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Let F be a field of characteristic zero. We give the following answer to a
generalization of a problem of Büchi over F[t]: A sequence of 92 or more
cubes in F[t], not all constant, with constant third difference equal to 6,
consists of cubes of successive elements x, x+1, . . . , for some x ∈ F[t]. We
use this, in conjunction to the negative answer to Hilbert’s tenth problem
for F[t], to show that the solvability of systems of degree-one equations,
where some of the variables are assumed to be cubes and (or) nonconstant,
is an unsolvable problem over F[t].

1. Introduction

Büchi asked the following question, known as the n-squares problem:

Is there a positive integer M such that any sequence of at least M integer
squares, with constant second difference 2, is equal to a sequence of
squares of successive integers?

He intended to apply a possible positive answer to obtain a result in logic (we dis-
cuss this below). The question was made public in [Lipshitz 1990]. P. Vojta [2000]
proved that a positive answer to the analogous question for rational numbers is
implied by a conjecture of S. Lang, or by a positive answer to a weaker question of
E. Bombieri; he also answered in the affirmative the analogue of Büchi’s question
for meromorphic functions defined on C or for function fields of curves of charac-
teristic zero. (For rings of functions, one naturally demands that the elements of
the sequence be nonconstant.) Further discussion can be found in [Mazur 1994].
The original n-squares problem is still open.
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D. Hensley [1983] proved that the analogue of Büchi’s problem in finite fields
Fp, where p is a prime number, has a positive answer with M = p. He also gave
a nice ”heuristic proof” of the conjecture and various lower and upper bounds
on the heights of the terms of a Büchi sequence. D. Buell [1987] characterized
all the nontrivial integer sequences of length four (we call a sequence of squares
of successive numbers trivial). R. G. E. Pinch [1993] proved, under a certain
condition on the size, that a family of four-term sequences cannot be extended to
five-term sequences. J. Browkin and J. Brzeziński [2006] showed that there exist
infinitely many nontrivial five- and six-term sequences (originally, Büchi asked the
question for five-term sequences), but for certain constants distinct from 2. It is
not known to us whether there exist any nontrivial five-term sequences of integers
when the constant is 2 as in the original problem.

Vojta’s conditional result claims finiteness of the set of eight-term nontrivial
sequences of integers. His result actually does not give a value for M , but only
implies that there exists an M ≥ 8 such that Büchi’s original problem has a positive
answer. We must apologize for citing Vojta’s result wrongly in our previous works,
where we claimed that his conjectural result was for M = 8.

In [Pheidas and Vidaux 2005] we generalized Büchi’s question as follows:

Question 1.1. Let k > 1 be an integer. Is there a positive integer M such that any
sequence y = (y0, . . . , yM−1) of k-th powers of integers with constant k-th differ-
ence equal to k! is necessarily a sequence of k-th powers of successive integers?
(That is, one such that yn = (x + n)k for a fixed integer x and n ∈ {0, . . . ,M−1}.)

Except for Vojta’s results mentioned above and those of [Pheidas and Vidaux
2006], the question is open for all k and for any global field in place of the integers.
(Recall that in the case of function fields we restrict our attention to sequences of
nonconstant functions.)

In the present paper we prove a positive answer to the analogue of the Question
in the case k = 3 and for a polynomial ring F[t] in place of the integers, where F
is a field of characteristic zero. We prove:

Theorem 1.2. Let F be a field of characteristic 0 and t a transcendental element
over F. Assume that x0, . . . , xM−1 ∈ F[t], that at least one of the xn is non-
constant and that M is not less than 92. If the third difference of the sequence
(x3

0 , . . . , x3
M−1) is constant and equal to 6, which is to say, if

(1) x3
n+3 − 3x3

n+2 + 3x3
n+1 − x3

n = 6 for n = 0, . . . ,M − 4,

then, for some x ∈ F[t] and for any n = 0, . . . ,M − 1, we have

x3
n = (x + n)3.

Here is a consequence of this theorem to mathematical logic:
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Theorem 1.3. Let F be a field of zero characteristic and let t be a variable. Let
L3,T be the language {0, 1,+, P3, T }. Interpret the unary predicate P3 as ‘P3(y)
if and only if y is a cube (third power) in F[t]’, interpret the unary predicate T
as ‘T (x) if and only if x is a nonconstant polynomial’ and interpret 0, 1 and + as
usual. Let L3,t be the language {0, 1,+, P3, R} where R is a constant-symbol for
the function which sends any x to tx (and the remaining symbols are interpreted
as above).

(a) Multiplication in F[t] is positive-existentially definable in each of the lan-
guages L3,T and L3,t .

(b) The positive-existential theory of F[t] in the language L3,T is undecidable.

(c) The positive-existential theory of F[t] in the language L3,t is undecidable.

This strengthens a result of J. Denef [1978] — an analogue of Hilbert’s tenth
problem for rings of polynomials in the variable t , in the language {+, · , 0, 1, t}
(see expositions in [Matiyasevich 1970; Davis 1973; Pheidas and Zahidi 2000;
Poonen 2003; Shlapentokh 2000]). It also strengthens the similar result in [Pheidas
and Zahidi 1999] referring to the language {+, · , ‘x is nonconstant’ , 0, 1}.

Here is an immediate consequence of Theorem 1.3:

Corollary 1.4 (Undecidability of simultaneous representation by cubic forms).
There is no algorithm (Turing machine) that solves the following problem:

Let A and B be two matrices with integer entries and with dimensions
m × n and m × 1, respectively. Assume that x1, . . . , xn are variables
and X is the column matrix of the x3

i . Assume that f j (Y1, . . . Yn) are
polynomials of the variables Y1, . . . Yn of degree 1, for j = 1, . . . , n.
Determine whether the system of equations

A · X = B

has a solution with x1, . . . xn ∈ F[t] with the property that for each
j , f j (x3

1 , . . . , x3
n) 6∈ F.

It would be desirable to be able to prove the similar statement having in place
of the conditions f j (x3

1 , . . . , x3
n) 6∈ F conditions only of the form xi 6∈ F , or, even,

‘some of the xi are nonconstant’. But for the moment we cannot prove any of these.
The proofs of 1.3 and 1.4 (at the end of the paper) show also that the analogous
statements (omitting the conditions for nonconstancy) are equivalent over domains
such as Z and Q. It follows that the analogues of Corollary 1.4 over Z and over Q

are open problems.

Open problems. It is natural to ask about the truth of the statements of Theorem
1.2 and 1.3 for domains other than polynomials. Some examples are:
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(a) The ring of holomorphic and the field of meromorphic functions (on the com-
plex plane or a p-adic plane);

(b) A polynomial ring F[t] in any characteristic other than 3;

(c) The ring of algebraic functions of the variable t , integral over F[t] (this would
strengthen the result of A. Shlapentokh [Shlapentokh 1992]);

(d) Fields of rational functions in any characteristic other than 3;

(e) Fields of algebraic functions in any characteristic other than 3 (this would
strengthen, for example, results of K. Eisentraeger and A. Shlapentokh [2007]
(see also [Shlapentokh 2002; 2006]) and of K. Zahidi [2000]);

(f) Z and Q (and, in general, global fields).

Outline of the proof. We compute an invariant ν of the sequence which in the end
turns out to be an x as in Theorem 1.2. We observe that Equation (1) is equivalent to
x3

n =a+nb+(ν+n)3, where a and b are invariants. Differentiating the terms of this
equation, combining with the initial one and using an argument involving heights
(degrees) we show that a certain invariant of the sequence is equal to 0 (Lemmas
2.7 and 2.9). In this way we obtain a dependence of a on b and ν. Iterating the
procedure we obtain b as a function of ν. In consequence the pairs of nontrivial
solutions (xm, xn) are shown to be on certain curves over F , of genus greater than 0,
which is impossible for nonconstant xn and xm . We obtain a number of degenerate
cases which we have to rule out before we conclude with Theorem 1.2.

Our method can presumably be applied to the analogous problem for k > 3
(with k as in Question 1.1) but the number and nature of degenerate cases seems to
increase in a way that we have not been able to systematize to this point. Because
of the fact that we use derivatives our proof does not transfer to the analogous
problem over the integers or the rationals. �

Remark. Very recently, H. Pasten [2008] proved a strong version of Büchi’s prob-
lem for squares over polynomial rings. His result gives new evidence that the
analogous problem for any (fixed) power could have a positive answer.

2. Büchi’s problem for cubes in polynomial rings

From now on we will fix a solution (x0, . . . , xM−1) of the system (1) and write
un = x3

n , so

(2) un+3 − 3un+2 + 3un+1 − un = 6 for n = 0, . . . ,M − 4.

We call the sequence u = (u0, . . . , uM−1) trivial if it is a sequence of cubes of
successive elements; that is, if there is x ∈ F[t] such that un = (x + n)3 for all n.

Without loss of generality we can suppose that the field F is algebraically closed.
From now on we make the following assumption:
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The field F is algebraically closed of characteristic zero, and at least one
xn is not in F.

Lemma 2.1. The system (2) is equivalent to

(3) 2un = n(n − 1)u2 − 2n(n − 2)u1 + (n − 2)(n − 1)u0 + 2(n − 2)(n − 1)n

for n = 0, . . . ,M − 1, and more generally,

(4) 2un = (k −n)(k −n −1)uk+1 −2(k −n −1)(k −n +1)uk

+(k −n)(k −n +1)uk−1 −2(k −n −1)(k −n)(k −n +1)

for any k = 1, . . . ,M − 2.

Proof. A brute-force proof by induction on n is possible, but we will present here
a shorter one due to the referee. Since the sequence (wn) defined by

wn =
1
2 n(n − 1)u2 − n(n − 2)u1 +

1
2(n − 2)(n − 1)u0 + (n − 2)(n − 1)n

is a polynomial in n with leading coefficient n3, its third difference is the constant
sequence (6). Therefore, (wn) satisfies Equation (2). Since wi = ui for i = 0, 1, 2,
the sequences (wn) and (un) have the same three first terms, hence are equal. This
proves that the system (3) holds. The system (4) holds by a similar argument. �

Lemma 2.2. For any pairwise distinct indices m, n, q ∈ {0, . . . ,M − 1}, the ex-
pression

(5) νm,n,q = −
1
3

(
(q −n)um +(m −q)un +(n −m)uq

(q −n)(m −q)(n −m)
+ m + n + q

)
does not depend on m, n and q.

Proof. Replace um, un and uq by the expressions given by (3). �

For any m, n and q , we will be writing ν instead of νm,n,q . We will call ν the
ν-invariant of the sequence u. Since

3ν =
1
2(u2 − 2u1 + u0 − 6),

the ν-invariant of the trivial solution of Büchi’s problem (when x2 = x0 + 2 and
x1 = x0 +1) is x0. To measure how far a solution u of (2) is from being trivial, we
will introduce the new variables

a = u0 − ν3 and b = (u1 − u0)−
(
(ν+ 1)3 − ν3) .

We find

(6) un = a + nb + (ν+ n)3

(using the expression for ν0,n,1). Note that (xn) is the trivial solution if and only if
a = b = 0.
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Definition 2.3. For x ∈ F[t] \ {0}, we denote by deg x the degree of x , while
deg 0 := −∞. We denote by e the maximum of the degrees of the un for n =

0, . . . ,M − 1 (hence e > 0). If the degree e is divisible by 3 we write d =
1
3 e. In

particular, if un = x3
n for each n, then d is the maximum of the degrees of the xn .

Corollary 2.4. One of the following is true:

(a) Each un has degree e.

(b) There is an index l such that for each n 6= l we have deg un = e and deg ul < e.

(c) There are indices l1 6= l2 such that for each n 6= li , i = 1, 2, we have deg un = e
and deg uli < e, i = 1, 2.

Proof. Assume we are not in cases (a) or (b). Let l1 6= l2 such that deg uli < e and
let k be an index such that deg uk = e. By Lemma 2.2 we have

3ν = νk,l1,l2 = −
(l2 − l1)uk + (k − l2)ul1 + (l1 − k)ul2

(l2 − l1)(k − l2)(l1 − k)
− k − l1 − l2

hence deg ν = deg uk = e. So for any index n 6= l1, l2 we have

3ν = −
(l2 − l1)un + (n − l2)ul1 + (l1 − n)ul2

(l2 − l1)(n − l2)(l1 − n)
− n − l1 − l2,

which implies deg un = deg ν = e. �

Corollary 2.5. If m, n, q and r are pairwise distinct indices of the sequence u,
then um , un , uq and ur are coprime (the four polynomials do not have any common
divisor).

Proof. We have

3ν = 3νm,n,q = −
(q −n)um +(m −q)un +(n −m)uq

(q −n)(m −q)(n −m)
− m − n − q

= 3νm,n,r = −
(r −n)um +(m −r)un +(n −m)ur

(r −n)(m −r)(n −m)
− m − n − r.

Suppose that there is a nonconstant polynomial P dividing um , un , uq and ur . P
has a zero in F . Computing the last two quantities of the latter relations at that zero
we obtain m+n+q = m+n+r , hence q = r , which contradicts our hypothesis. �

Definition 2.6. Recalling Corollary 2.4, we let l1 and l2 be two indices such that
deg ul1

≤ e, deg ul2
≤ e, and

deg un = e for all n other than l1 and l2.

Lemma 2.7. Let {r1, . . . , rm} ⊆ {0, . . . ,M − 1} be a set of m distinct indices. If
Q is a nonzero polynomial in F[t] divisible by each xrk for k = 1, . . . ,m, then the
degree of Q is at least 1

3(m −2)/d. In particular, if we choose M ≥ 92 and m = M
then the degree of Q is at least 30d.
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Proof. Set R = {r1, . . . , rm}. For all n ∈ R, let Pn ∈ F[t] be such that Q = xn Pn .
Since Q is not the zero polynomial, for each n ∈ R, neither xn nor Pn is the zero
polynomial. We write µ for the least common multiple of the elements of the set
{xn | n ∈ R}. Hence µ divides Q and it is enough to show that the degree of µ is
at least 1

3(m − 2)/d.
We claim that the product

∏
n∈R xn divides µ3. Let P be an arbitrary prime of

F[t] which divides µ. Write ordP(x) for the order of x ∈ F[t] at P . It suffices to
show that

ordP

( ∏
n∈R

xn

)
≤ 3ordP(µ).

If P does not divide any xn , the result is obvious. So assume that P divides xk1 for
some index k1 that we choose so that ordP(xk1) is maximum:

ordP(xk1)= ordP(µ).

By Corollary 2.5, P divides either precisely one xn , or precisely two, or precisely
three. Let xki , i = 1, . . . , j , be the polynomials divisible by P in case j. In order to
treat the three cases simultaneously, let xk2 and xk3 be such that P does not divide
any xn with n 6= k1, k2, k3. If we choose the indices so that ordP(xk1)≥ ordP(xk2)≥

ordP(xk3), we obtain, as required,

ordP

( ∏
n∈R

xn

)
= ordP(xk1)+ ordP(xk2)+ ordP(xk3)≤ 3ordP(xk1)= 3ordP(µ),

It follows from the claim that∑
n∈R

deg xn ≤ 3 degµ,

and by Corollary 2.4 we obtain

(m − 2)d ≤

∑
n∈R

deg xn,

where the −2 corresponds to the indices l1 and l2 from Definition 2.6. �

Notation 2.8. We write

A = −ν ′′a′
+ ν ′a′′

+ 6ν ′3ν, B = ν ′′b′
− ν ′b′′

− 6ν ′3,

and if B 6= 0

q =
A
B
.

Observe that if Bν ′
6= 0 we can write

(7) q =
(a′/ν ′)′ + 6νν ′

−(b′/ν ′)′ − 6ν ′
.
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Lemma 2.9. Only the following mutually exclusive two cases can occur:

Case 1: ν ′
= 0.

Case 2: B 6= 0, ν ′
6= 0 and we have

a + bq + (ν+ q)3 = 0,(8)

a′
+ b′q + 3ν ′(ν+ q)2 = 0.(9)

Proof. By differentiating twice the sides of (6) we get

(10) u′

n = a′
+ nb′

+ 3ν ′(ν+ n)2

and

(11) u′′

n = a′′
+ nb′′

+ 6ν ′2(ν+ n)+ 3ν ′′(ν+ n)2.

By plugging into (10) the expression for 3(ν+n)2 that results from (11) we obtain

ν ′′u′

n = ν ′′a′
+ nν ′′b′

+ ν ′
(
u′′

n − a′′
− nb′′

− 6ν ′2(ν+ n)
)
,

which we can rewrite as

(12) nB = A + Un,

where
Un = ν ′′u′

n − ν ′u′′

n.

Multiplying (6) by B3 and (10) by B2 we get

B3un = aB3
+ nbB3

+ (νB + nB)3,

B2u′

n = a′B2
+ nb′B2

+ 3ν ′(νB + nB)2;

hence, replacing the expression of nB from (12),

B3un = aB3
+ (A + Un)bB2

+ (νB + A + Un)
3,

B2u′

n = a′B2
+ (A + Un)b′B + 3ν ′(νB + A + Un)

2.

Separating terms that depend on n from ones that don’t, in both equations, we get

B3un − Un
(
bB2

+ 3(νB + A)2 + 3(νB + A)Un + U 2
n
)

(13)

= aB3
+ AbB2

+ (νB + A)3,

B2u′

n − Un
(
b′B + 6ν ′(νB + A)+ 3ν ′Un

)
= a′B2

+ Ab′B + 3ν ′(νB + A)2.(14)

We give names to the right-hand sides of these two equations:

1= aB3
+ AbB2

+ (νB + A)3, 0 = a′B2
+ Ab′B + 3ν ′(νB + A)2.
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We now use Lemma 2.7 to prove that 1 = 0 = 0. Since un = x3
n , its first and

second derivatives, u′
n and u′′

n , are each a multiple of xn , hence Un = ν ′′u′
n − ν ′u′′

n
is a multiple of xn . Therefore, 1 and 0 are both multiples of xn for each n ∈

{0, . . . ,M − 1}. Let us compute an upper bound for the degrees of 1 and 0.
Recalling Definition 2.6 we see that the degree of un is not more than e, hence that
of ν is not more than e and we have deg a ≤ 3e, deg b ≤ 2e, and

deg A ≤4e−3, deg B ≤3e−3, deg Un ≤2e−3 and deg(νB+A)≤4e−3.

Therefore, computing the degrees of the left-hand sides of (13) and (14), we find

deg1≤ 10e − 9 = 30d − 9< 30d,

deg0 ≤ 7e − 7 = 21d − 7< 30d.

We deduce from Lemma 2.7 that we have 1= 0 and 0 = 0.
If B is not zero then ν ′ is not zero and we have

1

B3 = a +
A
B

b +

(
ν+

A
B

)3
= 0,

0

B2 = a′
+

A
B

b′
+ 3ν ′

(
ν+

A
B

)2
= 0,

which proves (8) and (9).
We next assume that B = 0 and prove that ν ′

= 0. We know from Equation (12)
that A+Un =0 for all n. Since Un is a multiple of xn , and deg Un ≤2e−3=6d−3,
we deduce from Lemma 2.7 that Un is zero. From Corollary 2.4, we know that at
most two of the un may be constant, namely ul1 and ul2 . For all n ∈ {0, . . . ,M −1}

distinct from l1 and l2, we may write

Un

u′
n

2 =
ν ′′u′

n − ν ′u′′
n

u′
n

2 =

(
ν ′

u′
n

)′

and deduce that for those n, the quotient ν ′/u′
n must be a constant in F , say cn . So

we have cnu′
n = ν ′ for at least M −2 distinct values of n, so for at least 90 distinct

values of n. We conclude by Lemma 2.7: since

deg ν ′
≤ e − 1 = 3d − 1<

90 − 2
3

d,

we have ν ′
= 0. �

We will need the following proposition, whose proof comes from the theory of
elliptic curves (see, for example, [Husemöller 2004, Definition (6.2), page 17] or
[Silverman 1986, Hurwitz’s Theorem, II.5]). The main observation that concerns
us here is that a nonsingular cubic curve is of genus 1.

Proposition 2.10. Let µ, ξ ∈ F.

(a) The curve with affine equation Y 3
=µX3

+ξ has genus 1 provided thatµξ 6=0.
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(b) The curve with affine equation Y 2
+µY + ξ = X3 has genus 1 provided that

µ2
6= 4ξ .

Remark. The general strategy from now on will be the following: we will provide
relations among a, b and ν that will produce equations that will define curves as
in Proposition 2.10, where the coefficients µ and ξ will depend on one or various
indices n. These curves will have rational parametrization by polynomials made
up of products of various xn’s; hence they will define curves of genus 0 (for all the
indices considered). Proposition 2.10 will then tell us that this can happen for very
few values of n (as long as any of xn or x0 is nonconstant, and in particular, if n is
different from l1 and l2). So we will have space to choose the indices such that one
of the curves considered is of genus 1, while it admits a rational parametrization,
and this will give us a contradiction. The only case that will survive is that in which
for all n we have x3

n = (ν+ n)3, which will prove Theorem 1.2.

Lemma 2.11. Case 1 is impossible, that is, ν ′ can not be zero.

Proof. We will show first that if ν is constant then so is a, and then that ν and a
cannot be both constant.

Assume that ν ′
= 0 and a′

6= 0. So we have a′
= u′

0 from the definition of a, and

u′

n = a′
+ nb′, u′′

n = a′′
+ nb′′

from (6). This leads to u′
nb′′

= a′b′′
+ nb′′b′

= a′b′′
+ (u′′

n − a′′)b′, that is,

u′

nb′′
− u′′

nb′
= a′b′′

− a′′b′.

Since xn divides u′
n and u′′

n and the degree of u′
nb′′

− u′′
nb′ is no more than 3e − 3,

we deduce from Lemma 2.7 that

a′b′′
− a′′b′

= 0.

Since a′
6= 0, we can write (b′

a′

)′

= 0,

so b = ra + s for some constants r, s ∈ F . By (6), we have

x3
n = un = a +nb+(ν+n)3 = a +n(ra +s)+(ν+n)3 = (1+nr)a +ns +(ν+n)3

for each n; hence, recalling the definition of a,

x3
n = (1 + nr)x3

0 + ns + (ν+ n)3 − (1 + nr)ν3.

Thus, for each n such that xn is nonconstant (hence for at least 90 distinct values
of n), the curve

Y 3
= (1 + nr)X3

+ ns + (ν+ n)3 − (1 + nr)ν3
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is a curve over F that admits the parametrization (X, Y )= (x0, xn) by nonconstant
rational functions, hence is a curve of genus 0. According to Proposition 2.10 this
implies that (1 + nr)

(
ns + (ν + n)3 − (1 + nr)ν3

)
= 0, which cannot happen for

more than four values of n. This gives us a contradiction.
Now we prove that ν and a cannot be both constant. Recall that

x3
1 = a + b + (ν+ 1)3,

hence
b = x3

1 − a − (ν+ 1)3.

Therefore, for each n, we have

x3
n = a +n

(
x3

1 −a − (ν+1)3
)
+ (ν+n)3 = nx3

1 + (1−n)a −n(ν+1)3 + (ν+n)3.

If both ν and a are constant, the curve

Y 3
= nX3

+ (1 − n)a − n(ν+ 1)3 + (ν+ n)3

is a curve over F that admits the parametrization (X, Y )= (x1, xn) by nonconstant
rational functions, hence is a curve of genus 0. As in the previous paragraph we
conclude that this cannot happen for more than four values of n. �

Lemma 2.12. In Case 2 of Lemma 2.9 there are two mutually exclusive subcases:

Case 2.1: For all n we have x3
n = (ν+ n)3 (that is, the trivial solution).

Case 2.2: q ′
= 0.

Proof. According to Case 2, we assume that B 6= 0 and ν ′
6= 0. Observe that if

(xn) is the trivial solution then a = b = 0 and q = −ν, hence q ′
= −ν ′

6= 0.
Suppose q ′ is not zero. By differentiating (8) we get

a′
+ b′q + bq ′

+ 3(ν ′
+ q ′)(ν+ q)2 = 0,

and subtracting (9), we obtain bq ′
+ 3q ′(ν+ q)2 = 0, that is,

(15) b = −3(ν+ q)2.

Recall that

q =
(a′/ν ′)′ + 6νν ′

−(b′/ν ′)′ − 6ν ′
.

We write α = a′/ν ′ and β = b′/ν ′. We obtain

q = −
α′

+ 6νν ′

β ′ + 6ν ′
,

hence

(16) −α′
= q(β ′

+ 6ν ′)+ 6νν ′.
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On the other hand, dividing by ν ′ in Equation (9) we obtain

α+βq + 3(ν+ q)2 = 0

which, by differentiating, gives

−α′
= β ′q +βq ′

+ 6(ν ′
+ q ′)(ν+ q),

hence
−α′

= β ′q +βq ′
+ 6(ν ′ν+ ν ′q + q ′ν+ q ′q).

Substituting the expression for α′ from Equation (16) we obtain

q(β ′
+ 6ν ′)+ 6νν ′

= β ′q +βq ′
+ 6(ν ′ν+ ν ′q + q ′ν+ q ′q);

hence, simplifying the qβ ′, νν ′, and qν ′,

0 = βq ′
+ 6(q ′ν+ q ′q),

hence
β = −6(ν+ q),

or again
b′

= −6ν ′(ν+ q).

From Equation (15) we obtain

b′
= −6(ν ′

+ q ′)(ν+ q),

hence ν+q = 0. Therefore, Equation (15) implies b = 0, and Equation (8) implies
a = 0. By Equation (6), we get

un = (ν+ n)3.

This proves the lemma. �

Lemma 2.13. Case 2.2 of the previous lemma is impossible, that is, q ′
6= 0.

Proof. By Equations (6) and (8) we have

un = (n − q)b + (ν+ n)3 − (ν+ q)3,

therefore

un = (n − q)b + 3ν2(n − q)+ 3ν(n2
− q2)+ n3

− q3,

so, for all n distinct from q ,
un

n − q
= b + 3ν2

+ 3ν(n + q)+ n2
+ qn + q2

hence
un

n − q
= b + 3ν2

+ 3qν+ q2
+ n(3ν+ q)+ n2.
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If we write

wn = y3
n =

un

n − q
, α = b + 3ν2

+ 3qν+ q2, β = 3ν+ q,

then we have

(17) wn = α+βn + n2,

and, differentiating both sides,

(18) w′

n = α′
+β ′n.

Multipying (17) by β ′2 and substituting β ′n from (18) we get

β ′2wn = β ′2α+β ′β(w′

n −α′)+ (w′

n −α′)2

hence

(19) β ′2wn −β ′βw′

n −w′

n
2
+ 2α′w′

n = β ′2α−β ′βα′
+α′2.

We intend to apply Lemma 2.7.
For the sake of contradiction, in the rest of the proof we assume that q is constant.

So, each yn is a polynomial of the same degree as xn , and by Corollary 2.5, any
four distinct yn are coprime. Also, we have degα ≤ 2e, degβ ≤ e and degwn ≤ e.
Hence, the left-hand side of (19) has degree ≤ 3e − 2 = 9d − 2. Observe that wn

is a cube and is divisible by x3
n . Hence the left-hand side of (19) is divisible by xn .

So we can apply Lemma 2.7 and conclude that

(20) β ′2α−β ′βα′
+α′2

= 0.

Recall that ν ′
6= 0, so β ′

6= 0. Hence (20) can be written as(
α′

β ′

)2

−β
α′

β ′
+α = 0.

Therefore, for some γ ∈ F(t), we have

(21) β2
− 4α = γ 2

and

(22)
α′

β ′
=

1
2(β + εγ )

for some ε ∈ {−1, 1}.
Substituting the value of α from (21) into (22) we obtain

(23) γ (β ′
+ εγ ′)= 0.

Thus we have two cases, according to whether β ′
= −εγ ′ or γ = 0.
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Case 2.2.1: We assume β ′
= −εγ ′. From Equation (22) we obtain

α′
= cβ ′

for some c ∈ F ; substituting this expression for α′ in (20) we obtain

α = cβ − c2.

Therefore, by (17),
y3

n = (n + c)β + n2
− c2.

So, for any indices m and n, we have

y3
m y3

n =
(
(m + c)β + m2

− c2)((n + c)β + n2
− c2),

hence

(24) λ3
m,n y3

m y3
n = β2

+µm,nβ + ξm,n

where

λ3
m,n =

1
(m + c)(n + c)

, µm,n =
(m + c)(n2

− c2)+ (n + c)(m2
− c2)

(m + c)(n + c)

and

ξm,n =
(m2

− c2)(n2
− c2)

(m + c)(n + c)
provided that (m + c)(n + c) 6= 0. It is obvious that we can choose m, n ≤ M − 1
so that (m + c)(n + c)(µ2

m,n − 4ξm,n) 6= 0. So, by Proposition 2.10, the curve

(25) Y 3
= X2

+µm,n X + ξm,n

is of genus 1. But by Equation (24) the latter is a curve over F that admits the
parametrization (X, Y ) = (β, λm,n ym yn) by nonconstant rational functions (recall
that β 6∈ F), hence is a curve of genus 0, a contradiction that proves that Case 2.2.1
is impossible.

Case 2.2.2: We assume that γ = 0. From (21) we obtain 4α = β2, while (17)
becomes

4y3
n = (β + 2n)2.

Hence yn is a square: yn = z2
n for some zn ∈ F[t]. So we have

2z3
n = εn(β + 2n),

where εn = ±1, and we may assume εn = 1 for all n by changing zn by −zn if
necessary. Hence, for each m and n distinct from q, l1 and l2, the curve

4X3
= Y 2

+ 2(m + n)Y + 4mn
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admits the parametrization (X, Y ) = (zmzn, β) by nonconstant rational functions,
hence is of genus 0. By Proposition 2.10, we have

4(m + n)2 = 16m2n2.

As long as m has been chosen, this can happen for at most two choices of n. So
we get a contradiction and conclude that Case 2.2.2 is impossible. �

Proof of Theorem 1.2. By Lemmas 2.9, 2.11, 2.12 and 2.13, the only possible case
is Case 2.1 of Lemma 2.12, that is, x3

n = (ν+ n)3 for each n. �

Proof of Theorem 1.3. (a) By Theorem 1.2, the formula

φ(x, z, w) : ∃y0 . . . ∃y91

x = y0 ∧ z = y1 ∧ w= y2 ∧

91∧
n=0

P3(yn) ∧

88∧
n=0

yn+3 − 3yn+2 + 3yn+1 − yn =6

is equivalent over F[t] to:

Either x, z, w are constant polynomials or x = ν3 and z = (ν + 1)3 and
w = (ν+ 2)3 for some ν ∈ F[z].

Therefore, the formula

ψ(ν, u) : ∃x ∃z∃w ψ(x, z, w) ∧ 6ν+6 = (w− z)−(z − x) ∧ z − x = 3u +3ν+1

is equivalent over F[t] to:

Either ν, u ∈ F or u = ν2.

Both φ and ψ are formulas in the intersection of the languages L3,t and L3,T .
Let us prove that the formula

ψ1(ν, u) : ∃g ∃h ψ(ν, u) ∧ ψ(ν+ t, g) ∧ ψ(ν− t, h) ∧ g +h = 2u +2t2

is satisfied in F[t] if and only if
u = ν2.

One the one hand, if u = ν2 then we can choose g = (ν+ t)2 and h = (ν− t)2. On
the other hand, if ψ1(ν, u) is satisfied in F[t], then either u = ν2 and we are done,
or u, ν ∈ F , in which case ν + t, ν − t /∈ F , hence g = (ν + t)2 and h = (ν − t)2,
hence 2u + 2t2

= g + h = 2ν2
+ 2t2 implies u = ν2.

Observe that ψ1 is equivalent to a positive-existential L3,t -formula. Similarly,
the formula

ψ2(ν, u) : ∃ f ∃g ∃h ∃z

T ( f ) ∧ ψ( f, z) ∧ ψ(ν, u) ∧ ψ(ν+ f, g) ∧ ψ(ν− f, h) ∧ g +h = 2u +2z

is equivalent to
u = ν2.
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Observe that ψ2 is equivalent to a positive-existential L3,T -formula.
Therefore squaring over F[t] is positive-existentially definable in each of the

languages L3,t and L3,T , hence so is multiplication (for details see L. Lipshitz
[Lipshitz 1990]).

Statements (b) and (c) follow from (a) and the fact that the positive-existential
theory of F[t] in the language {0, 1,+, · , T } (resp. {0, 1,+, · , t}) is undecidable
[Pheidas and Zahidi 1999; Denef 1978]. �

Proof of Corollary 1.4. Any positive-existential L3,T -sentence is equivalent to a
disjunction of sentences each of which claims the solvability of a system of linear
equations with integer coefficients, together with conditions stating that certain of
the variables are cubes plus conditions which state that certain linear polynomials
of the variables are nonconstant (6∈ F). Now observe that for any x we have

6x + 6 = (x + 2)3 − 2(x + 1)3 + x3.

Hence we can substitute each variable x , which is not assumed to be necessarily a
cube, by the expression

1
6 z3

1 −
1
3 z3

2 +
1
6 z3

3 −
1
6 ,

where the z j are new variables. Hence any positive-existential L3,T -sentence is
equivalent to a disjunction of sentences of form as in the Corollary. Consequently,
if the satisfiability problem for such sentences were decidable, so would be the
decidability problem for positive-existential sentences of L3,T , which would con-
tradict Theorem 1.3. �
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