Vol. 241, No. 1, 2009

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
An end-to-end construction for singly periodic minimal surfaces

Laurent Hauswirth, Filippo Morabito and M. Magdalena Rodríguez

Vol. 241 (2009), No. 1, 1–61
Abstract

We construct families of properly embedded singly periodic minimal surfaces in 3 with Scherk-type ends and arbitrary finite genus in the quotient. The construction follows by gluing small perturbations of pieces of already known minimal surfaces: Scherk minimal surfaces, Costa–Hoffman–Meeks surfaces and KMR examples.

Keywords
singly periodic minimal surfaces, gluing
Mathematical Subject Classification 2000
Primary: 49Q05, 53A10
Milestones
Received: 10 June 2008
Accepted: 29 November 2008
Published: 1 May 2009
Authors
Laurent Hauswirth
Université Paris-Est
Laboratoire d’Analyse et Mathématiques Appliquées
5 blvd Descartes
77454 Champs-sur-Marne
France
Filippo Morabito
Université Paris-Est
Laboratoire d’Analyse et Mathématiques Appliquées
5 blvd Descartes
77454 Champs-sur-Marne
France
Università Roma Tre
Dipartimento di Matematica
Largo S.L. Murialdo 1
00146 Roma
Italy
M. Magdalena Rodríguez
Universidad Complutense de Madrid
Departamento de Álgebra
Plaza de las Ciencias 3
28040 Madrid
Spain