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We compute the topological complexity of Eilenberg–Mac Lane spaces as-
sociated to the group of automorphisms of a finitely generated free group
that act by conjugation on a given basis, and to certain subgroups.

1. Introduction

Given a mechanical system, a motion planning algorithm is a function that assigns
to any pair of states of the system, an initial state and a desired state, a continuous
motion of the system starting at the initial state and ending at the desired state.
Interest in such algorithms arises in robotics; see Latombe [1991] as a general
reference. In a sequence of recent papers [2003; 2004; 2006], Farber develops a
topological approach to the problem of motion planning, introducing a numerical
invariant that gives a measure of the “navigational complexity” of the system.

Let X be a path-connected topological space, the space of all possible configu-
rations of a mechanical system. In topological terms, the motion planning problem
consists of finding an algorithm that takes pairs of configurations, that is, points
(x0, x1) ∈ X × X , and produces a continuous path γ : [0, 1] → X from the initial
configuration x0 = γ(0) to the terminal configuration x1 = γ(1). Let P X be the
space of all continuous paths in X , equipped with the compact-open topology. The
map π : P X → X × X, γ 7→ (γ(0), γ(1)), which sends a path to its endpoints, is a
fibration. The motion planning problem then asks for a section of this fibration, a
map s : X × X → P X satisfying π ◦s = idX×X . It would be desirable for a motion
planning algorithm to depend continuously on the input. However, one can show
that there exists a globally continuous motion planning algorithm s : X × X → P X
if and only if X is contractible; see [Farber 2003, Theorem 1]. One is thus led to
study the discontinuities of such algorithms.
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For the space X , define the topological complexity TC(X) to be the Schwarz
genus, or sectional category, of the path-space fibration:

TC(X) := secat(π : P X → X × X).

In other words, TC(X) is the smallest number k for which there exists an open
cover X × X = U1 ∪ · · · ∪ Uk such that the map π admits a continuous section
s j : U j → P X over each U j satisfying π ◦ s j = idU j . One can show that TC(X) is
an invariant of the homotopy type of X ; see [Farber 2003, Theorem 3].

Let X be an aspherical space, that is, a space whose higher homotopy groups
vanish: πi (X) = 0 for i ≥ 2. Farber [2006, Section 31] poses the problem of com-
puting the topological complexity of such a space in terms of algebraic properties
of the fundamental group G = π1(X). In other words, given a discrete group G,
define the topological complexity of G to be TC(G) := TC(K (G, 1)), the topo-
logical complexity of an Eilenberg–Mac Lane space of type K (G, 1), and express
TC(G) in terms of invariants such as the cohomological or geometric dimension
of G if possible.

A number of results in the literature may be interpreted in the context of this
problem. For a right-angled Artin group G, the topological complexity of an asso-
ciated K (G, 1)-complex was computed in [Cohen and Pruidze 2008]. For the Artin
pure braid group G = Pn , the configuration space F(C, n) of n ordered points in
C is an associated Eilenberg–Mac Lane space. Similarly, the configuration space
F(Cm, n) of n ordered points in Cm = C \ {m points} is an Eilenberg–Mac Lane
space for the group Pn,m = ker(Pn → Pm), the kernel of the homomorphism that
forgets the last n − m strands of a pure braid. In [Farber and Yuzvinsky 2004]
and [Farber et al. 2007], Farber, Grant, and Yuzvinsky determine the topological
complexity of these configuration spaces. All these results may be expressed in
terms of the cohomological dimension, cd(G), of the underlying group G. For
instance, one has TC(Pn) = TC(F(C, n)) = 2n − 2 = 2 cd(Pn).

The pure braid group Pn and the group Pn,m may be realized as subgroups
of Aut(Fn), the automorphism group of the finitely generated free group Fn =

〈x1, . . . , xn〉. The purpose of this note is to determine the topological complexity
of several other subgroups of Aut(Fn).

Let G = PΣn be the “group of loops”, the group of motions of a collection of
n ≥ 2 unknotted, unlinked circles in 3-space, where each (oriented) circle returns
to its original position. This group may be realized as the basis-conjugating auto-
morphism group, or pure symmetric automorphism group, of Fn , consisting of all
automorphisms that, for the fixed basis {x1, . . . , xn} for Fn , send each generator to
a conjugate of itself. A presentation for PΣn was found by McCool [1986]. In par-
ticular, this group is generated by automorphisms αi, j ∈ Aut(Fn) for 1 ≤ i 6= j ≤ n,
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defined by αi, j (xi ) = x j xi x
−1
j and αi, j (xk) = xk for k 6= i . Also of interest is the

“upper triangular McCool group”, the subgroup PΣ+
n of PΣn generated by αi, j

for i < j . The main results of this note may be summarized as follows.

Theorem. The topological complexity of the basis-conjugating automorphism
group is

TC(PΣn) = 2n − 1.

The topological complexity of the upper triangular McCool group is

TC(PΣ+

n ) = 2n − 2.

Let X be an Eilenberg–Mac Lane complex of type K (G, 1) for either G = PΣn

or G = PΣ+
n . Since the topological complexity TC(X) = TC(G) of X is the

Schwarz genus of the path-space fibration, it admits several useful bounds. For
instance, one has

TC(X) = secat(π : P X → X × X) ≤ cat(X × X) ≤ 2 cat(X)− 1 ≤ 2 dim(X)+ 1,

where cat(X) denotes the Lusternik–Schnirelmann category of X ; see Schwarz
[1961; 1962] and James [1978] as classical references. One also has a cohomolog-
ical lower bound

TC(X) ≥ 1 + cl(ker(π∗
: H∗(X × X; Q) → H∗(P X; Q))),

where cl(A) denotes the cup length of a graded ring A, the largest integer q for
which there are homogeneous elements a1, . . . , aq of positive degree in A such that
a1 · · · aq 6= 0. Using the Künneth formula, the fact that P X ' X , and the equality
H∗(X; Q) = H∗(G; Q), the kernel of π∗

: H∗(X × X; Q) → H∗(P X; Q) may be
identified with the kernel Z = Z(H∗(G; Q)) of the cup-product map

H∗(G; Q) ⊗ H∗(G; Q)
∪ // H∗(G; Q);

see [Farber 2003, Theorem 7]. We call the cup length of the ideal Z of zero-divisors
the zero-divisor cup length of H∗(G; Q) and denote it by zcl(H∗(G; Q)) = cl(Z).
In this notation, the cohomological lower bound reads

TC(G) ≥ 1 + zcl(H∗(G; Q)).

This note is organized as follows. After a discussion of basis-conjugating au-
tomorphism groups in Section 2, including the determination of their geometric
dimensions, we use the (known) structure of the cohomology rings of these groups
to compute the zero-divisor cup lengths of these rings in Section 3. These results
are used in Section 4 to find the topological complexity of these groups. We con-
clude with some remarks concerning formality in Section 5.
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2. Basis-conjugating automorphism groups

Let N be a compact set contained in the interior of a manifold M . Generalizing the
familiar interpretation of a braid as the motion of N ={n distinct points} in M =R2,
Dahm [1962] defines a motion of N in M as a path ht in Hc(M), the space of
homeomorphisms of M with compact support, satisfying h0 = idM and h1(N )= N .
With an appropriate notion of equivalence, the set of equivalence classes of motions
of N in M is a group, and, furthermore, there is a homomorphism from this group
to the automorphism group of the fundamental group π1(M \ N ).

Goldsmith [1981] gives an exposition of Dahm’s (unpublished) work, with par-
ticular attention paid to the case where N = Ln is a collection of n unknotted,
unlinked circles in M = R3. Let Gn denote the corresponding motion group. Gold-
smith shows that Gn is generated by three types of motions — flipping a single cir-
cle, interchanging two (adjacent) circles, and pulling one circle through another —
and that the Dahm homomorphism φ : Gn → Aut(π1(R

3
\ Ln)) is an embedding.

Choose a basepoint e ∈ R3 that is disjoint from Ln = C1 ∪ · · · ∪ Cn , and for
each i , let xi be (the homotopy class of) a loop based at e linking Ci once. This
identifies π1(R

3
\ Ln, e) = Fn with the free group generated by x1, . . . , xn . With

this identification, the generators of the motion group Gn ↪→ Aut(Fn) correspond to
automorphisms ρi (flip Ci ), τi (switch Ci and Ci+1), and αi, j (pull Ci through C j )
defined by

ρi (xk) =

{
x−1

k if k = i ,
xk if k 6= i ,

τi (xk) =


xk+1 if k = i ,
xk−1 if k = i + 1,
xk if k 6= i, i + 1,

and

(2-1) αi, j (xk) =

{
x j xk x−1

j if k = i ,
xk if k 6= i .

Let ϕ : Aut(Fn) → Aut(Fn/[Fn, Fn]) ∼= GL(n, Z) denote the epimorphism in-
duced by the abelianization homomorphism Fn → Fn/[Fn, Fn] ∼= Zn . There is a
corresponding short exact sequence

1 −→ IAn // Aut(Fn)
ϕ // GL(n, Z) // 1 ,

where IAn = ker ϕ is the well-known group of automorphisms of Fn that induce
the identity on H1(Fn; Z). Brownstein and Lee [1993] considered the commutative
diagram

1 // ker(ϕ ◦ φ) //

��

Gn

φ

��

ϕ◦φ // Z/2 o 6n //

��

1

1 // IAn // Aut(Fn)
ϕ // GL(n, Z) // 1,
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where the vertical maps are embeddings. They showed that the image of Gn under
ϕ ◦ φ is the wreath product Z/2 o 6n , the reflection group of type Dn . The ker-
nel of ϕ ◦ φ corresponds to the group Cn of “pure motions” of Ln , motions that
bring each oriented circle back to its original position. The isomorphic image of
ker(ϕ◦φ) in Aut(Fn), that is, the intersection IAn ∩φ(Gn), is the basis-conjugating
automorphism group of the free group.

Definition 2.1. The basis-conjugating automorphism group of the free group Fn is
the subgroup of Aut(Fn) generated by the elements αi, j from (2-1) with 1≤ i, j ≤n,
and i 6= j . Following [Jensen et al. 2006], we denote this group by PΣn .

McCool [1986] showed that PΣn admits a presentation with the aforementioned
generators and defining relations

(2-2)


[αi, j , αk,l] for i, j, k, l distinct,

[αi, j , αk, j ] for i, j, k distinct,

[αi, j , αi,kα j,k] for i, j, k distinct,


where [α, β] = αβα−1β−1 denotes the commutator.

An “upper triangular” version of the basis-conjugating automorphism group has
been studied in a number of recent works; see [Bardakov and Mikhailov 2008;
Cohen et al. 2007; Cohen et al. 2008].

Definition 2.2. The upper triangular McCool group PΣ+
n is the subgroup of PΣn

generated by the elements αi, j with i < j , subject to the relevant relations (2-2).

The upper triangular McCool group PΣ+
n shares a number of features with the

Artin pure braid group Pn . For instance, both groups may be realized as iterated
semidirect products of free groups:

Pn = Fn−1 oηn−1 · · · oη2 oF1 and PΣ+

n = Fn−1 oµn−1 · · · oµ2 oF1.

For the pure braid group, the action of the free group Fk on Fm with 1 ≤ k < m ≤

n − 1 is given by the restriction of the Artin representation ηm : Pm → Aut(Fm);
see for instance [Birman 1974]. For the upper triangular McCool group, the action
of Fk = 〈αn−k, j | n −k +1 ≤ j ≤ n〉 on Fm = 〈αn−m, j | n −m +1 ≤ j ≤ n〉, that is,
the homomorphism µm : �@

m−1
j=1 F j → Aut(Fm), was determined in [Cohen et al.

2008] (with different notation). Using the relations (2-2), one can check that

µm(α j,p)(αi,q) = α−1
j,pαi,qα j,p =

{
αi,pαi,qα−1

i,p if q = j ,
αi,q otherwise,

where i = n − m, j = n − k, 1 ≤ i < j < p ≤ n, and i + 1 ≤ q ≤ n.
Consideration of centers provides another similarity between these groups. For

a group G, let Z(G) denote the center of G, and let G = G/Z(G). It is well known
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that the center of the pure braid group is infinite cyclic and that Pn ∼= Pn ×Z(Pn)=

Pn × Z. The analogous result holds for the upper triangular McCool group.

Proposition 2.3. The center of the upper triangular McCool group PΣ+
n is infinite

cyclic, the quotient PΣ+
n = Fn−1 oµn−1 · · ·oµ3 F2 is an iterated semidirect product

of free groups, and PΣ+
n

∼= PΣ+
n × Z(PΣ+

n ) = PΣ+
n × Z.

Proof. Consider the element c = α1,nα2,n · · · αn−1,n of the group PΣ+
n . Using

(2-2), it is readily checked that c commutes with all the generators of PΣ+
n , and

so c ∈ Z(PΣ+
n ). Also it is clear that c ∈ Aut(Fn) has infinite order. Consequently,

the infinite cyclic subgroup C = 〈c〉 is contained in the center Z(PΣ+
n ).

Since αn−1,n = (α1,nα2,n · · · αn−2,n)
−1

· c, the group PΣ+
n admits a presenta-

tion with generators c and αi, j for 1 ≤ i < j ≤ n and (i, j) 6= (n − 1, n), rela-
tions [c, αi, j ] for all i < j , and the relations (2-2) (not involving αn−1,n). Thus,
PΣ+

n
∼= C × (PΣ+

n /C). Since the free group F1 in the iterated semidirect product
decomposition PΣ+

n = �@
n−1
j=1 F j is generated by αn−1,n , it is clear from the above

discussion that PΣ+
n /C = Fn−1 oµn−1 · · · oµ3 F2. An easy inductive argument

reveals that the center of this quotient is trivial. It follows that C = Z(PΣ+
n ),

which completes the proof. �

Despite the aforementioned similarities, the groups Pn and PΣ+
n are not iso-

morphic; see Bardakov and Mikhailov [2008].

Definition 2.4. Let G be a group. The cohomological dimension cd(G) of G is
the smallest integer n such that Hq(G; M) = 0 for any G-module M and all q > n.
The geometric dimension geom dim(G) of the group G is the smallest dimension
of an Eilenberg–Mac Lane complex of type K (G, 1).

Proposition 2.5. Let PΣn be the basis-conjugating automorphism group. Then

geom dim(PΣn) = cd(PΣn) = n − 1.

Proof. Collins [1989] showed that, for each n, the cohomological dimension of
PΣn is as asserted: cd(PΣn) = n − 1. A classical result of Eilenberg and Ganea
[1957] states that, for groups of cohomological dimension at least 3, the geometric
dimension is equal to the cohomological dimension. Thus, the assertion holds for
PΣn with n > 3.

Since PΣ2 = F2 is the free group generated by α2,1 and α1,2, the case n = 2 is
immediate.

It remains to consider the case n = 3. The group PΣ3 is generated by six
elements αi, j with 1≤ i 6= j ≤3. Let β1 =α2,1α3,1, β2 =α1,2α3,2, and β3 =α1,3α2,3,
and observe that these elements generate the inner automorphism group Inn(F3)

of F3, which is isomorphic to F3. As noted in [Brownstein and Lee 1993], the
group PΣ3 = Inn(F3) o F is a semidirect product, where F = 〈α1,2, α2,1, α3,1〉 is
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also a free group on 3 generators. Thus, PΣ3 ∼= F3 o F3 is a semidirect product of
two finitely generated free groups.

For an arbitrary iterated semidirect product of finitely generated free groups G,
Cohen and Suciu [1998, Section 1.3] give an explicit construction of a K (G, 1)-
complex XG . If G =�@

`
i=1 Fdi , the complex XG is `-dimensional. In particular, for

the group G = PΣ3, this construction yields a 2-dimensional K (G, 1)-complex.
We therefore have geom dim(PΣ3) = cd(PΣ3) = 2. �

A similar result holds for the upper triangular McCool groups.

Proposition 2.6. Suppose PΣ+
n is the upper triangular McCool group, and let

PΣ+
n = PΣ+

n /Z(PΣ+
n ). Then

geom dim(PΣ+

n ) = cd(PΣ+

n ) = n − 1 and geom dim(PΣ+

n ) = cd(PΣ+

n ) = n − 2.

Proof. Since PΣ+
n = Fn−1 oµn−1 · · · oµ3 oF2 and PΣ+

n = PΣ+
n × Z are iterated

semidirect products of finitely generated free groups, this follows immediately
from the results of [Cohen and Suciu 1998]. �

3. Structure of the cohomology ring

As noted in Section 1, the zero-divisor cup length of the cohomology ring of a
group provides a lower bound for the topological complexity. In this section, we
determine this lower bound for the groups PΣn and PΣ+

n .
Let A =

⊕`
k=0 Ak be a graded algebra over a field k, and recall that the cup

length cl(A) is the largest integer q for which there are homogeneous elements
a1, . . . , aq of positive degree in A such that a1 · · · aq 6= 0. The tensor product
A ⊗ A has a natural graded algebra structure, with multiplication

(u1 ⊗ v1) · (u2 ⊗ v2) = (−1)|v1|·|u2|u1u2 ⊗ v1v2.

Let µ : A ⊗ A → A denote the multiplication homomorphism, and let Z = ker(µ)

be the ideal of zero-divisors. The zero-divisor cup length of A, denoted by zcl(A),
is the cup length of this ideal: zcl(A) = cl(Z). Observe that if a ∈ A, then the
element ā = a ⊗ 1 − 1 ⊗ a ∈ Z is a zero-divisor.

In [1993], Brownstein and Lee determined the low-dimensional cohomology
H≤2(PΣn; Z) of the basis-conjugating automorphism group, and conjectured the
general ring structure in terms of generators and relations. This conjecture was
recently proved by Jensen, McCammond, and Meier [2006, Theorem 6.7]. For
our purposes, it suffices to work with coefficients in the field k = Q of rational
numbers. So we suppress coefficients and denote the rational cohomology of a
group G by H∗(G) = H∗(G; Q) throughout this section and the next.

Theorem 3.1 [Jensen et al. 2006]. The rational cohomology algebra H∗(PΣn) is
isomorphic to E/I , where E is the exterior algebra over Q generated by degree
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one elements ai, j for 1 ≤ i 6= j ≤ n, and I is the homogeneous ideal generated by
the degree two elements

ai, j a j,i for i, j distinct, and

ak, j a j,i − ak, j ak,i − ai, j ak,i for i, j, k distinct.

This result may be used to exhibit an explicit basis for Hq(PΣn) for each q
with 0 ≤ q ≤ n − 1; see [Jensen et al. 2006, Section 6]. Call an element of the
form ai, j a j,k · · · as,t at,i a cyclic product. Then Hq(PΣn) has a basis consisting of
those q-fold products ai1, j1ai2, j2 · · · aiq , jq of the one-dimensional generators that do
not contain any cyclic products and have distinct first indices i1, . . . , iq . It follows
that the Poincaré polynomial of PΣn is

∑
q≥0 dim Hq(PΣn) · tq

= (1+nt)n−1. In
particular, H i (PΣn) = 0 for i ≥ n, and the cup length of H∗(PΣn) is n − 1.

We use these results to find the zero-divisor cup length of the ring H∗(PΣn).

Theorem 3.2. Let PΣn be the basis-conjugating automorphism group. Then the
zero-divisor cup length of the rational cohomology algebra of PΣn is

zcl(H∗(PΣn)) = 2n − 2.

Proof. In general, the zero-divisor cup length of an algebra A cannot exceed the
cup length of the tensor product A ⊗ A, which is twice the cup length of A itself:
zcl(A) ≤ cl(A ⊗ A) = 2 cl(A). Since cl(H∗(PΣn)) = n − 1 by Theorem 3.1, it
follows that zcl(H∗(PΣn)) ≤ 2n − 2.

For the reverse inequality, we work in the aforementioned basis for H∗(PΣn)

and the corresponding induced basis for the tensor product H∗(PΣn)⊗ H∗(PΣn).
Observe that any monomial in the generators of H∗(PΣn) that contains a cyclic
product must vanish, and that any finite expression in H∗(PΣn) can be reduced to
an expression in the basis elements after finitely many applications of the relation

(3-1) ak, j ak,i = ak, j a j,i + ai, j ak,i

by eliminating, step-by-step, repetition in the first index.
For each i < n, consider the elements xi = ai,i+1 and yi = ai+1,i in H∗(PΣn)

and the corresponding zero divisors xi = xi ⊗ 1 − 1 ⊗ xi and yi = yi ⊗ 1 − 1 ⊗ yi

in the tensor product H∗(PΣn) ⊗ H∗(PΣn). We claim that the product

M =

n−1∏
i=1

xi ·

n−1∏
i=1

yi = x1x2 · · · xn−1y1y2 · · · yn−1

of these 2n − 2 zero divisors is different from zero. To prove this, we use the
relation (3-1) to express M in terms of the specified basis of the tensor product,
and identify at least one monomial left unchanged by the reduction process.
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If I is a subset of [n −1] = {1, 2, . . . , n −1}, let |I | denote the cardinality of I ,
and let UI = z1 · · · zn−1 and VI = ẑ1 · · · ẑn−1, where

zi =

{
yi , if i /∈ I ,
xi , if i ∈ I

and ẑi =

{
yi , if i ∈ I ,
xi , if i /∈ I .

Then, using the fact that xi yi = yi ⊗ xi − xi ⊗ yi , we have

(3-2) M =

∑
I⊆[n−1]

(−1)|I |UI ⊗ VI .

When I = ∅ is the empty set, the summand U∅ ⊗ V∅ in (3-2) is

U∅ ⊗ V∅ = y1y2 · · · yn−1 ⊗x1x2 · · · xn−1 = a2,1a3,2 · · · an,n−1 ⊗a1,2a2,3 · · · an−1,n.

This monomial is already a basis element of H n−1(PΣn) ⊗ H n−1(PΣn).
We claim that the expression of any other summand (−1)|I |UI ⊗ VI of (3-2) in

terms of our basis for H∗(PΣn)⊗ H∗(PΣn) will avoid the specified basis element
U∅ ⊗ V∅. Clearly, if the monomial UI is already a basis element of H∗(PΣn),
there is nothing to prove. Otherwise, UI contains a factor ak, j ak,i for at least one k
with 1 < k < n, and these are the only generators in the product UI involving
index k. Applying the relation (3-1) to the product ak, j ak,i , we obtain (up to sign)

UI = (ak, j a j,i + ai, j ak,i ) · (other factors) = ak, j P + ak,i Q,

where P and Q are monomials in the generators ar,s of H∗(PΣn) with r 6= k
and s 6= k. Further application of reductive relation (3-1) to P and Q will result
in no further appearance of k in the indices. Hence writing UI = ak, j P +ak,i Q in
the specified basis for H∗(PΣn) will yield a linear combination of basis elements,
each with exactly one factor involving index k. On the other hand, our fixed mono-
mial U∅ = an,n−1 · · · ak+1,kak,k−1 · · · a2,1 contains two factors involving index k.
Therefore the basis monomial U∅ ⊗ V∅ is different from any other possible basis
summand coming from UI ⊗ VI with I 6= ∅, and our claim holds. �

The cohomology of the upper-triangular McCool group PΣ+
n may be analyzed

in a similar manner. The integral cohomology of PΣ+
n was computed by Cohen,

Pakianathan, Vershinin, and Wu [2008, Theorem 1.4]. Their results yield:

Theorem 3.3 [Cohen et al. 2008]. The rational cohomology algebra H∗(PΣ+
n )

is isomorphic to E+/I +, where E+ is the exterior algebra over Q generated by
degree one elements ai, j for 1 ≤ i < j ≤ n, and I + is the homogeneous ideal
generated by the degree two elements

ai, j ai,k − ai, j a j,k for i < j < k.

This result may be used to exhibit an explicit basis for Hq(PΣ+
n ) for each q with

0 ≤ q ≤ n −1; compare [Cohen et al. 2008, Section 7]. The group Hq(PΣ+
n ) has a
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basis consisting of those q-fold products ai1, j1ai2, j2 · · · aiq , jq of the one-dimensional
generators that satisfy 1 ≤ i1 < i2 < · · · < iq ≤ n −1 and i p < jp ≤ n for each p. It
follows that

∑
q≥0 dim Hq(PΣ+

n ) · tq
=

∏n−1
k=1(1+kt). In particular, H i (PΣ+

n ) = 0
for i ≥ n, and the cup length of H∗(PΣ+

n ) is n − 1.
We analyze the zero-divisor cup length of the ring H∗(PΣ+

n ) using these results.

Theorem 3.4. Let PΣ+
n be the upper-triangular McCool group. Then the zero-

divisor cup length of the rational cohomology algebra of PΣ+
n satisfies

zcl(H∗(PΣ+

n )) ≥ 2n − 3.

Proof. Consider the zero-divisors āi, j = ai, j ⊗1−1⊗ai, j and an−1,n ⊗an−1,n . We
check that the product

(3-3) ā1,n−1ā1,n ā2,n−1ā2,n · · · ān−2,n−1ān−2,n · (an−1,n ⊗ an−1,n)

is nonzero. Note that

āi,n−1 · āi,n = ai,n ⊗ ai,n−1 − ai,n−1 ⊗ ai,n + ai,n−1ai,n ⊗ 1 + 1 ⊗ ai,n−1ai,n

for any i ≤ n − 2. The product (3-3) contains summands of the form

(3-4) ±a1,i1a2,i2 · · · an−2,in−2an−1,n ⊗ a1, j1a2, j2 · · · an−2, jn−2an−1,n,

where i p and jp take different values from the set {n−1, n} for each p. Such sum-
mands represent distinct basis elements in the tensor product. These are, in fact,
the only nonzero summands in the expression (3-3). Any other monomial, say µ,
in this expression will contain a factor of the form ai,n−1ai,n ⊗ 1 or 1 ⊗ ai,n−1ai,n

for some i with 1 ≤ i ≤ n −2. The relations ai,n−1ai,n = ai,n−1an−1,n in H∗(PΣ+
n )

and the fact that an−1,n ⊗ an−1,n is also a factor of µ may be used to show that µ

is trivial in H∗(PΣ+
n ) ⊗ H∗(PΣ+

n ). Thus the product (3-3) is a nontrivial linear
combination of the terms given by (3-4), and is nonzero. �

Remark 3.5. It follows from the results of the next section that equality holds in
Theorem 3.4, that is, zcl(H∗(PΣ+

n )) = 2n − 3.

4. Topological complexity

In this section, we recall several necessary properties of topological complexity
and prove the main results of the paper.

Let X be a path-connected topological space. We are interested in the case where
X is an Eilenberg–Mac Lane space of type K (G, 1) for G = PΣn or G = PΣ+

n ,
so assume that X has the homotopy type of a finite CW-complex. Let P X denote
the space of all continuous paths γ : [0, 1] → X , equipped with the compact-open
topology. The map π : P X → X × X , γ 7→ (γ(0), γ(1)), which sends a path to its
endpoints, is a fibration, with fiber �X , the based loop space of X .
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Recall from Section 1 that the motion planning problem asks for a (continuous)
section of this fibration, a map s : X × X → P X satisfying π ◦ s = idX×X . As
shown by Farber [2003, Theorem 1], in most cases such a section cannot exist.

Proposition 4.1 [Farber 2003]. The path space fibration π : P X → X × X admits
a section if and only if X is contractible.

Definition 4.2. The topological complexity TC(X) of X is the smallest positive
integer k for which X × X = U1 ∪ · · · ∪ Uk , where U j is open and there exists a
continuous section s j : Ui → P X satisfying π ◦s j = idUi for each j with 1 ≤ j ≤ k.
In other words, the topological complexity of X is the Schwarz genus (or sectional
category) of the path space fibration π : P X → X × X .

The topological complexity of X is a homotopy-type invariant; see [Farber 2003,
Theorem 3]. If G is a discrete group, define TC(G), the topological complexity
of G, to be that of an Eilenberg–Mac Lane space of type K (G, 1). Farber [2006,
Section 31] poses the problem of determining the topological complexity of G in
terms of other invariants of G such as cd(G), the cohomological dimension. In
this section, we solve this problem for the basis-conjugating automorphism groups
PΣn and PΣ+

n .
We will require several properties of topological complexity. We briefly record

these and refer to the survey [Farber 2006] for further details.
First, if X is a finite-dimensional cell complex, then TC(X) ≤ 2 dim(X) + 1;

see [Farber 2006, Section 3]. Consequently, if G is a group of finite geometric
dimension, then

(4-1) TC(G) ≤ 2 geom dim(G) + 1.

Second, as noted in Section 1, a lower bound for the topological complexity of
a group G is provided by the zero-divisor cup length of the cohomology ring
H∗(G) = H∗(G; Q):

(4-2) TC(G) ≥ 1 + zcl(H∗(G));

see [Farber 2006, Section 15]. Finally, if X and Y are path-connected paracompact
locally contractible topological spaces (in particular, CW-complexes), then

TC(X × Y ) ≤ TC(X) + TC(Y ) − 1;

see [Farber 2006, Section 12]. Consequently, if G1 and G2 are groups (of finite
geometric dimension), then

(4-3) TC(G1 × G2) ≤ TC(G1) + TC(G2) − 1.

With these facts at hand, we now prove our main theorems.
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Theorem 4.3. The topological complexity of the basis-conjugating automorphism
group PΣn is TC(PΣn) = 2n − 1.

Proof. By Theorem 3.2, the zero-divisor cup length of H∗(PΣn) is given by
zcl(H∗(PΣn)) = 2n − 2. So the lower bound (4-2) yields TC(PΣn) ≥ 2n − 1.
For the reverse inequality, recall from Proposition 2.5 that

geom dim(PΣn) = cd(PΣn) = n − 1.

Consequently, the upper bound (4-1) yields TC(PΣn) ≤ 2n − 1. �

Theorem 4.4. The topological complexity of the upper triangular McCool group
PΣ+

n is TC(PΣ+
n ) = 2n − 2.

Proof. By Theorem 3.4, the zero-divisor cup length of H∗(PΣ+
n ) is no less than

2n − 3. So the lower bound (4-2) yields TC(PΣ+
n ) ≥ 2n − 2.

For the reverse inequality, recall from Proposition 2.3 that PΣ+
n

∼= PΣ+
n × Z.

Since the circle S1 is a K (Z, 1)-space, and TC(Z) = TC(S1) = 2 (see, for instance,
[Farber 2003, Section 5]), the product inequality (4-3) yields

TC(PΣ+

n ) ≤ TC(PΣ+

n ) + TC(Z) − 1 = TC(PΣ+

n ) + 1.

By Proposition 2.6, we have geom dim(PΣ+
n ) = cd(PΣ+

n ) = n −2. Consequently,
the upper bound (4-1) yields TC(PΣ+

n ) ≤ 2n − 3. Thus TC(PΣ+
n ) ≤ 2n − 2. �

Corollary 4.5. The zero-divisor cup length of the rational cohomology algebra of
PΣ+

n is zcl(H∗(PΣ+
n )) = 2n − 3.

5. Formality

If X is an Eilenberg–Mac Lane space of type K (G, 1), where either G = PΣn or
G = PΣ+

n , the results of the previous section imply that the topological complexity
of X is given by the cohomological lower bound, that is,

TC(X) = 1 + zcl(H∗(X; Q)).

This equality holds for a number of spaces of interest in topology, including certain
configuration spaces, complements of certain complex hyperplane arrangements,
and Eilenberg–Mac Lane spaces corresponding to right-angled Artin groups; see
[Cohen and Pruidze 2008; Farber et al. 2007; Farber and Yuzvinsky 2004; Yuzvin-
sky 2007]. Since all of these spaces are formal in the sense of Sullivan [1977], it
is natural to speculate that such an equality holds for an arbitrary formal space X .
Conjecturally, TC(X) = 1 + zcl(H∗(X; R)) for appropriate coefficients R. This
conjecture is explicitly made by Yuzvinsky [2007] for the complement of an arbi-
trary hyperplane arrangement. Related problems are studied in [Fernández Suárez
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et al. 2006] and [Lechuga and Murillo 2007]. In this section, we show that the upper
triangular McCool group PΣ+

n provides evidence in favor of such a conjecture.

Theorem 5.1. Let X be an Eilenberg–Mac Lane space of type K (G, 1), where
G = PΣ+

n is the upper triangular McCool group. Then X is a formal space.

To prove this theorem, we will need some definitions and facts concerning for-
mality and related notions.

Let X be a space with the homotopy type of a connected, finite-type CW-
complex. Loosely speaking, X is formal if the rational homotopy type of X
is determined by the rational cohomology ring H∗(X; Q). Examples of formal
spaces include spheres, simply-connected Eilenberg–Mac Lane spaces, and those
mentioned above.

Let G be a finitely presented group. Following Quillen [1969], call G 1-formal
if the Malcev Lie algebra of G is quadratic; see [Papadima and Suciu 2004] for
details. As shown by Sullivan [1977] and Morgan [1978], the fundamental group
G =π1(X) of a formal space X is a 1-formal group. There are, however, nonformal
spaces with 1-formal fundamental groups; see [Kohno 1983; Morgan 1978].

Papadima and Suciu [2006, Proposition 2.1] provide a sufficient condition for
the formality of a CW-complex. Recall that a connected, graded algebra A over a
field k is said to be a Koszul algebra if TorA

p,q(k, k) = 0 for all p 6= q , where p
is the homological degree of the Tor groups and q is the internal degree coming
from the grading of A. A necessary condition is that A be a quadratic algebra,
the quotient of a free algebra on generators in degree 1 by an ideal generated in
degree 2.

Proposition 5.2 [Papadima and Suciu 2006]. Let X be a connected, finite-type
CW-complex. If H∗(X; Q) is a Koszul algebra and G = π1(X) is a 1-formal
group, then X is a formal space.

Berceanu and Papadima [2007, Remark 5.5] have recently shown that the upper
triangular McCool group PΣ+

n is 1-formal. Thus, to prove Theorem 5.1, it suffices
to show that the rational cohomology algebra H∗(PΣ+

n ; Q) is Koszul. For this, we
will use [Jambu and Papadima 1998, Proposition 6.3].

Let A =
⊕

k≥0 Ak be a connected, graded k-algebra, and denote the augmenta-
tion ideal of A by A+

=
⊕

k≥1 Ak . Call a subalgebra B of A normal if AB+
= B+ A.

If B ⊂ A is normal, there is a canonical projection π : A → F , where F = A/AB+.

Proposition 5.3 [Jambu and Papadima 1998]. Let B ⊂ A be a normal subalgebra
such that A is free as a right B-module, and assume that the k-algebras A, B and
F = A/AB+ are quadratic. If B and F are Koszul algebras, then A is a Koszul
algebra.

We apply this result to the rational cohomology algebra H∗(PΣ+
n ; Q).
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Proposition 5.4. The rational cohomology algebra H∗(PΣ+
n ; Q) of the upper tri-

angular McCool group is a Koszul algebra.

Proof. Write An = H∗(PΣ+
n ; Q).

The proof consists of an inductive application of Proposition 5.3. As PΣ+

2
∼= Z,

the base case A2 is trivial.
Inductively assume that An−1 is Koszul. For k <n, observe that Ak is isomorphic

to the subalgebra Ãk of An generated by the elements ai, j with n − k < i < j ≤ n.
Thus, we may assume that the subalgebra Ãn−1 of An is Koszul. Since the algebras
under consideration are graded commutative, Ãn−1 is a normal subalgebra of An .
Furthermore, An is free as a right Ãn−1-module. Namely,

An = 1 · Ãn−1 ⊕ a1,2 · Ãn−1 ⊕ · · · ⊕ a1,n · Ãn−1.

This follows from the fact that in any monomial of the algebra An , the factor a1,i

with minimal i always survives, since a1,i a1, j = a1,i ai, j in An for any 1 < i < j ;
see Theorem 3.3.

Analyzing again the relations in An , we observe that the algebra An/An Ã+

n−1 is
a graded algebra generated by the elements a1,i for 2 ≤ i ≤ n, where all the terms in
degree 2 and higher die. Consequently, the algebra An/An Ã+

n−1 is quadratic and,
moreover, Koszul. Thus, all the algebras under consideration are quadratic, and
the conditions of Proposition 5.3 are satisfied. The result follows immediately. �

Since the upper triangular McCool group PΣ+
n is 1-formal (see [Berceanu and

Papadima 2007]) and H∗(PΣ+
n ; Q) is Koszul, Proposition 5.2 implies that an

Eilenberg–Mac Lane space of type K (PΣ+
n , 1) is formal, proving Theorem 5.1.

Such a space X provides an example of a non-simply-connected formal space with
TC(X) = 1 + zcl(H∗(X; Q)).

Remark 5.5. Berceanu and Papadima [2007, Theorem 5.4] also showed that the
basis-conjugating automorphism group PΣn is 1-formal. Using the realizations
PΣ2 ∼= F2 and PΣ3 ∼= F3 o F3 noted in the proof of Proposition 2.5, one can show
that H∗(PΣn; Q) is Koszul and hence a K (PΣn, 1)-space is formal for n ≤ 3. We
do not know if the cohomology algebra H∗(PΣn; Q) is Koszul for n > 3.
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