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THE K-ORBIT OF A NORMAL ELEMENT IN A COMPLEX
SEMISIMPLE LIE ALGEBRA

TIN-YAU TAM AND WAI-SHUN CHEUNG

Given a complex semisimple Lie algebra g = £+ i¢, we consider the converse
question of Kostant’s convexity theorem for a normal x € g. Let 7 : g — § be
the orthogonal projection under the Killing form onto the Cartan subalge-
bra b :=t+it where t is a maximal abelian subalgebra of ¢. If T (Ad(K)x) is
convex, then there is k € K such that each simple component of Ad(k)x can
be rotated into the corresponding component of t. The result also extends a
theorem of Au-Yeung and Tsing on the generalized numerical range.

1. Introduction

Let A € C, ;. Consider the set
W(A) := {diag (UAU ") : U € Un)},
where U(n) denotes the unitary group. It is the image of the projection of the orbit
O(A) :={UAU™':U e U(n))
onto the set of diagonal matrices. The following two results concern the geometric
shape of W(A).

Theorem 1.1 (Schur-Horn [Schur 1923; Horn 1954]). If A € C,,«, is Hermitian
with eigenvalues A := (A1, ..., Ay) € R, then

W(A) =conv S, A,
where conv S, A is the convex hull of the orbit of A under the action of the full
symmetric group S,.
For general A € C,,x,,, W(A) is not convex. Indeed Tsing [1981] proved that W (A)
is star-shaped with respect to the star center ’lz(tr A, ..., D).

Theorem 1.2 (Au-Yeung and Sing [1977]). Let A € C,,«,, be normal. If W (A) is
convex, then the eigenvalues of A are collinear, that is, there exist a, 8 € C such
that A 4+ B1 is Hermitian.
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So Theorem 1.2 may be viewed as the converse to Theorem 1.1 as one restricts
the attention on normal matrices. We remark that if A € C,,,, has zero trace, then
aA + BI being Hermitian means that ¢’ A is Hermitian for some y € R. The
following result of Au-Yeung and Tsing is stronger than Theorem 1.2. It affirma-
tively answers the conjecture of Marcus [1979] about the (stronger) converse of
the result of Westwick [1975] on the convexity of c-numerical range. Bebiano and
Da Providéncia [1996] gave another proof of Theorem 1.3.

Theorem 1.3 (Au-Yeung and Tsing [1983]). Let A € C, «,, be normal. If
Was(A) == {tr A" UAU " : U € U(n)}
is convex, then A has collinear eigenvalues.

The above results can be reduced to the case tr A = 0, that is, the simple Lie
algebra sl,(C). We may write A = A + %(tr A)l,, where A := A — %(tr A)I, has
zero trace. Then

W(A):W(A)—I—%(l,..., 1,

ltr A|?
n? -’
We will extend Theorems 1.2 and 1.3 in the context of semisimple Lie algebras.

War(A) = W; (A) +

2. Main results

Let g be a complex semisimple Lie algebra and let ¢ be a real compact form of g.
Let G be a complex Lie group with Lie algebra g. It has a finite center so K (the
analytic group of £) is compact. As a real K-module, g is just the direct sum of
two copies of the adjoint module ¢ of K: g = ¢4 it (direct sum), that is, Cartan
decomposition of g. Denote by g* the dual space of g. Given x € g, consider the
orbit of x under the adjoint action of K

K-x:={Ad(k)x:k e K}.

The orbit K - x depends on Adg K which is the analytic subgroup of the adjoint
group Int(g) C Aut(g) corresponding to ad g(¢). Thus K - x is independent of
the choice of G. Let t be a maximal abelian subalgebra of ¢. The complexification
b :=t+it (direct sum) is a Cartan subalgebra of g. The rank of g is dim¢ h, denoted

by rank g. Let
g=bh+ Z O
aeA
be the root space decomposition of g with respect to fj, where A denotes the set
of all nonzero roots. Denote by B(-,-) the Killing form of g. As B(-,-) is a
nondegenerate bilinear form, it induces a vector space isomorphism g — g* sending
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X — @y, where ¢, (y) = B(x, y) for all y € g. Denote the inverse by ¢ — H, € g
(¢ € g*), where B(H,, y) = ¢(y) forall y € g. Let

b := ) RH,

aeA

so that B(-,-) is a real inner product on hg and h = by + ihg (direct sum).
Hence rank g = dimg hg. Moreover hp = it [Helgason 1978, p. 259]. Notice
that B(g,, 9g) = 0 [Helgason 1978, p. 166] whenever a + 8 # 0 (g9 = b) so the
sum
g=bh+ Z (90 +9-0)
aeAt

is orthogonal under the Killing form. Thus we have the orthogonal projection
m:g— hunder B(-, ). For x € g, we consider w (K - x), that is, the projection of
K-xontoh. Whenx e, K-x Ctson (K- -x)Ct

Kostant [1973] generalized Theorem 1.1 in the context of real semisimple Lie
algebras. The following statement is for complex semisimple case. When g =
50, (0), it is reduced to Theorem 1.1.

Theorem 2.1 (Kostant [1973]). If x € ¢, then (K - x) C t is convex and equals to
conv Wxg, where x¢ € K -xNtand W is the Weyl group, thatis, W = N(T)/ T, the
normalizer of T modulo T.

Let 6 be the Cartan involution of g if g is viewed as a real Lie algebra, that is,
0 :g— gsuchthatx +y+— x —yif x € £ and y € it. In other words, ¢ is the +1
eigenspace of 0 and it is the —1 eigenspace of 6. Though 6 is not an automorphism
of g over C (since 6(cx) = c6x for c € C and x € g), it respects the bracket, that
is,

Olx, y] =[0x,0y], X,y €E€g.

Moreover Ad(k) and 6 commute for all k € K. Since g = ¢+ it and ¢ is compact,
By(x,y) :==—B(x,0y)
is an inner product on g over C. Let
el := By (x, )

be the induced norm on g. The projection 7 : g — h under B( -, -) coincides with
that under By( -, -) since fg, = g_,, for o € A.

An element x € g is said to be normal if [x,6x] = 0, where 6 is the Cartan
involution. When g = sl,,(C), the Cartan decomposition is the usual Hermitian
decomposition, K = SU(n) and 6(z) = —z*, z € sl,(C). When g = s[,,(C) and
¢ = su(n), normality reduces to the usual notion of normality of a matrix.
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We want to know when 7 (K - x) is convex, that is, the converse question of
Theorem 2.1 when we restrict ourselves to normal x € g. Djokovi¢ and Tam [2003]
proved that By(K - x, y) C C is star shaped with respect the origin for each y € g,
if x € g is normal. In particular By (K - x, x) is star shaped. We also want to know
when By(K - x, x) is convex. It turns out their answers coincide as suggested by
Theorems 1.2 and 1.3. Indeed it is equivalent to say that By (K -x, y) is convex for
all y € g in the following theorem.

Theorem 2.2. Let g = gy + - - - + g, be a complex semisimple Lie algebra with
simple components gy, ..., gp. Let x =x1+ - - -+ x¢ € g be normal, where x; € g;,
i=1,...,L Thefollowing statements are equivalent:

(1) (K - x) is convex.

(2) By(K - x, x) is convex.

(3) Bo(K -x,x) is a closed line segment in R.

4) K; -eie-/xj Nt; is nonempty for some 0; € [0,2n], j=1,...,L
(5) Bo(K -x,y) is convex for all y € g.

Remark 2.3. Normality of x € g is necessary. When g =sl,,(C) and K =SU(n), it
is known that By (K - x, y) is convex for all y € sl,,(C) if x € s[,(C) and the matrix
rank of x is 1 (not necessarily normal), according to a result of Tsing [1984]. For

example, if
01

then By (K - x, y) is convex for all y € s[,,(C). However statement (3) in Theorem
2.2 does not hold.

We first establish some results in order to prove Theorem 2.2.

A line L is called a support of Bg(K -x,x) CCaté € 9By (K -x, x) if By(K-x, x)
lies in one of the closed half planes determined by L. A point & € Byp(K - x, x) is
called an extreme point of By(K -x, x) if & does not belong to any open line segment
lying in Byg(K - x, x). It is clear that extreme points belong to By (K - x, x). An
extreme point £ € By(K - x, x) is called a sharp point if Bg(K - x, x) has more than
one support line at £. Clearly a sharp point £ of By(K - x, x) is an extreme point.
The definitions are valid for convex sets in C. The notions of extreme point and
sharp point of a convex polygon in C coincide. We remark that By (K - x, x) is not
necessarily a convex polygon.

Proposition 2.4. Let x € g be normal.

(a) By(K - x,x) C Cis symmetric about the real axis.
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(b) By(K -x,x) C Cis contained in the convex polygon
By(conv Wx| +iconv Wxy, x),

where x = x| +ix3, X1, Xxp € t. Both sets contain the point Bo(x, x) > 0 which
has the largest magnitude. Thus By (x, x) is a sharp point of both Bg(K -x, x)
and By (conv Wx +iconv Wxy, x).

Proof. Since 6 and Ad(k) (k € K) commute, for x, y € g,
By (Ad(k)x, Ad(k)y) = —B(Ad(k)x, Ad(k)0y) = By(x, y)

and hence Ad(k) : g — g is an isometry with respect to Byg( -, - ).
(a) Let x € g be normal. Clearly

By (Ad(K)x, x) = By(x, Ad(k)x) = Bg(Ad(k™)x, x).

Hence (a) is established.
(b) Since x = x;+ix € g (x1, xo € £) is normal, K - x intersects h [Djokovi¢ and
Tam 2003, Lemma 3.3.14]. So we may assume that xp, x, € t. By Theorem 2.1

(K- -x)=m(K - (x;+ix2))
Cran(K-x1+iK - x3)
=n(K - -x1)+in(K -xp)
=conv Wx| +iconv Wx;,

where the sum conv Wx| +iconv Wx, is a convex polytope in h. Since w : g — b
is also an orthogonal projection with respect to By (-, -),

By(K -x,x) = By(m(K -x), x)
is contained in the convex polygon By(conv Wx; 4+ iconv Wxy, x). Let
yeconvWx; Ct and ze€convWxyCt.

Since b = ZaeA RH, = it [Helgason 1978, p. 259] and a(H) € R for each
Hebp, e A, a(y),a(x)) €iRand a(iz), x(ixy) € R. Hence

a(@x) = —a(x)
o)
Ix1I5 = Bo(x, x) = Y lar(x)|*.
aeA
Moreover

Iy +izlg =) aly+inaly+in =Y (e +la@)?) =yl + lizl3.

aeA aEA
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By Cauchy—Schwarz’s inequality
@D [Bo(y iz, 0P <y +izllxli = Ayl7 + lizlDlx]3.
Using triangle inequality, we have
(2-2) 191G < lxtllg, izl < llixzl,
since the elements in W are isometries. By (2-1) and (2-2)
|Bo(y +iz, x)|> < By (x, x). O

Remark 2.5. Given x € h, Wx C K - x and thus Wx C (K - x). We do not know
whether (K - x) C conv Wx or not though it is true when g = s, (C).

Lemma 2.6. Let x € g be normal. Then By (K - x, x) is convex if and only if it is a
closed interval in R.

Proof. One implication is trivial. Suppose Byp(K - x, x) is convex and we may
assume x 7= 0. By Proposition 2.4

§:=By(x,x) =xllg

is a sharp point of By (K - x, x). There are two supporting lines passing through &
and one is the reflection of the other by Proposition 2.4 (a). Clearly By(K - x, x)
is inside the cone determined by the two lines. Let L be the upper supporting line
for definiteness. So By (K - x, x) is in the lower half plane determined by L.

By [Djokovi¢ and Tam 2003, Lemma 3.14] we may assume that x = x; +ix; €
b, x1,x2 € t. Let & := Bg(Ad(k;)x,x) (k; € K) be on the upper boundary of
By(K -x,x)sothat |§ —&;| <1/jbuté; #&, j=1,2,.... Since K is compact,
there is a convergent subsequence {k;, },," of {k;}32 . Letlimy . kj, =ko € K.
So

By (Ad(ko)x, x) =& = Bg(x, x) = | Ad(ko)x|lo [l xle

since Ad(kp) is an isometry. By the equality case of Cauchy—Schwarz’s inequality,
Ad(kg)x = x. Thus

By(Ad(k;)x, x) = By(Ad(k;)x, Ad(ko)x) = By(Ad(kg 'k;)x, x).

We may replace kj, by ky Tk n — e (the identity) or simply assume that ko =e. The
exponential map is an analytic diffeomorphism between an open neighborhood of
0 € ¢ and an open neighborhood of e € K. So for each sufficiently large m, there
is 5, € £ such that

exp Sjm = kjm —e.
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Since x € b,
(2-3) £, = Bo(Ad(e*m)x, x) = By(e*¥inx, x)

1
= By(x, x) + Bp(ads;,x, x) + 5Bg((ads,-m)%c, x)
=1
+§EBQ((adsjm)kx,x).

The first term of (2-3) is just £. The second term is
—B(ad (s, )x, 0x) = —B([s},. x], 0x) = —B(s;,, [x,0x]) =0,

because [x, x] = 0. Since the elements in ad ¢ are skew Hermitian with respect to
By(-, ), the third term is

By((adsj,)*x, x) = —Bp(ads;,x, ad (s;,)x) = —|lad (s;,)x I3

Taking the absolute value of the last term of (2-3), we have

o0

ZiB ((ads; Yrx, x)
k' 0 Jm ’

k=3

o0

1 _
> o Bo(ads), o (adsj, )* 2 oad (s;,)x, x)

=~

(98]

|Bs((adsj, )2 oad (s;,)x, ad (s;,)x)|

I
M2
N‘|,_

~
Il
w

I(ad s;, )< "2ad (s;,)xlgllad (s;,)x [l6

A
M2
?\T‘l»—t

!

»
Il
w

I(ads;, )" llallad (s, )x |7

IA
M2
N‘|.—~

!

Il
w

k
< (el®sinll — 1) jlad (s; )x]2.

where

lads;, || ;= max [lad (s}, )yl
yeg.lylle=1

is the operator norm of ad s, : g — g with respect to || - ||¢. Notice that ad (s, )x #0
otherwise § =§; from (2-3). Since s;, — 0 (x #0, 5, #0),

o 1R g Be(ad st 0]

a 0.
m=>00 llad (s, )l

Consequently we have

& 1
(2-4) lim 5—"312 _1
m—oo |lad (s, )xll; 2
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Since By(K -x, x) is convex, there is £’ € LN By (K -x, x) so that the line segment
[£,&]1 C3By(K - x, x). For sufficiently large m, §;, € [£, &'], thus the limit on the
left-hand side of (2-4) must be a positive multiple of & — &’. So &’ € R and thus
L C R. Therefore the compact connected set By (K - x, x) is a closed interval in R.

O

Proposition 2.7. Let g =g; + - - - + g, be a complex semisimple Lie algebra with
simple components gy, ...,g,. Letx,y € h:=t+it. Writex =x;+---+ x; and
y=y1+---+ye, where xj, y; € h;,i =1, ..., L. Suppose that x;, y; are nonzero
foralli =1, ..., L Then the following statements are equivalent.

(1) By(K -x,y) is a (closed) line segment in C.
(2) By(W -x, ) is on a line segment in C, where W is the Weyl group.

(3) K; -eieij Nt and K; - eipfyj N t; are nonempty for some 0;, p; € [0, 2],
Jj=1,...,¢,andk :=0; — pj is a constant forall j =1, ..., L.

Proof. (1) = (2) is trivial.
(3) = (1): We may assume that ' x; € t; and e'?ix; € t; since

BQ(K'.X, )’)=BH(KX»K)’)

Now
By(K -x,y) = Bg(Ky-x1,y1) + -+ Ba(Ky - xe, ye)
¢
—e Z By(K, - eieij, eipfyj)
j=l1
and each summand By (K - €% x;, efiy;) C R.
(2) = (3): Suppose By(Wx, y) is a (closed) line segment. By rotation on x or

y we may assume that By(Wx, y) C R. Since

Bo(Wx,y) = Bg(Wix1, y1) +---+ Bg(Wyxy, ye),

each By(W;x;, y;) is a real line segment, j =1, ..., £. So it suffices to consider
simple g;. To simplify notations, from now on we drop the index j from g;, ¢}, t;,
hj, xj, rj and so on, or simply assume that g is simple.

Notice that

2B(Hy, Hp)

Hy) = Hy —
THﬁ( ) a B(Hﬁ,Hﬁ)

H/g, Ol,ﬁEA.

As a finite reflection group, the Weyl group W is generated by the reflections tp,,
B e A, and

By(Wx, rHﬂy) =Bg(Wx,y) CR
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soforallwe Wand B8 € A,

2
By(wx, Ty, y) = By (a)x, y— %Hﬁ>
B
e
= Bg(a)x, y) — %Bg(wx, Hﬁ).
B
Hence for all 8 € A,
i();)Bg(Wx, Hg) CR
18115

so either (a) Bg(Hg, y) = B(y) =0 forall B € A, or (b) for some B € A (depends
on y), B(y) #0, that is, e'” By(Wx, Hg) C R for some y € R.

Since h =) gen CHjg and B is nondegenerate on b, (a) would not occur because
we assume that y # 0. So (b) occurs, that is, By(We'? x, Hg) C R. But then

By(W Hg, €'V x) = By(Weiv x, Hg) C R.

Similarly for all @ € A,

20 (el? x)

Bg(WHﬁ, H,) CR.
| H |12 *

Now By(W Hg, Hy) C R since H,, Hg € b = it. By contragradience the Weyl
group permutes the roots. If w € W then wHg = H,,.5. We claim that

By(wHpg, Hy) # 0, for some w € W.

It is because that the Weyl group acts simply transitively on each subset of roots
of the same length [Helgason 1978, p. 523]. If H, and Hg are of the same length,
then wHg = H, for some w € W and By(wHg, H,) = ||HD,||§ > (0. Hence the
claim follows immediately. When g = a,,, 0, ¢, ¢7, ¢3, all the roots are of the same
length [Helgason 1978, p. 462—-474]. Notice that

by: A={xe;te;j:1<i#j=<n}U{xe :1=<i=<nj},

i A={texe;:1<i#j<njU{x2e¢;:1=<i=<n}, and

far A==x{e; i=1,...,4); eixe; (1<i<j=<4); %(el teytestes)l.

For each case, the root length squares are either 1 or 2 and the claim is clearly true
for them. Finally when g = g,, the root length squares are either 2 or 6,

A ==x{e1 —ey, e —e3,e1 —e3,2e1 —ey —e3,2er — e —e3,2e3 — e — e}
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and the claim is also true. As a result a(e”x) e R for all & € A so €'’ x € hg = it.
Similarly we have the same conclusion for y. Then clearly 6; — p; is a constant,
j=1,...,¢ O

Proof of Theorem 2.2. We first show that the first four statements are equivalent.

(1) = (2): We may assume that x € h. We have By(K -x, x) = By(w (K - x), x)
and it is convex since 7 (K - x) is convex.

(2) & (3): Lemma 2.6.

(3) = (4): The case x = 0 is trivial. For x # 0, we may assume that each
component x; # 0 in the expression x = x| +- - - +x; € g. Then apply Proposition
2.7.

(4) = (1): By Theorem 2.1.

(5) = (2): obvious.

4 =G Lety=yi+---+y €91+ +g, Then

Bo(K -x,y) = Bg(Ky-x1,y1) +---+ Bo(Ky - x¢, o).

By (4) there exist k; € K; and 6; € R so that t; := ¢% Ad(k;)x; € t; for each
j=1,...,¢ Write
yy =y +iy®,
for yj(.l), yj.z) et. So
Bo(Kj-xj, ;) =e"IBa(K -1}, y})
= % { B(Ad(kp)1;, y3") +iB(AdGk )y, y) ik € K}

which is convex by a result of Tam [2002]. Hence By (K - x, y) is a sum of convex
sets and thus convex. U

Remark 2.8. The second author conjectured (see [Tam 2001, Conjecture 4.1]) that
for a normal x € g (semisimple), if By(K -x, x) is convex, then there is y € R such
that e’”x € t. It is not true in view of Theorem 2.2. Consider the semisimple
g := a; X a;. To be concrete, let g = s[,(C) x sl (C) with K = SU(2) & SU(2).
Consider the normal x = diag (x;, —x1) @ diag (x2, —x2), where x, x5 € C. Then
fork=k ®k, € K,

trkxk ™' x* = trkdiag (x1, —x1)k; 'diag (X1, —%1)

+ trkpdiag (x2, —x2)k; 'diag (%2, —%2).

By Theorem 1.3 the set

{ trk;diag (x;, —x;)k; 'diag (%;, —%;) 1 k; € SU(n) }

is convex, i =1, 2, so {trkxk~'x* : k € K} is the sum of two convex sets and thus
is convex. However, x1, x need not be collinear with 0.
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By Proposition 2.4 (a) Bg(K - x, x) is symmetric about the real axis. For some
simple Lie algebras, more symmetry occurs for By(K - x, x) if x € g is normal.
Indeed the symmetry is also true for By(K - x, y) for each y € g.

Proposition 2.9. Let g be simple and of type by, ¢, 00 (£ even), gy, f4, ¢7 and eg.
Let x € g be normal. The sets m(K - x) C b and Bg(K - x, y) C C are symmetric
about the origin for each y € g.

Proof. We may assume that x € h. The Weyl group W contains —1 [Helgason
1978, p. 523] so the desired result follows. O

It is known [Djokovi¢ and Tam 2003] that if x € g is normal, then By (K - x, y)
is star-shaped with respect to the center O for each y € g.

We do not know whether 7w (K - x) is star shaped or not and the following con-
jectures [Tam 2001] are still open.

Conjecture 2.10. Let g be a complex semisimple Lie algebra. If x,y € g, then
By (K - x,y) is star-shaped with respect to the star center Q.

Conjecture 2.11. Let g be a complex semisimple Lie algebra. If x € g, then w (K -x)
is star-shaped with respect to the star center 0.

We remark that these conjectures can be reduced to the simple cases. The cases
ag (£ >1),0, (£ >2), ¢, ¢7 for Conjecture 2.10 are true [Cheung and Tsing 1996;
Djokovi¢ and Tam 2003].

Added in proof

The authors very recently proved Conjecture 2.11 affirmatively.
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