Vol. 239, No. 1, 2009

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
On invariants for Legendrian knots

András I. Stipsicz and Vera Vértesi

Vol. 239 (2009), No. 1, 157–177
Abstract

Let (Y,ξ) be a contact 3-manifold and L a null-homologous Legendrian knot in it. We determine the connection between the sutured invariant EH(L) = EH(Y ν(L)|Y ν(L)) of L and the Legendrian invariant (L) defined in a paper by Lisca, Ozsváth, Stipsicz and Szabó. We derive a vanishing theorem for (L) in the presence of Giroux torsion in the complement of the knot, and reprove several known properties of the Legendrian invariant from this perspective.

Keywords
Legendrian and transverse knot, Heegaard Floer homology, sutured Floer homology
Mathematical Subject Classification 2000
Primary: 57M50
Secondary: 53C15
Milestones
Received: 9 June 2008
Accepted: 24 July 2008
Published: 1 January 2009
Authors
András I. Stipsicz
Rényi Institute of Mathematics
Hungarian Academy of Sciences
Realtanoda utca 13-15
H-1053 Budapest
Hungary
http://www.renyi.hu/~stipsicz
Vera Vértesi
Institute of Mathematics
Eötvös Loránd University
Pázmány Péter sétány 1/c
H-1117 Budapest
Hungary
www.szit.bme.hu/~wera