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In this paper we give a renormalization of the supertrace on the category
of representations of Lie superalgebras of type I, by a kind of modified
superdimension. The genuine superdimensions and supertraces are generi-
cally zero. However, these modified superdimensions are nonzero and lead
to a kind of supertrace which is nontrivial and invariant. As an application
we show that this new supertrace gives rise to a nonzero bilinear form on
a space of invariant tensors of a Lie superalgebra of type I. The results of
this paper are completely classical results in the theory of Lie superalgebras
but surprisingly we cannot prove them without using quantum algebra and
low-dimensional topology.

Introduction

The theory of quantum groups and classical representation theory of Lie algebras
has been widely and productively used in low-dimensional topology. There are few
examples of low-dimensional topology or quantum groups being used to produce
results in the classical theory of Lie algebras. Good examples of such work include
the theory of crystal bases [Kashiwara 1990] and the use of the Kontsevich integral
to give a new proof of the multiplicativity of the Duflo–Kirillov map S(g) → U (g)

for metrized Lie (super-)algebras g [Bar-Natan et al. 2003]. In this paper we use
low-dimensional topology and quantum groups to define a nontrivial kind of su-
pertrace on the category of representations of a Lie superalgebra of type I. The
genuine supertrace is generically zero on such a category Proposition 2.2.

In [Geer and Patureau-Mirand 2006; Geer et al. 2007], we give a renormalization
of the Reshetikhin–Turaev quantum invariants, by modified quantum dimensions.
In the case of simple Lie algebras these modified quantum dimensions are pro-
portional to the genuine quantum dimensions. For Lie superalgebras of type I
the genuine quantum dimensions are generically zero but the modified quantum
dimensions are nonzero and lead to nontrivial link invariants. In this case the
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modified quantum dimension of a quantized module is given by an explicit formula
which is determined by the underlying Lie superalgebra module. In this paper we
take the classical limit of the modified quantum dimension to obtain a modified
superdimension. Then we use this modified superdimension to renormalize the
supertrace and define a nontrivial bilinear form on a space of invariant tensor.

Our proof that the modified supertrace is well defined and has the desired prop-
erties is as follows. We first formulate the desired statements at the level of the
Lie superalgebra. Then we “deform” these statements to the quantum level and
use low-dimensional topology to prove these “deformed” statements. Taking the
classical limit we recover the original statements. To make this proof precise we
use the Etingof–Kazhdan theory of quantization.

1. Preliminaries

1.1. The category SV of superspaces. A superspace is a Z2-graded vector space
V = V0̄ ⊕ V1̄ over C. We denote the parity of an homogeneous element x ∈ V by
x̄ ∈ Z2. We say x is even if it lies in V0̄, and odd if it lies in V1̄). We now recall
some basic features and conventions concerning the category of superspaces.

The theory of superspaces follows the rule “whenever you permute two odd
elements in an expression, put a − sign”. With this in mind, many concepts of
linear algebra have super analogs. These analogs have new and different properties
which are relevant to this paper. Let us discuss some of these differences.

In all the following, elements of superspaces are generally assumed to be homo-
geneous and thus their parity is well defined. The definitions must be generalized
by linearity for nonhomogeneous elements.

The category SV of superspaces is a category whose objects are superspaces.
The morphisms in SV between two objects U and V denoted by HomC(U, V ) is
the superspace of linear maps with the parity given by

HomC(U, V )0̄ = HomC(U0̄, V0̄) ⊕ HomC(U1̄, V1̄),

HomC(U, V )1̄ = HomC(U0̄, V1̄) ⊕ HomC(U1̄, V0̄).

This category is “supermonoidal” with the super version of the operator ⊗ (we
denote by ⊗ the usual tensor product in the category Vect):

For two objects U , V of SV their tensor product is the vector space U ⊗ V with
the Z2-grading given by

(U ⊗ V )0̄ = U0̄ ⊗ V0̄ ⊕ U1̄ ⊗ V1̄,

(U ⊗ V )1̄ = U0̄ ⊗ V1̄ ⊕ U1̄ ⊗ V0̄.

and for morphisms f ∈ HomC(U, U ′) and g ∈ HomC(V, V ′), f ⊗ g is given by
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f ⊗ g =

{
f ⊗ g on U0̄ ⊗ V,

(−1)ḡ f ⊗ g on U1̄ ⊗ V .

Thus ( f ⊗g)(x ⊗ y)= (−1)ḡ.x̄ f (x)⊗g(y). When U and V are finite-dimensional,
this tensor product realizes an isomorphism:

(1) HomC(U, U ′) ⊗ HomC(V, V ′) ' HomC(U ⊗ V, U ′
⊗ V ′).

Let SV0̄ be the subcategory of SV with the same objects but only even mor-
phisms (i.e., HomSV0̄

(U, V ) = HomC(U, V )0̄). The tensor product ⊗ restricted
to SV0̄ is the usual bifunctor of Vect with an appropriate grading on objects.
Moreover, SV0̄ is a symmetric monoidal category with symmetry isomorphisms
τU,V : U ⊗V ' V ⊗U given by the superpermutation τU,V (u ⊗v) = (−1)ū.v̄v⊗u.
The category SV is not a symmetric monoidal category because in general there are
morphisms f and g with the property that (Id ⊗g)◦ ( f ⊗ Id) 6= ( f ⊗ Id)◦ (Id ⊗g).

For a superspace U , the superdual U∗ is defined as the superspace HomC(U, C).
The tensor product gives the canonical isomorphism

U∗
⊗ V ∗

= HomC(U, C) ⊗ HomC(V, C) ' HomC(U ⊗ V, C ⊗ C) = (U ⊗ V )∗.

If f ∈HomC(U, V ), the supertranspose of f is the linear map f ∗
∈HomC(V ∗, U∗)

given by
f ∗(φ) = (−1) f̄ .φ̄φ ◦ f

for φ ∈ V ∗. Then, if f, g are composable morphisms of SV, we have

( f ◦ g)∗ = (−1) f̄ .ḡg∗
◦ f ∗.

By convention the dual is a left dual:

• (left duality) evV ∈ HomC(V ∗
⊗V, C) is simply the contraction 〈φ, x〉=φ(x).

• (right duality) ev′

V ∈ HomC(V ⊗ V ∗, C) is given by 〈x, φ〉 = (−1)x̄ .φ̄φ(x)

This defines a canonical isomorphism V → V ∗∗ when V is finite dimensional.
Again here, when restricted to SV0̄ the * became a functor, namely, the usual
contravariant duality functor with some grading information.

The category g-Mod of g-modules. A Lie superalgebra is a superspace g=g0̄⊕g1̄
with a superbracket [ , ] : g⊗2

→ g that preserves the Z2-grading, is superantisym-
metric ([x, y]=−(−1)x̄ ȳ

[y, x]), and satisfies the super-Jacobi identity [Kac 1977].
In this section, we assume that g is a classical Lie superalgebra which means that
the Lie algebra g0̄ is reductive.

The universal enveloping algebra U (g) of g is a Hopf superalgebra, that is,
U (g) is a Hopf algebra object in SV0̄. Let g-Mod be the category where objects
are finite-dimensional superspaces with a structure of regular g-modules (that is,
regular U (g)-modules). By regular we mean that elements of the center of the
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reductive Lie algebra g0̄ act as diagonalisable endomorphisms of a g-module. It is
equivalent to require that V is semisimple as a g0̄-module (i.e., V splits as a direct
sum of irreducible g0̄-modules). The morphisms of g-Mod are the morphisms f
of SV that are (“super”) g-linear:

f (x .v) = (−1)x̄ . f̄ x . f (v) for all x ∈ g and v ∈ V .

If U and V are two g-modules we denote by Homg(U, V ) the superspace of g-
module morphisms. The superspace Homg(U, V ) should not be confused with
HomC(U, V ) (where U and V are viewed as superspaces) which is naturally equip-
ped with a g-module structure.

The structure of Hopf superalgebra on U (g) gives the tensor product of two g-
modules a natural structure of g-modules and the tensor product of two g-linear
morphisms is g-linear. Similarly, if V is an object of g-Mod then the super-
space V ∗ is a g-module whose action is induced from the antipodal map of U (g).
Homg(U, V ) is canonically isomorphic to the superspace of invariant elements of
V ⊗ U∗ and so

(2) Homg(U, V ) ∼= Homg(C, V ⊗ U∗).

Let g-Mod0̄ be the category whose objects are the objects of g-Mod and whose
morphisms are morphisms of SV0̄ which are g-linear. Then as above g-Mod0̄ be-
comes a symmetric monoidal category with duality. Note that in general g-Mod
is not such a category. This is the reason we require that the morphisms α and β

in the definition of I Proposition 1.2 are in g-Mod0̄. In other words, the proof of
Theorem 1 requires that we work in the category g-Mod0̄.

1.2. Lie superalgebras of type I. In this subsection we recall notations and prop-
erties related to Lie superalgebras of type I.

Throughout the rest of the paper, let g = g0̄ ⊕ g1̄ be a Lie superalgebra of type
I, so g is equal to sl(m|n) or osp(2|2n). We will assume that m 6= n. Let b be
the distinguished Borel subsuperalgebra of g. Then b can be written as the direct
sum of a Cartan subsuperalgebra h and a positive nilpotent subsuperalgebra n+.
Moreover, g admits a decomposition g = n− ⊕ h ⊕ n+. Let W be the Weyl group
of the even part g0̄ of g.

Let 1+

0̄ be the even positive roots and 1+

1̄ ) the odd ones. Let ρ0̄ and ρ1̄ denote
the half-sum of all even and odd positive roots, respectively. Set ρ = ρ0̄ − ρ1̄. A
positive root is called simple if it cannot be decomposed into a sum of two positive
roots.

A Cartan matrix associated to a Lie superalgebra is a pair consisting of a r × r
matrix A = (ai j ) and a set τ ⊂ {1, . . . , r} determining the parity of the generators.



AN INVARIANT SUPERTRACE FOR LIE SUPERALGEBRAS 335

Let (A, τ ) be the Cartan matrix arising from g and the distinguished Borel sub-
superalgebra b. Here the set τ = {s} consists of only one element because of our
choice of Borel subalgebra b.

By Proposition 1.5 of [Kac 1978] there exists ei ∈ n+, fi ∈ n− and hi ∈ h for
i = 1, . . . , r such that the Lie superalgebra g is generated by ei , fi , hi where

[ei , f j ] =δi j hi , [hi , h j ] =0, [hi , e j ] =ai j e j , [hi , f j ] = − ai j f j .

Note that these generators also satisfy the Serre relations and higher order Serre
type relations [Yamane 1994].

There exist d1, . . . , dr in {±1, ±2} such that the matrix (di ai j ) is symmetric. Let
〈 . , . 〉 be the symmetric nondegenerate form on h determined by 〈hi , h j 〉= d−1

j ai j .
This form gives an identification of h and h∗. Moreover, the form 〈 . , . 〉 induces a
W -invariant bilinear form on h∗, which we will also denote by 〈 . , . 〉.

1.3. Irreducible g-modules. Modules over Lie superalgebras of type I are differ-
ent in nature than modules over semisimple Lie algebras. For example, each Lie
superalgebra of type I has one parameter families of irreducible modules. Any
module in such a family has superdimension zero and so the supertrace of an
endomorphism of such a module is zero — see Equality (3).

There is a super analog of the Schur’s Lemma [Kac 1978]:

Lemma 1.1 (Schur’s Lemma). Let V be a superspace, M an irreducible family of
operators from EndSV(V ), and C(M) = {a ∈ EndSV(V ) : [a, m] = 0, ∀m ∈ M}.
Then either

• C(M) is generated by IdV , or

• C(M) is generated by IdV and s where s is an odd endomorphism of V such
that s2

= IdV (and in particular dim V0̄ = dim V1̄).

For g-Mod the situation is simplified: for any g-module V of g-Mod,

(3) V is irreducible ⇒ Endg(V ) = C IdV .

This follows from the fact that any module of g-Mod is regular and thus it is a
weight module (a direct sum of its weight spaces) and any irreducible module
of g-Mod is a highest weight module with unique (up to a scalar) highest weight
vector. Kac [1977] gives a construction of these irreducible modules: Let λ∈ h∗ be
a linear functional on h. Kac defined an irreducible highest weight g-module V (λ)

of weight λ with a highest weight vector v0 having the property that h.v0 = λ(h)v0

for all h ∈ h and n+v0 = 0. Let ai = λ(hi ). Kac showed that V (λ) is finite-
dimensional if and only if ai ∈ N for i 6= s. Therefore, as can be an arbitrary
complex number. Irreducible finite-dimensional g-modules are divided into two
classes: typical and atypical.
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There are many equivalent definitions for a weight module to be typical [Kac
1978]. Here we say that V (λ) is typical if it splits in any finite-dimensional regu-
lar g-module (i.e., if it is a submodule or a factor-module of a finite-dimensional
regular g-module then it is a direct summand). By Theorem 1 of [Kac 1978] this
is equivalent to requiring that

(4) 〈λ + ρ, α〉 6= 0

for all α ∈ 1+

1̄ . If V (λ) is (a)typical we will say the weight λ is (a)typical.
In Section 2 we construct a trace on the “ideal” generated by typical modules.

With this in mind let us recall some properties of these modules. The space of
typical weights is dense in the space of weights corresponding to finite-dimensional
modules. In particular, if ai ∈ N for 1 ≤ i ≤ r and i 6= s then there are only
finitely many atypical weights with ai = λ(hi ). Furthermore, if λ is atypical then
as = λ(hs) ∈ Z. Thus, the name typical is fitting.

For any object V of g-Mod whose Z2 grading is given by V = V0̄ ⊕ V1̄ let
sdim(V )= dim(V0̄)−dim(V1̄) be the superdimension of V . By Proposition 2.10 of
[Kac 1978], if V is a typical g-module then sdim(V )= 0. This vanishing can make
other mathematical objects trivial. For example, the supertrace on endomorphisms
of a typical module Proposition 2.2 and quantum invariants of links arising from
Lie superalgebras [Geer and Patureau-Mirand 2006].

Fix a typical module V0. Let IV0 be the set of objects V of g-Mod such that
there exists an object W of g-Mod and even g-linear morphisms α : V → V0 ⊗ W
and β : V0 ⊗ W → V with β ◦ α = IdV .

Proposition 1.2. The definition of IV0 does not depend on the choice of V0, i.e.,
IV0 = IV1 for any two typical modules V0 and V1.

The set IV0 is an ideal in the sense that for any V, V ′
∈ IV0 and W ∈ g-Mod we

have V ⊗ W ∈ IV0 and V ⊕ V ′
∈ IV0 .

We define I to be the set IV where V is any typical module, which is well defined
by the proposition.

Proof. We will prove the first statement; the second follows easily from the defi-
nition of IV0 . First, W ∈ IV if and only if IW ⊂ IV . We will use this fact in the
remainder of the proof.

As mentioned above irreducible finite-dimensional g-modules are in one to one
correspondence with Nr−1

×C. We will denote V c̄
α as the module corresponding to

(c̄, α) ∈ Nr−1
×C. Let V 0̄

α and V c̄
β be typical modules. From the character formula

for typical modules we know that V c̄
β is a submodule of V 0̄

α ⊗ V c̄
β−α. Since typical

modules always split we have V c̄
β ∈ IV 0̄

α
and so IV c̄

β
⊂ IV 0̄

α
.
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On the other hand, from the discussion in the previous paragraph we have
Homg(V 0̄

α ⊗ V c̄
β−α, V c̄

β ) 6= 0, implying Homg(V 0̄
α , V c̄

β ⊗ (V c̄
β−α)∗) 6= 0. Therefore,

as V 0̄
α is typical, V 0̄

α ∈ IV c̄
β

and so IV 0̄
α

⊂ IV c̄
β
. �

2. A trace

In this section we define a nonzero supertrace on Endg(V ) for V ∈ I. First, let us
prove that the usual supertrace on Endg(V ) is zero.

Let V be a superspace and let {vi } be a basis of V with homogeneous vectors.
Let {v∗

i } be the dual basis of V ∗. We have that v̄∗

i = v̄i = v̄i .v̄
∗

i . Define the
supertrace on EndC(V ) to be the function strV : EndC(V ) → C given by f 7→∑

i (−1)v̄i v∗

i ( f (vi )). Then str has the property that if f ∈ HomC(V, W ) and g ∈

HomC(W, V ) then strW ( f ◦ g) = (−1) f̄ .ḡ strV (g ◦ f ).
Let us define the partial supertrace that is a generalization of the supertrace. For

this, we first define the evaluation and coevaluation morphisms evV : V ⊗ V ∗
→ C

and coevV : C → V ⊗ V ∗ given by v ⊗ f 7→ (−1) f̄ v̄ f (v) and 1 7→
∑

i vi ⊗ v∗

i ,
respectively.

Definition 2.1. Let U and V be superspaces and f ∈ EndC(U ⊗ V ). Then we call
the partial supertrace of f the endomorphism

ptr( f ) = (IdU ⊗ evV ) ◦ ( f ⊗ IdV ∗) ◦ (IdU ⊗ coevV ) ∈ EndC(U ).

For f as in Definition 2.1 we have strU⊗V ( f ) = strU (ptr( f )). In addition, if
f ∈ Endg(U ⊗ V ) then ptr( f ) ∈ Endg(U ).

Let V be an element of I = IV0 and f ∈ Endg(V ). Choose morphisms α :

V0 ⊗ W → V and β : V → V0 ⊗ W such that α ◦ β = IdV . Then ptr(β ◦ f ◦ α) is
an invariant map of V0 and so ptr(β ◦ f ◦α) = c IdV0 for some c ∈ C. We define the
bracket of the triple ( f, α, β) to be 〈 f ; α; β〉 = c.

Proposition 2.2. Let V ∈ I and f ∈ Endg(V ) then strV ( f ) = 0.

Proof. Using the notation above, we have

strV ( f ) = strV ( f ◦ α ◦ β) = strV0⊗W (β ◦ f ◦ α) = strV0(ptr(β ◦ f ◦ α)).

But ptr(β ◦ f ◦ α) = 〈 f ; α; β〉 IdV0 so

strV ( f ) = strV0(〈 f ; α; β〉 IdV0) = 〈 f ; α; β〉 sdim(V0) = 0

as the superdimension of V0 is zero. �

Definition 2.3. Let d : {typical modules} → C be the function defined by

d(V (λ)) =

∏
α∈1+

0̄

〈λ + ρ, α〉

〈ρ, α〉

/ ∏
α∈1+

1̄

〈λ + ρ, α〉.
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Note that Equation (4) implies that d is well defined. As an example, if g =

sl(n|1) with n ≥ 2, and λ = (0, . . . , 0|a) with a ∈ C \ {0, −1, . . . , 1 − n}, we have
d(V (λ)) =

∏n−1
i=0 1/(a + i).

Theorem 1. Let V ∈ I and f ∈ Endg(V ). Choose a typical module V0, and
morphisms α ∈ Homg(V0 ⊗ W, V )0̄ and β ∈ Homg(V, V0 ⊗ W )0̄ such that α ◦β =

IdV . Then
str′V ( f ) = d(V0)〈 f ; α; β〉

depends only on f ; it does not depend on the choice of V0, α or β. Furthermore,
str′ is a trace in the following sense: for any V, V ′

∈ I and any g-module U ,

(a) str′V : Endg(V ) → C is linear.

(b) str′V ′( f ◦g)= (−1)ḡ f̄ str′V (g◦ f ) for any f ∈Homg(V, V ′), g ∈Homg(V ′, V ).

(c) str′V ⊗U ( f ⊗g) = str′V ( f ) strU (g) for any f ∈ Endg(V ) and any g ∈ Endg(U ),
in particular str′( f ⊗ g) = str(g) = 0 if U ∈ I.

(d) str′V ⊗U ( f ) = str′V (ptr( f )) for any f ∈ Endg(V ⊗ U ).

The proof of Theorem 1 will be given in Section 4. Let us now make a few com-
ments about this theorem. First, remark that property (d) implies property (c).
Next, property (d) implies a kind of invariance for str′. Let us make this statement
more precise.

Let U, U ′ be g-modules and V, V ′ be in I. The following spaces of morphisms
are canonically isomorphic:

Homg(HomC(U ′, V ′), HomC(U, V )) ∼= Homg(U ⊗ V ′, V ⊗ U ′)

∼= Homg(V ′
⊗ U, U ′

⊗ V ) ∼= Homg(HomC(V, U ), HomC(V ′, U ′)).

Let 9 ∈Homg(HomC(U ′, V ′), HomC(U, V )) and let h, h#, 9# be the correspond-
ing morphisms in the other three spaces, respectively. We have h#

= τ ◦ h ◦ τ

where τ is the superpermutation. Also, if f ∈ HomC(U ′, V ′) and g ∈ HomC(V, U )

then 9( f ) = ptr(h ◦ (IdU ⊗ f )) and 9#(g) = ptr(h#
◦ (IdV ′ ⊗g)) (here we use a

generalization of the partial trace ptr : Hom(A⊗C, B ⊗C) → Hom(A, B)). Thus,
applying property (d), we get that

(5) str′ (9( f ) ◦ g) = (−1)9̄. f̄ str′
(

f ◦ 9#(g)
)
.

Indeed,

str′ (9( f ) ◦ g) = str′ (ptr(h ◦ (IdU ⊗ f )) ◦ g) = (−1)ḡ. f̄ str′ (ptr(h ◦ (g ⊗ f )))

= (−1)ḡ. f̄ str′ (h ◦ (g ⊗ f )) = str′
(
h#

◦ ( f ⊗ g)
)

= str′
(
ptr(h#

◦ ( f ⊗ g))
)
= (−1)ḡ. f̄ str′

(
ptr(h#

◦ (IdV ′ ⊗g)) ◦ f
)

= (−1)9̄. f̄ str′
(

f ◦ 9#(g)
)
.
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The results of this section can be stated in the language of symmetric monoidal
category with duality or more generally ribbon categories. We will not make this
formalism precise, however we will end this section by giving the following graphs
which we hope will shed light on the above results. For more details on ribbon
categories see [Turaev 1994].

Here we will represent morphisms with ribbon graphs, which are read from
bottom to top. The tensor product of two morphisms is represented by setting the
two corresponding graphs next to each other. For example, if f : V → V ′ and
g : U → U ′ are even morphism of g-Mod then we represent f and f ⊗ g by

(6)

V ′

��
f

V
��

and

V ′

��
f

V
��

U ′

��
g

U
��

=

V ′

��
U ′

��
f ⊗ g

V
��

U
��

.

Let the graphs
@A

V
BC
// and EDGFooV represent the morphisms evV : V ⊗ V ∗

→ C

and coevV : C → V ⊗ V ∗, respectively.
Let g : V → V be an even invariant morphism of a g-module V and let G be a

ribbon graph representing g, as in Equation (6). If V is simple then the morphism
g is a scalar times the identity, which we denote by 〈g〉 = 〈G〉.

The elements strV (g) and str′V (g) can be represented by

(7) strV (g) =

〈
6g V

〉
and str′V (g) = d(V0)

〈
?

6

α

g

β

V0

W〉

where we require V ∈ I in the second case. When V is simple the supertrace can
be rewritten as

strV (g) =

〈 @AV BCEDGF�� 〉 〈 V
��
g

V��

〉
= sdim(V )

〈 V
��
g

V��

〉

where sdim(V ) = 0 if V is typical. Also, when V is a typical module the str′

becomes

str′V (g) = d(V )

〈 V
��
g

V��

〉

Thus, the function d can be thought of as a nonzero replacement of the usual
superdimension. Moreover, d can be thought of as the classical analogue of the
modified quantum dimensions defined in [Geer et al. 2007].
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If f : V → V ′ is an even invariant morphism let f ∗
: (V ′)∗ → V ∗ be the

“supertranspose” of f . We can represent f ∗ by

V ′

��
f ∗

V
��

= f

V ∗

OO

V ′∗

OO

We will use the “supertranspose” in the next section.

3. Invariant tensors

In this section we define a nontrivial bilinear form on a space of invariant tensors
of g. The standard bilinear form on g is zero on this space of tensors.

Let V be an object of g-Mod and let T (V ) = ⊕i T (V )i be the tensor algebra of
V , where T (V )i is the space V ⊗i . Let T (V )g be the invariant tensors of T (V ).

Lemma 3.1. All invariant tensors of T (g) are even.

Proof. We will prove the lemma for g= sl(m|n), the prove for osp(2|2n) is similar.
We can identify sl(m|n) with the Lie superalgebra of supertrace zero (m + n) ×

(m + n) matrices. This standard representation is obtained by sending ei to the
elementary matrix Ei,i+1, fi to Ei+1,i , hi to Ei,i − Ei+1,i+1 if i 6= m and hm to
Em,m + Em+1,m+1. The Cartan subalgebra h with basis {hi } is contained in the
space of diagonal matrices X . The space X∗ has a canonical basis {ε1, . . . εm+n}

which is dual to the basis formed by the matrices {Ei,i }. Set δi = εi+m , then h is
the kernel of the supertrace str =

∑
εi −

∑
δ j . Therefore, h∗ is the quotient of X∗

by the supertrace.
Let 3 ⊂ h be the root lattice generated by the positive roots. Let f : 3 → Z

be the linear function determined by εi 7→ n and δ j 7→ m (note that str 7→ 0). By
definition the simple positive even roots εi − ε j and δi − δ j map to zero and the
simple positive odd roots εi − δ j map to −(m − n). Therefore, the image of f is
(m − n)Z and f induces a linear map f̄ : 3 → Z/2Z given by α 7→

f (α)

m−n modulo
2. The map f̄ in turn induces a map on the weight vectors of T (g) (which we also
denote by f̄ ) that satisfies f̄ (x ⊗ y) = f̄ (x) + f̄ (y) for x, y ∈ T (g). Note that f̄
gives the parity of a weight vector of T (g).

Let t be an element of T (g)k with weight a1ε1 +· · ·+amεm +b1δ1 +· · ·+bnδn .
If t is in (T (g)k)

g then the Cartan subalgebra acts by zero and so the weight of t
is zero: ai = b j = 0 for all i and j . But from above we know that the parity of t
is equal to f̄ (t) =

(
n
∑

ai + m
∑

b j
)
/(m − n) modulo 2, which is zero if t is in

(T (g)k)
g. Thus, all the invariant tensors of T (g) are even. �
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From Propositions 2.5.3 and 2.5.5 of [Kac 1977] there exists a unique (up to
constant factor) nondegenerate supersymmetric invariant even bilinear form (, ) on
g. Let b : g → g∗ be the isomorphism given by the assignment x 7→ (x, ·).

We extend this bilinear form to T (g) by

(x1x2 . . . xk, x ′

1x ′

2 . . . x ′

l ) = δkl

k∏
i=1

(−1)
∑

i< j x̄ j x̄ ′

i (xi , x ′

i )

where xi , x ′

j ∈g. Since (, ) is nondegenerate on g, this extension is a nondegenerate
bilinear form on T (g). Moreover, since ( . , . ) is supersymmetric on g and (x, x ′)=

0 for all x, x ′
∈ g such that x̄ 6= x̄ ′, we have that the extension is supersymmetric

on T (g).
For t ∈ (T (g)N )g ' Homg(C, T (g)N ) we have t∗

∈ Homg(T (g∗)N , C), where ∗

is the “supertranspose”. Using this notation the bilinear form is given by (t, t ′) =

〈t∗
◦ b⊗N

◦ t ′
〉. Here and after, if g ∈ EndC(C), we denote by 〈g〉 the scalar g(1).

Recall the definition of the coevaluation morphism coevV given in Section 2.

Definition 3.2. For N ∈ N define

ITN = { f (coevV (1)) : f ∈ Homg(V ⊗ V ∗, g⊗n) for some V ∈ I}

and IT = ⊕N ITN .

Let t ∈ITN and t ′
∈ (T (g)N )g. We will now show that (t, t ′) can be written in terms

of the supertrace. We regard t, t ′ as elements of Homg(C, g⊗N ). As t = f (coevV )

for some f ∈ Homg(V ⊗ V ∗, g⊗N ) where V ∈ I, we have t∗
= coev∗

V ◦ f ∗ and

(t, t ′) = 〈coev∗

V ◦ f ∗
◦ b⊗N

◦ t ′
〉.

The morphism f ∗
◦ b⊗N

◦ t ′
∈ Homg(C, V ∗

⊗ V ) ' Homg(C, V ⊗ V ∗) can be
identified with a g-linear endomorphism of V which we denote by [ f ∗

◦b⊗N
◦ t ′

].
Thus, we have (t, t ′) = strV ([ f ∗

◦b⊗N
◦ t ′

]), which is zero by Proposition 2.2. The
above discussion can be summarized in the following lemma.

Lemma 3.3. If t ∈ ITN and t ′
∈ (T (g)N )g then (t, t ′)= strV ([ f ∗

◦b⊗N
◦t ′

]) which
is zero.

Proposition 3.4. The sets ITN are vector spaces. Moreover, IT = ⊕N ITN is
a two sided ideal of T (g)g which is in the kernel of the restriction of ( . , . ) to the
space of invariant tensor T (g)g.

Proof. We will first show that ITN is a vector space. Let t1, t2 ∈ ITN and λ ∈ C.
Then ti = fi (coevVi (1)) for some fi and Vi . Set V = V1⊕V2. Let f : V ⊗V ∗

→g⊗N

be the invariant map given by

f ((v1 ⊕ v2) ⊗ (ϕ1 ⊕ ϕ2)) = f1(v1 ⊗ ϕ1) + λ f2(v2 ⊗ ϕ2).
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Then f (coevV (1)) = t1 + λt2. Thus, ITN is a vector space.
Now we will show that IT is an ideal. Let t ′

∈ (g⊗M)g and let t1 be as above.
Let g : V1 ⊗ V ∗

1 → g⊗(M+N ) be the invariant map given by

g(v1 ⊗ ϕ1) = t ′
⊗ f1(v1 ⊗ ϕ1).

Then g(coevV1(1)) = t ′
⊗ t1 and so t ′

⊗ t1 ∈ ITM+N .
The last statement of the proposition follows from Lemma 3.3. �

Next we define a bilinear form on IT. The following definition is motivated by
Lemma 3.3 and justified by Theorem 2.

Definition 3.5. For t1 ∈ ITN and t2 ∈ ITM with ti = fi (coevVi ), define

(t1, t2)′ = δM,N str′V1

(
[ f ∗

1 ◦ b⊗N
◦ t2]

)
We can represent [ f ∗

1 ◦ b⊗N
◦ t2] by the following picture, where M = N = 3 for

simplicity:

� ? O

f2 f1

V2 V1 .
It is tempting to think that the above construction could work for t1 ∈ IT and any
t2 ∈ T (g) but this is false because there are examples of t2 ∈ T (g) for which the
above scalar depends not only of t1 but also of f1.

To simplify notation we will identify g and g∗ using the isomorphism b but will
no longer write b.

Theorem 2. ( . , . )′ is a well defined symmetric bilinear form on IT satisfying
(G(t1), t2)′ = (t1, G∗(t2))′ for any t1 ∈ITM , t2 ∈ITN , G ∈Homg(T (g)M , T (g)N ).
In particular, the symmetric group SN acts orthogonally on ITN .

Proof. Let t1 and t2 be elements of ITN with ti = fi (coevVi ). We need to show
that the definition of (t1, t2)′ is independent of f1, f2, V1, and V2.

Using the canonical isomorphism (2), we can make the identifications

Homg(V2 ⊗ V ∗

2 , V1 ⊗ V ∗

1 ) ∼= Homg(C, V1 ⊗ V ∗

1 ⊗ V ∗

2 ⊗ V2)

∼= Homg(C, V1 ⊗ V2 ⊗ V ∗

1 ⊗ V ∗

2 ) ∼= Endg(V1 ⊗ V2).

Therefore, below we will consider f ∗

1 ◦ f2 as an element of Endg(V1 ⊗V2). Notice
that for fixed t1 = f1(coevV1) the map ITN → C given by

t 7→ str′V1
( f ∗

1 ◦ t)
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is well defined and linear. Then from Theorem 1(d) we have str′V1
( f ∗

1 ◦ t2) =

str′V1⊗V2
( f ∗

1 ◦ f2) = str′V1⊗V2
( f ∗

2 ◦ f1) = str′V2
( f ∗

2 ◦ t1), which does not depend on
f1 or V1. Thus, ( . , . )′ is a well defined symmetric bilinear form.

For the last statement of the theorem,

(G(t1), t2)′ = str′V1⊗V2
( f ∗

1 ◦ G∗
◦ f2) = (t1, G∗(t2))′. �

4. Proof of Theorem 1

The proof of Theorem 1 uses quantized Lie superalgebras and low-dimensional
topology. In particular, we have the following general plan: (1) start with the de-
sired statement at the level of g-Mod, (2) translate these statements to the quantum
level, (3) use properties of invariants of ribbon graphs to prove these statements and
(4) take the classical limit to obtain the proof of the original statements. With this
in mind we will begin this section by recalling some properties about the Drinfeld–
Jimbo type quantization of g.

Let h be an indeterminate and set q = eh/2. We use the notation q z
= ezh/2

for z ∈ C. Let U D J
h (g) be the Drinfeld–Jimbo type quantization of g defined in

[Yamane 1994]. The quantization U D J
h (g) is a braided C[[h]]-Hopf superalgebra

given by generators and relations. As we will explain now U D J
h (g) is related to a

quasi-Hopf superalgebra.
For each Lie algebra Drinfeld defined a quasi-Hopf quantized universal envelop-

ing algebra:
(U (g)[[h]], 10, ε0, 8K Z ).

The morphisms 10 and ε0 are the standard coproduct and counit of U (g)[[h]]. The
element 8K Z is the KZ-associator. Let Ag be the analogous topologically free
quasi-Hopf superalgebra (for more details see [Geer 2006]).

Let U D J
h (g)-Modfr and Ag-Modfr be the tensor categories of topologically free

U D J
h (g)-modules and Ag-modules of finite rank, respectively (that is, those of the

form V [[h]], where V is a finite-dimensional g-module). We say a module V [[h]]

in U D J
h (g)-Modfr is typical if V is a typical g-module.

In [Geer 2006] the first author proves that there exists a functor G : Ag-Modfr →

U D J
h (g)-Modfr which is an equivalence of tensor categories. There is a natural

tensor functor G ′
: g-Mod → Ag-Modfr given by V 7→ V [[h]] and f 7→ G ′( f )

where the action of g on V extends to an action of U (g)[[h]] on V [[h]] be linearity
and G ′( f )(

∑
vi hi ) =

∑
f (vi )hi . We have the commutative diagram of functors

(8)

Ag-Modfr
G // U D J

h (g)-Modfr

classical limitxxppppppppppp

g-Mod
G ′

eeKKKKKKKKKK
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where the down left arrow is the classical limit given by taking the limit as h goes
to zero. For any object V and morphism g of g-Mod let us denote G ◦ G ′(V ) and
G ◦ G ′(g) by Ṽ and g̃, respectively. Here the functor G ◦ G ′ composed with the
classical limit is the identity functor: V ≡ Ṽ mod h and g ≡ g̃ mod h.

In [Geer and Patureau-Mirand 2006] we defined an invariant of framed colored
links. Let us now recall the basic construction and some properties of this invari-
ant. Here we say that a link or more generally a tangle is colored if each of its
components are assigned an object of U D J

h (g)-Modfr.
Let F be the usual Reshetikhin–Turaev functor from the category of framed

colored tangles to the category of U D J
h (g)-Modfr. In [Geer and Patureau-Mirand

2006] a function from the set of typical U D J
h (g)-module to the ring C[[h]][h−1

] is
defined. As remarked in that article, this function can be multiplied by h|1+

1̄ | to
obtain a function which takes values in C[[h]]. Let us denote this function by dh.

Lemma 4.1.

dh(Ṽ (λ)) = h|1+

1̄ |

∏
α∈1+

0̄

q〈λ+ρ,α〉
− q−〈λ+ρ,α〉

q〈ρ,α〉 − q−〈ρ,α〉∏
α∈1+

1̄

(q〈λ+ρ,α〉
− q−〈λ+ρ,α〉)

.

In particular, d(V (λ)) is equal to dh(Ṽ (λ)) mod h.

Proof. The proof follows from the formulas for h−|1+

1̄ | dh given in the Appendix
of [Geer and Patureau-Mirand 2006] and from the definition of d. �

Suppose L is a framed colored link such that by cutting some component of L
one obtains a framed colored (1, 1)-tangle TV (λ) such that the open string is col-
ored by the deformed typical module Ṽ (λ) of highest weight λ. Then F(TV (λ)) =

x . IdṼ (λ), for some x in C[[h]]. Set 〈TV (λ)〉 = x . In [Geer and Patureau-Mirand
2006] it is shown that the assignment

L 7→ dh(Ṽ (λ))〈TV (λ)〉

is a well defined colored framed link invariant denoted by F ′. In particular, F ′(L)

is independent of Ṽ (λ), TV (λ) and where L is cut.
An even morphism f : V1 ⊗ · · · ⊗ Vn → W1 ⊗ · · · ⊗ Wm in the category

U D J
h (g)-Modfr can be represented by

Wm...

��
W1

��
f

Vn...

��
V1

��



AN INVARIANT SUPERTRACE FOR LIE SUPERALGEBRAS 345

Such a box is called a coupon, which we denote by CW1,...,Wm
V1,...,Vn

( f ). Here we will
say a ribbon graph is a framed tangle with coupons and colors coming from the
category U D J

h (g)-Modfr. In [Geer et al. 2007] it is shown that the construction of
F ′ can be extended to ribbon graphs having at least one component colored by a
typical U D J

h (g)-module.
The invariant F ′ can also be extended to ribbon graphs having at least one

component colored by a deformed module in I [Geer et al. 2007]. We will now
describe this extension in the following situation. Let C (C ′) be a (1, 1)-tangle
(resp. (2, 2)-tangle) ribbon graph such that the input(s) and output(s) are equal.
Let LC be the closed ribbon graph obtained from closing the coupon C . Let TC ′ be
the (1, 1)-tangle ribbon graph obtained from closing right most component. The
ribbon graphs LC and TC ′ can be represented by

LC = 6C TC ′ = 6
?

?
C ′ .

These pictures represent respectively the trace and the partial trace of the mor-
phisms in the coupon.

Let V ∈ I and let α : V0 ×W → V and β : V → V0 ⊗W be morphisms in g-Mod
such that α ◦ β = IdV . Let f ∈ Endg(V )0̄ and let T ( f ; α; β) be the (1, 1)-tangle
ribbon graph T

C
Ṽ0⊗W̃
Ṽ

(β̃)◦C Ṽ
Ṽ

( f̃ )◦C Ṽ
Ṽ0⊗W̃

(̃α)
. That is,

T ( f ; α; β) =

?

6

α̃

f̃

β̃

Then we define

F ′(LC Ṽ
Ṽ

( f̃ )
) = dh(Ṽ0)〈T ( f ; α; β)〉.

In [Geer and Patureau-Mirand 2006; Geer et al. 2007] it is shown that F ′ is well
defined. Now we are ready to prove the main theorem of the paper.

Proof of Theorem 1. Let V1 be a typical g-module. Then I = IV0 = IV1 . Choose
αi : Vi × Wi → V and β i : V → Vi ⊗ W such that αi ◦ β i = IdV , for i = 0, 1. If
f ∈ Endg(V )1̄ then 〈 f ; α0; β0〉 = 〈 f ; α1; β1〉 = 0 as ptr(β ◦ f ◦α) = 〈 f ; α; β〉 IdV0

and β ◦ f ◦α is odd. Therefore, we can assume that f ∈ Endg(V )0̄ (that is, f is a
morphism in the symmetric monoidal category g-Mod0̄). We will show that

(9) d(V0)〈 f ; α0; β0〉 = d(V1)〈 f ; α1; β1〉.
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By definition of the ribbon category U D J
h (g)-Modfr we have equality between

〈 f ; αi ; β i 〉 and 〈T ( f ; αi ; β i )〉 mod h, for i =0, 1. Combining this with Lemma 4.1
we obtain d(Vi )〈 f ; αi ; β i 〉 is equal to dh(Ṽi )〈T ( f ; αi ; β i )〉 mod h, for i = 0, 1. Fi-
nally, by [Geer et al. 2007], the extension of F ′ to ribbon graphs is well defined. In
particular, we have dh(Ṽ0)〈T ( f ; α0; β0)〉 = dh(Ṽ1)〈T ( f ; α1; β1)〉. Thus, Equation
(9) holds and str′V ( f ) only depends on f .

Now we prove the remaining statements of the theorem. The function str′V is
linear because F(C Ṽ

Ṽ
(a f̃ +bg̃)) = aF(C Ṽ

Ṽ
( f̃ ))+bF(C Ṽ

Ṽ
(g̃)) for f, g ∈ Endg(V )0̄

and a, b ∈ C. Part (c) follows from the property that F ′(L t L ′) = F ′(L)F(L ′)

for any two links L and L ′ [Geer et al. 2007]. The proof of (d) follows from the
behavior of F ′ with respect to cabling [Geer et al. 2007].

To prove part (b) we need to be careful because coupons must be labeled by even
morphisms, but the morphisms in the statement of (b) can be odd. If V is an object
of g-Mod then denote V − as the g-module obtained from V by taking the opposite
parity. Then V and V − are isomorphic by an odd isomorphism σV : V → V −,
which changes the parity.

Lemma 4.2. Let γ ∈ EndU D J
h (g)(W̃ ⊗ Ṽ )0̄ and set η = (Id ⊗σ̃V )γ (Id ⊗σ̃V ). Then

F
(

TC W̃⊗Ṽ
W̃⊗Ṽ

(γ )

)
= −F

(
TC W̃⊗Ṽ −

W̃⊗Ṽ − (η)

)
.

Proof. Let {wi }
q
i=1 and {v j }

p
j=1 be bases of the g-modules V and W , respectively.

Then {v j }
p
j=1, {σV (v j )}

p
j=1 and {wi }

q
i=1 are bases for the U D J

h (g)-modules Ṽ , Ṽ −

and W̃ , respectively.
Let γ kl

i j be the elements of C[[h]] defined by

γ (wi ⊗ v j ) =

q∑
k=1

p∑
l=1

γ kl
i j wk ⊗ vl .

A direct calculation shows that

F
(

TC W̃⊗Ṽ
W̃⊗Ṽ

(γ )

)
(wi ) =

q∑
k=1

p∑
l=1

(−1)v̄ j γ
k j
i j wk,(10)

F
(

TC W̃⊗Ṽ −

W̃⊗Ṽ − (η)

)
(wi ) =

q∑
k=1

p∑
l, j=1

(−1)w̄i +w̄k (−1)(1̄+v̄l )(1̄+v̄ j )δl jγ
kl
i j wk,(11)

where δl j (−1)(1̄+v̄l )(1̄+v̄ j ) = (−1)1̄+v̄ j and w̄i = w̄k since η is an even morphism.
Therefore, the right sides of (10) and (11) are the negative of each other and the
lemma follows. �
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Lemma 4.3. For V ∈ I and f ∈ Endg(V )0̄ we have

F ′
(
LC Ṽ

Ṽ
( f̃ )

)
= −F ′

(
LC Ṽ −

Ṽ − (̃σ◦ f̃ ◦σ̃ )

)
.

Proof. Let α ∈ Endg(V0⊗W, V )0̄ and β ∈ Endg(V, V0⊗W )0̄ such that IdV =α◦β.
Then for α−

= (IdV0 ⊗σW ) ◦ α ◦ σV ∈ Endg(V0 ⊗ W −, V −)0̄ and β−
= σV ◦ β ◦

(IdV0 ⊗σW )∈Endg(V −, V0⊗W −)0̄, we have IdV − =α−
◦β−. Now, we also denote

f̃ −
= σ̃V ◦ f̃ ◦ σ̃−1

V ∈ Endg(V −)0̄ and it is convenient to give a pictorial proof:

F ′

 6f̃

 = F ′


6

α̃

f̃

β̃

 = F ′


66

α̃

f̃

β̃



= dh(Ṽ0)

〈

?

6

α̃

f̃

β̃ 〉
= − dh(Ṽ0)

〈

?

6

α̃−̃

f −̃

β− 〉
= −F ′

 6f̃ −

 ,

where the fourth equality comes from Lemma 4.2. �

Now we are ready to prove part (b). Let f : V → V ′ and g : V ′
→ V be

morphisms of g-Mod such that f ◦ g is even. If f and g are both even then part
(b) follows from the fact that the closure of C Ṽ ′

Ṽ
( f̃ ) ◦ C Ṽ

Ṽ ′
(g̃) is isotopic to closure

of C Ṽ
Ṽ ′

(g̃) ◦ C Ṽ ′

Ṽ
( f̃ ). If f and g are both odd then (b) follows from the following

lemma.

Lemma 4.4. If f and g are both odd then

F ′
(
LC Ṽ

Ṽ
( f̃ ◦g̃)

)
= −F ′

(
LC Ṽ ′

Ṽ ′ (g̃◦ f̃ )

)
.

Proof. From Lemma 4.3 we have

F ′
(
LC Ṽ

Ṽ
( f ◦g)

)
= −F ′

(
LC Ṽ −

Ṽ − (̃σ◦ f̃ ◦g̃◦σ̃ )

)
.(12)

Now since σ̃ ◦ f̃ and g̃ ◦ σ̃ are even, the right side of Equation (12) is equal to

−F ′
(
LC Ṽ −

Ṽ
(̃σ◦ f̃ )◦C Ṽ

Ṽ − (g̃◦σ̃ )

)
= −F ′

(
LC Ṽ

Ṽ − (g̃◦σ̃ )◦C Ṽ −

Ṽ
(̃σ◦ f̃ )

)
= −F ′

(
LC Ṽ

Ṽ
(g̃◦σ̃ σ̃◦ f̃ )

)
= −F ′

(
LC Ṽ

Ṽ
(g̃◦ f̃ )

)
.

Thus we have proved the lemma. �
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This finishes the proof of part (b) and the theorem. �
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