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We introduce a new general conjugate Bailey pair which bridges the gap
between Bailey and Slater’s work and the work done recently by Andrews
and Warnaar. With this new general pair we are able to find many useful
conjugate Bailey pairs similar to those of Andrews and Warnaar. Using
our new pairs we show results related to the sums of triangular numbers,
indefinite quadratic forms and partition identities. We close with a brief
discussion of the many other paths that can and will be taken in the future.

1. Introduction

The Bailey transform. In [1948], W. N. Bailey introduced a new proof of the
Rogers–Ramanujan identities

∞∑
n=0

qn2

(q)n
=

1
(q, q4; q5)∞

and
∞∑

n=0

qn(n+1)

(q)n
=

1
(q2, q3; q5)∞

,

where we use the standard hypergeometric q-series notation [Gasper and Rahman
2004, page xvi]: For |q|< 1,

(a)k = (a; q)k = (1 − a)(1 − aq) · · · (1 − aqk−1)=

k−1∏
i=0

(1 − aq i ),

(a)∞ = (a; q)∞ = lim
k→∞

(a; q)k =

∞∏
i=0

(1 − aq i ),

(a1; q)k(a2; q)k · · · (an; q)k = (a1, a2, . . . , an; q)k .

Bailey also included more Rogers–Ramanujan-type identities, which he had
found using a similar method of proof. Two years later Bailey formulated this
method into what is now known as the Bailey transform:
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Theorem 1.1 (The Bailey transform). If

βn =

n∑
r=0

αr un−rvn+r and γn =

∞∑
r=n

δr ur−nvr+n, then
∞∑

n=0

αnγn =

∞∑
n=0

βnδn,

subject to conditions on the four sequences αn, βn, γn and δn which make all the
infinite series absolutely convergent.

The main result of the Bailey transform is dependent on two relations. The first
relation defines a Bailey pair, (αn, βn), and the second defines a conjugate Bailey
pair, (δn, γn). With the introduction of the Bailey transform, Bailey included many
general pairs of both types. We recall the following conjugate Bailey pair.

Corollary 1.2 [Bailey 1948]. If we let un = 1/(q)n and vn = 1/(aq)n in the Bailey
transform, then we have the conjugate Bailey pair

δn = (ρ1)n(ρ2)n

( aq
ρ1ρ2

)n

and
γn =

(aq/ρ1)∞(aq/ρ2)∞
(aq)∞(aq/ρ1ρ2)∞

·
(ρ1)n(ρ2)n

(aq/ρ1)n(aq/ρ2)n

( aq
ρ1ρ2

)n
.

The above conjugate Bailey pair was then used with the Bailey transform to
show multiple Rogers–Ramanujan-type identities. The same conjugate Bailey pair
was then used three years later by Slater [1952] to prove her list of around 130 new
and known Rogers–Ramanujan-type identities.

1.1. The bilateral Bailey transforms. Andrews and Warnaar [2007] recently in-
troduced a handful of new conjugate Bailey pairs. We state the pairs they found in
the following variations of the Bailey transform (see their paper for proofs):

Theorem 1.3 (Symmetric bilateral Bailey transform). If

βn =

n∑
r=−n

αr un−rvn+r and γn =

∑
r≥|n|

δr ur−nvr+n, then
∞∑

n=−∞

αnγn =

∞∑
n=0

βnδn,

subject to conditions on the four sequences which make all of the relevant infinite
series absolutely convergent.

Theorem 1.4 (Asymmetric bilateral Bailey transform). Let m = max{n,−n − 1}.
If

βn =

n∑
r=−n−1

αr un−rvn+r+1 and γn =

∞∑
r=m

δr ur−nvr+n+1, then
∞∑

n=−∞

αnγn =

∞∑
n=0

βnδn,

subject to conditions on the four sequences which make all of the relevant infinite
series absolutely convergent.
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We can now introduce the conjugate Bailey pairs of Andrews and Warnaar.

Theorem 1.5 [Andrews and Warnaar 2007]. Let un = vn = 1/(q2
; q2)n in the

symmetric bilateral Bailey transform. Then we have the conjugate Bailey pairs

δn =
(q2

; q2)2n
(−q; q)2n+1

qn, γn = q−n2 ∑
j≥|n|

q j2
+ j

and

δn = (q)2nqn, γn = q−2n2 ∑
j≥2|n|

q j ( j+1)/2.

Theorem 1.6 [Andrews and Warnaar 2007]. Let un = vn = 1/(q2
; q2)n in the

asymmetric bilateral Bailey transform. Then we have the conjugate Bailey pairs

δn =
(q2

; q2)2n+1

(−q; q)2n+2
qn, γn = q−n(n+1)

∑
j≥m

q j ( j+2)

and

δn = (q)2n+1qn, γn = q−2n(n+1)
∑
j≥2m

q j ( j+3)/2,

where m = max{n,−n − 1}.

One of the more striking observations of these new pairs is the existence of
a restricted sum in γn , a characteristic not commonly seen in previous conjugate
Bailey pairs. Andrews and Warnaar were then able to apply these pairs to show
many results both new and known relating to false and partial theta series.

1.2. Bridging gaps and contributions. This work below will bridge the previously
unknown gap between the work done by Bailey and Slater and the work done
by Andrews and Warnaar. Section 2 introduces a new conjugate Bailey pair that
encompasses the pairs used by Bailey and Slater and those used by Andrews and
Warnaar.

In Section 3 we use our general theorem to define specific new conjugate Bai-
ley pairs. In Sections 4–6 we touch on some of the many applications that are
obtainable with these new conjugate Bailey pairs.

2. A general conjugate Bailey pair

In this section we introduce a new general conjugate Bailey pair. As we show
in Section 3, its special cases tie together the conjugate Bailey pairs of Andrews
and Warnaar as well as the conjugate Bailey pair used by Bailey and Slater. In
finding our generalization, we are able to find many other new conjugate Bailey
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pairs similar to those of Andrews and Warnaar. Their applications are seen in later
sections.

The following theorem is our main result regarding conjugate Bailey pairs. We
present a very general conjugate Bailey pair and its proof. For the purpose of the
proof, we define an n+1φn basic hypergeometric series as (see [Gasper and Rahman
2004, page 4])

n+1φn

[
a1, . . . , an+1

b1, . . . , bn
; q, z

]
=

∞∑
k=0

(a1, . . . , an+1; q)k
(q, b1, . . . , bn; q)k

zk .

Theorem 2.1. Let un = 1/(q)n and vn = 1/( f q)n . Then

δn =
(e f q2/abc, e f q/a; q)∞
(e f q2/ab, e f q2/ac; q)∞

·
(a, b, c; q)n
(eq; q)n

(e f q2

abc

)n

is a conjugate Bailey pair, and

γn =
(e f q/a, a; q)n
( f q, f q/a; q)n

(
−

1
a

)n
q−n(n−1)/2

×

∑
j≥n

(e f qn+1/a, f q/a, b, c; q) j (eq/a; q) j−n

(e f q2/ab, e f q2/ac, f qn+1, eq; q) j (q; q) j−n
(1 − e f q2 j+1/a)

(
−

e f
bc

) j
q j ( j+3)/2.

Proof. Our proof is an application of Watson’s 8φ7 transformation:

γn =

∑
j≥n

δ j

(q; q) j−n( f q; q) j+n

=
(e f q2/abc, e f q/a; q)∞
(e f q2/ab, e f q2/ac; q)∞

∑
j≥n

(a, b, c; q) j

(eq; q) j (q; q) j−n( f q; q) j+n

(e f q2

abc

) j

=
(e f q2/abc, e f q/a; q)∞
(e f q2/ab, e f q2/ac; q)∞

(a, b, c; q)n
(eq; q)n( f q; q)2n

(e f q2

abc

)n
3φ2

[
aqn, bqn, cqn

eqn+1, f q2n+1 ; q, e f q2

abc

]
=
(e f q2/abc, e f q/a; q)∞
(e f q2/ab, e f q2/ac; q)∞

(a, b, c; q)n
(eq; q)n( f q; q)2n

(e f q2

abc

)n (e f qn+2/ab, e f qn+2/ac; q)∞
(e f q2n+2/a, e f q2/abc; q)∞

× lim
d 7→∞

8φ7 X,

where

X =

 e f q2n+1

a ,

√
e f q2n+3

a ,−

√
e f q2n+3

a ,
f qn+1

a ,
eq
a , bqn, cqn, d√

e f q2n+1

a ,−

√
e f q2n+1

a , eqn+1, f q2n+1,
e f qn+2

ab ,
e f qn+2

ac , 0
; q, e f q2+n

bcd

 .
In the above, the last equality follows from [Gasper and Rahman 2004, Equation
(III.17)] with a = e f q2n+1/a, b = f qn+1/a, c = eq/a, d = q−k , e = bqn

and f = cqn , followed by k → ∞. We note that allowing d = q−k ensures the
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termination of our series. After some simplification we see that this is

γn =
(e f q/a; q)2n+1

(e f q2/ab, e f q2/ac; q)n
·

(a, b, c; q)n
(eq; q)n( f q; q)2n

(e f q2

abc

)n

× lim
d 7→∞

∞∑
j=0

(
1 −

e f q2n+2 j+1

a

)(e f q2n+1

a ,
f qn+1

a ,
eq
a , bqn, cqn, d; q

)
j(

1 −
e f q2n+1

a

)(
eqn+1, f q2n+1,

e f qn+2

ab ,
e f qn+2

ac , q; q
)

j

(e f q2+n

bcd

) j

=
(e f q/a, a; q)n
( f q, f q/a; q)n

(
−

1
a

)n
q−n(n−1)/2

×

∑
j≥n

(e f qn+1/a, f q/a, b, c; q) j (eq/a; q) j−n

(e f q2/ab, e f q2/ac, f qn+1, eq; q) j (q; q) j−n
(1 − e f q2 j+1/a)

(
−

e f
bc

) j
q j ( j+3)/2,

the desired expression. �

We note that our conjugate Bailey pair presented above has the form

γn = Cn

∞∑
j=n

D j
(eq/a) j−n(e f q/a) j+n

(q) j−n( f q) j+n
.

Definition 2.2 [Andrews 2001]. Two sequences αn(A, K ) and βn(A, K ) form a
WP-Bailey pair if

βn(A, K )=

n∑
j=0

(K/A)n− j (K )n+ j

(q)n− j (Aq)n+ j
α j (A, K ).

Andrews uses this definition to define the WP-Bailey chain. In the same spirit, we
can define our own WP-conjugate Bailey pair:

Definition 2.3. We say that two sequences δn(A, K ) and γn(A, K ) form a WP-
conjugate Bailey pair if

γn(A, K )=

∞∑
j=n

(K/A)n− j (K )n+ j

(q)n− j (Aq)n+ j
δ j (A, K ).

We can then see that Theorem 2.1 satisfies such a definition if we choose the two
sequences (γn/Cn, Dn) with A = f and K = e f q/a. We will not explore the
realm of WP-conjugate Bailey chains here, but we certainly foresee its appearance
in subsequent work.

3. Specific conjugate Bailey pairs

The conjugate Bailey pair of Corollary 1.2, used by Bailey [1948] and Slater [1952]
in their work, is a special case of our theorem. We can see this by allowing a = eq ,
followed by some simple change of variables. We also note that the special case
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a = eq in Theorem 2.1 not only simplifies our pair but also completely eliminates
the restricted sum from γn . To recover the pairs found by Andrews and Warnaar,
we explore another option that will simplify the term (eq/a; q) j−n/(q; q) j−n in
our γn . We can accomplish this by allowing e→a. We will consider two corollaries
of our main result:

Corollary 3.1. Let un = vn = 1/(q2
; q2)n in the Bailey transform. Then we have

the conjugate Bailey pair

γn =
(a; q2)n

(q2/a; q2)n

(
−

1
a

)n
q−n(n−1)

×

∑
j≥n

(q2/a, b, c; q2) j

(q4/b, q4/c, aq2; q2) j
(1 − q4 j+2)

(
−

a
bc

) j
q j ( j+3)

and

δn =
(q4/bc, q2

; q2)∞

(q4/b, q4/c; q2)∞
·
(a, b, c; q2)n

(aq2; q2)n

(q4

bc

)n
.

Proof. Let e → a and f = 1 and q → q2 in Theorem 2.1. �

Corollary 3.2. Let un = 1/(q2
; q2)n and vn = 1/(q4

; q2)n in the Bailey transform.
Then we have the conjugate Bailey pair

γn =
(a; q2)n

(q4/a; q2)n

(
−

1
a

)n
q−n(n−1)

×

∑
j≥n

(q4/a, b, c; q2) j

(q6/b, q6/c, aq2; q2) j
(1 − q4 j+4)

(
−

a
bc

) j
q j ( j+5)

and

δn =
(q6/bc, q4

; q2)∞

(q6/b, q6/c; q2)∞
·
(a, b, c; q2)n

(aq2; q2)n

(q6

bc

)n
.

Proof. Let e → a and f = q and q → q2 in Theorem 2.1. �

We now have the proper tools to prove Andrews and Warnaar’s results.

Proof of Theorem 1.5. When using the symmetric bilateral Bailey transform with
un = vn = 1/(q2

; q2)n , we have γn = γ−n , so that we can assume n > 0. But then
the relation between γ and δ in Theorem 1.3 is the same as that of Theorem 1.1.
It is left to show that the conjugate Bailey pairs due to Andrews and Warnaar are
special cases of Corollary 3.1. We see this by considering a = −q , b = q and
c = q2 in Corollary 3.1 and b = q , c = q2 and a → 0 in Corollary 3.1. �

Proof of Theorem 1.6. When using the asymmetric bilateral Bailey transform with
un = vn = 1/(q2

; q2)n , we see that

γn =

∑
j≥m

δ j

(q2; q2) j−n(q2; q2) j+n+1
=

∑
j≥m

δ j

(q2; q2) j−m(q2; q2) j+m+1
,
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where m = max{n,−n − 1}. If we consider a = −q2, b = q2 and c = q3 in
Corollary 3.2, we see that

δn =
(q, q4

; q2)∞

(q4, q3; q2)∞
·
(−q2, q2, q3

; q2)n

(−q4; q2)n

(q6

q5

)n
=

(1 + q2)

(1 + q2n+2)
(q)2n+1qn

and γn is equal to

(−q2
; q2)n

(−q2; q2)n

( 1
q2

)n
q−n(n−1)

∑
j≥n

(−q2, q2, q3
; q2) j

(q4, q3,−q4; q2) j
(1 − q4 j+4)

(q2

q5

) j
q j ( j+5)

= (1 − q4)q−n(n+1)
∑
j≥n

q j ( j+2).

Thus,

q−n(n+1)
∑
j≥n

q j ( j+2)
=

∑
j≥n

(q; q)2 j+1q j

(1 + q2 j+2)(q2; q2) j−n(q2; q2) j+n+1
.

Since n(n + 1)= m(m + 1) when m = max{n,−n − 1}, we are done.
We can prove the second pair in the same way using b = q2, c = q3 and a → 0

in Corollary 3.2. �

We now introduce some new special cases of our general conjugate Bailey pair;
these will be used in later sections. All of the conjugate Bailey pairs we introduce
below are with respect to the symmetric bilateral Bailey transform and un = vn .
This ensures that if γn is a conjugate Bailey pair with respect to the Bailey trans-
form, then γ ′

n =γ|n| is a conjugate Bailey pair with respect to the symmetric bilateral
Bailey transform. Thus, each conjugate Bailey pair that satisfies Corollary 3.1 is a
pair in the symmetric bilateral Bailey transform as well as the Bailey transform.

Corollary 3.3. Let un = vn = 1/(q2
; q2)n in the symmetric bilateral Bailey trans-

form. Then we have the conjugate Bailey pairs listed in Table 1.

Proof. Each pair follows from a choice of a, b and c in Corollary 3.1.
For (1), we take a = b = c = q , followed by q → −q.
For (2), we take a = −b = −c = q, followed by q → −q .
For (3), we take a = b = q , c = −q2, followed by q → −q .
For (4), we take a = −q , b = q3 and c → ∞.
For (5), we take a = −b = q , c → ∞, followed by q → −q .
For (6), we take b = c = q, a → 0.
For (7), we take b = q , a → 0, c → ∞.
For (8), we take b = q3, a → 0, c → ∞.
For (9), we take b = q, c = −q2, a → 0, followed by q → −q.
For (10), we take a = q , b = q2 and c → ∞, followed by q → −q . �
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δn γn

(1) (q2
; q2)2

∞

(−q; q2)2
∞

·
(−q; q2)2n
(1 + q2n+1)

q2n q−n2 ∑
j≥|n|

(1−q2 j+1)

(1+q2 j+1)2
q j ( j+2)

(2) (q2
; q2)2

∞

(q; q2)2
∞

·
(q; q2)2n
(1 + q2n+1)

q2n q−n2 ∑
j≥|n|

q j ( j+2)

(1−q2 j+1)

(3) (q)∞
(−q)∞

·
(−q)2n

(1 + q2n+1)
qn q−n2 ∑

j≥|n|

(1−q2 j+1)

(1+q2 j+1)
q j ( j+1)

(4) (q2
; q2)∞

(q; q2)∞
·
(q; q2)n+1

(1 + q2n+1)
(−1)nqn2

q−n2 ∑
j≥|n|

(1 − q2 j+1)2(−1) j q2 j2

(5) (q2
; q2)∞

(q; q2)∞
·
(q; q2)n

(1 + q2n+1)
(−1)nqn(n+2) q−n2 ∑

j≥|n|

(−1) j q2 j ( j+1)

(6) (q2
; q2)2

∞

(q; q2)2
∞

(q; q2)2nq2n q−2n2 ∑
j≥|n|

(1+q2 j+1)

(1−q2 j+1)
q2 j ( j+1)

(7) (q2
; q2)∞

(q; q2)∞
(q; q2)n(−1)nqn(n+2) q−2n2 ∑

j≥|n|

(1 + q2 j+1)(−1) j q j (3 j+2)

(8) (q2
; q2)∞

(q; q2)∞
(q; q2)n+1(−1)nqn2

q−2n2 ∑
j≥|n|

(1 − q2 j+1)(1 − q4 j+2)(−1) j q3 j2

(9) (q)∞
(−q)∞

(−q)2nqn q−2n2 ∑
j≥2|n|

(−1) j q j ( j+1)/2

(10) (q2
; q2)n

(1 + q2n+1)
(−1)nqn(n+1) q−n2 ∑

j≥2|n|

(−q) j ( j+1)/2

Table 1

Corollary 3.4. Let un = vn = 1/(q)n in the symmetric bilateral Bailey transform.
Then we have conjugate Bailey pairs listed in Table 2.

Proof. Again, each pair follows from a choice of a, b and c in Corollary 3.1.
For (11), we take b = −c = q , a → 0, followed by q2

→ q.
For (12), we take b = −q2, a → 0 and c → ∞, followed by q2

→ q .
For (13), we take b = q2, a → 0 and c → ∞, followed by q2

→ q .
For (14), we take a → 0 and b, c → ∞, followed by q2

→ q. �

4. Sums of triangular numbers

We turn our attention to Gauss’s formula
∞∑

n=0

qn(n+1)/2
=
(q2

; q2)∞
(q; q2)∞
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δn γn

(11) (q2
; q2)∞

(q; q2)∞
(q; q2)n(−1)nqn q−n2 ∑

j≥|n|

(−1) j q j ( j+1)

(12) (q)∞
(−q)∞

(−q)nqn(n+1)/2 q−n2 ∑
j≥|n|

(1 − q2 j+1)q j (3 j+1)/2

(13) (q)n(−1)nqn(n+1)/2 q−n2 ∑
j≥|n|

(1 − q2 j+1)(−1) j q j (3 j+1)/2

(14) (q)∞qn(n+1) q−n2 ∑
j≥|n|

(−1) j q j ( j+1)/2

Table 2

and remark that n(n+1)/2 is the n-th triangular number. With this identity, we are
able to make some interesting remarks about generating functions related to the
sums of the triangular numbers. We define the function ψ(q) =

∑
∞

n=0 qn(n+1)/2,
a classical theta function studied by Ramanujan [Berndt 1991, page 100, (5.1)].
We can then see that ψk(q) =

∑
∞

n=0 tk(n)qn , where tk(n) counts the number of
representations of n as the sum of k triangular numbers. We note that order is
important, unlike with partitions: for example, t3(5) = 3 since 5 = 3 + 1 + 1 =

1 + 3 + 1 = 1 + 1 + 3. While (15)–(18) and (20) can be found in previous work,
none have used the conjugate Bailey pair approach presented below, and no other
method has been able to encompass so many results.
Corollary 4.1.

ψ2(q)=

∞∑
j=−∞

(−1) j q j ( j+1)

(1−q2 j+1)
,(15)

ψ2(q2)=

∞∑
j=0

q j

1+q2 j+1 ,(16)

ψ4(q)=

∞∑
j=−∞

q j

(1−q2 j+1)2
,(17)

ψ3(q)=

∑
j≥|n|

(1+q2 j+1)

(1−q2 j+1)
q2 j ( j+1)−n(2n−1),(18)

ψ2(q)=

∑
j≥|n|

(−1) j+nq j (3 j+2)−n(3n+1)(1 + q2 j+1),(19)

ψ2(q)=

∑
j≥|n|

(−1) j+nq j ( j+1)−n2
.(20)
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We note that (16) can be found in [Berndt 1991, page 139, Example (iv)], (17)
can be found in [Dickson 1966, page 285], (18) can be found in [Andrews 1986a,
page 114, (1.5)], and (20) can be found in [Andrews 1984, page 452, (1.4)] with
q → q2 and z = 1/q .

Proof. For Equation (15), we consider the Bailey pair

(21) αn = qn2
, βn =

(−q; q2)2n
(q2; q2)2n

found in [Andrews 1998, page 49, Example 1]. Combining this Bailey pair with
the conjugate Bailey pair (3) with q → −q and un = vn = 1/(q2

; q2)n , we get
∞∑

n=−∞

(−1)nqn(n+1)

(1−q2n+1)
=

∞∑
n=−∞

(−1)n
∑
j≥|n|

(1+q2 j+1)

(1−q2 j+1)
q j ( j+1)

=
(−q; −q)∞

(1−q)(q; −q)∞
2φ1

(
q,−q

q3 ; q2,−q
)

=
(q2

; q2)2
∞

(q; q2)2
∞

,

where our last equality is due to [Gasper and Rahman 2004, III.2, page 359].
For Equation (16), we consider the Bailey pair

(22) αn = qn, βn =
q−n

(q)2n

found in [Slater 1951, F(3)] with the conjugate Bailey pair (2) with q → −q and
un = vn = 1/(q2

; q2)n to get
∞∑
j=0

q j

1+q2 j+1 =

∞∑
n=−∞

(−1)nq−n(n−1)
∑
j≥|n|

(−1) j q j ( j+1)

1+q2 j+1

=
(q2

; q2)2
∞

(1−q)(−q; q2)2
∞

2φ1

(
−q,−q

q3 ; q2, q
)

=
(q2

; q2)2
∞

(−q; q2)2
∞

·
(−q2

; q2)2
∞

(q; q2)2
∞

,

where our first equality is due to the identity

(23)
j∑

n=− j

(−1)nq−n(n−1)
= (−1) j q− j ( j+1),

which can be easily proved with induction; our last equality is due to [Gasper and
Rahman 2004, III.2, page 359]. We then see that our infinite product is ψ2(q2).

For Equation (17), we consider the Bailey pair (22) with the conjugate Bailey
pair (1) with un = vn = 1/(q2

; q2)n . We then apply (23) and [Gasper and Rahman
2004, III.2, page 359] as with our previous result.
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For Equation (18), we consider the Bailey pair (22) with the conjugate Bailey
pair (6) with un = vn = 1/(q2

; q2)n to get∑
j≥|n|

(1+q2 j+1)

(1−q2 j+1)
q2 j ( j+1)−n(2n−1)

=

∞∑
n=−∞

q−n(2n−1)
∑
j≥|n|

(1+q2 j+1)

(1−q2 j+1)
q2 j ( j+1)

=
(q2

; q2)2
∞

(q; q2)2
∞

∞∑
n=0

(q; q2)2n
(q)2n

qn

=
(q2

; q2)2
∞

(q; q2)2
∞

·
(q2

; q2)∞
(q; q2)∞

,

where the last equality is due to q-binomial theorem [Andrews 1998, page 17,
Theorem 2.1]

(24)
∞∑

n=0

(a)n
(q)n

tn
=
(at)∞
(t)∞

.

For Equation (19), we consider the Bailey pair

αn = (−1)nq−n(n+1), βn =
(−1)nq−n(n+1)

(q2; q2)n

found in the fourth row of the second table in [Slater 1951, page 468] with the
conjugate Bailey pair (8) with un =vn =1/(q2

; q2)n . We then apply the q-binomial
theorem as with our previous result.

For Equation (20), we consider the Bailey pair

(25) αn = (−1)n, βn =
(−1)n

(q2; q2)n

found in the seventh row of the second table in [Slater 1951, page 468] with the
conjugate Bailey pair (10) with un = vn = 1/(q)n . We then apply the q-binomial
theorem as with our two previous results. �

5. Indefinite quadratic forms

In the previous section we noticed that our new general conjugate Bailey pair is
very capable of producing results of the form (18)–(20). In this section we take a
deeper look into double series involving an indefinite quadratic form. By [1959],
E. Hecke had studied many of these forms in detail, and among these was

(26)
∑

j≥2|n|

(−1) j+nq j ( j+1)/2−n(3n−1)/2
= (q)2

∞
,

which was originally discovered by L. J. Rogers [1894].
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It is with little difficulty that we can show the above identity and others with our
new conjugate Bailey pairs. Noting that our γn is already a restricted sum of the
type we are looking for, all that is left is to find a suitable Bailey pair to match it
with. The following section will discuss some new results as well as tying in some
identities due to Andrews [1986a] and Andrews, Dyson, and Hickerson [1988].

Corollary 5.1. Identity (26) is true.

Proof. We consider the Bailey pair

(27) α2n = (−1)nqn(n+1), α2n+1 = 0, βn =
qn(n−1)/2

(q)n(q; q2)n
,

which is found in [Slater 1951, C(5)], with the conjugate Bailey pair (10) in which
un = vn = 1/(q)n . Applying (24) and allowing q2

→ q yields our final result. �

In [1986a], Andrews uses complicated Bailey pairs with the implementation
of Bailey chains, as well as some clever algebra to prove identities such as the
following.
Corollary 5.2. ∑

j≥|n|

(−1)nq j (3 j+1)/2−n2
(1 − q2 j+1)=

(q)2
∞

(−q)∞
.

Proof. We consider the Bailey pair (25) with the conjugate Bailey pair (11) with
un = vn = 1/(q)n . Our result then follows with the application of (24). �

In [1988], Andrews, Dyson and Hickerson then adapted the method used in
[Andrews 1986a] to prove similar identities involving the rank of a partition. The
rank of a partition is the excess of the largest part over the number of parts. The
main motivation for their paper was the function

(28) σ(q)=

∞∑
n=0

qn(n+1)/2

(−q)n
,

which can be found in [Andrews 1986b]. We note that σ(q) is the generating
function for strict partitions with odd rank subtracted from those with even rank.
We find the following corollary in [Andrews et al. 1988, page 392, Equation (1.5)].
Corollary 5.3.

σ(q)=

∑
j≥|n|

(−1)n+ j q j (3 j+1)/2−n2
(1 − q2 j+1).

Proof. We consider the Bailey pair (25) with the conjugate Bailey pair (12) with
un = vn = 1/(q)n . �
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Andrews, Dyson and Hickerson, in [1988, page 404], define generating a func-
tion similar to σ(q), as follows. For n ≥ 1, consider partitions of n into odd parts,
with the property that if k occurs as a part, then all positive odd parts less than k
must also occur (without odd gaps). Let S∗(n) be the excess of the number of such
partitions with largest part congruent to 3 modulo 4 over the number with largest
part congruent to 1 modulo 4. They then show [1988, page 404, Equation 5.2] that

∑
n≥1

S∗(n)qn
=

∑
n≥1

(−1)nqn2

(q; q2)n
=

∑
n≥1

(−1)nqn(3n+1)(1 + q2n)

2n−1∑
j=0

q− j ( j+1)/2.

It is with minimal work that we can show an equivalent formula.
Corollary 5.4.∑

n≥0

(−1)nqn2

(q; q2)n
=

∑
j≥|n|

(−1) j q j (3 j+1)−n(2n−1)(1 − q4n+2).

Proof. We consider the Bailey pair (22) with the conjugate Bailey pair (12) with
un = vn = 1/(q2

; q2)n . Applying (24) yields our result. �

The following identity can be found in [Andrews 1984, page 457, (3.16)],
Corollary 5.5. ∑

j≥2|n|

(−1) j+nq j ( j+1)/2−n2
= (q)∞(q2

; q2)∞.

Proof. We consider the Bailey pair (25) with the conjugate Bailey pair (13) with
un = vn = 1/(q)n . �

The following corollaries are new indefinite quadratic forms.
Corollary 5.6.∑

j≥|n|

(−1) j q2 j ( j+1)−n(2n−1)
=
(q4

; q4)2
∞

(−q; q2)∞
,(29)

∑
j≥|n|

(−1) j q j (3 j+2)−n(2n−1)(1 + q2 j+1)=
(q2

; q2)2
∞

(q; q2)∞
,(30)

∑
j≥|n|

(−1) j q3 j2
−n(2n−1)(1 − q2 j+1)2(1 + q2 j+1)= −q

(q2
; q2)2

∞

(q; q2)∞
,(31)

∑
j≥2|n|

(−1) j+nq j ( j+1)/2−2n2
=

(q)2
∞

(−q; q2)∞
.(32)

Proof. For (29) we consider the Bailey pair (22) with the conjugate Bailey pair
(10) with q → q2 and un = vn = 1/(q2

; q2)n . The result then follows from (24).
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For (30) we consider the Bailey pair (22) with the conjugate Bailey pair (8) with
un = vn = 1/(q2

; q2)n . Our result follows from applying (24).
For (31) we consider the Bailey pair (22) with the conjugate Bailey pair (9) with

un = vn = 1/(q2
; q2)n . Our result follows from applying (24):

∑
j≥|n|

(−1) j q3 j2
−n(2n−1)(1 − q2 j+1)2(1 + q2 j+1)

=
(q2

; q2)∞

(q; q2)∞

∞∑
n=0

(−1)nqn(n−1)

(q2; q2)n
(1 − q2n+1)

=
(q2

; q2)∞

(q; q2)∞

( ∞∑
n=0

(−1)nqn(n−1)

(q2; q2)n
− q

∞∑
n=0

(−1)nqn(n+1)

(q2; q2)n

)
= −q

(q2
; q2)2

∞

(q; q2)∞
.

For (32) we consider the Bailey pair (25) with the conjugate Bailey pair (14)
with un = vn = 1/(q2

; q2)n . Our result follows from applying (24). �

Corollary 5.7.

2
∑

j≥2|n|

(−1) j q j ( j+1)−n(2n−1)
= (q2

; q2)∞ ((−q)∞ + (q)∞) ,(33)

2
∑

j≥2|n|

(−1)nq j (3 j+2)−2n(3n−1)(1 − q2 j+1)= (q4
; q4)∞ + (q)2

∞
(−q2

; q2)∞,(34)

2
∑

j≥2|n|

(−1)nq3 j2
−2n(3n−1)(1 + q2 j+1)2(1 − q2 j+1)= (2 + q)(q4

; q4)∞(35)

+ q(q)2
∞
(−q2

; q2)∞.

Proof. For (33), we consider the Bailey pair (22) with the conjugate Bailey pair
(13) with un = vn = 1/(q2

; q2)n . Our result follows from applying (24):

∑
j≥2|n|

(−1) j q j ( j+1)−n(2n−1)
= (q2

; q2)∞

∞∑
n=0

qn(2n+1)

(q)2n

=
(q2

; q2)∞
2

∞∑
n=0

(1+(−1)n)qn(n+1)/2

(q)n

=
(q2

; q2)∞ ((q)∞+(−q)∞)
2

.

For (34), we consider the Bailey pair (27) with the conjugate Bailey pair (8)
with q → −q and un = vn = 1/(q2

; q2)n . We then apply (24) as before.
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For (35), we consider the Bailey pair (27) with the conjugate Bailey pair (9)
with q → −q and un = vn = 1/(q2

; q2)n . Our result follows from applying (24):∑
j≥2|n|

(−1)nq3 j2
−2n(3n−1)(1 + q2 j+1)2(1 − q2 j+1)

=
(q2

; q2)∞
(−q; q2)∞

∞∑
n=0

(1+q2n+1)qn(2n−1)

(q)2n

= (q)∞(−q2
; q2)∞

( ∞∑
n=0

qn(2n−1)

(q)2n
+ q

∞∑
n=0

qn(2n+1)

(q)2n

)

=

(
1 +

q
2

)
(q4

; q4)∞ +
(q)2

∞
(−q2

; q2)∞

2
. �

6. Applications to partitions

In this section we present some partition identities. We define a partition as a finite
nonincreasing sequence of positive integers, λ= (λ1, . . . , λk). We refer to each λi

as a part of the partition. We say that λ is a partition of n, or |λ| = n, if the sum of
its parts is equal to n. For example, there are 7 partitions of 5:

(5), (4, 1), (3, 2), (3, 1, 1), (2, 2, 1), (2, 1, 1, 1), (1, 1, 1, 1, 1).

We say that a partition λ is without gaps if for every positive integer k < λ1,
there exists i such that λi = k. As in the last section, we can generalize this notion
to without odd/even gaps by restricting k to odd/even positive integers.

Theorem 6.1. Let a(n) be the number of partitions of n with largest part odd and
without odd gaps. Let b(n) be the number of partitions of n into parts congruent
to ±1,±3,±5,±7,±8,±9 mod 20. Then a(n)= b(n − 1) for n ≥ 1.

Proof. We consider the Bailey pair [Slater 1951, C(1)]

(36) α2n = (−1)nq2n(3n+1), α2n+1 = 0, βn = 1/(q2
; q4)n(q2

; q2)n

with the conjugate Bailey pair (5) (note that q → −q) with un = vn = 1/(q2
; q2)n

to get

(q)∞
(q2; q4)∞

∞∑
n=0

qn(n+2)

(q)2n+1
=

∞∑
n=−∞

(−1)nq2n(n+1)
∑

j≥2|n|

(−1) j q2 j ( j+1)

=

∞∑
j=−∞

(−1) j q2 j (5 j+3)
= (q4, q16, q20

; q20)∞,
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where the last equality follows from the Jacobi triple product; see [Andrews 1998,
Theorem 2.8]. It is left to note that

q
∞∑

n=0

qn(n+2)

(q)2n+1
=

∞∑
n=0

q1+3+···+(2n+1)

(1−q)(1−q2) · · · (1−q2n+1)
and

(q2
; q4)∞(q4, q16, q20

; q20)∞

(q)∞
=

1
(q, q3, q5, q7, q8, q9, q11,

q12, q13, q15, q17, q19
; q20)∞

. �

We can also define a weight function ω(λ) for a partition. If we say that a(n)
counts the number of partitions of n with respect to the weight function ω(λ) then
a(n)=

∑
|λ|=n ω(λ).

Theorem 6.2. Let g(n) be the number of partitions of n without even gaps and
with corresponding weight function ω(λ)= (−1)k12k2, where k1 is the multiplicity
of the largest part plus the number of even parts less than the largest part and k2

is the number of different odd parts less than the largest part. Then

g(n)=


(− 1) j (2 j + 1) if n = j (2 j + 1) for j ∈ N,
(− 1) j+1(2 j + 1) if n = ( j + 1)(2 j + 1) for j ∈ N,
0 otherwise.

Example 6.3. Consider n = 8 and n = 10:

|λ| = 8 ω(λ) |λ| = 10 ω(λ)

(4, 2, 2) −1 (4, 4, 2) −1
(4, 2, 1, 1) 2 (4, 3, 2, 1) 4
(3, 3, 2) −1 (4, 2, 2, 2) 1
(3, 2, 2, 1) −2 (4, 2, 2, 1, 1) −2
(3, 2, 1, 1, 1) 2 (4, 2, 1, 1, 1, 1) 2
(2, 2, 2, 2, 2) −1 (3, 3, 2, 2) 1
(2, 2, 2, 2, 1, 1) 2 (3, 3, 2, 1, 1) −2
(2, 2, 2, 1, 1, 1, 1) −2 (3, 2, 2, 2, 1) 2
(2, 2, 1, 1, 1, 1, 1, 1) 2 (3, 2, 2, 1, 1, 1) −2
(2, 1, 1, 1, 1, 1, 1, 1, 1) −2 (3, 2, 1, 1, 1, 1, 1) 2
(1, 1, 1, 1, 1, 1, 1, 1, 1, 1) 1 (2, 2, 2, 2, 2) −1

(2, 2, 2, 2, 1, 1) 2
(2, 2, 2, 1, 1, 1, 1) −2
(2, 2, 1, 1, 1, 1, 1, 1) 2
(2, 1, 1, 1, 1, 1, 1, 1, 1) −2
(1, 1, 1, 1, 1, 1, 1, 1, 1, 1) 1

0 5
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Proof. We consider the Bailey pair (21) and the conjugate Bailey pair (15) with
un = vn = 1/(q2

; q2)n to get

∞∑
j=0

(2 j + 1)(1 − q2 j+1)(−1) j q j (2 j+1)
=

∞∑
n=0

(−q; q2)n(−1)nqn(n+1)

(q; −q)2n(1+q2n+1)
.

We then note that
∞∑

n=0

(q; q2)n(−1)nqn(n+1)

(q; −q)2n(1+q2n+1)

=

∞∑
n=0

(1 + 2q + 2q2
+ · · · )(1 + 2q3

+ 2q6
+ · · · ) · · · (1 + 2q2n−1

+ 2q4n−2
+ · · · )

× (1 − q2n+1
+ q4n+2

− · · · ) ·
(−1)nq2+4+···+2n

(1+q2)(1+q4) · · · (1+q2n)
. �

Theorem 6.4. Let a(n) denote the number of partitions of n without even gaps and
having an even number of parts, minus the number of partitions of n without even
gaps and having an odd number of parts. Then a(0)= 1 and for n > 0,

a(n)=


1 if n = j (5 j + 3)/2 for j ∈ N,

−1 if n = j (5 j − 3)/2 for j ∈ N,

0 otherwise.

Proof. Consider the Bailey pair

αn = (−1)nqn(3n+1)/2, βn =
(q; q2)n

(q2; q2)2n
.

This follows from specializing [Bailey 1948, page 5, Section 6, (ii)] with a = 1,
b →∞ and with x replaced by q, together with the conjugate Bailey pair (15) with
un = vn = 1/(q2

; q2)n . Then we get

∞∑
j=0

(1 − q2 j+1)q j (5 j+3)/2
=

∞∑
n=0

(−1)nqn(n+1)

(−q)2n+1

=

∞∑
n=0

(−1)nq2+4+···+2n

(1+q)(1+q2) · · · (1+q2n+1)
. �

7. Conclusions and future work

This work hopes to bridge the gap between the work done by Bailey and Slater and
the work done recently by Andrews and Warnaar. We can now clearly see how our
new conjugate Bailey pairs relate to those introduced over 50 years ago by Bailey.
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We recall the reference to WP Bailey pairs and chains. As with the large amount
of work done on Bailey chains, it is hoped and anticipated that these chains do
appear for conjugate Bailey pairs as well.

We note that we have focused on applications to triangular numbers, indefinite
quadratic forms and partitions, but we are not limited to these. Future work may
address weighted q-series identities, generalized Lambert series, Ramanujan-type
identities and a more thorough treatment of partition identities. It should also be
noted that a combinatorial proof of any of the partition identities would also be
desirable as it might provide more insight into similar identities.

We have only defined 15 new conjugate Bailey pairs from Corollary 3.1, though
infinitely many exist. Using Corollary 3.2, we could also define analogous conju-
gate Bailey pairs with respect to the asymmetric bilateral Bailey transform, which
would then lead to new results similar to those presented above.
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