
Pacific
Journal of
Mathematics

THE K -ORBIT OF A NORMAL ELEMENT IN A COMPLEX
SEMISIMPLE LIE ALGEBRA

TIN-YAU TAM AND WAI-SHUN CHEUNG

Volume 238 No. 2 December 2008





PACIFIC JOURNAL OF MATHEMATICS
Vol. 238, No. 2, 2008
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Given a complex semisimple Lie algebra g = k+ ik, we consider the converse
question of Kostant’s convexity theorem for a normal x ∈ g. Let π : g→ h be
the orthogonal projection under the Killing form onto the Cartan subalge-
bra h := t+ it where t is a maximal abelian subalgebra of k. If π(Ad(K )x) is
convex, then there is k ∈ K such that each simple component of Ad(k)x can
be rotated into the corresponding component of t. The result also extends a
theorem of Au-Yeung and Tsing on the generalized numerical range.

1. Introduction

Let A ∈ Cn×n . Consider the set

W(A) := {diag (U AU−1) : U ∈ U(n)},

where U(n) denotes the unitary group. It is the image of the projection of the orbit

O(A) := {U AU−1
: U ∈ U(n)}

onto the set of diagonal matrices. The following two results concern the geometric
shape of W(A).

Theorem 1.1 (Schur–Horn [Schur 1923; Horn 1954]). If A ∈ Cn×n is Hermitian
with eigenvalues λ := (λ1, . . . , λn) ∈ Rn , then

W(A) = conv Snλ,

where conv Snλ is the convex hull of the orbit of λ under the action of the full
symmetric group Sn .

For general A ∈ Cn×n , W(A) is not convex. Indeed Tsing [1981] proved that W(A)

is star-shaped with respect to the star center 1
n (tr A)(1, . . . , 1).

Theorem 1.2 (Au-Yeung and Sing [1977]). Let A ∈ Cn×n be normal. If W(A) is
convex, then the eigenvalues of A are collinear, that is, there exist α, β ∈ C such
that αA + β I is Hermitian.
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So Theorem 1.2 may be viewed as the converse to Theorem 1.1 as one restricts
the attention on normal matrices. We remark that if A ∈ Cn×n has zero trace, then
αA + β I being Hermitian means that eiγ A is Hermitian for some γ ∈ R. The
following result of Au-Yeung and Tsing is stronger than Theorem 1.2. It affirma-
tively answers the conjecture of Marcus [1979] about the (stronger) converse of
the result of Westwick [1975] on the convexity of c-numerical range. Bebiano and
Da Providência [1996] gave another proof of Theorem 1.3.

Theorem 1.3 (Au-Yeung and Tsing [1983]). Let A ∈ Cn×n be normal. If

WA∗(A) := {tr A∗U AU−1
: U ∈ U(n)}

is convex, then A has collinear eigenvalues.

The above results can be reduced to the case tr A = 0, that is, the simple Lie
algebra sln(C). We may write A = Â +

1
n (tr A)In , where Â := A −

1
n (tr A)In has

zero trace. Then

W(A) = W( Â) +
tr A
n

(1, . . . , 1),

WA∗(A) = W Â∗( Â) +
|tr A|

2

n2 .

We will extend Theorems 1.2 and 1.3 in the context of semisimple Lie algebras.

2. Main results

Let g be a complex semisimple Lie algebra and let k be a real compact form of g.
Let G be a complex Lie group with Lie algebra g. It has a finite center so K (the
analytic group of k) is compact. As a real K -module, g is just the direct sum of
two copies of the adjoint module k of K : g = k + ik (direct sum), that is, Cartan
decomposition of g. Denote by g∗ the dual space of g. Given x ∈ g, consider the
orbit of x under the adjoint action of K

K · x := {Ad(k)x : k ∈ K }.

The orbit K · x depends on AdG K which is the analytic subgroup of the adjoint
group Int(g) ⊂ Aut (g) corresponding to ad g(k). Thus K · x is independent of
the choice of G. Let t be a maximal abelian subalgebra of k. The complexification
h := t+i t (direct sum) is a Cartan subalgebra of g. The rank of g is dimC h, denoted
by rank g. Let

g = h +

∑
α∈1

gα

be the root space decomposition of g with respect to h, where 1 denotes the set
of all nonzero roots. Denote by B( · , · ) the Killing form of g. As B( · , · ) is a
nondegenerate bilinear form, it induces a vector space isomorphism g→g∗ sending
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x → ϕx , where ϕx(y) = B(x, y) for all y ∈ g. Denote the inverse by ϕ → Hϕ ∈ g

(ϕ ∈ g∗), where B(Hϕ, y) = ϕ(y) for all y ∈ g. Let

hR :=

∑
α∈1

RHα

so that B( · , · ) is a real inner product on hR and h = hR + ihR (direct sum).
Hence rank g = dimR hR. Moreover hR = i t [Helgason 1978, p. 259]. Notice
that B(gα, gβ) = 0 [Helgason 1978, p. 166] whenever α + β 6= 0 (g0 = h) so the
sum

g = h +

∑
α∈1+

(gα + g−α)

is orthogonal under the Killing form. Thus we have the orthogonal projection
π : g → h under B( · , · ). For x ∈ g, we consider π(K · x), that is, the projection of
K · x onto h. When x ∈ k, K · x ⊂ k so π(K · x) ⊂ t.

Kostant [1973] generalized Theorem 1.1 in the context of real semisimple Lie
algebras. The following statement is for complex semisimple case. When g =

sln(C), it is reduced to Theorem 1.1.

Theorem 2.1 (Kostant [1973]). If x ∈ k, then π(K · x) ⊂ t is convex and equals to
conv W xt, where xt ∈ K · x ∩ t and W is the Weyl group, that is, W = N (T )/T , the
normalizer of T modulo T .

Let θ be the Cartan involution of g if g is viewed as a real Lie algebra, that is,
θ : g → g such that x + y 7→ x − y if x ∈ k and y ∈ ik. In other words, k is the +1
eigenspace of θ and ik is the −1 eigenspace of θ . Though θ is not an automorphism
of g over C (since θ(cx) = c̄ θx for c ∈ C and x ∈ g), it respects the bracket, that
is,

θ [x, y] = [θx, θy], x, y ∈ g.

Moreover Ad(k) and θ commute for all k ∈ K . Since g = k + ik and k is compact,

Bθ (x, y) := −B(x, θy)

is an inner product on g over C. Let

‖x‖θ := B1/2
θ (x, x)

be the induced norm on g. The projection π : g → h under B( · , · ) coincides with
that under Bθ ( · , · ) since θgα = g−α, for α ∈ 1.

An element x ∈ g is said to be normal if [x, θx] = 0, where θ is the Cartan
involution. When g = sln(C), the Cartan decomposition is the usual Hermitian
decomposition, K = SU(n) and θ(z) = −z∗, z ∈ sln(C). When g = sln(C) and
k = su(n), normality reduces to the usual notion of normality of a matrix.
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We want to know when π(K · x) is convex, that is, the converse question of
Theorem 2.1 when we restrict ourselves to normal x ∈ g. Djoković and Tam [2003]
proved that Bθ (K · x, y) ⊂ C is star shaped with respect the origin for each y ∈ g,
if x ∈ g is normal. In particular Bθ (K · x, x) is star shaped. We also want to know
when Bθ (K · x, x) is convex. It turns out their answers coincide as suggested by
Theorems 1.2 and 1.3. Indeed it is equivalent to say that Bθ (K · x, y) is convex for
all y ∈ g in the following theorem.

Theorem 2.2. Let g = g1 + · · · + g` be a complex semisimple Lie algebra with
simple components g1, . . . , g`. Let x = x1 + · · ·+ x` ∈ g be normal, where xi ∈ gi ,
i = 1, . . . , `. The following statements are equivalent:

(1) π(K · x) is convex.

(2) Bθ (K · x, x) is convex.

(3) Bθ (K · x, x) is a closed line segment in R.

(4) K j · eiθ j x j ∩ t j is nonempty for some θ j ∈ [0, 2π ], j = 1, . . . , `.

(5) Bθ (K · x, y) is convex for all y ∈ g.

Remark 2.3. Normality of x ∈ g is necessary. When g = sln(C) and K = SU(n), it
is known that Bθ (K · x, y) is convex for all y ∈ sln(C) if x ∈ sln(C) and the matrix
rank of x is 1 (not necessarily normal), according to a result of Tsing [1984]. For
example, if

x =

(
0 1
0 0

)
⊕ 0n−2 ,

then Bθ (K · x, y) is convex for all y ∈ sln(C). However statement (3) in Theorem
2.2 does not hold.

We first establish some results in order to prove Theorem 2.2.
A line L is called a support of Bθ (K ·x, x)⊂C at ξ ∈∂ Bθ (K ·x, x) if Bθ (K ·x, x)

lies in one of the closed half planes determined by L . A point ξ ∈ Bθ (K · x, x) is
called an extreme point of Bθ (K ·x, x) if ξ does not belong to any open line segment
lying in Bθ (K · x, x). It is clear that extreme points belong to ∂ Bθ (K · x, x). An
extreme point ξ ∈ Bθ (K ·x, x) is called a sharp point if Bθ (K ·x, x) has more than
one support line at ξ . Clearly a sharp point ξ of Bθ (K · x, x) is an extreme point.
The definitions are valid for convex sets in C. The notions of extreme point and
sharp point of a convex polygon in C coincide. We remark that Bθ (K · x, x) is not
necessarily a convex polygon.

Proposition 2.4. Let x ∈ g be normal.

(a) Bθ (K · x, x) ⊂ C is symmetric about the real axis.
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(b) Bθ (K · x, x) ⊂ C is contained in the convex polygon

Bθ (conv W x1 + iconv W x2, x),

where x = x1 + i x2, x1, x2 ∈ k. Both sets contain the point Bθ (x, x) ≥ 0 which
has the largest magnitude. Thus Bθ (x, x) is a sharp point of both Bθ (K ·x, x)

and Bθ (conv W x1 + iconv W x2, x).

Proof. Since θ and Ad(k) (k ∈ K ) commute, for x, y ∈ g,

Bθ (Ad(k)x, Ad(k)y) = −B(Ad(k)x, Ad(k)θy) = Bθ (x, y)

and hence Ad(k) : g → g is an isometry with respect to Bθ ( · , · ).
(a) Let x ∈ g be normal. Clearly

Bθ (Ad(k)x, x) = Bθ (x, Ad(k)x) = Bθ (Ad(k−1)x, x).

Hence (a) is established.
(b) Since x = x1 + i x2 ∈ g (x1, x2 ∈ k) is normal, K ·x intersects h [Djoković and

Tam 2003, Lemma 3.3.14]. So we may assume that x1, x2 ∈ t. By Theorem 2.1

π(K · x) = π(K · (x1 + i x2))

⊂ π(K · x1 + i K · x2)

= π(K · x1) + iπ(K · x2)

= conv W x1 + iconv W x2,

where the sum conv W x1 + iconv W x2 is a convex polytope in h. Since π : g → h

is also an orthogonal projection with respect to Bθ ( · , · ),

Bθ (K · x, x) = Bθ (π(K · x), x)

is contained in the convex polygon Bθ (conv W x1 + iconv W x2, x). Let

y ∈ conv W x1 ⊂ t and z ∈ conv W x2 ⊂ t .

Since hR :=
∑

α∈1 RHα = i t [Helgason 1978, p. 259] and α(H) ∈ R for each
H ∈ hR, α ∈ 1, α(y), α(x1) ∈ iR and α(i z), α(i x2) ∈ R. Hence

α(θx) = −α(x)

so
‖x‖

2
θ = Bθ (x, x) =

∑
α∈1

|α(x)|2.

Moreover

‖y + i z‖2
θ =

∑
α∈1

α(y + i z) α(y + i z) =

∑
α∈1

(|α(y)|2 + |α(i z)|2) = ‖y‖
2
θ + ‖i z‖2

θ .
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By Cauchy–Schwarz’s inequality

(2-1) |Bθ (y + i z, x)|2 ≤ ‖y + i z‖2
θ‖x‖

2
θ = (‖y‖

2
θ + ‖i z‖2

θ )‖x‖
2
θ .

Using triangle inequality, we have

(2-2) ‖y‖
2
θ ≤ ‖x1‖

2
θ , ‖i z‖2

θ ≤ ‖i x2‖
2
θ ,

since the elements in W are isometries. By (2-1) and (2-2)

|Bθ (y + i z, x)|2 ≤ B2
θ (x, x). �

Remark 2.5. Given x ∈ h, W x ⊂ K · x and thus W x ⊂ π(K · x). We do not know
whether π(K · x) ⊂ conv W x or not though it is true when g = sln(C).

Lemma 2.6. Let x ∈ g be normal. Then Bθ (K · x, x) is convex if and only if it is a
closed interval in R.

Proof. One implication is trivial. Suppose Bθ (K · x, x) is convex and we may
assume x 6= 0. By Proposition 2.4

ξ := Bθ (x, x) = ‖x‖θ

is a sharp point of Bθ (K · x, x). There are two supporting lines passing through ξ

and one is the reflection of the other by Proposition 2.4 (a). Clearly Bθ (K · x, x)

is inside the cone determined by the two lines. Let L be the upper supporting line
for definiteness. So Bθ (K · x, x) is in the lower half plane determined by L .

By [Djoković and Tam 2003, Lemma 3.14] we may assume that x = x1 + i x2 ∈

h, x1, x2 ∈ t. Let ξ j := Bθ (Ad(k j )x, x) (k j ∈ K ) be on the upper boundary of
Bθ (K · x, x) so that |ξ − ξ j | < 1/j but ξ j 6= ξ , j = 1, 2, . . . . Since K is compact,
there is a convergent subsequence {k jm }

∞

m=1 of {k j }
∞

j=1. Let limm→∞ k jm = k0 ∈ K .
So

Bθ (Ad(k0)x, x) = ξ = Bθ (x, x) = ‖Ad(k0)x‖θ‖x‖θ

since Ad(k0) is an isometry. By the equality case of Cauchy–Schwarz’s inequality,
Ad(k0)x = x . Thus

Bθ (Ad(k j )x, x) = Bθ (Ad(k j )x, Ad(k0)x) = Bθ (Ad(k−1
0 k j )x, x).

We may replace k jm by k−1
0 k jm → e (the identity) or simply assume that k0 = e. The

exponential map is an analytic diffeomorphism between an open neighborhood of
0 ∈ k and an open neighborhood of e ∈ K . So for each sufficiently large m, there
is s jm ∈ k such that

exp s jm = k jm → e.
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Since x ∈ h,

(2-3) ξ jm = Bθ (Ad(es jm )x, x) = Bθ (ead s jm x, x)

= Bθ (x, x) + Bθ (ad s jm x, x) +
1
2

Bθ ((ad s jm )2x, x)

+

∞∑
k=3

1
k!

Bθ ((ad s jm )k x, x).

The first term of (2-3) is just ξ . The second term is

−B(ad (s jm )x, θx) = −B([s jm , x], θx) = −B(s jm , [x, θx]) = 0,

because [x, θx] = 0. Since the elements in ad k are skew Hermitian with respect to
Bθ ( · , · ), the third term is

Bθ ((ad s jm )2x, x) = −Bθ (ad s jm x, ad (s jm )x) = −‖ad (s jm )x‖
2
θ .

Taking the absolute value of the last term of (2-3), we have∣∣∣∣ ∞∑
k=3

1
k!

Bθ ((ad s jm )k x, x)

∣∣∣∣ =

∣∣∣∣ ∞∑
k=3

1
k!

Bθ (ad s jm ◦ (ad s jm )k−2
◦ ad (s jm )x, x)

∣∣∣∣
=

∞∑
k=3

1
k!

|Bθ ((ad s jm )k−2
◦ ad (s jm )x, ad (s jm )x)|

≤

∞∑
k=3

1
k!

‖(ad s jm )k−2ad (s jm )x‖θ‖ad (s jm )x‖θ

≤

∞∑
k=3

1
k!

‖(ad s jm )k−2
‖θ‖ad (s jm )x‖

2
θ

≤ (e‖ad s jm ‖
− 1)‖ad (s jm )x‖

2
θ ,

where
‖ad s jm ‖ := max

y∈g,‖y‖θ=1
‖ad (s jm )y‖θ

is the operator norm of ad s jm : g→ g with respect to ‖·‖θ . Notice that ad (s jm )x 6= 0
otherwise ξ = ξ jm from (2-3). Since s jm → 0 (x 6= 0, s jm 6= 0),

lim
m→∞

∣∣∑∞

k=3
1
k!

Bθ ((ad s jm )k x, x)
∣∣

‖ad (s jm )x‖
2
θ

= 0.

Consequently we have

lim
m→∞

ξ − ξ jm

‖ad (s jm )x‖
2
θ

=
1
2
.(2-4)
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Since Bθ (K ·x, x) is convex, there is ξ ′
∈ L ∩∂ Bθ (K ·x, x) so that the line segment

[ξ, ξ ′
] ⊂ ∂ Bθ (K · x, x). For sufficiently large m, ξ jm ∈ [ξ, ξ ′

], thus the limit on the
left-hand side of (2-4) must be a positive multiple of ξ − ξ ′. So ξ ′

∈ R and thus
L ⊂ R. Therefore the compact connected set Bθ (K · x, x) is a closed interval in R.

�

Proposition 2.7. Let g = g1 + · · · + g` be a complex semisimple Lie algebra with
simple components g1, . . . , g`. Let x, y ∈ h := t + i t. Write x = x1 + · · · + x` and
y = y1 + · · · + y`, where xi , yi ∈ hi , i = 1, . . . , `. Suppose that xi , yi are nonzero
for all i = 1, . . . , `. Then the following statements are equivalent.

(1) Bθ (K · x, y) is a (closed) line segment in C.

(2) Bθ (W · x, y) is on a line segment in C, where W is the Weyl group.

(3) K j · eiθ j x j ∩ t j and K j · eiρ j y j ∩ t j are nonempty for some θ j , ρ j ∈ [0, 2π ],
j = 1, . . . , `, and κ := θ j − ρ j is a constant for all j = 1, . . . , `.

Proof. (1) ⇒ (2) is trivial.
(3) ⇒ (1): We may assume that eiθ j x j ∈ t j and eiρ j x j ∈ t j since

Bθ (K · x, y) = Bθ (K · x, K · y).

Now
Bθ (K · x, y) = Bθ (K1 · x1, y1) + · · · + Bθ (K` · x`, y`)

= e−iκ
∑̀
j=1

Bθ (K1 · eiθ j x j , eiρ j y j )

and each summand Bθ (K1 · eiθ j x j , eiρ j y j ) ⊂ R.
(2) ⇒ (3): Suppose Bθ (W x, y) is a (closed) line segment. By rotation on x or

y we may assume that Bθ (W x, y) ⊂ R. Since

Bθ (W x, y) = Bθ (W1x1, y1) + · · · + Bθ (W`x`, y`),

each Bθ (W j x j , y j ) is a real line segment, j = 1, . . . , `. So it suffices to consider
simple g j . To simplify notations, from now on we drop the index j from g j , k j , t j ,
h j , x j , r j and so on, or simply assume that g is simple.

Notice that

τHβ
(Hα) = Hα −

2B(Hα, Hβ)

B(Hβ, Hβ)
Hβ, α, β ∈ 1.

As a finite reflection group, the Weyl group W is generated by the reflections τHβ
,

β ∈ 1, and
Bθ (W x, τHβ

y) = Bθ (W x, y) ⊂ R
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so for all ω ∈ W and β ∈ 1,

Bθ (ωx, τHβ
y) = Bθ

(
ωx, y −

2β(y)

‖β‖
2
β

Hβ

)
= Bθ (ωx, y) −

2β(y)

‖β‖
2
β

Bθ (ωx, Hβ).

Hence for all β ∈ 1,

2β(y)

‖β‖
2
θ

Bθ (W x, Hβ) ⊂ R

so either (a) Bθ (Hβ, y) = β(y) = 0 for all β ∈ 1, or (b) for some β ∈ 1 (depends
on y), β(y) 6= 0, that is, eiγ Bθ (W x, Hβ) ⊂ R for some γ ∈ R.

Since h=
∑

β∈1 CHβ and B is nondegenerate on h, (a) would not occur because
we assume that y 6= 0. So (b) occurs, that is, Bθ (W eiγ x, Hβ) ⊂ R. But then

Bθ (W Hβ, eiγ x) = Bθ (W eiγ x, Hβ) ⊂ R.

Similarly for all α ∈ 1,

2α(eiγ x)

‖Hα‖
2
θ

Bθ (W Hβ, Hα) ⊂ R.

Now Bθ (W Hβ, Hα) ⊂ R since Hα, Hβ ∈ hR = i t. By contragradience the Weyl
group permutes the roots. If ω ∈ W then ωHβ = Hω·β . We claim that

Bθ (ωHβ, Hα) 6= 0, for some ω ∈ W.

It is because that the Weyl group acts simply transitively on each subset of roots
of the same length [Helgason 1978, p. 523]. If Hα and Hβ are of the same length,
then ωHβ = Hα for some ω ∈ W and Bθ (ωHβ, Hα) = ‖Hα‖

2
θ > 0. Hence the

claim follows immediately. When g = an, dn, e6, e7, e8, all the roots are of the same
length [Helgason 1978, p. 462–474]. Notice that

bn : 1 = {±ei ± e j : 1 ≤ i 6= j ≤ n} ∪ {±ei : 1 ≤ i ≤ n},

cn : 1 = {±ei ± e j : 1 ≤ i 6= j ≤ n} ∪ {±2ei : 1 ≤ i ≤ n}, and

f4 : 1 = ±{ei (i = 1, . . . , 4); ei ± e j (1 ≤ i < j ≤ 4); 1
2(e1 ± e2 ± e3 ± e4)}.

For each case, the root length squares are either 1 or 2 and the claim is clearly true
for them. Finally when g = g2, the root length squares are either 2 or 6,

1 = ±{e1 − e2, e2 − e3, e1 − e3, 2e1 − e2 − e3, 2e2 − e1 − e3, 2e3 − e1 − e2}
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and the claim is also true. As a result α(eiγ x) ∈ R for all α ∈ 1 so eiγ x ∈ hR = i t.
Similarly we have the same conclusion for y. Then clearly θ j − ρ j is a constant,
j = 1, . . . , `. �

Proof of Theorem 2.2. We first show that the first four statements are equivalent.
(1) ⇒ (2): We may assume that x ∈ h. We have Bθ (K · x, x) = Bθ (π(K · x), x)

and it is convex since π(K · x) is convex.
(2) ⇔ (3): Lemma 2.6.
(3) ⇒ (4): The case x = 0 is trivial. For x 6= 0, we may assume that each

component x j 6= 0 in the expression x = x1 +· · ·+ x` ∈ g. Then apply Proposition
2.7.

(4) ⇒ (1): By Theorem 2.1.
(5) ⇒ (2): obvious.
(4) ⇒ (5): Let y = y1 + · · · + y` ∈ g1 + · · · + g`. Then

Bθ (K · x, y) = Bθ (K1 · x1, y1) + · · · + Bθ (K1 · x`, y`).

By (4) there exist k j ∈ K j and θ j ∈ R so that t j := eiθ j Ad(k j )x j ∈ t j for each
j = 1, . . . , `. Write

y j = y(1)
j + iy(2)

j ,

for y(1)
j , y(2)

j ∈ k. So

Bθ (K j · x j , y j ) = e−iθ j Bθ (K · t j , y j )

= e−iθ j
{

B
(
Ad(k j )t j , y(1)

j

)
+ i B

(
Ad(k j )t j , y(2)

j

)
: k j ∈ K j

}
which is convex by a result of Tam [2002]. Hence Bθ (K · x, y) is a sum of convex
sets and thus convex. �

Remark 2.8. The second author conjectured (see [Tam 2001, Conjecture 4.1]) that
for a normal x ∈ g (semisimple), if Bθ (K · x, x) is convex, then there is γ ∈ R such
that eiγ x ∈ t. It is not true in view of Theorem 2.2. Consider the semisimple
g := a1 × a1. To be concrete, let g = sl2(C) × sl2(C) with K = SU(2) ⊕ SU(2).
Consider the normal x = diag (x1, −x1) ⊕ diag (x2, −x2), where x1, x2 ∈ C. Then
for k = k1 ⊕ k2 ∈ K ,

tr kxk−1x∗
= tr k1diag (x1, −x1)k−1

1 diag (x̄1, −x̄1)

+ tr k2diag (x2, −x2)k−1
2 diag (x̄2, −x̄2).

By Theorem 1.3 the set{
tr ki diag (xi , −xi )k−1

1 diag (x̄i , −x̄i ) : ki ∈ SU(n)
}

is convex, i = 1, 2, so {tr kxk−1x∗
: k ∈ K } is the sum of two convex sets and thus

is convex. However, x1, x2 need not be collinear with 0.
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By Proposition 2.4 (a) Bθ (K · x, x) is symmetric about the real axis. For some
simple Lie algebras, more symmetry occurs for Bθ (K · x, x) if x ∈ g is normal.
Indeed the symmetry is also true for Bθ (K · x, y) for each y ∈ g.

Proposition 2.9. Let g be simple and of type b`, c`, d` (` even), g2, f4, e7 and e8.
Let x ∈ g be normal. The sets π(K · x) ⊂ h and Bθ (K · x, y) ⊂ C are symmetric
about the origin for each y ∈ g.

Proof. We may assume that x ∈ h. The Weyl group W contains −1 [Helgason
1978, p. 523] so the desired result follows. �

It is known [Djoković and Tam 2003] that if x ∈ g is normal, then Bθ (K · x, y)

is star-shaped with respect to the center 0 for each y ∈ g.
We do not know whether π(K · x) is star shaped or not and the following con-

jectures [Tam 2001] are still open.

Conjecture 2.10. Let g be a complex semisimple Lie algebra. If x, y ∈ g, then
Bθ (K · x, y) is star-shaped with respect to the star center 0.

Conjecture 2.11. Let g be a complex semisimple Lie algebra. If x ∈g, then π(K ·x)

is star-shaped with respect to the star center 0.

We remark that these conjectures can be reduced to the simple cases. The cases
a` (` ≥ 1), d` (` ≥ 2), e6, e7 for Conjecture 2.10 are true [Cheung and Tsing 1996;
Djoković and Tam 2003].

Added in proof

The authors very recently proved Conjecture 2.11 affirmatively.
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