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A Cn-move is a local move on links defined by Habiro and Goussarov, which
can be regarded as a ‘higher order crossing change’. We use Milnor invari-
ants with repeating indices to provide several classification results for links
up to Cn-moves, under certain restrictions. Namely, we give a classification
up to C4-moves of 2-component links, 3-component Brunnian links and n-
component C3-trivial links. We also classify n-component link-homotopic-
ally trivial Brunnian links up to Cn+1-moves.

1. Introduction

A Cn-move is a local move on links as illustrated below. It involves n +1 strands,
labeled here by integers between 0 and n, and can be regarded as a kind of ‘higher
order crossing change’ (in particular, a C1-move is a crossing change). These local
moves were introduced by Habiro [1994] and independently by Goussarov [2000].
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The Cn-move generates an equivalence relation on links, called Cn-equivalence.
This notion can also be defined by using the theory of claspers (see Section 2). The
Cn-equivalence relation becomes finer as n increases, that is, Cm-equivalence im-
plies Ck-equivalence for m > k. It is well known that Cn-equivalence approximates
the topological information carried by Goussarov–Vassiliev invariants. Namely,
two links cannot be distinguished by any Goussarov–Vassiliev invariant of order
less than n if they are Cn-equivalent. See [Gusarov 2000; Habiro 2000].
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Denote by Lk(n) the set of Ck-trivial n-component links, that is, links that are
Ck-equivalent to the trivial link. We have a filtration

L1(n) ⊃ L2(n) ⊃ L3(n) ⊃ · · · .

The quotient Lk(n)/Ck+1 forms an abelian group under a certain geometric op-
eration, with Lk+1(n) as unit element [Taniyama and Yasuhara 2003]. Note that
L1(n) is just the set of n-component links, and L2(n) is the set of n-component
algebraically split links [Murakami and Nakanishi 1989]. So the classifications
of L1(n)/C2 and L2(n)/C3 are given by [Murakami and Nakanishi 1989] and
[Taniyama and Yasuhara 2002], respectively. These classifications give us that the
abelian group L1(n)/C2 is free with rank n(n−1)/2, and L2(n)/C3 is isomorphic
to a direct sum of n + n(n − 1)(n − 2)/6 copies of Z and n(n − 1)/2 copies of Z2.
These classifications are given by using Milnor µ invariants (of length ≤ 3) with
distinct indices and the Conway polynomial. (For the definition of Milnor invari-
ants, see Section 3.) In this paper, we use Milnor µ invariants with (possibly)
repeating indices to classify L3(n)/C4. We obtain the following.

Theorem 1.1. Let L and L ′ be n-component C3-trivial links. Then L and L ′ are
C4-equivalent if and only if they satisfy the properties that

(1) µL(I ) = µL ′(I ) for all multiindices I with |I | = 4, and

(2) no Vassiliev knot invariant of order 3 can distinguish the i-th component of L
from the i-th component of L ′, for all 1 ≤ i ≤ n.

Here, a multi-index I is a sequence of not necessarily distinct integers in {1, . . . , n},
and |I | denotes the number of entries in I .

Remark 1.2. The proof of Theorem 1.1 shows the following. The classification
is given by µ(I ) with I = i i j j for 1 ≤ i < j ≤ n, i jkk for 1 ≤ i < j ≤ n for
1 ≤ k ≤ n, i jkl for 1 ≤ i 6= j < k < l ≤ n and an order 3 Vassiliev invariant of
each component. The abelian group L3(n)/C4 is thus free with rank n(n −1)/2+

n(n − 1)(n − 2)/2 + n(n − 1)(n − 2)(n − 3)/12 + n, which is the number of these
invariants. Since these invariants are additive under the band sum, L3(n)/C4 forms
an abelian group under the band sum.

Note that Theorem 1.1, together with [Murakami and Nakanishi 1989] and
[Taniyama and Yasuhara 2002], implies the following.

Corollary 1.3. An n-component link L is C4-trivial if and only if µL(I ) = 0 for all
multiindices I with |I | ≤ 4, and any Vassiliev knot invariant of order ≤ 3 vanishes
for each component.

For 2-component links, we obtain a refinement of a result of H. A. Miyazawa
[2003, Theorem 1.5].
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Proposition 1.4. Let L and L ′ be 2-component links. Then L and L ′ are C4-
equivalent if and only if they are not distinguished by any Vassiliev invariant of
order ≤ 3.

Remark 1.5. Two knots are Ck-equivalent if and only if they are not distinguished
by any Vassiliev invariant of order ≤ k − 1 [Gusarov 2000; Habiro 2000]. For
k = 2, this equivalence is true for all links [Murakami and Nakanishi 1989]. In
general, as we mentioned before, the ‘only if’ part holds for links. But the ‘if’ part
does not hold in general, even for 2-component links. For example, the Whitehead
link, whose Vassiliev invariants of order ≤ 2 vanish, is not C3-trivial. Hence, for
2-component links, the ‘if’ part holds when k = 2 and does not hold when k = 3.
Proposition 1.4 means that, unexpectedly, it holds when k = 4.

On the other hand, we consider Brunnian links. Recall that a link L in the 3-
sphere S3 is Brunnian if every proper sublink of L is trivial. In particular, all trivial
links are Brunnian. It is known that an n-component link is Brunnian if and only
if it can be turned into the trivial link by a sequence of Cn−1-moves of a specific
type, called Ca

n−1-moves, involving all the components [Habiro 2007; Miyazawa
and Yasuhara 2006]. Denote by BL(n) the set of n-component Brunnian links, and
by Bk(n) the set of n-component Ck-trivial Brunnian links. We have a descending
filtration

BL(n) = Bn−1(n) ⊃ Bn(n) ⊃ Bn+1(n) ⊃ · · · .

As in the case of arbitrary links, the quotient Bk(n)/Ck+1 forms an abelian group
with the unit element Bk+1(n) [Taniyama and Yasuhara 2003]. The abelian group
BL(n)/Cn is well understood and coincides with the abelian group of n-component
Brunnian links up to link-homotopy [Habiro 2007; Miyazawa and Yasuhara 2006].
Recall that two links are link-homotopic if they are related by a sequence of iso-
topies and self-crossing changes, that is, crossing changes involving two strands
of the same component. Habiro and Meilhan [2008] showed that n-component
Brunnian links are link-homotopic if and only if their Milnor invariants

µ(σ(1), . . . , σ (n − 2), n − 1, n)

coincide for all σ in the symmetric group Sn−2.
Here, we consider the next stage, namely the quotient Bn(n)/Cn+1. Given any

k ∈ {1, . . . , n} and a bijection τ from {1, . . . , n − 1} to {1, . . . , n} \ {k}, set

µτ (L) := µL(τ (1), . . . , τ (n − 1), k, k).

We obtain the following.

Theorem 1.6. Let n ≥ 3. Let L and L ′ be n-component link-homotopically trivial
Brunnian links. Then, the following assertions are equivalent:
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(1) L and L ′ are Cn+1-equivalent.

(2) µL(I ) = µL ′(I ) for any multi-index I with |I | = n + 1.

(3) µτ (L) = µτ (L ′) for all k ∈ {1, . . . , n} and τ ∈ B(k), where B(k) denotes
the set of all bijections τ from {1, . . . , n − 1} to {1, . . . , n} \ {k} such that
τ(1) < τ(n − 1).

Remark 1.7. The abelian group BL(n)/Cn is free with rank |Sn−1|; see [Habiro
and Meilhan 2008]. In the proof of Theorem 1.6, it is shown that the abelian group
Bn(n)/Cn+1 is free with rank

∣∣⋃n
k=1 Bk(k)

∣∣. As in case of L3(n)/C4, the quotient
Bn(n)/Cn+1 forms an abelian group under the band sum.

Remark 1.8. Theorem 1.6 is not true for n = 2. The Whitehead link, for example,
is not C3-trivial (by [Taniyama and Yasuhara 2002]), but all its Milnor invariants
µ(I ) with |I | ≤ 3 vanish. So the condition n ≥ 3 is essential.

In the case of 3-component Brunnian links, we have the following improvement
of Theorem 1.6.

Theorem 1.9. Let L and L ′ be 3-component Brunnian links. Then the following
assertions are equivalent:

(1) L and L ′ are C4-equivalent.

(2) µL(I ) = µL ′(I ) for any multi-index I with |I | ≤ 4.

(3) µL(123) = µL ′(123), µL(1233) = µL ′(1233),

µL(1322) = µL ′(1322), µL(2311) = µL ′(2311).

Note that µL(i jkk) denotes here the residue class of the integer µL(i jkk) (defined
in Section 3) modulo µL(i jk).

Remark 1.10. One may wonder if the equivalence of (1) and (2) remains true
for Brunnian links with m 6= 3 components. First, observe that all m-component
Brunnian links are C4-equivalent (namely, C4-trivial) for m > 4 [Habiro 2007;
Miyazawa and Yasuhara 2006]. For m = 4 the answer is positive and follows from
[Habiro and Meilhan 2008] and [Habiro 2000, Theorem 7.2] (as the C4-equivalence
coincides here with link-homotopy). The case m = 2 seems to be still open.

Remark 1.11. Similarly, one may ask, for 3-component Brunnian links L and L ′

and k 6= 4, whether Ck-equivalence of L and L ′ is equivalent to the condition
µL(I ) = µL ′(I ) for any |I | ≤ k. As we already saw, the case k 6= 2 is vacuous
and the case k = 3 holds true. But this is not true in general for k > 4. Consider
for example the Whitehead double L of the Borromean rings (see [Fleming and
Yasuhara 2008, Figure 4] for a diagram of L). We have µL(I ) = 0 for all |I | ≤ 5.
However, L is not C5-trivial. Indeed, L is distinguished from the trivial link by the
fourth derivative of the Jones polynomial evaluated at 1, which is a C5-equivalence
invariant.



ON Cn -MOVES FOR LINKS 123

The rest of the paper is organized as follows. In Section 2, we recall elementary
notions of the theory of claspers. In Section 3, we recall the definition of Milnor
invariants for (string) links and give some lemmas. Section 4 considers Brunnian
string links; its main result is Proposition 4.5, which gives a set of generators for
the abelian group of Cn+1-equivalence classes of n-component Brunnian string
links. In Section 5, we use results of Section 4 to prove Theorems 1.6 and 1.9. In
Section 6, we prove Theorem 1.1 and Proposition 1.4. In Section 7 we give proofs
of Propositions 2.12 and 2.14; these proofs are independent from the rest of the
paper.

2. Claspers and local moves on links

A brief review of clasper theory. Let us briefly recall from [Habiro 2000] the basic
notions of clasper theory for (string) links. In this paper, we essentially only need
the notion of Ck-tree. See [Habiro 2000] for a general definition of claspers.

Definition 2.1. Let L be a link in S3. An embedded disk F in S3 is called a tree
clasper for L if it satisfies these three properties:

(1) F is decomposed into disks and bands, called edges, each of which connects
two distinct disks.

(2) The disks have either 1 or 3 incident edges, called leaves or nodes, respec-
tively.

(3) L intersects F transversely, and the intersections are contained in the union
of the interior of the leaves.

The degree of a tree clasper is one less than the number of leaves.

A degree k tree clasper is called a Ck-tree. A Ck-tree is simple if each leaf
intersects L at one point.

We will make use of the drawing convention for claspers of [Habiro 2000, Figure
7], with the exception that a ⊕ (respectively 	) on an edge represents a positive
(respectively negative) half-twist. (This replaces the convention of a circled S
(respectively S−1) used in [Habiro 2000].)

Given a Ck-tree G for a link L in S3, there is a procedure to construct, in a
regular neighborhood of G, a framed link γ(G). There is thus a notion of surgery
along G, which is defined as surgery along γ(G). There exists a canonical dif-
feomorphism between S3 and the manifold S3

γ(G): surgery along the Ck-tree G can
thus be regarded as a local move on L in S3. We say that the resulting link LG in S3

is obtained by surgery on L along G. In particular, surgery along a simple Ck-tree,
as illustrated in Figure 2.2, is equivalent to band-summing a copy of the (k + 1)-
component Milnor’s link Lk+1 (see [Milnor 1954, Figure 7]), and is equivalent to
a Ck-move as defined on page 119. In Figure 2.2, a Ck-tree G having the shape
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Figure 2.2. Surgery along a simple C5-tree.

of the tree clasper is called linear, and the leftmost and rightmost leaves of G are
called the ends of G.

The Ck-equivalence (as defined in the introduction) coincides with the equiva-
lence relation on links generated by surgery along Ck-trees and isotopies. We use
the notation L ∼Ck L ′ for Ck-equivalent links L and L ′.

Some lemmas. This subsection gives some basic results of calculus of claspers,
whose proofs can be found in [Habiro 2000] or [Meilhan 2003]. For convenience,
we give the statements for string links. Recall that a string link is a pure tangle
without closed components (see [Habegger and Lin 1990] for a precise definition).
Denote by SL(n) the set of n-component string links up to isotopy with respect to
the boundary. The set SL(n) has a monoid structure with composition given by the
stacking product, denoted by · , and with the trivial n-component string link 1n as
unit element.

Lemma 2.3. Let T be a union of Ck-trees for a string link L , and let T ′ be obtained
from T by passing an edge across L or across another edge of T , or by sliding a
leaf over a leaf of another component of T (see Figure 2.4). Then LT ∼Ck+1 LT ′ .

Lemma 2.5. Let T be a Ck-tree for 1n , and let T be a Ck-tree obtained from T by
adding a half-twist on an edge. Then (1n)T · (1n)T ∼Ck+1 1n .

Lemma 2.6. Consider some Ck-trees T and T ′ (respectively TI , TH and TX ) for 1n

that differ only in a small ball as depicted in Figure 2.7. Then (1n)T ·(1n)T ′ ∼Ck+1 1n

(respectively (1n)TI ∼Ck+1 (1n)TH · (1n)TX ).

Lemma 2.8. Let G be a Ck-tree for 1n . Let f1 and f2 be two disks obtained by
splitting a leaf f of G along an arc α as shown in Figure 2.9 (that is, f = f1 ∪ f2

T’T

Figure 2.4. Sliding a leaf over another leaf.
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TI
TH TXT T ′

Figure 2.7. The AS and IHX relations for Ck-trees.

f

G

f1

G1

f2

G2

α

Figure 2.9. The Ck-trees G, G1 and G2 are identical outside a
small ball, where they are as depicted.

and f1 ∩ f2 = α). Then, (1n)G ∼Ck+1 (1n)G1 · (1n)G2 , where Gi denotes the Ck-tree
for 1n obtained from G by replacing f by fi for i = 1, 2.

Ca
k -trees and Ca

k -equivalence.

Definition 2.10. Let L be an m-component link in a 3-manifold M . For k ≥ m−1,
a (simple) Ck-tree T for L in M is a (simple) Ca

k -tree if it satisfies the following:

(1) f ∩ L is contained in a single component of L for each leaf f of T .

(2) T intersects all the components of L .

The Ca
k -equivalence is an equivalence relation on links generated by surgeries

along Ca
k -trees and isotopies. The next result shows the relevance of this notion in

the study of Brunnian (string) links.

Theorem 2.11 [Habiro 2007; Miyazawa and Yasuhara 2006]. Suppose L is an n-
component link in S3. Then L is Brunnian if and only if it is Ca

n−1-equivalent to the
n-component trivial link.

Further, it is known from [Miyazawa and Yasuhara 2006] that for n-component
Brunnian links, Cn-equivalence coincides with Ca

n -equivalence (and with link-
homotopy). See also [Habiro and Meilhan 2008]. We observe the following.

Proposition 2.12. Let k ≥ n − 1. An n-component Brunnian (string) link is Ck-
trivial if and only if it is Ca

k -equivalent to the trivial (string) link.

Remark 2.13. It seems that Proposition 2.12 can be generalized: for k ≥ n − 1,
n-component Brunnian (string) links are Ck-equivalent if and only if they are Ca

k -
equivalent. The string link case holds (see the proposition below), but the link case
is still open.
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Proposition 2.14. Let k ≥ n −1. Then two n-component Brunnian string links are
Ck-equivalent if and only if they are Ca

k -equivalent.

We prove Propositions 2.12 and 2.14 in Section 7.

3. On Milnor invariants

A short definition. J. Milnor [1954] defined a family of invariants of oriented,
ordered links in S3, known as Milnor’s µ-invariants.

Given an n-component link L in S3, denote by π the fundamental group of S3
\L ,

and by πq the q-th subgroup of the lower central series of π . We have a presentation
of π/πq with n generators, given by a meridian mi of the i-th component of L . So
for 1 ≤ i ≤ n, the longitude li of the i-th component of L is expressed modulo πq

as a word in the mi . (Abusing notation, we still denote this word by li .)
The Magnus expansion E(li ) of li is the formal power series in noncommuting

variables X1, . . . , Xn obtained by replacing m j by 1 + X j and replacing m−1
j by

1 − X j + X2
j − X3

j + · · · for 1 ≤ j ≤ n. We use the notation Ek(li ) to denote the
degree k part of E(li ), where the degree of a monomial in the X j is simply defined
by the sum of the powers.

Let I = i1i2 . . . ik−1 j be a multi-index (that is, a sequence of possibly repeating
indices) among {1, . . . , n}. Denote by µL(I ) the coefficient of X i1 . . . X ik−1 in the
Magnus expansion E(l j ). The Milnor invariant µL(I ) is the residue class of µL(I )
modulo the greatest common divisor of all Milnor invariants µL(J ) such that J
is obtained from I by removing at least one index and permuting the remaining
indices cyclically. We call |I | = k the length of Milnor invariant µL(I ).

The indeterminacy comes from the choice of the meridians mi . Equivalently, it
comes from the indeterminacy of representing the link as the closure of a string
link [Habegger and Lin 1990]. Indeed, µ(I ) is a well-defined invariant for string
links. Furthermore, µ(I ) is known to be a Goussarov–Vassiliev invariant of degree
|I | − 1 for string links [Bar-Natan 1995; Lin 1997].

Some lemmas. Let us first recall a result due to Habiro.

Lemma 3.1 [Habiro 2000]. Milnor invariants of length k for (string) links are
invariants of Ck-equivalence.

Next we state a simple lemma, which will be used in the following.

Lemma 3.2. Let L be an n-component string link obtained from 1n by surgery
along a union F of Ck-trees that is disjoint from the j-th component of 1n . Then
µL(I ) = 0 for all multiindices I containing j and satisfying |I | ≤ k + 1.

Proof. Consider a diagram of 1n together with F . The diagram contains several
crossings between an edge of F and the j-th component of 1n . Denote by Fo
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(respectively Fu) the union of Ck-trees obtained from F by performing crossing
changes so that the j-th component of 1n overpasses (respectively underpasses) all
edges. By Lemma 2.3, we have L ∼Ck+1 UFo ∼Ck+1 UFu . The result then follows
from Lemma 3.1 and the following observation.

Consider the diagram D of a string link K . If the i-th component of K over-
passes all the other components in D, it follows from the definition of Milnor
invariants that µK (I ) = 0 for any multi-index I with last index i . Similarly, if the
i-th component of K underpasses all the other components in D, then µK (I ) = 0
for any multi-index I containing i and with last index not equal to i . �

We have the following simple additivity property.

Lemma 3.3. Let L and L ′ be n-component string links such that all Milnor in-
variants of L (respectively L ′) of length ≤ m (respectively ≤ m′) vanish. Then
µL·L ′(I ) = µL(I ) + µL ′(I ) for all I of length ≤ m + m′.

Proof. The Milnor invariant of L · L ′ is computed by taking the Magnus expansion
of the k-th longitude Lk of L · L ′. Denote respectively by li and mi (respectively
l ′i and m′

i ) the i-th meridian and longitude of L (respectively L ′), where 1 ≤ i ≤ n.
We have Lk = lk · l̃ ′k , where l̃ ′k is obtained from l ′k by replacing m′

i with Mi =

l−1
i mi li for each i . So E(Lk) = E(lk) · E(l̃ ′k), where E(l̃ ′k) is obtained from E(l ′k)

by substituting X̃ i for X i in E(l ′k), where X̃ i := E(Mi ) − 1.
The Magnus expansion of li is the form E(li ) = 1 + (terms of degree ≥ m), so

E(Mi ) = E(l−1
i )E(mi )E(li )

= E(l−1
i )E(li ) + E(l−1

i )X i E(li )

= 1 + X i + (terms of degree ≥ m + 1).

So E(l̃ ′k) is obtained from E(l ′k) = 1 +
∑

j≥m′ E j (l ′k) by replacing each X i by
X i + (terms of degree ≥ m + 1) for all i . It follows that

E(l̃ ′k) = 1 +

∑
m+m′−1≥ j≥m′

E j (l ′k) + (terms of degree ≥ (m + m′)).

It follows that E(Lk) = E(lk)E(l̃ ′k) has the form

1 +

∑
m+m′−1≥ j≥m

E j (lk) +

∑
m+m′−1≥ j≥m′

E j (l
′

k) + (terms of degree ≥ (m + m′)),

which implies that all Milnor invariants of length ≤ m+m′ of L ·L ′ are additive. �

4. Cn+1-moves for n-component Brunnian string links

An n-component string link L is Brunnian if every proper substring link of L is
the trivial string link. In particular, any trivial string link is Brunnian. The set
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of n-component Brunnian string links form a submonoid of SL(n), denoted by
BSL(n).

Recall that, given L ∈ SL(n), the closure cl(L) of L is an n-component link in S3

[Habegger and Lin 1990]. By [Habiro 2007], an n-component link is Brunnian if
and only if it is the closure of a certain Brunnian string link.

n-component Brunnian string links up to Cn-equivalence. Let BSL(n)/Cn de-
note the abelian group of Cn-equivalence classes of n-component Brunnian string
links. Habiro and Meilhan [2008] gave a basis for BSL(n)/Cn as follows.

Let σ be an element in the symmetric group Sn−2. Let Lσ be the n-component
string link obtained from 1n by surgery along the Ca

n−1-tree Tσ shown in Figure 4.1.
Likewise, denote by (Lσ )−1 the n-component string link obtained from the Ca

n−1-
tree T σ , which is obtained from Tσ by adding a positive half-twist in the edge e
(see Figure 4.1).

Let µσ (L) denote the Milnor invariant µL(σ (1), . . . , σ (n−2), n−1, n) for any
element σ ∈ Sn−2.

Proposition 4.2 [Habiro and Meilhan 2008]. Let L be an n-component Brunnian
string link. Then

L ∼Cn

∏
σ∈Sn−2

(Lσ )µσ (L).

Remark 4.3. Recall from [Habiro and Meilhan 2008; Miyazawa and Yasuhara
2006] that Cn-equivalence, link-homotopy, and Ca

n -equivalence all coincide on
BSL(n).

n-component Brunnian string links up to Cn+1-equivalence. In this section, we
study the quotient BSL(n)/Cn+1. Note that BSL(n)/Cn+1 is a finitely generated
abelian group (this is shown by using the same arguments as in the proof of [Habiro
2000, Lemma 5.5]).

σ

1 2

n − 3

n − 2

n − 3 n − 2

...

e

nn − 1

1

2

Figure 4.1. The simple Ca
n -tree Tσ . Here, the numbering of the

edges just indicates how σ ∈ Sn−1 acts on the edges of Tσ (a similar
notation is used in Figure 4.4).
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k + 1k n − 1 n

e

...
...

1 2

...
...

τ

k − 1

2

1

n − 1

n − 2

Figure 4.4. The simple Ca
n -tree Gτ .

For k ∈ {1, . . . , n}, consider a bijection τ from {1, . . . , n−1} to {1, . . . , n}\{k}.
Denote by Vτ the n-component string link obtained from 1n by surgery along the
Ca

n -tree Gτ shown in Figure 4.4. Denote by Gτ the Ca
n -tree for 1n obtained from

Gτ by adding a positive half-twist in the edge e (see Figure 4.1). Let (Vτ )
−1 be

the n-component string link obtained from 1n by surgery along Gτ .
Set µτ (L) := µL(τ (1), . . . , τ (n − 1), k, k). Denote by B(k) the set of all bi-

jections τ from {1, . . . , n − 1} to {1, . . . , n} \ {k} such that τ(1) < τ(n − 1), and
denote by ρ a bijection from {1, . . . , n − 1} to itself defined by ρ(i) = n − i . We
have the following.

Proposition 4.5. Let L be an n-component Brunnian string link. Then

(4-1) L ∼Cn+1

( ∏
σ∈Sn−2

(Lσ )µσ (L)
)

· L1 · · · Ln,

where, for each k in 1 ≤ k ≤ n, the factor Lk is the n-component Brunnian string
link ∏

τ∈B(k)

(Vτ )
nτ (L)

· (Vτρ)n′
τ (L)

such that, for any τ ∈ B(k) for k = 1, . . . , n, the exponents nτ (L) and n′
τ (L) are

two integers satisfying

(4-2) nτ (L) + (−1)n−1n′

τ (L) = µτ (L1 · · · Ln).

Proof. By Proposition 4.2 and Remark 4.3, L is obtained from the n-component
string link

L0 :=

∏
σ∈Sn−2

(Lσ )µσ (L)

by surgery along a disjoint union F of simple Ca
n -trees. By Lemma 2.3, we have

L ∼Cn+1 L0 ·(1n)G1 ·· · ··(1n)G p , where G j for 1 ≤ j ≤ p are simple Ca
n -trees for 1n .

Denote by k j the (unique) element of {1, . . . , n} such that G j intersects twice the
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k j -th component of 1n for 1 ≤ j ≤ p. We can use the AS and IHX relations for tree
claspers to replace, up to Cn+1-equivalence, each of these Ca

n -trees with a union
of linear Ca

n -trees whose ends intersect the k j -th component. More precisely, by
Lemmas 2.6, 2.5 and 2.3 we have for each 1 ≤ j ≤ p that

(1n)G j ∼Cn+1

m j∏
i=1

(Vνi j )
εi j ,

where εi j ∈ Z and where νi j is a bijection from {1, . . . , n −1} to {1, . . . , n} \ {k j }.
Since there exists, for each such νi j , a unique element τ of B(k j ) such that νi j

is equal to either τ or τρ, it follows that L is Cn+1-equivalent to an n-component
string link of the form given in (4-1). It remains to prove (4-2).

First, let us compute µτ (Vη) for all τ ∈B(k) and η∈B(l), where k, l =1, . . . , n.
By [Milnor 1957, Theorem 7], we have µτ (Vη) = µτ,n+1(Wη), where µτ,n+1 is
Milnor invariant µ(τ(1), . . . , τ (n−1), k, n+1) and where Wη denotes the (n+1)-
component string link obtained from Vη by taking, as the (n + 1)-st component, a
parallel copy of the k-th component (so that the k-th and the (n+1)-st components
of Wη have linking number zero). Now recall that Vη

∼= (1n)Gη
, where Gη is a Ca

n -
tree as shown in Figure 4.4. So Wη

∼= (1n+1)G̃η
, where G̃η is a Ca

n -tree obtained
from Gη by replacing each leaf intersecting the k-th component of 1n with a leaf
intersecting components k and n + 1, as depicted in Figures 4.6 and 4.7.

If k 6= l, then G̃η contains exactly one leaf f intersecting both the k-th and the
(n + 1)-st components of 1n+1. By Lemma 2.8, we have

(1n+1)G̃η
∼Cn+1 (1n+1)G1

η
· (1n+1)G2

η
,

where Gi
η denotes the simple Cn-tree for 1n+1 obtained from G̃η by replacing f

by fi for i = 1, 2 as shown in Figure 4.6. By Lemmas 3.1 and 3.3, µτ (Vη) is thus
equal to µτ,n+1((1n+1)G1

η
) + µτ,n+1((1n+1)G2

η
). It follows from Lemma 3.2 that

µτ (Vη) = 0.

f

f1

f2

1 2 35 4

Gη G1
η

G2
η

G̃η

1 2 3 451 2 3 4

Figure 4.6. Here and subsequently we fix, for simplicity, n = 4,
k = 1, and l = 4. We let η be the permutation (23) ∈ S3.
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41 2 3 4 51 2 3 1 2 3 4 5

Gη

G1
η

G2
η

G3
η

G4
η

G̃η

Figure 4.7

Now suppose that k = l. Then G̃η contains two leaves intersecting both the k-th
and the (n + 1)-st components of 1n+1. By Lemma 2.8, we obtain

(1n+1)G̃η
∼Cn+1 (1n+1)G1

η
· (1n+1)G2

η
· (1n+1)G3

η
· (1n+1)G4

η
,

where, for 1 ≤ i ≤ 4, Gi
η is a simple Cn-tree for 1n+1 as depicted in Figure 4.7.

By Lemmas 3.1, 3.2 and 3.3, it follows that

µτ (Vη) = µτ,n+1((1n+1)G3
η
) + µτ,n+1((1n+1)G4

η
).

Observe that the closure of each of these two string links is a copy of Milnor’s
link [Milnor 1954, Figure 7]. By a formula of Milnor [1954, page 190], we obtain
µτ,n+1((1n+1)G3

η
) = δτ,η and µτ,n+1((1n+1)G4

η
) = 0, where δ denotes Kronecker’s

symbol. So we obtain that µτ (Vη) = δτ,η. Moreover, it follows from Lemmas 3.3
and 2.5 that µτ ((Vη)

−1) = −δτ,η.
Now consider the string link Vηρ . By the same arguments as above, we have

µτ (Vηρ) = µτ ((Vηρ)−1) = 0 if k 6= l. If k = l, it follows from the same arguments
as above that

µτ (Vηρ) = µτ,n+1((1n+1)G1
ηρ

) + µτ,n+1((1n+1)G2
ηρ

),

where G1
ηρ and G2

ηρ are two simple Ca
n -trees for 1n+1 as depicted in Figure 4.8. By

Lemma 2.3 and isotopy, (1n+1)Gi
ηρ

is Ck+1-equivalent to (1n+1)T i
η
, where T i

η is as
shown in Figure 4.8 for i = 1, 2. By Lemma 2.5, we thus obtain

µτ (Vηρ) = (−1)n−1δτ,η.

We conclude that

µτ (L1 · · · Ln) =

∑
1≤i≤n

µτ (L i ) = nτ (L) + (−1)n−1n′

τ (L). �
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1 2 3 4 5 1 2 3 4 5

G2
ηρ

T 1
η

T 2
η

Gηρ

G1
ηρ

1 2 3 4

Figure 4.8

...

τ(1)
τ (2) τ (3)

k

τ(n − 1)

Figure 4.10. The link Bτ .

Remark 4.9. Observe that we obtain the following as a byproduct of the proof
of Proposition 4.5. Consider the n-component Brunnian link Bτ represented in
Figure 4.10, for some τ ∈ B(k). Bτ is the closure of the n-component string link
Vτ considered above. We showed that, for 1 ≤ l ≤ n and η ∈ B(l),

µη(Bτ ) = µη(Bτ ) = δη,τ .

We conclude this section by showing that the string links Vτ and Vτρ are linearly
independent in BSL(n)/Cn+1.

Proposition 4.11. For any integer k in {1, . . . , n} with n ≥ 3 and any τ ∈ B(k), we
have Vτ �Cn+1 Vτρ and Vτ �Cn+1 (Vτρ)−1.

Remark 4.12. In contrast to the lemma above, we will see while proving Propo-
sition 5.1 that either cl(Vτ ) ∼Cn+1 cl(Vτρ) or cl(Vτ ) ∼Cn+1 cl((Vτρ)−1).

Proof. Consider a diagram of an n-component string link L . The string link L lives
in a copy of D2

× I standardly embedded in S3. The origin (respectively terminal)
of the i-th component of L is the starting point (respectively ending point) of the
component, according to the orientation of L . We can construct a knot Kτ (L) in S3

as follows.
Connect the terminals of the k-th and the τ(1)-st components by an arc a1 in

S3
\(D2

× I ). Next, connect the origins of the τ(1)-st and the τ(2)-nd components
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1 2 3 4

L L

Kτ (L)

Figure 4.13. The knot Kτ (L).

by an arc a2 in S3
\(D2

× I ) disjoint from a1, then the terminals of the τ(2)-nd and
the τ(3)-rd components by an arc a3 in S3

\ (D2
× I ) disjoint from a1 ∪a2. Repeat

this construction until reaching the last component, the τ(n − 1)-st component,
and connect the terminal or the origin (depending on whether n is even or odd)
to the origin of the k-th component by an arc an in S3

\ (D2
× I ) disjoint from⋃

1≤i≤n−1 ai . The arcs are chosen so that, if ai and a j (with i < j) meet in the
diagram of L , then ai overpasses a j . The orientation of Kτ is the one induced from
the k-th component. An example is given in Figure 4.13 for the case n = 4, k = 4
and τ = (231) ∈ S3.

It follows immediately from the above construction and [Horiuchi 2007, Theo-
rem 1.4] that

P (n)
0 (Kτ (Vτ ); 1) = ±n! 2n and P (n)

0 (Kτ (Vτρ); 1) = P (n)
0 (Kτ ((Vτρ)−1); 1) = 0,

where P (k)
l (K ; 1) denotes the k-th derivative of the coefficient polynomial Pk(K ; t)

of zk in the HOMFLY polynomial P(K ; t, z) of a link K , evaluated in 1. The result
then follows from [Habiro 2000, Corollary 6.8] and the fact that P (n)

0 (K ; 1) is a
Goussarov–Vassiliev invariant of degree ≤ n [Kanenobu and Miyazawa 1998]. �

5. Cn+1-moves for n-component Brunnian links

In this section, we prove Theorems 1.6 and 1.9. Let us begin with stating the
following link version of Proposition 4.5.

Proposition 5.1. Let L be an n-component Brunnian link. Then

L ∼Cn+1 cl
( ∏

σ∈Sn−2

(Lσ )µσ (L)
·

∏
1≤k≤n

L ′

k

)
,

where, for each k with 1 ≤ k ≤ n,

L ′

k :=

∏
τ∈B(k)

(Vτ )
µτ (L ′

1·····L
′
n).
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G ′′

G ′ 4

321

G

4

f

321321
4

Figure 5.2

Proof. By Proposition 4.5, L is Cn+1-equivalent to the closure of the string link

(5-1) l =

∏
σ∈Sn−2

((1n)Tσ
)µσ (L)

·

∏
1≤k≤n

∏
τ∈B(k)

((1n)Gτ
)nτ (L)

· ((1n)Gτρ
)n′

τ (L),

where nτ (L) and n′
τ (L) are two integers satisfying (4-2). Denote by F the union

of all the tree claspers involved in (5-1), that is, l = (1n)F .
For some k ∈ {1, . . . , n} and τ ∈ B(k), let G be a copy of the simple Cn-tree

Gτρ in F . Let f be a leaf of G that intersects the k-th component of 1n (see Figure
5.2). When we close the k-th component of 1n , we can slide f over leaves of the
components of F\G until we obtain the Cn-tree G ′ of Figure 5.2. Denote by F ′ the
union of tree claspers obtained from F by this operation. By Lemma 2.3, we have
cl((1n)F ) ∼Cn+1 cl((1n)F ′). By Lemma 2.3 and isotopy, (1n)G ′ is Cn+1-equivalent
to (1n)G ′′ , where G ′′ is the Cn-tree depicted in Figure 5.2. G ′′ differs from a copy
of Gτ by (n + 3) half-twists on its edges. It thus follows from Lemma 2.5 that

cl((1n)Gτ
· (1n)Gτρ

) ∼Cn+1

{
cl(1n) if n is even,
cl(((1n)Gτ

)2) if n is odd.

L is thus Cn+1-equivalent to the closure of the string link∏
σ∈Sn−2

((1n)Tσ
)µσ (L)

·

∏
1≤k≤n

∏
τ∈B(k)

((1n)Gτ
)nτ (L)+(−1)n−1n′

τ (L).

The result follows from (4-2). �

The link-homotopically trivial links case: Proof of Theorem 1.6.

Proof of Theorem 1.6. That (1) implies (2) follows immediately from Lemma 3.1,
and (2) implies (3) is clear. So it remains to show that (3) implies (1).

By Proposition 4.2, if an n-component Brunnian link B is link-homotopically
trivial, then µσ (B) = 0 for all σ ∈ Sn−2. For all τ ∈ B(k) with k = 1, . . . , n,
µτ (B) is thus a well-defined integer, which satisfies µτ (B) = µτ (L(B)) for any
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??

?

?

V3B V2V1

Figure 5.3. Here B−1 (respectively V −1
p for 1 ≤ p ≤ 3) is defined

as obtained from B (respectively Vp for 1 ≤ p ≤ 3) by a positive
half-twist on the edge marked by a ? .

string link L(B) whose closure is B. By Proposition 5.1, we have

B ∼Cn+1 cl
( ∏

1≤k≤n

∏
τ∈B(k)

(Vτ )
µτ (B)

)
.

The result follows immediately. �

5.1. The 3-component links case: Proof of Theorem 1.9.

Proof of Theorem 1.9. As in the proof of Theorem 1.6, we only have to show (3)
implies (1). Let L be a 3-component Brunnian link. By Proposition 5.1, we have

(5-2) L ∼C4 cl(L0 · L1 · L2 · L3), with L p =

{
BµL (123) if p = 0,

V n p
p if p = 1, 2, 3,

where B and Vp for p = 1, 2, 3 are 3-component string links obtained from 13 by
surgery along a C2-tree and along C3-trees, respectively, as shown in Figure 5.3,
and where nk = µL1·L2·L3(i jkk) with {i, j, k} = {1, 2, 3} and i < j . Note that
µL(123) = µL(123) since L is Brunnian.

We now make an observation. Consider a union Y of u parallel copies of a
simple Ca

2 -tree for the 3-component trivial link U = U1 ∪ U2 ∪ U3, and perform
an isotopy as illustrated in Figure 5.4. Denote by Y ′ the resulting union of C2-
trees. Then by [Habiro 2000, Proposition 4.5], Y ′ can be deformed into Y by a
sequence of u C3-moves, corresponding to u parallel copies of a simple C3-tree
intersecting twice Ui and once U j and Uk . So by Lemma 2.5, UY is C4-equivalent
to cl((1n)Y · (1n)

±u
Vi

). (Here, abusing notations, we still denote by Y a union of u
simple C2-trees for 13 such that cl((13)Y ) ∼= UY .) Note that for any union F of
C3-trees, UY∪F ∼C4 cl((1n)Y∪F · (1n)

±u
Vi

).
This observation implies that the n p for p = 1, 2, 3 in (5-2) are changeable up

to |µL(123)|. So we can suppose that n p for all p = 1, 2, 3 satisfies

(5-3) 0 ≤ n p < |µL(123)|.

Now by [Krushkal 1998] we have, for all {i, j, k} = {1, 2, 3},

µL(i jkk) ≡ µcl(L0)(i jkk) + µcl(L1·L2·L3)(i jkk) mod µL(123).



136 JEAN-BAPTISTE MEILHAN AND AKIRA YASUHARA

isotopy

j

i

Y
k

j

i

Y ′

k
i

j

Y

k
C3-moves

Figure 5.4

By Lemma 3.3, we have µcl(L0)(i jkk) ≡ 0 mod µL(123) and

µcl(L1·L2·L3)(i jkk) ≡

∑
1≤p≤3

n pµcl(Vp)(i jkk) mod µL(123).

As seen in Remark 4.9, we have µcl(Vp)(i jkk) = δp,k . It follows that

(5-4) µL(i jkk) ≡ nk mod µL(123).

Consider 3-component Brunnian links L and L ′ such that µL(123) = µL ′(123)

and µL(i jkk) = µL ′(i jkk) for (i, j, k) = (1, 2, 3), (1, 3, 2) and (2, 3, 1). It follows
from (5-2), (5-4) and (5-3) that L ∼C4 L ′. This completes the proof. �

Minimal string link. Let L be an n-component Brunnian link in S3. Denote by
L(L) the set of all n-component string links l such that cl(l) = L .

By Proposition 4.5, for each l ∈ L(L) there exists an l ′ ∈ SL(n) such that l is
Cn+1-equivalent to a string link of the form

∏
σ∈Sn−2

(Lσ )µσ (l)
· l ′.

Put any total order on the set B :=
⋃

1≤k≤n B(k) and fix it. We denote by τi

for i = 1, . . . , m the elements of B according to this total order. For all l ∈ L(L),
τ ∈ B, set ατ (l) := µτ (l ′). For each element l ∈ L(L), we can thus define a vector

vl := (|ατ1(l)|, . . . , |ατk (l)|, . . . , |ατm (l)|, −ατ1(l), . . . ,−ατk (l), . . . ,−ατm (l)).

Set VL = {vl | l ∈ L(L)}. We have the following.

Proposition 5.5. Two n-component Brunnian links L and L ′ are Cn+1-equivalent
if and only if µσ (L) = µσ (L ′) for all σ ∈ Sn−1 and min VL = min VL ′ .

In Section 5.1, if we take −|µL(123)|/2 < nk < (|µL(123)| − 1)/2 instead
of inequality (5-3), then we have an explicit form of min VL for a 3-component
Brunnian link L . In general, it is a problem to determine min VL from L .

6. C4-equivalence for links

In this section we prove Theorem 1.1 and Proposition 1.4. The first subsection
provides a lemma, which is the main new ingredient for the proofs of these results.
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GS GUGT

Figure 6.3. The STU relation for Ck-graphs.

6.1. The index lemma. Let T be a simple Ck-tree for an n-component link L .
The index of T is the collection of all integers i such that T intersects the i-th
component of L , counted with multiplicities. For example, a simple C3-tree of
index {2, 3(2), 5} for L intersects component 3 twice and components 2 and 5 once
(and is disjoint from all other components of L).

Lemma 6.1. Suppose T is a simple Ck-tree with k ≥ 3 of index {i, j (k)
} for an

n-component link L with 1 ≤ i 6= j ≤ n. Then LT ∼Ck+1 L.

In order to prove this lemma, we need the notion of graph clasper introduced in
[Habiro 2000, Section 8.2]. A graph clasper is defined as an embedded connected
surface that is decomposed into leaves, nodes and bands as in Definition 2.1, but
that is not necessarily a disk. A graph clasper may contain loops. The degree of a
graph clasper G is defined as half of the number of nodes and leaves (which coin-
cides with the usual degree if G is a tree clasper). We call a degree k graph clasper
a Ck-graph. Two links related by surgery along a Ck-graph are Ck-equivalent; see
[Habiro 2005]. A Ck-graph for a link L is simple if each of its leaves intersects L
at one point.

Recall from [Habiro 2000, Section 8.2] that the STU relation holds for graph
claspers.

Lemma 6.2. Let GS , GT and GU be three Ck-graphs for 1n that differ only in a
small ball as depicted in Figure 6.3. Then (1n)GS ∼Ck+1 (1n)GT · (1n)GU .

It should be noted that, in contrast to the diagram case, this STU relation only
holds among connected claspers. Note also that it differs by a sign from the STU
relation for unitrivalent diagrams.

Lemma 6.4. Let C be a simple Ck-graph for an n-component link L in S3, which
intersects a certain component of L exactly once. If C contains a loop (that is, if
C is not a Ck-tree), then LC ∼Ck+1 L.

Proof. Suppose that C intersect the i-th component of L exactly once. By [Habiro
2000] and Lemma 2.3, there exists a union F of tree claspers for 1n and a simple
Ck-tree G for 1n containing a loop and intersecting the i-th component once, such
that L ∼= cl((1n)F ) and LC ∼Ck+1 cl((1n)F · (1n)G).
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T ′′

j

T ′

j

Figure 6.5

Consider the unique leaf f of G intersecting the i-th component. This leaf f
is connected to a loop γ of G by a path P of edges and nodes. We proceed by
induction on the number n of nodes in P .

If n = 0, that is, if f is connected to γ by a single edge, apply Lemma 6.2 at
this edge. The result then follows from Lemmas 2.3 and 2.5 by arguments similar
to those in the proof of Proposition 5.1.

For an arbitrary n ≥ 1, apply the IHX relation at the edge of P incident to γ.
By Lemma 2.6,1 we obtain (1n)G ∼Ck+1 (1n)G ′ · (1n)G ′′ , where G ′ and G ′′ are Ck-
graphs, each of which has a unique leaf intersecting the i-th component connected
to a loop by a path with (n − 1) nodes. By the induction hypothesis, we thus have
(1n)G ′ ∼Ck+1 1n ∼Ck+1 (1n)G ′′ . �

Proof of Lemma 6.1. Let T be a simple Ck-tree of index {i, j (k)
} for an n-component

link L with 1 ≤ i 6= j ≤ n. By several applications of Lemmas 6.2, 6.4, 2.3 and 2.5,
one can easily verify that LT ∼Ck+1 LT ′ , where T ′ is a simple Ck-tree of index
{i, j (k)

} for L that contains two leaves as depicted in Figure 6.5. By applying the
IHX and STU relations, we have LT ′ ∼Ck+1 LT ′′ , where T ′′ is a Ck-graph for L as
illustrated in Figure 6.5. T ′′ clearly satisfies the hypothesis of Lemma 6.4. We thus
have LT ∼Ck+1 LT ′′ ∼Ck+1 L . �

Proof of Theorem 1.1. We only need to prove the ‘if’ part of the statement. Let
L be a C3-trivial n-component link. Consider an n-component string link l such
that its closure is L and such that l ∼C3 1n . By Lemmas 2.3, 2.5 and 2.6 and the
arguments used in the proof of Proposition 5.1, we have

l ∼C4 l0 · l1 · l2 · l3 · l4,

where the li are defined as follows:

• l0 =
∏

i (1n)Ui , where Ui is union of simple C3-trees of index {i (4)
} contained

in a regular neighborhood of the i-th component of 1n , and 1 ≤ i ≤ n.

1Strictly speaking, we cannot apply Lemma 2.6 here, as G is not a Ck -tree. However, similar
relations hold among Ck -graphs [Habiro 2000, Section 8.2].
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ji lkj
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Figure 6.6. Here X−1
i j (respectively Y −1

i jk , Z−1
i jkl) is defined as ob-

tained from X i j (respectively Yi jk , Zi jkl) by a positive half-twist
on the edge marked by a ? .

• l1 =
∏

i< j ((1n)X i j )
xi j , where X i j is the simple C3-tree of index {i (2), j (2)

}

represented in Figure 6.6, and where xi j ∈ Z.

• l2 =
∏

i< j;k((1n)Yi jk )
yi jk , where Yi jk is the simple C3-tree of index {i, j, k(2)

}

represented in Figure 6.6.

• l3 =
∏

i 6= j<k<l((1n)Zi jkl )
zi jkl , where Zi jkl is the simple C3-tree whose index is

{i, j, k, l} and which is represented in Figure 6.6.

• l4 is obtained from 1n by surgery along simple C3-trees with index of the form
{i, j (3)

} for 1 ≤ i 6= j ≤ n.

As an immediate consequence of Lemma 6.1, we thus have

L = cl(l) ∼C4 cl(l0 · l1 · l2 · l3).

It follows from standard computations (see preceding sections) that

µL(i i j j) = µl1(i i j j) = 2xi j for all 1 ≤ i < j ≤ n,

µL(i jkk) = µl2(i jkk) = yi jk for all 1 ≤ i < j ≤ n and 1 ≤ k ≤ n,

µL(i jkl) = µl3(i jkl) = zi jkl for all 1 ≤ i 6= j < k < l ≤ n.

Now, consider another C3-trivial n-component link L ′, such that L and L ′ satisfy
assertions (1) and (2) of Theorem 1.1. By the same construction as above and
Theorem 1.1(1), we have

L ′
∼C4 cl(l ′0 · l1 · l2 · l3).

Here l ′0 =
∏

i (1n)U ′

i
, where U ′

i is union of simple C3-trees of index {i (4)
} contained

in a regular neighborhood of the i-th component of 1n for 1 ≤ i ≤ n. Denote
respectively by (l0)i and (l ′0)i the i-th components of l0 and l ′0. By Theorem 1.1(2)
and [Habiro 2000, Theorem 6.18], we have (l0)i ∼C4 (l ′0)i for all i in {1, . . . , n}.
We thus have l0 ∼C4 l ′0, which implies the result. �
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Figure 7.2

Proof of Proposition 1.4. It suffices to show that 2-component links L and L ′ that
are not distinguished by Vassiliev invariants of order ≤ 3 are C4-equivalent (the
converse is well known).

By [Miyazawa 2003, Theorem 1.5], L ′ can be obtained from L by a sequence
of surgeries along

(1) C4-trees and

(2) simple C3-trees with index {i, j (3)
}, {i, j} = {1, 2}.

By Lemma 6.1, each surgery of type (2) can be achieved by surgery along C4-trees.
It follows that L ∼C4 L ′. �

7. Ck and Ca
k -triviality for Brunnian links

In this section we prove Propositions 2.12 and 2.14. We will need the following
‘Ca

k -version’ of [Habiro 2000, Proposition 3.7].

Lemma 7.1. If n − 1 ≤ k ≤ l, the Ca
l -equivalence implies the Ca

k -equivalence for
n-component (string) links.

Proof. It suffices to show the case l = k + 1. Let G be a Ca
k+1-tree for an n-

component (string) link L . By [Habiro 2007, Lemma 6], we may assume that G
is simple. There exists j ∈ {1, . . . , n} such that at least two leaves of G intersect
the j-th component of L . Denote by f one of these leaves, and consider the node
of G connected to f by an edge (see Figure 7.2). By applying [Meilhan 2006,
Lemma 2.4] at this node, followed by [Habiro 2000, Proposition 2.7] and a zip
construction, G is equivalent to the union G ′

∪ G ′′ of two Ca
k -trees as represented

in Figure 7.2, where G ′′ lives in a regular neighborhood of G ′ (here, we use the zip
construction from the point of view of [Conant and Teichner 2004]). This proves
LG ∼Ca

k
L .

Note that similar arguments appear in the proof of [Fleming and Yasuhara 2008,
Proposition 3.1]. �

Proof of Proposition 2.12. First, observe that it suffices to show the result for links.
For string links, the lemma can be shown by similar arguments.
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Denote by On = U1 ∪· · ·∪Un the n-component trivial link. The ‘if’ part of the
statement is obvious. Here we consider a link L that is Ck-equivalent to On , and
we prove that L ∼Ca

k
On .

For any tree clasper T for On , set

D(T ) := {i ∈ {1, . . . , n} | T ∩ Ui 6= ∅}.

Note that D(T ) differs from the index of T introduced in Section 6.1 (here we
consider elements of {1, . . . , n} without multiplicity). By assumption, L ∼= (On)G ,
where G = G1 ∪ · · · ∪ G p is a union of simple tree claspers of degree ≥ k. Set

D(G) :=

p⋂
i=1

D(Gi ).

Consider j ∈ {1, . . . , n} \ D(G). Denote by G( j) the union of all tree claspers
of G that are disjoint from U j . As L is Brunnian, we have (On \U j )G( j) ∼= On−1.
By a sequence of crossing changes between edges of G( j) and U j , we can move
U j into the exterior of a 3-ball containing (On \ U j ) ∪ G( j). By the proof of
[Habiro 2000, Proposition 4.5], each such crossing change is realized by surgery
along one Cdeg(Gi )+1-tree T such that D(T ) = D(Gi ) ∪ { j}, where Gi ⊂ G( j)
contains the edge involved in the crossing change. So there exists a union F( j) of
tree claspers T1 ∪ · · ·∪ Tm of degree > k with D(F( j)) ⊃ D(G( j))∪{ j} such that
L ∼= (On−1 t U j )G∪F( j), where t denotes the split union. So we have

L ∼= ((On−1)G( j) t U j )(G\G( j))∪F( j) ∼= (On−1 t U j )(G\G( j))∪F( j).

Set G ′
:= (G\G( j))∪F( j). We have L ∼= (On)G ′ , and clearly D(G ′)⊃D(G)∪{ j}.

So by repeating this procedure, we obtain a union G ′′ of tree claspers for On such
that L ∼= (On)G ′′ . This union satisfies D(G ′′) = {1, . . . , n}, that is, each component
of G ′′ is a Ca

p-tree for some p ≥ k. The result then follows from Lemma 7.1. �

Proof of Proposition 2.14. Consider n-component Brunnian string links L and L ′

such that L ∼Ck L ′ for some k ≥ n − 1. Then L ∼= (1n)F∪G , where F is a union of
Ca

n−1-trees such that (1n)F ∼= L ′, and G is a union of tree claspers of degree ≥ k.
Let F ′

∪ G ′ be obtained from F ∪ G by passing an edge of G across an edge of F
or sliding a leaf of G over a leaf of F (see Figure 2.4). By examining the proofs of
[Habiro 2000, Propositions 4.6 and 4.4], one easily sees that (1n)F∪G ∼Ca

p
(1n)F ′∪G ′

for p ≥ n + k − 1. So by Lemma 7.1 we obtain

L ∼Ca
k
(1n)F · (1n)G,

where G is a union of tree clasper of degree ≥ k. Since L is Brunnian, (1n)F ·(1n)G

is also Brunnian. This and the fact that F is a union of Ca
n−1-trees imply that

(1n)G ∼= L ′′ is Brunnian. Now, (1n)F ∼= L ′, and (1n)G ∼= L ′′ is a Brunnian string link
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that is Ck-equivalent to the trivial string link. So by Proposition 2.12, L ′′
∼Ca

k
1n .

It follows that L ∼Ca
k

L ′. �
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8000 ÅRHUS C
DENMARK

meilhan@imf.au.dk
http://home.imf.au.dk/meilhan/index.html

AKIRA YASUHARA

TOKYO GAKUGEI UNIVERSITY

DEPARTMENT OF MATHEMATICS

KOGANEISHI

TOKYO 184-8501
JAPAN

yasuhara@u-gakugei.ac.jp
http://www.u-gakugei.ac.jp/~yasuhara/




