Vol. 238, No. 2, 2008

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Univalence of equivariant Riemann domains over the complexifications of rank-one Riemannian symmetric spaces

Laura Geatti and Andrea Iannuzzi

Vol. 238 (2008), No. 2, 275–330
Abstract

Let G∕K be a noncompact, rank-one, Riemannian symmetric space, and let G be the universal complexification of G. We prove that a holomorphically separable, G-equivariant Riemann domain over G∕K is necessarily univalent, provided that G is not a covering of SL(2, ). As a consequence, one obtains a univalence result for holomorphically separable, G×K-equivariant Riemann domains over G. Here G×K acts on G by left and right translations. The proof of such results involves a detailed study of the G-invariant complex geometry of the quotient G∕K, including a complete classification of all its Stein G-invariant subdomains.

Keywords
Riemann domain, semisimple Lie group, symmetric space
Mathematical Subject Classification 2000
Primary: 32D26, 32Q28, 53C35, 32M05
Milestones
Received: 17 April 2008
Accepted: 25 July 2008
Published: 1 December 2008
Authors
Laura Geatti
Dipartimento di Matematica
Università di Roma 2 “Tor Vergata”
via della Ricerca Scientifica
00133 Roma
Italy
Andrea Iannuzzi
Dipartimento di Matematica
Università di Roma 2 “Tor Vergata”
Via della Ricerca Scientifica
00133 Roma
Italy