) . . . 0
...

. . .
...

0 0 . . . χ(tn−1h)


defines an SL(n, C) representation.

Theorem 3.3. Let H be a Z[t±1
]-module such that multiplication by t − 1 is an

isomorphism. Then the following hold:

(i) If χ : H → C∗ is a character of order n, then αχ defines an irreducible
SL(n, C) representation.

(ii) Given two characters χ1, χ2 : H → C∗ of order n, the representations αχ1 and
αχ2 are conjugate if and only if χ1 = tkχ2 for some k.

(iii) For any irreducible representation α : Z n H → SL(n, C) there exists a char-
acter χ : H → C∗ of order n such that α is conjugate to αχ .
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The theorem is an immediate consequence of Theorem 2.3 and Lemmas 2.2,
3.1, and 3.2.

Proofs of Theorem 1.2 and Corollary 1.3. We need two more basic lemmas before
we are in a position to prove Theorem 1.2 and Corollary 1.3. The following result
is easy to prove.

Lemma 3.4. Let A be a finite abelian group. Then

|Hom(A, C∗)| = |Hom(A, S1)| = |Hom(A, Q/Z)| = |A|.

Let K be a knot and H = H1(X̃K ; Z) = H1(XK ; Z[t±1
]). Denote by Wn the

n-fold cover of XK , which we can view as a subset of Ln . Then the projection
from X̃K to Wn induces a map

πn : H1(X̃K ; Z) → H1(Wn) → H1(Ln).

The main properties of this map are found, for example, in [Friedl 2003]:

Lemma 3.5. For any n the map πn factors through H/(tn
−1). Given `|n we have

a commutative diagram

H/(tn
− 1)

��

∼= // H1(Ln)

��
H/(t`

− 1)
∼= // H1(L`),

where the horizontal maps are isomorphisms and the vertical maps are surjections.

Using Theorem 3.3 we can now give a proof of Theorem 1.2.

Proof of Theorem 1.2. Let K ⊂ S3 and n ∈ N and let α : π1(XK ) → SL(n, C) be
an irreducible metabelian representation. It is well known that the longitude λ lies
in π1(XK )(2), hence α(λ) = I and tr(α(λ)) = n. This, together with Theorem 3.3
(iii) completes the proof of part (i).

We now turn to the proof of (ii). In the following we write H = H1(X̃K ; Z).
Recall that multiplication by t − 1 is an isomorphism on H . By Theorem 3.3, the
number of conjugacy classes of irreducible metabelian SL(n, C) representations of
π1(S3

\K ) is given by

N = #
{
χ : H → C∗

| χ of order n
}
/ ∼,

where χ1 ∼ χ2 if and only if χ1 = tkχ2 for some k.
Any character χ : H → C∗ of order n factors through H/(tn

− 1), which is by
Lemma 3.5 isomorphic to H1(Ln). Now assume that H1(Ln) is finite. It follows
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immediately from Lemma 3.4 that N is finite. Also note that the group Z/n = 〈t |

tn
= 1〉 acts freely on the set of characters of order n, hence

N =
1
n

#
{
χ : H → S1

| χ of order n
}
.

By applying Lemmas 2.1 and 3.5 we see that

N =
1
n

#
{
χ : H1(Ln) → S1

| χ does not factor through H1(L`) for any `|n
}
,

as claimed.
Finally we prove (iii). Suppose α : Z n H → SL(n, C) is an irreducible repre-

sentation. Then by Theorem 3.3 the representation α is conjugate to αχ for some
character χ : H → C∗ of order n. Note that χ factors through H/(tn

−1)∼= H1(Ln)

which is finite by hypothesis. In particular χ(h) has finite order for each h ∈ H ,
i.e. χ is a unitary character χ : H → S1

⊂ C∗. It is now clear from the definition
that αχ is a unitary representation. �

Remark 3.6. This proof shows that every irreducible representation α : Z n H →

SL(n, C) factors through Z/n n H/(tn
− 1), which is a finite group whenever

H1(Ln) is finite.

Finally, Corollary 1.3 is an immediate consequence of the following more gen-
eral result.

Theorem 3.7. Given a knot K and n ∈ N with H1(Ln) finite, the number of conju-
gacy classes of irreducible metabelian SL(n, C) representations of the knot group
is given by

1
n

∑
k|n

µ(k)
∣∣H1(Ln/k)

∣∣ ,
where µ is the Möbius function.

Recall that given n with prime decomposition n = pn1
1 · · · · · pns

s with ni ≥ 1 and
distinct primes p1, . . . , ps the Möbius function is defined as

µ(n) =

{
0 if ni ≥ 2 for some i,
(−1)s otherwise.

Proof. Throughout the proof, we make repeated use of the general fact that, for
any m|n, the projection H1(Ln) → H1(Lm) is surjective.

First consider the case n = pk is a prime power. Then |H1(L pk )| is automatically
finite, and Theorem 1.2 implies that the number of conjugacy classes of irreducible
metabelian representations is finite and is given by

1
pk #

{
χ : H1(L pk ) → S1

| χ does not factor through H1(L`) for any `| pk} .
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If `| pk , then ` = p j for some j < k. It follows that the projection H1(L pk−1) →

H1(L p j ) is surjective, thus any character χ : H1(L pk ) → S1 which factors through
H1(L`) must also factor through H1(L pk−1). Lemma 3.4 and Equation (1) now
show that the number of conjugacy classes of irreducible metabelian representa-
tions is given by

1
pk

(∣∣H1(L pk )
∣∣− ∣∣H1(L pk−1)

∣∣)=

pk∏
j=1

1K (e2π i j/pk
) −

pk−1∏
j=1

1K (e2π i j/pk−1
).

This agrees with the formula given by the theorem in the case n = pk is a prime
power. This also proves Corollary 1.3.

Next consider the case n = pkq`, where p and q are distinct primes. If H1(L pkq`)

is finite, Theorem 1.2 implies that the number of conjugacy classes of irreducible
metabelian representations is finite and is given by

1
pkq`

#
{
χ : H1(L pkq`)→ S1

|χ does not factor through H1(Lm) for any m|pkq`
}
.

In this case, any character χ : H1(L pkq`) → S1 which factors through H1(Lm) for
some m|pkq` must also factor through either H1(L pkq`−1) or H1(L pk−1q`). Further,
by Lemma 2.1, any character χ : H1(L pkq`) → S1 which factors through both
H1(L pkq`−1) and H1(L pk−1q`) must also factor through H1(L pk−1q`−1). Lemma 3.4
now shows that the number of conjugacy classes of irreducible metabelian repre-
sentations is given by∣∣H1(L pkq`)

∣∣− ∣∣H1(L pkq`−1)
∣∣− ∣∣H1(L pk−1q`)

∣∣+ ∣∣H1(L pk−1q`−1)
∣∣.

This agrees with the formula given by the theorem in the case n = pkq`.
Now consider the general case n = pk1

1 · · · pkr
r , where p1, . . . , pr are distinct

primes. We will show that the number of conjugacy classes of irreducible met-
abelian representations is given by

1
n

r∑
s=0

∑
i1<···<is

(−1)s
∣∣H1

(
Ln/(pi1 ...pis )

)∣∣.
This formula agrees with the one given in the theorem.

Assume H1(Ln) is finite, and apply Theorem 1.2 to see that the number of
conjugacy classes of irreducible metabelian representations is finite and equal to

1
n

#
{
χ : H1(Ln) → S1

| χ does not factor through H1(Lm) for any m|n
}
.

In this case, since n = pk1
1 · · · pkr

r , any character χ : H1(Ln) → S1 which factors
through H1(Lm) for some m|n must factor through H1(Ln/pi ) for some 1 ≤ i ≤ r .
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Further, by Lemma 2.1, for 1 ≤ i < j ≤ r , any character χ : H1(Ln) → S1 which
factors through H1(Ln/pi ) and H1(Ln/p j ) must also factor through H1(Ln/(pi p j )).
Repeated application of Lemma 2.1 gives the general statement that, for 1 ≤ i1 <

· · · < is ≤ r , any character χ : H1(Ln) → S1 which factors through each of
H1(Ln/pi1

), H1(Ln/pi2
), . . . , H1(Ln/pis

) must also factor through H1(Ln/(pi1 ···pis )
).

Using this fact, Lemma 3.4, and the principle of inclusion-exclusion, we obtain
the desired result. �

Existence results. In this section, we prove several results on existence of irre-
ducible metabelian SL(n, C) representations of knot groups and on existence of
faithful metabelian SL(n, C) representations of knot groups. Notice that Theorem
1.2 implies that any irreducible metabelian representation α : π1(XK ) → SL(n, C)

of a knot group sends the meridian to a matrix of order n and as such is not faithful.
We begin with the problem of existence of irreducible representations. If K ⊂ S3

is a knot with trivial Alexander polynomial, then π1(XK )(1)
= π1(XK )(2), i.e. any

metabelian representation is already abelian. This shows there are no irreducible
metabelian representations α : π1(XK ) → SL(n, C) for any n ≥ 2 for knots with
trivial Alexander polynomial.

On the other hand, if the Alexander polynomial is not trivial, then we will see
that there always exist irreducible metabelian SL(n, C) representations of π1(XK ).
In fact, by using information about the homology groups H1(Ln) of the n-fold
branched covers of K , we prove the existence of infinitely many conjugacy classes
of irreducible metabelian representations in many cases. Fortunately for us, the
homology groups H1(Ln) have been extensively studied, and we shall make fre-
quent use of the ideas and results from many of the excellent papers on the subject,
including [Gordon 1972; Riley 1990; González-Acuña and Short 1991; Silver and
Williams 2002; Livingston 2002].

In what follows, we denote by Xn the character variety of metabelian represen-
tations α : π1(XK ) → SL(n, C), and by X∗

n ⊂ Xn the subvariety of characters of
irreducible representations. Since X∗

n is a variety it either consists of finitely many
points or it contains positive dimensional components. It follows from Theorem 2.3
that X∗

n consists of finitely many points if and only if there exist only finitely many
conjugacy classes of irreducible metabelian representations π1(XK ) → SL(n, C).

Lemma 3.8. Let n ∈ N such that H1(Ln) is finite. Then

(i) the variety X∗
n consists of finitely many points or is empty, and

(ii) any irreducible representation π1(XK ) → SL(n, C) is conjugate to a unitary
representation.

Proof. This is a reformulation of Theorem 1.2. �
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The next lemma treats the case when H1(Ln) is infinite and shows that X∗
n is

either empty or contains positive dimensional components.

Lemma 3.9. Let n such that H1(Ln) is infinite. Then the following are equivalent:

(a) there exists an irreducible representation π1(XK ) → SL(n, C),

(b) there exist infinitely many conjugacy classes of irreducible representations
π1(XK ) → SL(n, C), none of which is conjugate to a unitary representation,

(c) there exist infinitely many conjugacy classes of irreducible unitary represen-
tation π1(XK ) → SU (n),

(d) there exists a character χ : Tor(H1(Ln)) → S1 that does not factor through
Tor(H1(Ln)) → Tor(H1(L`)) for any `|n with b1(L`) = b1(Ln).

Proof. Given an abelian group A we write R(A) = Hom(A, C∗). Note that R(A)

is a complex variety of dimension rk(A). If `|n, the epimorphism π : H1(Ln) →

H1(L`) induces an injective map π∗
: R(H1(L`)) → R(H1(Ln)). We say that

χ ∈ R(A) is unitary if χ lies in U (A) := Hom(A, S1) ⊂ R(A), otherwise we say χ

is nonunitary. It follows from Theorem 2.3 that given a character χ ∈ R(H1(Ln))

of order n, the representation αχ is conjugate to a unitary representation if and only
if χ is unitary, i.e. if and only if χ ∈ U (H1(Ln)).

For any unitary character χ : Tor(H1(Ln)) → S1, we define Rχ (H1(Ln)) ⊂

R(H1(Ln)) by setting

Rχ (H1(Ln)) = {α : H1(Ln) → C∗
| α|Tor(H1(Ln)) = χ}.

Fixing a splitting H1(Ln) = Fn ⊕ Tor(H1(Ln)), where Fn is torsion free, we see
that any character β : Fn → C∗ determines a character

α = β ⊕ χ : Fn ⊕ Tor(H1(Ln)) → C∗

with α ∈ Rχ (H1(Ln)). Thus Rχ (H1(Ln)) is a complex variety of the same dimen-
sion as R(Fn), indeed dim Rχ (H1(Ln)) = rk(H1(Ln)) > 0

We first show (d) implies (b), so let χ : Tor(H1(Ln)) → S1 be the character
whose existence is guaranteed by (d). To conclude (b), it suffices by Theorem 3.3
to show that the set

(2) Rχ (H1(Ln)) \
⋃̀
|n

π∗ R(H1(L`))

contains infinitely many nonunitary characters. If `|n with b1(Ln) = b1(L`), then
Rχ (H1(Ln)) ∩ π∗ R(H1(L`)) = ∅ by hypothesis. On the other hand, if `|n with
b1(L`) < b1(Ln), then π∗ R(H1(L`))) has codimension at least one in R(H1(Ln)).
It follows that the set (2) is open and dense in Rχ (H1(Ln)) and therefore contains
infinitely many nonunitary characters.
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To see that (d) implies (c), let Uχ (H1(Ln)) ⊂ U (H1(Ln)) be the corresponding
subset of unitary characters defined by setting

Uχ (H1(Ln)) = {α : H1(Ln) → S1
| α|Tor(H1(Ln)) = χ}.

The same argument as above now shows that

Uχ (H1(Ln)) \
⋃̀
|n

π∗U (H1(L`))

contains infinitely many unitary characters, and Theorem 3.3 applies to show (c).
Now we show that if (d) does not hold, then every character α : H1(Ln) → C∗

factors through H1(Ln) → H1(L`) for some ` with `|n. Consequently, there are
no characters of order n, and Theorem 3.3 shows that none of (a), (b) or (c) hold.

Suppose α : H1(Ln)→C∗ and fix a splitting H1(Ln)= Fn⊕Tor(H1(Ln)), where
Fn is torsion-free. Writing α = β ⊕ χ : Fn ⊕ Tor(H1(Ln)) → C∗, by assumption,
we see χ must factor through Tor(H1(Ln)) → Tor(H1(L`)) for some `|n with
b1(L`) = b1(Ln). Let χ ′

: Tor(H1(L`)) → S1 be the corresponding character.
Since b1(Ln)=b1(L`), the restriction of π∗ gives an isomorphism from Fn to some
torsion-free submodule of H1(L`), and since π∗ : H1(Ln) → H1(L`) is surjective,
the image F` = π∗(Fn) determines a splitting

H1(L`) = F` ⊕ Tor(H1(L`)).

Letting β ′
: F` → C∗ be the character defined by the condition β = β ′

◦ π∗, it
follows easily that α is the pullback of α′

= β ′
⊕ χ ′

: F` ⊕ Tor(H1(L`)) → C∗.
Thus α factors through H1(Ln) → H1(L`), and this completes the proof. �

Theorem 3.10. Suppose K ⊂ S3 is a knot with Alexander polynomial such that a
zero of 1K (t) is a root of unity. Let m be the minimal number such that every root
of unity that is a zero of 1K (t) is in fact an m-th root of unity. Let λ1(t) be the first
Alexander invariant of K .

(i) If λ1(t)|(tm
−1), then there exist irreducible metabelian SL(n, C) representa-

tions of the knot group π1(XK ) only for 2 ≤ n ≤ m. Furthermore the variety
X∗

m contains positive dimensional components.

(ii) If λ1(t) 6 |(tm
− 1), then the variety X∗

km contains positive dimensional compo-
nents for infinitely many k ≥ 2.

(iii) If (n, m) = 1, then X∗
n is finite or empty. If all zeroes of 1K (t) are roots of

unity, then X∗
n = ∅ for all (n, m) = 1.

(iv) If not all zeroes of 1K (t) are roots of unity, then there exist infinitely many n
with (n, m) = 1 for which X∗

n is nonempty.

For the proof we need the following lemma.
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Lemma 3.11. Let m be the minimal number such that every root of unity which is
a zero of 1K (t) is in fact an m-th root of unity. Then for any k we have b1(Lkm) =

b1(Lm), and for any n such that m 6 |n we have b1(Ln) < b1(Lm).

Proof of Lemma 3.11. We write 1K (t) =
∏d

i=1(t − zi ) for z1, . . . , zd ∈ C. It is
well known that

(3) b1(Ln) = #{zi | 1 ≤ i ≤ d, zn
i = 1}.

(This formula can be deduced by studying

H1(XK ; C[t, t−1
]) = H1(XK ; Z[t, t−1

]) ⊗ C

and using the fact that C[t, t−1
] is a PID.) It is clear from the formula and the

definition of m that b1(Ln) is maximal if and only if m|n. �

Proof of Theorem 3.10. We first prove (i). If λ1(t)|(tm
− 1), the main theorem

of [Gordon 1972] shows that the first homology groups of Ln are periodic and
moreover H1(Ln)= H1(L(n,m)). This implies that every character χ : H1(Ln)→C∗

factors through H1(Ln) → H1(L(m,n)). Thus if n > m, no character has order n.
This shows that irreducible metabelian representations α :π1(XK )→ SL(n, C) can
only occur for n with 2 ≤ n ≤ m.

It is an immediate consequence of Lemmas 3.9 and 3.11 that the variety X∗
m

contains positive dimensional components
We now prove (ii). By Lemmas 3.9 and 3.11 we only have to show that for any

K there exists an k > K and a character Tor(H1(Lkm)) → S1 which does not factor
through a character Tor(H1(L`m))→S1 for any `|k. Set M =

∑K
`=2

∣∣Tor(H1(L`m))
∣∣

and define

TK ={k | there exists a character χ : Tor(H1(Lkm)) → C∗ which does not factor
through Tor(H1(Lkm)) → Tor(H1(L`m)) for any `|k with ` ≤ K }.

Since λ1(t)6 |(tm
− 1), it follows from the combination of [Gordon 1972, Theo-

rem 4.7] and [Silver and Williams 2002, Theorem 2.1] that
∣∣Tor(H1(Lkm))

∣∣→ ∞

as k → ∞. In particular, there exists k with k > K such that
∣∣Tor(H1(Lkm))

∣∣> M .
Clearly this implies that TK 6= ∅.

Let k = min(TK ) and pick a character χ : Tor(H1(Lkm)) → C∗ that does not
factor through Tor(H1(Lkm)) → Tor(H1(L`m)) for any `|k with ` ≤ K . But then
χ does not factor through Tor(H1(L`)) for any `|k with ` > K by the minimality
of k. The claim now follows from Lemma 3.9.

We now turn to the proof of (iii). If (n, m) = 1, it follows from (3) that H1(Ln)

is finite. If all zeroes of 1K (t) are roots of unity, it follows from [Gordon 1972,
Theorem 4.5] that in fact H1(Ln) is trivial. Claim (iii) now follows immediately
from Theorem 1.2.
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Finally we give a proof of (iv). Let N ∈ N. We have to show that there exists n >

N with (n, m) = 1 for which there exists an irreducible metabelian representation
α : π1(XK ) → SL(n, C). Set M =

∑N
`=2 |H1(L`)| and define

SN = {n | (n, m) = 1 and there exists a character χ : Tor(H1(Ln)) → C∗ that does
not factor through Tor(H1(Ln)) → Tor(H1(L`)) for any `|n with ` ≤ N }.

By [Riley 1990] or [González-Acuña and Short 1991] (or alternatively by [Silver
and Williams 2002, Theorem 2.1]) there exists n with (n, m) = 1 and n > N such
that

∣∣Tor(H1(Ln))
∣∣> M . Clearly this implies that SN 6= ∅.

Let n = min(SN ) and pick a character χ : Tor(H1(Ln))→ C∗ that does not factor
through Tor(H1(Ln)) → Tor(H1(L`)) for any `|n with ` ≤ N . But then χ does
not factor through Tor(H1(L`)) for any `|n with ` > N by the minimality of n.
The claim now follows from Theorem 1.2. �

The proof of Theorem 3.10 (iii) and (iv) (setting m = 1) also immediately gives
the following result.

Theorem 3.12. Suppose K ⊂ S3 is a knot with Alexander polynomial 1K (t) 6= 1
and such that no zero of 1K (t) is a root of unity. Then for any n the set X∗

n is finite
or empty. Further, X∗

n is nonempty for infinitely many n.

Now we turn our attention to the problem of existence of faithful representations
of the metabelian quotient of a knot group. First note that it follows from Theorem
1.2 that given a semisimple representation α : π1(XK )/π1(XK )(2)

→ SL(n, C) we
have α(µn) = I , i.e. α can not be faithful. Also note that a unitary representation
is necessarily semisimple, hence by the above can not be faithful.

On the other hand if we study nonsemisimple nonunitary representations, then
we can always find one that is faithful. The next result produces a faithful repre-
sentation into GL(n, C), but it can easily be modified to give a faithful reducible
representation into SL(n + 2, C).

Proposition 3.13. Given any knot K ⊂ S3 there exists a faithful reducible repre-
sentation of π1(Xk)/π1(XK )(2).

Representations similar to the ones used in our proof appear also in [Jebali
2007].

Proof. It is well known that H1(XK ; Z[t±1
]) is Z-torsion free, in particular we get

an injection H1(XK ; Z[t±1
]) → H1(XK ; Z[t±1

]) ⊗ C = H1(XK ; C[t±1
]). Since

C[t±1
] is a PID, we have an isomorphism

H1(XK ; C[t±1
]) ∼=

n⊕
i=1

C[t±1
]/(t − zi )

ri
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of C[t±1
]-modules for some zi ∈ C, ri ∈ N. Note that this gives rise to an injective

group homomorphism

Z n H1(XK ; C[t±1
]) →

n∏
i=1

Z n C[t±1
]/(t − zi )

ri ,

here n ∈ Z acts on C[t±1
]/(t − zi )

ri by multiplication by zn
i = tn . By taking

direct sums of representations it therefore suffices to find a faithful representation
of ZnC[t±1

]/(t −z)r for some z ∈ C, r ∈ N. Given an element p ∈ C[t±1
]/(t −z)r

there exist unique a0, . . . , ar−1 ∈ C such that p is represented by
∑r−1

i=0 ai (t − z)i .
Let x ∈ S1 an element of infinite order. We then consider the representation α :

Z n C[t±1
]/(t − z)r

→ GL(r + 1, C) defined by

(0, p) 7→


1 a0 a1 · · · ar−1

0 1 0 · · · 0
... 1

...

. . . 0
0 · · · 0 1

 and (1, 0) 7→ x ·


1 0 0 · · · 0
0 z 1 · · · 0
... z

. . .
...

. . . 1
0 · · · 0 z

 .

The group structure on Z n C[t±1
]/(t − z)r is given by (n′, h′)+ (n, h) = (n′

+ n,

znh′
+ h). Using this, it is not difficult to check that α is indeed a representation.

It is easy to verify that α is also a faithful representation. �
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