Vol. 240, No. 1, 2009

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
The probabilistic zeta function of PSL(2,q), of the Suzuki groups 2B2(q) and of the Ree groups 2G2(q)

Massimiliano Patassini

Vol. 240 (2009), No. 1, 185–200
Abstract

We study the Dirichlet polynomial PG(s) of the groups G = PSL(2,q), 2 B2(q), and 2G2(q). For such G we show that if H is a group satisfying PH(s) = PG(s), then H∕Frat(H)G. We also prove that, when q is not a prime number, PG(s) is irreducible in the ring of Dirichlet polynomials. Finally, we prove that the coset poset of G is noncontractible.

Keywords
probabilistic zeta function, simple Lie groups, Suzuki groups, Ree groups, simple linear groups, coset poset
Mathematical Subject Classification 2000
Primary: 20D30
Secondary: 20P05, 11M41, 20D06, 20D60, 20E28
Milestones
Received: 26 February 2008
Revised: 31 July 2008
Accepted: 14 November 2008
Published: 2 March 2009
Authors
Massimiliano Patassini
Università di Padova
Dipartimento di Matematica Pura ed Applicata
via Trieste, 63
Padova, 35121
Italy