Pacific Journal of Mathematics

THE K-ORBIT OF A NORMAL ELEMENT IN A COMPLEX SEMISIMPLE LIE ALGEBRA

TIN-YAU TAM AND WAI-SHUN CHEUNG

Volume 238 No. 2

December 2008

THE K-ORBIT OF A NORMAL ELEMENT IN A COMPLEX SEMISIMPLE LIE ALGEBRA

TIN-YAU TAM AND WAI-SHUN CHEUNG

Given a complex semisimple Lie algebra $\mathfrak{g} = \mathfrak{k} + i\mathfrak{k}$, we consider the converse question of Kostant's convexity theorem for a normal $x \in \mathfrak{g}$. Let $\pi : \mathfrak{g} \to \mathfrak{h}$ be the orthogonal projection under the Killing form onto the Cartan subalgebra $\mathfrak{h} := \mathfrak{t} + i\mathfrak{t}$ where t is a maximal abelian subalgebra of \mathfrak{k} . If $\pi(\operatorname{Ad}(K)x)$ is convex, then there is $k \in K$ such that each simple component of $\operatorname{Ad}(k)x$ can be rotated into the corresponding component of t. The result also extends a theorem of Au-Yeung and Tsing on the generalized numerical range.

1. Introduction

Let $A \in \mathbb{C}_{n \times n}$. Consider the set

$$\mathcal{W}(A) := \{ \operatorname{diag} (UAU^{-1}) : U \in \mathrm{U}(n) \},\$$

where U(n) denotes the unitary group. It is the image of the projection of the orbit

$$O(A) := \{UAU^{-1} : U \in U(n)\}$$

onto the set of diagonal matrices. The following two results concern the geometric shape of $\mathcal{W}(A)$.

Theorem 1.1 (Schur–Horn [Schur 1923; Horn 1954]). If $A \in \mathbb{C}_{n \times n}$ is Hermitian with eigenvalues $\lambda := (\lambda_1, \ldots, \lambda_n) \in \mathbb{R}^n$, then

$$\mathcal{W}(A) = \operatorname{conv} S_n \lambda,$$

where conv $S_n\lambda$ is the convex hull of the orbit of λ under the action of the full symmetric group S_n .

For general $A \in \mathbb{C}_{n \times n}$, $\mathcal{W}(A)$ is not convex. Indeed Tsing [1981] proved that $\mathcal{W}(A)$ is star-shaped with respect to the star center $\frac{1}{n}(\operatorname{tr} A)(1, \ldots, 1)$.

Theorem 1.2 (Au-Yeung and Sing [1977]). Let $A \in \mathbb{C}_{n \times n}$ be normal. If $\mathcal{W}(A)$ is convex, then the eigenvalues of A are collinear, that is, there exist $\alpha, \beta \in \mathbb{C}$ such that $\alpha A + \beta I$ is Hermitian.

MSC2000: primary 22E10; secondary 17B20.

Keywords: K-orbit, convex, normal element, complex semisimple Lie algebra.

So Theorem 1.2 may be viewed as the converse to Theorem 1.1 as one restricts the attention on normal matrices. We remark that if $A \in \mathbb{C}_{n \times n}$ has zero trace, then $\alpha A + \beta I$ being Hermitian means that $e^{i\gamma}A$ is Hermitian for some $\gamma \in \mathbb{R}$. The following result of Au-Yeung and Tsing is stronger than Theorem 1.2. It affirmatively answers the conjecture of Marcus [1979] about the (stronger) converse of the result of Westwick [1975] on the convexity of *c*-numerical range. Bebiano and Da Providência [1996] gave another proof of Theorem 1.3.

Theorem 1.3 (Au-Yeung and Tsing [1983]). Let $A \in \mathbb{C}_{n \times n}$ be normal. If

$$W_{A^*}(A) := \{ \operatorname{tr} A^* U A U^{-1} : U \in U(n) \}$$

is convex, then A has collinear eigenvalues.

The above results can be reduced to the case tr A = 0, that is, the simple Lie algebra $\mathfrak{sl}_n(\mathbb{C})$. We may write $A = \hat{A} + \frac{1}{n}(\operatorname{tr} A)I_n$, where $\hat{A} := A - \frac{1}{n}(\operatorname{tr} A)I_n$ has zero trace. Then

$$\mathcal{W}(A) = \mathcal{W}(\hat{A}) + \frac{\operatorname{tr} A}{n}(1, \dots, 1),$$
$$W_{A^*}(A) = W_{\hat{A}^*}(\hat{A}) + \frac{|\operatorname{tr} A|^2}{n^2}.$$

We will extend Theorems 1.2 and 1.3 in the context of semisimple Lie algebras.

2. Main results

Let \mathfrak{g} be a complex semisimple Lie algebra and let \mathfrak{k} be a real compact form of \mathfrak{g} . Let *G* be a complex Lie group with Lie algebra \mathfrak{g} . It has a finite center so *K* (the analytic group of \mathfrak{k}) is compact. As a real *K*-module, \mathfrak{g} is just the direct sum of two copies of the adjoint module \mathfrak{k} of $K: \mathfrak{g} = \mathfrak{k} + i\mathfrak{k}$ (direct sum), that is, Cartan decomposition of \mathfrak{g} . Denote by \mathfrak{g}^* the dual space of \mathfrak{g} . Given $x \in \mathfrak{g}$, consider the orbit of *x* under the adjoint action of *K*

$$K \cdot x := \{ \mathrm{Ad}(k)x : k \in K \}.$$

The orbit $K \cdot x$ depends on $\operatorname{Ad}_G K$ which is the analytic subgroup of the adjoint group $\operatorname{Int}(\mathfrak{g}) \subset \operatorname{Aut}(\mathfrak{g})$ corresponding to $\operatorname{ad}_{\mathfrak{g}}(\mathfrak{k})$. Thus $K \cdot x$ is independent of the choice of G. Let \mathfrak{t} be a maximal abelian subalgebra of \mathfrak{k} . The complexification $\mathfrak{h} := \mathfrak{t} + i\mathfrak{t}$ (direct sum) is a Cartan subalgebra of \mathfrak{g} . The rank of \mathfrak{g} is dim_{\mathbb{C}} \mathfrak{h} , denoted by rank \mathfrak{g} . Let

$$\mathfrak{g} = \mathfrak{h} + \sum_{lpha \in \Delta} \mathfrak{g}_{lpha}$$

be the root space decomposition of \mathfrak{g} with respect to \mathfrak{h} , where Δ denotes the set of all nonzero roots. Denote by $B(\cdot, \cdot)$ the Killing form of \mathfrak{g} . As $B(\cdot, \cdot)$ is a nondegenerate bilinear form, it induces a vector space isomorphism $\mathfrak{g} \to \mathfrak{g}^*$ sending

 $x \to \varphi_x$, where $\varphi_x(y) = B(x, y)$ for all $y \in \mathfrak{g}$. Denote the inverse by $\varphi \to H_{\varphi} \in \mathfrak{g}$ $(\varphi \in \mathfrak{g}^*)$, where $B(H_{\varphi}, y) = \varphi(y)$ for all $y \in \mathfrak{g}$. Let

$$\mathfrak{h}_{\mathbb{R}} := \sum_{\alpha \in \Delta} \mathbb{R} H_{\alpha}$$

so that $B(\cdot, \cdot)$ is a real inner product on $\mathfrak{h}_{\mathbb{R}}$ and $\mathfrak{h} = \mathfrak{h}_{\mathbb{R}} + i\mathfrak{h}_{\mathbb{R}}$ (direct sum). Hence rank $\mathfrak{g} = \dim_{\mathbb{R}} \mathfrak{h}_{\mathbb{R}}$. Moreover $\mathfrak{h}_{\mathbb{R}} = i\mathfrak{t}$ [Helgason 1978, p. 259]. Notice that $B(\mathfrak{g}_{\alpha}, \mathfrak{g}_{\beta}) = 0$ [Helgason 1978, p. 166] whenever $\alpha + \beta \neq 0$ ($\mathfrak{g}_0 = \mathfrak{h}$) so the sum

$$\mathfrak{g} = \mathfrak{h} + \sum_{\alpha \in \Delta^+} (\mathfrak{g}_{\alpha} + \mathfrak{g}_{-\alpha})$$

is orthogonal under the Killing form. Thus we have the orthogonal projection $\pi : \mathfrak{g} \to \mathfrak{h}$ under $B(\cdot, \cdot)$. For $x \in \mathfrak{g}$, we consider $\pi(K \cdot x)$, that is, the projection of $K \cdot x$ onto \mathfrak{h} . When $x \in \mathfrak{k}$, $K \cdot x \subset \mathfrak{k}$ so $\pi(K \cdot x) \subset \mathfrak{t}$.

Kostant [1973] generalized Theorem 1.1 in the context of real semisimple Lie algebras. The following statement is for complex semisimple case. When $\mathfrak{g} = \mathfrak{sl}_n(\mathbb{C})$, it is reduced to Theorem 1.1.

Theorem 2.1 (Kostant [1973]). If $x \in \mathfrak{k}$, then $\pi(K \cdot x) \subset \mathfrak{t}$ is convex and equals to conv $Wx_{\mathfrak{k}}$, where $x_{\mathfrak{k}} \in K \cdot x \cap \mathfrak{t}$ and W is the Weyl group, that is, W = N(T)/T, the normalizer of T modulo T.

Let θ be the Cartan involution of \mathfrak{g} if \mathfrak{g} is viewed as a real Lie algebra, that is, $\theta : \mathfrak{g} \to \mathfrak{g}$ such that $x + y \mapsto x - y$ if $x \in \mathfrak{k}$ and $y \in i\mathfrak{k}$. In other words, \mathfrak{k} is the +1 eigenspace of θ and $i\mathfrak{k}$ is the -1 eigenspace of θ . Though θ is not an automorphism of \mathfrak{g} over \mathbb{C} (since $\theta(cx) = \overline{c} \, \theta x$ for $c \in \mathbb{C}$ and $x \in \mathfrak{g}$), it respects the bracket, that is,

$$\theta[x, y] = [\theta x, \theta y], \qquad x, y \in \mathfrak{g}.$$

Moreover Ad(k) and θ commute for all $k \in K$. Since $\mathfrak{g} = \mathfrak{k} + i\mathfrak{k}$ and \mathfrak{k} is compact,

$$B_{\theta}(x, y) := -B(x, \theta y)$$

is an inner product on \mathfrak{g} over \mathbb{C} . Let

$$\|x\|_{\theta} := B_{\theta}^{1/2}(x, x)$$

be the induced norm on \mathfrak{g} . The projection $\pi : \mathfrak{g} \to \mathfrak{h}$ under $B(\cdot, \cdot)$ coincides with that under $B_{\theta}(\cdot, \cdot)$ since $\theta \mathfrak{g}_{\alpha} = \mathfrak{g}_{-\alpha}$, for $\alpha \in \Delta$.

An element $x \in \mathfrak{g}$ is said to be *normal* if $[x, \theta x] = 0$, where θ is the Cartan involution. When $\mathfrak{g} = \mathfrak{sl}_n(\mathbb{C})$, the Cartan decomposition is the usual Hermitian decomposition, K = SU(n) and $\theta(z) = -z^*$, $z \in \mathfrak{sl}_n(\mathbb{C})$. When $\mathfrak{g} = \mathfrak{sl}_n(\mathbb{C})$ and $\mathfrak{k} = \mathfrak{su}(n)$, normality reduces to the usual notion of normality of a matrix.

We want to know when $\pi(K \cdot x)$ is convex, that is, the converse question of Theorem 2.1 when we restrict ourselves to normal $x \in \mathfrak{g}$. Djoković and Tam [2003] proved that $B_{\theta}(K \cdot x, y) \subset \mathbb{C}$ is star shaped with respect the origin for each $y \in \mathfrak{g}$, if $x \in \mathfrak{g}$ is normal. In particular $B_{\theta}(K \cdot x, x)$ is star shaped. We also want to know when $B_{\theta}(K \cdot x, x)$ is convex. It turns out their answers coincide as suggested by Theorems 1.2 and 1.3. Indeed it is equivalent to say that $B_{\theta}(K \cdot x, y)$ is convex for all $y \in \mathfrak{g}$ in the following theorem.

Theorem 2.2. Let $\mathfrak{g} = \mathfrak{g}_1 + \cdots + \mathfrak{g}_\ell$ be a complex semisimple Lie algebra with simple components $\mathfrak{g}_1, \ldots, \mathfrak{g}_\ell$. Let $x = x_1 + \cdots + x_\ell \in \mathfrak{g}$ be normal, where $x_i \in \mathfrak{g}_i$, $i = 1, \ldots, \ell$. The following statements are equivalent:

- (1) $\pi(K \cdot x)$ is convex.
- (2) $B_{\theta}(K \cdot x, x)$ is convex.
- (3) $B_{\theta}(K \cdot x, x)$ is a closed line segment in \mathbb{R} .
- (4) $K_j \cdot e^{i\theta_j} x_j \cap \mathfrak{t}_j$ is nonempty for some $\theta_j \in [0, 2\pi], j = 1, \dots, \ell$.
- (5) $B_{\theta}(K \cdot x, y)$ is convex for all $y \in \mathfrak{g}$.

Remark 2.3. Normality of $x \in \mathfrak{g}$ is necessary. When $\mathfrak{g} = \mathfrak{sl}_n(\mathbb{C})$ and K = SU(n), it is known that $B_\theta(K \cdot x, y)$ is convex for all $y \in \mathfrak{sl}_n(\mathbb{C})$ if $x \in \mathfrak{sl}_n(\mathbb{C})$ and the matrix rank of x is 1 (not necessarily normal), according to a result of Tsing [1984]. For example, if

$$x = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \oplus 0_{n-2} \,,$$

then $B_{\theta}(K \cdot x, y)$ is convex for all $y \in \mathfrak{sl}_n(\mathbb{C})$. However statement (3) in Theorem 2.2 does not hold.

We first establish some results in order to prove Theorem 2.2.

A line *L* is called a *support* of $B_{\theta}(K \cdot x, x) \subset \mathbb{C}$ at $\xi \in \partial B_{\theta}(K \cdot x, x)$ if $B_{\theta}(K \cdot x, x)$ lies in one of the closed half planes determined by *L*. A point $\xi \in B_{\theta}(K \cdot x, x)$ is called an *extreme point* of $B_{\theta}(K \cdot x, x)$ if ξ does not belong to any open line segment lying in $B_{\theta}(K \cdot x, x)$. It is clear that extreme points belong to $\partial B_{\theta}(K \cdot x, x)$. An extreme point $\xi \in B_{\theta}(K \cdot x, x)$ is called a *sharp point* if $B_{\theta}(K \cdot x, x)$ has more than one support line at ξ . Clearly a sharp point ξ of $B_{\theta}(K \cdot x, x)$ is an extreme point. The definitions are valid for convex sets in \mathbb{C} . The notions of extreme point and sharp point of a convex polygon in \mathbb{C} coincide. We remark that $B_{\theta}(K \cdot x, x)$ is not necessarily a convex polygon.

Proposition 2.4. *Let* $x \in \mathfrak{g}$ *be normal.*

(a) $B_{\theta}(K \cdot x, x) \subset \mathbb{C}$ is symmetric about the real axis.

(b) $B_{\theta}(K \cdot x, x) \subset \mathbb{C}$ is contained in the convex polygon

 $B_{\theta}(\operatorname{conv} Wx_1 + i\operatorname{conv} Wx_2, x),$

where $x = x_1 + ix_2$, $x_1, x_2 \in \mathfrak{k}$. Both sets contain the point $B_{\theta}(x, x) \ge 0$ which has the largest magnitude. Thus $B_{\theta}(x, x)$ is a sharp point of both $B_{\theta}(K \cdot x, x)$ and $B_{\theta}(\operatorname{conv} Wx_1 + i\operatorname{conv} Wx_2, x)$.

Proof. Since θ and Ad(k) ($k \in K$) commute, for $x, y \in \mathfrak{g}$,

$$B_{\theta}(\operatorname{Ad}(k)x, \operatorname{Ad}(k)y) = -B(\operatorname{Ad}(k)x, \operatorname{Ad}(k)\theta y) = B_{\theta}(x, y)$$

and hence $\operatorname{Ad}(k) : \mathfrak{g} \to \mathfrak{g}$ is an isometry with respect to $B_{\theta}(\cdot, \cdot)$.

(a) Let $x \in \mathfrak{g}$ be normal. Clearly

$$\overline{B_{\theta}(\mathrm{Ad}(k)x,x)} = B_{\theta}(x,\mathrm{Ad}(k)x) = B_{\theta}(\mathrm{Ad}(k^{-1})x,x).$$

Hence (a) is established.

(b) Since $x = x_1 + ix_2 \in \mathfrak{g}(x_1, x_2 \in \mathfrak{k})$ is normal, $K \cdot x$ intersects \mathfrak{h} [Djoković and Tam 2003, Lemma 3.3.14]. So we may assume that $x_1, x_2 \in \mathfrak{t}$. By Theorem 2.1

$$\pi(K \cdot x) = \pi(K \cdot (x_1 + ix_2))$$

$$\subset \pi(K \cdot x_1 + iK \cdot x_2)$$

$$= \pi(K \cdot x_1) + i\pi(K \cdot x_2)$$

$$= \operatorname{conv} Wx_1 + i\operatorname{conv} Wx_2,$$

where the sum conv $Wx_1 + i$ conv Wx_2 is a convex polytope in \mathfrak{h} . Since $\pi : \mathfrak{g} \to \mathfrak{h}$ is also an orthogonal projection with respect to $B_{\theta}(\cdot, \cdot)$,

$$B_{\theta}(K \cdot x, x) = B_{\theta}(\pi(K \cdot x), x)$$

is contained in the convex polygon $B_{\theta}(\operatorname{conv} Wx_1 + i\operatorname{conv} Wx_2, x)$. Let

$$y \in \operatorname{conv} W x_1 \subset \mathfrak{t}$$
 and $z \in \operatorname{conv} W x_2 \subset \mathfrak{t}$.

Since $\mathfrak{h}_{\mathbb{R}} := \sum_{\alpha \in \Delta} \mathbb{R}H_{\alpha} = i\mathfrak{t}$ [Helgason 1978, p. 259] and $\alpha(H) \in \mathbb{R}$ for each $H \in \mathfrak{h}_{\mathbb{R}}, \alpha \in \Delta, \alpha(y), \alpha(x_1) \in i\mathbb{R}$ and $\alpha(iz), \alpha(ix_2) \in \mathbb{R}$. Hence

$$\alpha(\theta x) = -\alpha(x)$$

so

$$\|x\|_{\theta}^{2} = B_{\theta}(x, x) = \sum_{\alpha \in \Delta} |\alpha(x)|^{2}.$$

Moreover

$$\|y + iz\|_{\theta}^{2} = \sum_{\alpha \in \Delta} \alpha(y + iz) \overline{\alpha(y + iz)} = \sum_{\alpha \in \Delta} (|\alpha(y)|^{2} + |\alpha(iz)|^{2}) = \|y\|_{\theta}^{2} + \|iz\|_{\theta}^{2}.$$

By Cauchy-Schwarz's inequality

(2-1) $|B_{\theta}(y+iz,x)|^{2} \leq ||y+iz||_{\theta}^{2} ||x||_{\theta}^{2} = (||y||_{\theta}^{2} + ||iz||_{\theta}^{2}) ||x||_{\theta}^{2}.$

Using triangle inequality, we have

(2-2)
$$||y||_{\theta}^2 \le ||x_1||_{\theta}^2, \quad ||iz||_{\theta}^2 \le ||ix_2||_{\theta}^2,$$

since the elements in W are isometries. By (2-1) and (2-2)

$$|B_{\theta}(y+iz,x)|^2 \le B_{\theta}^2(x,x).$$

Remark 2.5. Given $x \in \mathfrak{h}$, $Wx \subset K \cdot x$ and thus $Wx \subset \pi(K \cdot x)$. We do not know whether $\pi(K \cdot x) \subset \operatorname{conv} Wx$ or not though it is true when $\mathfrak{g} = \mathfrak{sl}_n(\mathbb{C})$.

Lemma 2.6. Let $x \in \mathfrak{g}$ be normal. Then $B_{\theta}(K \cdot x, x)$ is convex if and only if it is a closed interval in \mathbb{R} .

Proof. One implication is trivial. Suppose $B_{\theta}(K \cdot x, x)$ is convex and we may assume $x \neq 0$. By Proposition 2.4

$$\xi := B_{\theta}(x, x) = \|x\|_{\theta}$$

is a sharp point of $B_{\theta}(K \cdot x, x)$. There are two supporting lines passing through ξ and one is the reflection of the other by Proposition 2.4 (a). Clearly $B_{\theta}(K \cdot x, x)$ is inside the cone determined by the two lines. Let *L* be the upper supporting line for definiteness. So $B_{\theta}(K \cdot x, x)$ is in the lower half plane determined by *L*.

By [Djoković and Tam 2003, Lemma 3.14] we may assume that $x = x_1 + ix_2 \in \mathfrak{h}$, $x_1, x_2 \in \mathfrak{t}$. Let $\xi_j := B_{\theta}(\operatorname{Ad}(k_j)x, x)$ $(k_j \in K)$ be on the upper boundary of $B_{\theta}(K \cdot x, x)$ so that $|\xi - \xi_j| < 1/j$ but $\xi_j \neq \xi$, $j = 1, 2, \ldots$ Since *K* is compact, there is a convergent subsequence $\{k_{j_m}\}_{m=1}^{\infty}$ of $\{k_j\}_{j=1}^{\infty}$. Let $\lim_{m\to\infty} k_{j_m} = k_0 \in K$. So

$$B_{\theta}(\operatorname{Ad}(k_0)x, x) = \xi = B_{\theta}(x, x) = \|\operatorname{Ad}(k_0)x\|_{\theta} \|x\|_{\theta}$$

since $Ad(k_0)$ is an isometry. By the equality case of Cauchy–Schwarz's inequality, $Ad(k_0)x = x$. Thus

$$B_{\theta}(\operatorname{Ad}(k_{i})x, x) = B_{\theta}(\operatorname{Ad}(k_{i})x, \operatorname{Ad}(k_{0})x) = B_{\theta}(\operatorname{Ad}(k_{0}^{-1}k_{i})x, x).$$

We may replace k_{j_m} by $k_0^{-1}k_{j_m} \rightarrow e$ (the identity) or simply assume that $k_0 = e$. The exponential map is an analytic diffeomorphism between an open neighborhood of $0 \in \mathfrak{k}$ and an open neighborhood of $e \in K$. So for each sufficiently large *m*, there is $s_{j_m} \in \mathfrak{k}$ such that

$$\exp s_{j_m} = k_{j_m} \to e.$$

Since $x \in \mathfrak{h}$,

(2-3)
$$\xi_{j_m} = B_\theta(\operatorname{Ad}(e^{s_{j_m}})x, x) = B_\theta(e^{\operatorname{ad} s_{j_m}}x, x)$$
$$= B_\theta(x, x) + B_\theta(\operatorname{ad} s_{j_m}x, x) + \frac{1}{2}B_\theta((\operatorname{ad} s_{j_m})^2 x, x)$$
$$+ \sum_{k=3}^{\infty} \frac{1}{k!}B_\theta((\operatorname{ad} s_{j_m})^k x, x).$$

The first term of (2-3) is just ξ . The second term is

$$-B(\operatorname{ad}(s_{j_m})x, \theta x) = -B([s_{j_m}, x], \theta x) = -B(s_{j_m}, [x, \theta x]) = 0,$$

because $[x, \theta x] = 0$. Since the elements in ad \mathfrak{k} are skew Hermitian with respect to $B_{\theta}(\cdot, \cdot)$, the third term is

$$B_{\theta}((\mathrm{ad}\, s_{j_m})^2 x, x) = -B_{\theta}(\mathrm{ad}\, s_{j_m} x, \mathrm{ad}\, (s_{j_m}) x) = -\|\mathrm{ad}\, (s_{j_m}) x\|_{\theta}^2.$$

Taking the absolute value of the last term of (2-3), we have

$$\begin{split} \left| \sum_{k=3}^{\infty} \frac{1}{k!} B_{\theta}((\operatorname{ad} s_{j_{m}})^{k} x, x) \right| &= \left| \sum_{k=3}^{\infty} \frac{1}{k!} B_{\theta}(\operatorname{ad} s_{j_{m}} \circ (\operatorname{ad} s_{j_{m}})^{k-2} \circ \operatorname{ad} (s_{j_{m}}) x, x) \right| \\ &= \sum_{k=3}^{\infty} \frac{1}{k!} |B_{\theta}((\operatorname{ad} s_{j_{m}})^{k-2} \circ \operatorname{ad} (s_{j_{m}}) x, \operatorname{ad} (s_{j_{m}}) x)| \\ &\leq \sum_{k=3}^{\infty} \frac{1}{k!} ||(\operatorname{ad} s_{j_{m}})^{k-2} \operatorname{ad} (s_{j_{m}}) x||_{\theta} ||\operatorname{ad} (s_{j_{m}}) x||_{\theta} \\ &\leq \sum_{k=3}^{\infty} \frac{1}{k!} ||(\operatorname{ad} s_{j_{m}})^{k-2} ||_{\theta} ||\operatorname{ad} (s_{j_{m}}) x||_{\theta} \\ &\leq (e^{||\operatorname{ad} s_{j_{m}}||} - 1) ||\operatorname{ad} (s_{j_{m}}) x||_{\theta}^{2}, \end{split}$$

where

$$\|\operatorname{ad} s_{j_m}\| := \max_{y \in \mathfrak{g}, \|y\|_{\theta} = 1} \|\operatorname{ad} (s_{j_m})y\|_{\theta}$$

is the operator norm of ad $s_{j_m} : \mathfrak{g} \to \mathfrak{g}$ with respect to $\|\cdot\|_{\theta}$. Notice that ad $(s_{j_m})x \neq 0$ otherwise $\xi = \xi_{j_m}$ from (2-3). Since $s_{j_m} \to 0$ ($x \neq 0$, $s_{j_m} \neq 0$),

$$\lim_{m \to \infty} \frac{\left| \sum_{k=3}^{\infty} \frac{1}{k!} B_{\theta}((\operatorname{ad} s_{j_m})^k x, x) \right|}{\|\operatorname{ad} (s_{j_m}) x\|_{\theta}^2} = 0.$$

Consequently we have

(2-4)
$$\lim_{m \to \infty} \frac{\xi - \xi_{j_m}}{\|\mathrm{ad}\,(s_{j_m})x\|_{\theta}^2} = \frac{1}{2}.$$

Since $B_{\theta}(K \cdot x, x)$ is convex, there is $\xi' \in L \cap \partial B_{\theta}(K \cdot x, x)$ so that the line segment $[\xi, \xi'] \subset \partial B_{\theta}(K \cdot x, x)$. For sufficiently large $m, \xi_{j_m} \in [\xi, \xi']$, thus the limit on the left-hand side of (2-4) must be a positive multiple of $\xi - \xi'$. So $\xi' \in \mathbb{R}$ and thus $L \subset \mathbb{R}$. Therefore the compact connected set $B_{\theta}(K \cdot x, x)$ is a closed interval in \mathbb{R} .

Proposition 2.7. Let $\mathfrak{g} = \mathfrak{g}_1 + \cdots + \mathfrak{g}_\ell$ be a complex semisimple Lie algebra with simple components $\mathfrak{g}_1, \ldots, \mathfrak{g}_\ell$. Let $x, y \in \mathfrak{h} := \mathfrak{t} + i\mathfrak{t}$. Write $x = x_1 + \cdots + x_\ell$ and $y = y_1 + \cdots + y_\ell$, where $x_i, y_i \in \mathfrak{h}_i, i = 1, \ldots, \ell$. Suppose that x_i, y_i are nonzero for all $i = 1, \ldots, \ell$. Then the following statements are equivalent.

- (1) $B_{\theta}(K \cdot x, y)$ is a (closed) line segment in \mathbb{C} .
- (2) $B_{\theta}(W \cdot x, y)$ is on a line segment in \mathbb{C} , where W is the Weyl group.
- (3) $K_j \cdot e^{i\theta_j} x_j \cap \mathfrak{t}_j$ and $K_j \cdot e^{i\rho_j} y_j \cap \mathfrak{t}_j$ are nonempty for some $\theta_j, \rho_j \in [0, 2\pi]$, $j = 1, \ldots, \ell$, and $\kappa := \theta_j - \rho_j$ is a constant for all $j = 1, \ldots, \ell$.

Proof. (1) \Rightarrow (2) is trivial.

(3) \Rightarrow (1): We may assume that $e^{i\theta_j}x_j \in \mathfrak{t}_j$ and $e^{i\rho_j}x_j \in \mathfrak{t}_j$ since

$$B_{\theta}(K \cdot x, y) = B_{\theta}(K \cdot x, K \cdot y).$$

Now

$$B_{\theta}(K \cdot x, y) = B_{\theta}(K_1 \cdot x_1, y_1) + \dots + B_{\theta}(K_{\ell} \cdot x_{\ell}, y_{\ell})$$
$$= e^{-i\kappa} \sum_{j=1}^{\ell} B_{\theta}(K_1 \cdot e^{i\theta_j} x_j, e^{i\rho_j} y_j)$$

and each summand $B_{\theta}(K_1 \cdot e^{i\theta_j} x_j, e^{i\rho_j} y_j) \subset \mathbb{R}$.

(2) \Rightarrow (3): Suppose $B_{\theta}(Wx, y)$ is a (closed) line segment. By rotation on x or y we may assume that $B_{\theta}(Wx, y) \subset \mathbb{R}$. Since

$$B_{\theta}(Wx, y) = B_{\theta}(W_1x_1, y_1) + \dots + B_{\theta}(W_{\ell}x_{\ell}, y_{\ell}),$$

each $B_{\theta}(W_j x_j, y_j)$ is a real line segment, $j = 1, ..., \ell$. So it suffices to consider simple \mathfrak{g}_j . To simplify notations, from now on we drop the index j from $\mathfrak{g}_j, \mathfrak{k}_j, \mathfrak{t}_j, \mathfrak{h}_j, x_j, r_j$ and so on, or simply assume that \mathfrak{g} is simple.

Notice that

$$\tau_{H_{\beta}}(H_{\alpha}) = H_{\alpha} - \frac{2B(H_{\alpha}, H_{\beta})}{B(H_{\beta}, H_{\beta})}H_{\beta}, \quad \alpha, \beta \in \Delta.$$

As a finite reflection group, the Weyl group *W* is generated by the reflections $\tau_{H_{\beta}}$, $\beta \in \Delta$, and

$$B_{\theta}(Wx, \tau_{H_{\theta}}y) = B_{\theta}(Wx, y) \subset \mathbb{R}$$

so for all $\omega \in W$ and $\beta \in \Delta$,

$$B_{\theta}(\omega x, \tau_{H_{\beta}} y) = B_{\theta}\left(\omega x, y - \frac{2\beta(y)}{\|\beta\|_{\beta}^{2}}H_{\beta}\right)$$
$$= B_{\theta}(\omega x, y) - \frac{2\overline{\beta(y)}}{\|\beta\|_{\beta}^{2}}B_{\theta}(\omega x, H_{\beta}).$$

Hence for all $\beta \in \Delta$,

$$\frac{2\overline{\beta(\mathbf{y})}}{\|\beta\|_{\theta}^{2}}B_{\theta}(Wx, H_{\beta}) \subset \mathbb{R}$$

so either (a) $B_{\theta}(H_{\beta}, y) = \beta(y) = 0$ for all $\beta \in \Delta$, or (b) for some $\beta \in \Delta$ (depends on y), $\beta(y) \neq 0$, that is, $e^{i\gamma} B_{\theta}(Wx, H_{\beta}) \subset \mathbb{R}$ for some $\gamma \in \mathbb{R}$.

Since $\mathfrak{h} = \sum_{\beta \in \Delta} \mathbb{C}H_{\beta}$ and *B* is nondegenerate on \mathfrak{h} , (a) would not occur because we assume that $y \neq 0$. So (b) occurs, that is, $B_{\theta}(We^{i\gamma}x, H_{\beta}) \subset \mathbb{R}$. But then

$$B_{\theta}(WH_{\beta}, e^{i\gamma}x) = B_{\theta}(We^{i\gamma}x, H_{\beta}) \subset \mathbb{R}.$$

Similarly for all $\alpha \in \Delta$,

$$\frac{2\overline{\alpha(e^{i\gamma}x)}}{\|H_{\alpha}\|_{\theta}^{2}}B_{\theta}(WH_{\beta}, H_{\alpha}) \subset \mathbb{R}.$$

Now $B_{\theta}(WH_{\beta}, H_{\alpha}) \subset \mathbb{R}$ since $H_{\alpha}, H_{\beta} \in \mathfrak{h}_{\mathbb{R}} = i\mathfrak{t}$. By contragradience the Weyl group permutes the roots. If $\omega \in W$ then $\omega H_{\beta} = H_{\omega \cdot \beta}$. We claim that

 $B_{\theta}(\omega H_{\beta}, H_{\alpha}) \neq 0$, for some $\omega \in W$.

It is because that the Weyl group acts simply transitively on each subset of roots of the same length [Helgason 1978, p. 523]. If H_{α} and H_{β} are of the same length, then $\omega H_{\beta} = H_{\alpha}$ for some $\omega \in W$ and $B_{\theta}(\omega H_{\beta}, H_{\alpha}) = ||H_{\alpha}||_{\theta}^2 > 0$. Hence the claim follows immediately. When $\mathfrak{g} = \mathfrak{a}_n, \mathfrak{d}_n, \mathfrak{e}_6, \mathfrak{e}_7, \mathfrak{e}_8$, all the roots are of the same length [Helgason 1978, p. 462–474]. Notice that

$$b_n : \Delta = \{ \pm e_i \pm e_j : 1 \le i \ne j \le n \} \cup \{ \pm e_i : 1 \le i \le n \},\$$

$$c_n : \Delta = \{ \pm e_i \pm e_j : 1 \le i \ne j \le n \} \cup \{ \pm 2e_i : 1 \le i \le n \},\$$
 and
$$f_4 : \Delta = \pm \{ e_i \ (i = 1, \dots, 4);\ e_i \pm e_j \ (1 \le i < j \le 4);\ \frac{1}{2}(e_1 \pm e_2 \pm e_3 \pm e_4) \}.$$

For each case, the root length squares are either 1 or 2 and the claim is clearly true for them. Finally when $g = g_2$, the root length squares are either 2 or 6,

$$\Delta = \pm \{e_1 - e_2, e_2 - e_3, e_1 - e_3, 2e_1 - e_2 - e_3, 2e_2 - e_1 - e_3, 2e_3 - e_1 - e_2\}$$

and the claim is also true. As a result $\alpha(e^{i\gamma}x) \in \mathbb{R}$ for all $\alpha \in \Delta$ so $e^{i\gamma}x \in \mathfrak{h}_{\mathbb{R}} = i\mathfrak{t}$. Similarly we have the same conclusion for *y*. Then clearly $\theta_j - \rho_j$ is a constant, $j = 1, \ldots, \ell$.

Proof of Theorem 2.2. We first show that the first four statements are equivalent.

(1) \Rightarrow (2): We may assume that $x \in \mathfrak{h}$. We have $B_{\theta}(K \cdot x, x) = B_{\theta}(\pi(K \cdot x), x)$ and it is convex since $\pi(K \cdot x)$ is convex.

(2) \Leftrightarrow (3): Lemma 2.6.

(3) \Rightarrow (4): The case x = 0 is trivial. For $x \neq 0$, we may assume that each component $x_j \neq 0$ in the expression $x = x_1 + \cdots + x_\ell \in \mathfrak{g}$. Then apply Proposition 2.7.

(4) \Rightarrow (1): By Theorem 2.1.

 $(5) \Rightarrow (2)$: obvious.

(4) \Rightarrow (5): Let $y = y_1 + \cdots + y_\ell \in \mathfrak{g}_1 + \cdots + \mathfrak{g}_\ell$. Then

$$B_{\theta}(K \cdot x, y) = B_{\theta}(K_1 \cdot x_1, y_1) + \dots + B_{\theta}(K_1 \cdot x_{\ell}, y_{\ell}).$$

By (4) there exist $k_j \in K_j$ and $\theta_j \in \mathbb{R}$ so that $t_j := e^{i\theta_j} \operatorname{Ad}(k_j) x_j \in \mathfrak{t}_j$ for each $j = 1, \ldots, \ell$. Write

$$y_j = y_j^{(1)} + i y_j^{(2)},$$

for $y_j^{(1)}, y_j^{(2)} \in \mathfrak{k}$. So

$$B_{\theta}(K_j \cdot x_j, y_j) = e^{-i\theta_j} B_{\theta}(K \cdot t_j, y_j)$$

= $e^{-i\theta_j} \left\{ B\left(\operatorname{Ad}(k_j)t_j, y_j^{(1)} \right) + i B\left(\operatorname{Ad}(k_j)t_j, y_j^{(2)} \right) : k_j \in K_j \right\}$

which is convex by a result of Tam [2002]. Hence $B_{\theta}(K \cdot x, y)$ is a sum of convex sets and thus convex.

Remark 2.8. The second author conjectured (see [Tam 2001, Conjecture 4.1]) that for a normal $x \in \mathfrak{g}$ (semisimple), if $B_{\theta}(K \cdot x, x)$ is convex, then there is $\gamma \in \mathbb{R}$ such that $e^{i\gamma}x \in \mathfrak{t}$. It is not true in view of Theorem 2.2. Consider the semisimple $\mathfrak{g} := \mathfrak{a}_1 \times \mathfrak{a}_1$. To be concrete, let $\mathfrak{g} = \mathfrak{sl}_2(\mathbb{C}) \times \mathfrak{sl}_2(\mathbb{C})$ with $K = \mathrm{SU}(2) \oplus \mathrm{SU}(2)$. Consider the normal $x = \mathrm{diag}(x_1, -x_1) \oplus \mathrm{diag}(x_2, -x_2)$, where $x_1, x_2 \in \mathbb{C}$. Then for $k = k_1 \oplus k_2 \in K$,

tr
$$kxk^{-1}x^* = \text{tr } k_1 \text{diag}(x_1, -x_1)k_1^{-1} \text{diag}(\bar{x}_1, -\bar{x}_1)$$

+ tr $k_2 \text{diag}(x_2, -x_2)k_2^{-1} \text{diag}(\bar{x}_2, -\bar{x}_2).$

By Theorem 1.3 the set

 $\left\{\operatorname{tr} k_i \operatorname{diag}\left(x_i, -x_i\right) k_1^{-1} \operatorname{diag}\left(\bar{x}_i, -\bar{x}_i\right) : k_i \in \operatorname{SU}(n)\right\}$

is convex, i = 1, 2, so {tr $kxk^{-1}x^* : k \in K$ } is the sum of two convex sets and thus is convex. However, x_1, x_2 need not be collinear with 0.

By Proposition 2.4 (a) $B_{\theta}(K \cdot x, x)$ is symmetric about the real axis. For some simple Lie algebras, more symmetry occurs for $B_{\theta}(K \cdot x, x)$ if $x \in \mathfrak{g}$ is normal. Indeed the symmetry is also true for $B_{\theta}(K \cdot x, y)$ for each $y \in \mathfrak{g}$.

Proposition 2.9. Let \mathfrak{g} be simple and of type \mathfrak{b}_{ℓ} , \mathfrak{c}_{ℓ} , \mathfrak{d}_{ℓ} (ℓ even), \mathfrak{g}_2 , \mathfrak{f}_4 , \mathfrak{e}_7 and \mathfrak{e}_8 . Let $x \in \mathfrak{g}$ be normal. The sets $\pi(K \cdot x) \subset \mathfrak{h}$ and $B_{\theta}(K \cdot x, y) \subset \mathbb{C}$ are symmetric about the origin for each $y \in \mathfrak{g}$.

Proof. We may assume that $x \in \mathfrak{h}$. The Weyl group W contains -1 [Helgason 1978, p. 523] so the desired result follows.

It is known [Djoković and Tam 2003] that if $x \in \mathfrak{g}$ is normal, then $B_{\theta}(K \cdot x, y)$ is star-shaped with respect to the center 0 for each $y \in \mathfrak{g}$.

We do not know whether $\pi(K \cdot x)$ is star shaped or not and the following conjectures [Tam 2001] are still open.

Conjecture 2.10. Let \mathfrak{g} be a complex semisimple Lie algebra. If $x, y \in \mathfrak{g}$, then $B_{\theta}(K \cdot x, y)$ is star-shaped with respect to the star center 0.

Conjecture 2.11. Let \mathfrak{g} be a complex semisimple Lie algebra. If $x \in \mathfrak{g}$, then $\pi(K \cdot x)$ is star-shaped with respect to the star center 0.

We remark that these conjectures can be reduced to the simple cases. The cases \mathfrak{a}_{ℓ} ($\ell \geq 1$), \mathfrak{d}_{ℓ} ($\ell \geq 2$), \mathfrak{e}_{6} , \mathfrak{e}_{7} for Conjecture 2.10 are true [Cheung and Tsing 1996; Djoković and Tam 2003].

Added in proof

The authors very recently proved Conjecture 2.11 affirmatively.

References

- [Au-Yeung and Sing 1977] Y. H. Au-Yeung and F. Y. Sing, "A remark on the generalized numerical range of a normal matrix", *Glasgow Math. J.* **18**:2 (1977), 179–180. MR 56 #8594 Zbl 0359.47001
- [Au-Yeung and Tsing 1983] Y. H. Au-Yeung and N.-K. Tsing, "A conjecture of Marcus on the generalized numerical range", *Linear and Multilinear Algebra* **14**:3 (1983), 235–239. MR 85e:15029 Zbl 0521.15016
- [Bebiano and Da Providência 1996] N. Bebiano and J. Da Providência, "Another proof of a conjecture of Marcus on the *c*-numerical range", *Linear and Multilinear Algebra* **41**:1 (1996), 35–40. MR 97g:15029 Zbl 0871.15028
- [Cheung and Tsing 1996] W.-S. Cheung and N.-K. Tsing, "The *C*-numerical range of matrices is star-shaped", *Linear and Multilinear Algebra* **41**:3 (1996), 245–250. MR 97k:15060 Zbl 0876. 15021
- [Djoković and Tam 2003] D. Z. Djoković and T.-Y. Tam, "Some questions about semisimple Lie groups originating in matrix theory", *Canad. Math. Bull.* **46**:3 (2003), 332–343. MR 2004g:22008 Zbl 1047.22013

- [Helgason 1978] S. Helgason, *Differential geometry, Lie groups, and symmetric spaces*, Pure and Applied Mathematics **80**, Academic Press, New York, 1978. MR 80k:53081 Zbl 0451.53038
- [Horn 1954] A. Horn, "Doubly stochastic matrices and the diagonal of a rotation matrix", *Amer. J. Math.* **76** (1954), 620–630. MR 16,105c Zbl 0055.24601
- [Kostant 1973] B. Kostant, "On convexity, the Weyl group and the Iwasawa decomposition", *Ann. Sci. École Norm. Sup.* (4) **6** (1973), 413–455 (1974). MR 51 #806 Zbl 0293.22019
- [Marcus 1979] M. Marcus, "Some combinatorial aspects of numerical range", *Ann. New York Acad. Sci.* **319** (1979), 368–376. MR 81g:15028 Zbl 0483.15017
- [Schur 1923] I. Schur, "Über eine Klasse von Mittelbildungen mit Anwendungen auf der Determinantentheorie", *Sitzungsber. Berl. Math. Ges.* **22** (1923), 9–20. JFM 49.0054.01
- [Tam 2001] T.-Y. Tam, "On the shape of numerical ranges associated with Lie groups", *Taiwanese J. Math.* **5**:3 (2001), 497–506. MR 2002f:15043 Zbl 0986.15022
- [Tam 2002] T.-Y. Tam, "Convexity of generalized numerical range associated with a compact Lie group", *J. Aust. Math. Soc.* **72**:1 (2002), 57–66. MR 2002g:15056 Zbl 1007.15021
- [Tsing 1981] N. K. Tsing, "On the shape of the generalized numerical ranges", *Linear and Multilinear Algebra* **10**:3 (1981), 173–182. MR 82m:15026 Zbl 0471.47002
- [Tsing 1984] N.-K. Tsing, "The constrained bilinear form and the *C*-numerical range", *Linear Algebra Appl.* **56** (1984), 195–206. MR 85b:15033 Zbl 0528.15007
- [Westwick 1975] R. Westwick, "A theorem on numerical range", *Linear and Multilinear Algebra* **2** (1975), 311–315. MR 51 #11132 Zbl 0303.47001

Received December 15, 2007. Revised February 29, 2008.

TIN-YAU TAM DEPARTMENT OF MATHEMATICS AND STATISTICS 221 PARKER HALL AUBURN UNIVERSITY AUBURN, AL 36849-5310 UNITED STATES

tamtiny@auburn.edu

WAI-SHUN CHEUNG DEPARTMENT OF MATHEMATICS AND STATISTICS 221 PARKER HALL AUBURN UNIVERSITY AUBURN, AL 36849-5310 UNITED STATES

cheungwaishun@gmail.com