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Volume 241 No. 1 May 2009





PACIFIC JOURNAL OF MATHEMATICS
Vol. 241, No. 1, 2009

AN END-TO-END CONSTRUCTION FOR SINGLY PERIODIC
MINIMAL SURFACES

LAURENT HAUSWIRTH, FILIPPO MORABITO

AND M. MAGDALENA RODRÍGUEZ

We construct families of properly embedded singly periodic minimal sur-
faces in R3 with Scherk-type ends and arbitrary finite genus in the quotient.
The construction follows by gluing small perturbations of pieces of already
known minimal surfaces: Scherk minimal surfaces, Costa–Hoffman–Meeks
surfaces and KMR examples.

1. Introduction

Besides the plane and the helicoid, the first singly periodic minimal surface in R3

was discovered by Scherk [1835]. This surface, known as Scherk’s second surface,
is a properly embedded minimal surface in R3 that is invariant by one translation T
we can assume to be along the x2 axis, and can be seen as the desingularization of
two perpendicular planes P1 and P2 containing the x2 axis. We assume P1 and P2

are symmetric with respect to the planes {x1 = 0} and {x3 = 0}. By changing the
angle between P1 and P2, we obtain a 1-parameter family of properly embedded
singly periodic minimal surfaces, which we will refer to as Scherk surfaces. In the
quotient R3/T by its shortest period T , each Scherk surface has genus zero and four
ends asymptotic to flat annuli contained in P1/T and P2/T . Such ends are called
Scherk-type ends. From now on, T will denote a translation in the x2 direction.

In 1982, C. Costa [1982; 1984] discovered a genus one minimal surface with
three embedded ends: one top catenoidal end, one middle planar end and one bot-
tom catenoidal end. D. Hoffman and W. H. Meeks [1985; 1989; 1990] proved the
global embeddedness for this Costa example, and generalized it for higher genus.
For each k > 1, the Costa–Hoffman–Meeks surface Mk is a properly embedded
minimal surface of genus k and three ends: two catenoidal ends and one middle
planar end.
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F. Martı́n and V. Ramos Batista [Martı́n and Ramos Batista 2006] have recently
constructed a 1-parameter family of properly embedded singly periodic minimal
surfaces that have genus one and six Scherk-type ends in the quotient R3/T . These
are called Scherk–Costa surfaces and are based on the Costa surface. Roughly
speaking, they remove each end of the Costa surface (asymptotic to a catenoid or a
plane) and replace it by two Scherk-type ends. In this paper, we obtain surfaces in
the same spirit as Martin and Ramos Batista’s one, but with a completely different
method. We construct properly embedded singly periodic minimal surfaces with
genus k>1 and six Scherk-type ends in the quotient R3/T by gluing (in an analytic
way) a compact piece of Mk to two halves of a Scherk surface at the top and bottom
catenoidal ends, and one flat horizontal annulus P/T with a disk removed at the
middle planar end.

Theorem 1.1. Let T denote a translation in the x2 direction. For each k > 1, there
exists a 1-parameter family of properly embedded singly periodic minimal surfaces
in R3 invariant by T whose quotient in R3/T has genus k and six Scherk-type ends.

V. Ramos Batista [2005] constructed a singly periodic Costa minimal surface
with two catenoidal ends and two Scherk-type middle ends; this surface has genus
one in the quotient R3/T . This example is not embedded outside a slab in R3/T
that contains the topology of the surface. We observe that the surface we obtain
by gluing a compact piece of M1 (Costa surface) at its middle planar end to a flat
horizontal annulus with a disk removed has the same properties as Ramos Batista’s.

In 1988, H. Karcher [1988; 1989] defined a family of properly embedded doubly
periodic minimal surfaces, called toroidal halfplane layers, which have genus one
and four horizontal Scherk-type ends in the quotient. In 1989, W. H. Meeks and H.
Rosenberg [1989] developed a general theory for doubly periodic minimal surfaces
having finite topology in the quotient, and used a minimax approach to obtain the
existence of a family of properly embedded doubly periodic minimal surfaces, also
with genus one and four horizontal Scherk-type ends in the quotient. Karcher’s
and Meeks and Rosenberg’s surfaces have been generalized by M. M. Rodrı́guez
[2007], who constructed a 3-parameter family K={Mσ,α,β}σ,α,β of surfaces, called
KMR examples (sometimes they are also called toroidal halfplane layers). Such
examples have been classified by J. Pérez, M. M. Rodrı́guez and M. Traizet [Pérez
et al. 2005] as the only properly embedded doubly periodic minimal surfaces with
genus one and finitely many parallel (Scherk-type) ends in the quotient. Each
Mσ,α,β is invariant by a horizontal translation T (by the period vector at its ends)
and a nonhorizontal one T̃ . We denote by M̃σ,α,β the lifting of Mσ,α,β to R3/T ,
which has genus zero, infinitely many horizontal Scherk-type ends, and two limit
ends.
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In [1992], F. S. Wei added a handle to a KMR example Mσ,0,0 in a periodic way,
obtaining a properly embedded doubly periodic minimal surface invariant under
reflection in three orthogonal planes, which has genus two and four horizontal
Scherk-type ends in the quotient. Some years later, W. Rossman, E. C. Thayer and
M. Wolgemuth [Rossman et al. 2000] added a different type of handle to a KMR
example Mσ,0,0, also in a periodic way, obtaining a different minimal surface with
the same properties as Wei’s one. They also added two handles to a KMR example,
getting doubly periodic examples of genus three in the quotient. L. Mazet and M.
Traizet [2008] have added N > 1 handles to a KMR example Mσ,0,0, obtaining a
genus N properly embedded minimal surface in R3/T with an infinite number of
horizontal Scherk-type ends and two limit ends. The idea of the construction is to
connect N periods of the doubly periodic example of Wei with two halves KMR
example. However they only control the asymptotic behavior in their construction.
They have also constructed a properly embedded minimal surface in R3/T with
infinite genus, adding handles in a quasiperiodic way to a KMR example.

L. Hauswirth and F. Pacard [2007] have constructed higher genus Riemann
minimal examples in R3, by gluing two halves of a Riemann minimal example
with the intersection of a conveniently chosen Costa–Hoffman–Meeks surface Mk

with a slab. We follow their ideas to generalize Mazet and Traizet’s examples by
constructing higher genus KMR examples: We construct two 1-parameter families
of properly embedded singly periodic minimal examples whose quotient in R3/T
has arbitrary finite genus, infinitely many horizontal Scherk-type ends and two limit
ends. More precisely, we glue a compact piece of a slightly deformed example Mk

with tilted catenoidal ends, to two halves of a KMR example Mσ,α,0 or Mσ,0,β (see
Figure 1) and a periodic horizontal flat annulus with a disk removed.

Theorem 1.2. Let T denote a translation in the x2 direction. For each k > 1,
there exist two 1-parameter families K1 and K2 of properly embedded singly peri-
odic minimal surfaces in R3 whose quotient in R3/T has genus k, infinitely many
horizontal Scherk-type ends and two limit ends. The surfaces in K1 have a plane
of symmetry orthogonal to the x1 axis, and the surfaces in K2 have a plane of
symmetry orthogonal to the x2 axis.

L. Mazet, M. Rodrı́guez and M. Traizet [2007] have constructed saddle tow-
ers with infinitely many ends: They are nonperiodic properly embedded minimal
surfaces in R3/T with infinitely many ends and one limit end. In this paper, we
construct (nonperiodic) properly embedded minimal surfaces in R3/T with arbi-
trary finite genus k > 0, infinitely many ends and one limit end. With this aim,
we glue half of a Scherk example with half of a KMR example in the case k = 0;
when k > 1, we glue a compact piece of Mk to half of a Scherk surface (at the top
catenoidal end of Mk), a periodic horizontal flat annulus with a disk removed (at
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Figure 1. A sketch of half of a KMR example Mσ,0,0 glued to a
compact piece of Costa surface.

Figure 2. A sketch of a surface in the family of Theorem 1.3.

the middle planar end) and half of a KMR example (at the bottom catenoidal end);
see Figure 2.

Theorem 1.3. Let T denote a translation in the x2 direction. For each k > 0, there
exists a 1-parameter family of properly embedded singly periodic minimal surfaces
in R3 whose quotient in R3/T has genus k, infinitely many horizontal Scherk-type
ends and one limit end.

The family of KMR examples is a three parameter family that contains two
subfamilies whose surfaces have a plane of symmetry. In the construction of ex-
amples satisfying Theorems 1.2 and 1.3, we need to have at least one plane of
symmetry in order to control the kernel of the Jacobi operator on each glued piece.
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F. Morabito [2008a] has recently proved there is a bounded Jacobi field that does
not come from isometries of R3 on Mk with tilted ends. For this reason, we are
not able to produce a 3-parameter family of KMR examples with higher genus in
Theorem 1.2.

The paper is organized as follows. In Section 2 we briefly describe the Costa–
Hoffman–Meeks examples Mk and obtain, for each genus k, a 1-parameter family
of surfaces Mk(ξ) by bending the catenoidal ends of Mk = Mk(0) while keeping
a plane of symmetry. This is used to prescribe the flux of the deformed surface
Mk , which has to be the same as the corresponding KMR example we want to
glue (to prove Theorem 1.2). To simplify the construction of examples satisfying
Theorems 1.1 and 1.3, we consider a “not bent” example Mk . In Section 3 we
perturb Mk(ξ) using the implicit function theorem. We get an infinite dimensional
family of minimal surfaces that have three boundaries.

In Section 4, we apply an implicit function theorem to solve the Dirichlet prob-
lem for the minimal graph equation on a horizontal flat periodic annulus with a
disk B removed, prescribing the boundary data on ∂B and the asymptotic direction
of the Scherk-type ends. We construct the flat annulus with a disk removed that
we will glue to the example Mk at its middle planar end. Varying the asymptotic
direction of the ends and the flux of the surface, we obtain the pieces of Scherk
surface that we will glue at the top and bottom catenoidal ends of Mk (proving
Theorem 1.1) and to half of a KMR example (to prove Theorem 1.3).

In Section 5, we study the KMR examples Mσ,α,β and describe a conformal
parameterization of these examples on a cylinder. We also obtain an expansion of
pieces of the KMR examples as the flux of Mσ,α,β becomes horizontal (that is, near
the catenoidal limit). Section 6 is devoted to the study of the mapping properties of
the Jacobi operator about such Mσ,α,β near the catenoidal limit. And we apply in
Section 7 the implicit function theorem to perturb half of a KMR example Mσ,α,0

(respectively Mσ,0,β), obtaining a family of minimal surfaces asymptotic to half of
a Mσ,α,0 (respectively Mσ,0,β) and whose boundary is a Jordan curve. We prescribe
the boundary data of such a surface. Sections 5, 6, 7 are of independent interest:
They are devoted to the global analysis on KMR examples.

Finally, we do the end-to-end construction in Section 8: We explain how the
boundary data of the corresponding minimal surfaces constructed in Sections 3, 4
and 7 can be chosen so that their union forms smooth minimal surfaces satisfying
Theorems 1.1, 1.2 and 1.3.
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2. A Costa–Hoffman–Meeks type surface with bent catenoidal ends

In this section we recall the result shown in [Hauswirth and Pacard 2007] about
the existence of a family of minimal surfaces Mk(ξ) close to the Costa–Hoffman–
Meeks surface Mk(0)=Mk of genus k> 1, with one planar end and two catenoidal
ends slightly bent by an angle ξ .

2.1. Costa–Hoffman–Meeks surfaces. We briefly present here the family of the
surfaces Mk studied in [Costa 1982; 1984; Hoffman and Meeks 1985; 1989; 1990].
For each natural k> 1, Mk is a properly embedded minimal surface of genus k and
three ends. After suitable rotations and translations, we can assume its ends are
horizontal (in particular, they can be ordered by heights). The surface Mk enjoys
the following properties:

(1) Mk has one middle planar end Em asymptotic to the {x3 = 0} plane, and two
catenoidal ends: one top Et and one bottom Eb asymptotic, respectively, to
the upper and lower end of a catenoid having as axis of revolution the x3 axis.

(2) Mk intersects the {x3= 0} plane in k+1 straight lines, which intersect at equal
angles π/(k + 1) at the origin. The intersection of Mk with any one of the
remaining horizontal planes is a single Jordan curve. Thus the intersection
of Mk with the upper half-space {x3 > 0} (respectively the lower half-space
{x3 < 0}) is topologically an open annulus.

(3) The isometry group of Mk is generated by rotations by π about the k+1 lines
contained in the surface at height zero, together with reflections in planes that
bisect those lines. Assume one such plane of symmetry is the {x2 = 0} plane.
In particular, Mk is invariant by the rotation by 2π/(k + 1) about the x3 axis
and by the composition of a rotation by π/(k + 1) about the x3 axis with a
reflection across the {x3 = 0} plane.

Now we give describe locally the surfaces Mk near its ends, and we introduce
coordinates that we will use.

The planar end. See [Hauswirth and Pacard 2007]. The planar end Em of Mk can
be parameterized by

Xm(x)=
( x
|x |2

, um(x)
)
∈ R3 for x ∈ B∗ρ0

(0),

where B∗ρ0
(0) is the punctured closed disk in R2 of radius ρ0 > 0 small centered at

the origin, and um = OC2,α
b (|x |

k+1) is a solution of

(1) |x |4 div
(

∇u
(1+|x |4|∇u|2)1/2

)
= 0.
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Moreover, um can be extended continuously to the puncture, using Weierstrass
representation (in fact, it can be extended as a C2,α function). Here OCn,α

b (g) denotes
a function that, together with its partial derivatives of order no greater than n+α,
is bounded by a constant times g. In the sequel, where necessary, we will consider
on Bρ0(0) also the polar coordinates (ρ, θ) ∈ [0, ρ0]×S1.

If we linearize in u = 0 the nonlinear Equation (1), we obtain the expression of
an operator that is the Jacobi operator about the plane; that is, LR2 = |x |410. To
be more precise, the linearization of (1) gives

(2) Lu v = |x |4 div
(

∇v√
1+|x |4|∇u|2

− |x |4∇u ∇u ·∇v√
(1+|x |4|∇u|2)3

)
.

Equation (1) means that the surface 6u parameterized by x 7→ (x/|x |2, u(x)) is
minimal. We will express the mean curvature Hu+v of 6u+v in terms of the mean
curvature Hu of 6u .

Lemma 2.1. There exists a function Qu satisfying Qu(0, 0)=0 and∇Qu(0, 0)=0
such that

2Hu+v = 2Hu + Luv+ |x |4 Qu(|x |2∇v, |x |2∇2v).

Proof. Define f (t)= 1/
√

1+ |x |4|∇(u+ tv)|2 and apply Taylor expansion. �

Since u satisfies (1), Hu = 0. Then, if we put

Qu( · ) :=
√

1+ |x |4|∇u|2 Qu(|x |2∇ · , |x |2∇2
· )

to simplify the notation, the minimal surface equation satisfied by the function v
defined on the graph of the function u is

(3) |x |4
(
10v+

√
1+ |x |4|∇u|2Luv+ Qu(v)

)
= 0,

where Lu is a second order linear operator whose coefficients are in OC2,α(|x |k+1).

The catenoidal ends. We will denote by Xc the parameterization of the standard
catenoid C whose axis of revolution is the x3 axis. Its expression is

Xc(s, θ) := (cosh s cos θ, cosh s sin θ, s) ∈ R3,

where (s, θ) ∈ R×S1. The unit normal vector field about C is

nc(s, θ) :=
1

cosh s
(cos θ, sin θ,− sinh s) for (s, θ) ∈ R×S1.

Up to a dilation, we can assume that the two ends Et and Eb of Mk are asymptotic to
some translated copy in the vertical direction of the catenoid parameterized by Xc.
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Therefore, Et and Eb can be parameterized, respectively, by

X t := Xc+wt nc+ σt e3 in (s0,∞)×S1,

Xb := Xc−wbnc− σbe3 in (−∞,−s0)×S1,

where σt , σb ∈ R, and wt (respectively wb) is a function defined in (s0,∞)×S1

(respectively (−∞,−s0)×S1) that tends exponentially fast to 0 as s goes to +∞
(respectively −∞), reflecting that the ends are asymptotic to a catenoidal end.

We recall that the surface parameterized by X := Xc +w nc is minimal if and
only if the function w satisfies the minimal surface equation, which for normal
graphs over a catenoid has the form

(4) LCw+
1

cosh2 s

(
Q2

(
w

cosh s

)
+ cosh s Q3

(
w

cosh s

))
= 0,

where LC is the Jacobi operator about the catenoid, that is,

LCw =
1

cosh2 s

(
∂2

ssw+ ∂
2
θθw+

2w
cosh2 s

)
,

and Q2 and Q3 are nonlinear second order differential operators that are bounded
in Ck(R×S1) for every k and satisfy Q2(0)= Q3(0)= 0, ∇Q2(0)=∇Q3(0)= 0,
and ∇2 Q3(0)= 0 together with

(5) ‖Q j (v2)− Q j (v1)‖C0,α([s,s+1]×S1)

6 c
(

sup
i=1,2
‖vi‖C2,α([s,s+1]×S1)

) j−1
‖v2− v1‖C2,α([s,s+1]×S1)

for all s ∈ R and all v1, v2 such that ‖vi‖C2,α([s,s+1]×S1) 6 1. The constant c > 0
does not depend on s.

The family of Costa–Hoffman–Meeks surfaces with bent catenoidal ends. We
denote by Rξ the rotation by ξ about the x2 axis oriented by e2. The following
result may be proved using an elaborate version of the implicit function theorem
and by following [Jleli 2004] and [Kusner et al. 1996].

Theorem 2.2 [Hauswirth and Pacard 2007]. There exists ξ0 > 0 and a smooth
1-parameter family of minimal surfaces {Mk(ξ) | ξ ∈ (−ξ0, ξ0)} with the properties
that Mk(0)= Mk and each Mk(ξ) is invariant by reflection across the {x2 = 0}
plane, has one horizontal planar end Em and has two catenoidal ends Et(ξ)

and Eb(ξ) asymptotic respectively, up to a translation, to the upper and lower
end of the catenoid RξC (that is, the standard catenoid whose axis of revolution is
directed by Rξe3). Moreover, Et(ξ) and Eb(ξ) can be parameterized respectively
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by

X t,ξ = Rξ (Xc+wt,ξ nc)+ σt,ξ e3+ ςt,ξ e1,(6)

Xb,ξ = Rξ (Xc−wb,ξ nc)− σb,ξ e3− ςb,ξ e1,(7)

where the functions wt,ξ , wb,ξ and the numbers σt,ξ , ςt,ξ , σb,ξ , ςb,ξ ∈ R depend
smoothly on ξ and satisfy

|σt,ξ − σt | + |σb,ξ − σb| + |ςt,ξ | + |ςb,ξ |

+ ‖wt,ξ −wt‖C2,α
−2 ([s0,+∞)×S1)+‖wb,ξ −wb‖C2,α

−2 ((−∞,−s0]×S1) 6 c|ξ |,

where
‖w‖C`,αδ ([s0,+∞)×S1) = sup

s>s0

(
e−δs ‖w‖C`,α([s,s+1]×S1)

)
,

‖w‖C`,αδ ((−∞,−s0])×S1) = sup
s6−s0

(
eδs ‖w‖C`,α([s−1,s]×S1)

)
.

For all s > s0 and ρ < ρ0, we define

(8) Mk(ξ, s, ρ) :=

Mk(ξ)−
(
X t,ξ ([s,+∞)×S1)∪ Xm(Bρ(0))∪ Xb,ξ ((−∞,−s]×S1)

)
.

The parameterizations of the three ends of Mk(ξ) induce a decomposition of Mk(ξ)

into slightly overlapping components: a compact piece Mk(ξ, s0 + 1, ρ0/2) and
three noncompact pieces

X t,ξ ((s0,+∞)×S1), Xb,ξ ((−∞,−s0)×S1), Xm(Bρ0(0)).

We define the weighted space of functions on Mk(ξ).

Definition 2.3. Given ` ∈ N, α ∈ (0, 1) and δ ∈ R, we define C`,αδ (Mk(ξ)) as the
space of functions in C`,αloc (Mk(ξ)) invariant by reflections across the {x2= 0} plane
(that is, w(p)=w(p) for all p= (p1, p2, p3)∈Mk(ξ), where p := (p1,−p2, p3))
and for which the following norm is finite:

‖w‖C`,αδ (Mk(ξ))
:= ‖w‖C`,α(Mk(ξ,s0+1,ρ0/2))+‖w ◦ Xm‖C`,α(Bρ0 (0))

+‖w ◦ X t,ξ‖C`,αδ ([s0,+∞)×S1)+‖w ◦ Xb,ξ‖C`,αδ ((−∞,−s0]×S1).

We remark that there is no weight on the planar end Em of Mk(ξ). In fact, we
can compactify this end and consider a weighted space of functions defined on a
two-ended surface. In the next section we will consider normal perturbations of
Mk(ξ) by functions u ∈C2,α

δ (Mk(ξ)), and the planar end Em will be just vertically
translated.
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The Jacobi operator. The Jacobi operator about Mk(ξ) is

LMk(ξ) :=1Mk(ξ)+ |AMk(ξ)|
2,

where |AMk(ξ)| is the norm of the second fundamental form on Mk(ξ).
In the parameterization of the ends of Mk(ξ) introduced above, the volume form

dvolMk(ξ) can be written as γt dsdθ (respectively γb dsdθ , γmdx1dx2) near Et(ξ)

(respectively Eb(ξ), Em). We define globally on Mk(ξ) a smooth function

γ : Mk(ξ)→ [0,+∞)

that equals 1 on Mk(ξ, s0−1, 2ρ0) and equals γt (respectively γb, γm) on the
end Et(ξ) (respectively Eb(ξ), Em). Observe that

(γ ◦ X t,ξ )(s, θ)∼ cosh2 s on (s0,+∞)×S1,

(γ ◦ Xb,ξ )(s, θ)∼ cosh2 s on (−∞,−s0)×S1,

(γ ◦ Xm)(x)∼ |x |−4 on Bρ0 .

Given the defined spaces above, one can check that

Lξ,δ : C
2,α
δ (Mk(ξ))→ C0,α

δ (Mk(ξ)), w 7→ γLMk(ξ)(w)

is a bounded linear operator. The subscript δ is meant to keep track of the weighted
space over which the Jacobi operator is acting. Observe that the function γ is here
to counterbalance the effect of the conformal factor 1/

√
|gMk(ξ)| in the expression

of the Laplacian in the coordinates we use to parameterize the ends of the sur-
face Mk(ξ). This is precisely what is needed to have the operator defined from the
space C2,α

δ (Mk(ξ)) into the target space C0,α
δ (Mk(ξ)).

To better grasp what is going on, let us linearize the nonlinear Equation (4)
at w= 0. We get the expression of the Jacobi operator about the standard catenoid

LC :=
1

cosh2 s

(
∂2

s + ∂
2
θ +

2
cosh2 s

)
.

The operator cosh2 sLC maps the space (cosh s)δC2,α((s0,+∞) × S1) into the
space (cosh s)δC0,α ((s0,+∞)×S1).

Similarly, if we linearize the nonlinear Equation (1) at u = 0, we obtain (see (2)
with u = 0) the expression of the Jacobi operator about the plane LR2 := |x |410.
Again, the operator |x |−4LR2 = 10 clearly maps the space C2,α(Bρ0) into the
space C0,α(Bρ0). Now, the function γ plays for the ends of the surface Mk(ξ)

the role the function cosh2 s plays for the ends of the standard catenoid and the
role the function |x |−4 plays for the plane. Since the Jacobi operator about Mk(ξ)

is asymptotic to LR2 at Em and is asymptotic to LC at Et(ξ) and Eb(ξ), we conclude
that the operator Lξ,δ maps C2,α

δ (Mk(ξ)) into C0,α
δ (Mk(ξ)).
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Definition 2.4 [Hauswirth and Pacard 2007]. A surface Mk(ξ) is said to be non-
degenerate if Lξ,δ is injective for all δ <−1.

It is useful to observe that a duality argument in the weighted Lebesgue spaces
implies Lξ,δ is injective if and only if Lξ,−δ is surjective, provided δ /∈ Z. For
details, see [Jleli 2004; Melrose 1993].

The nondegeneracy of Mk(ξ) follows from the study of the kernel of Lξ,δ.

The Jacobi fields. It is known that a smooth 1-parameter group of isometries con-
taining the identity generates a Jacobi field, that is, a solution of LMk(ξ)u = 0. The
solutions that are invariant under reflection across the {x2= 0} plane are generated
by dilations, vertical translations and horizontal translations along the x1 axis (see
[Hauswirth and Pacard 2007]):

• The vertical translations generated by the Killing vector field 4(p)= e3 give
rise to the Jacobi field 80,+(p) := n(p) · e3.

• The vector field 4(p) = p associated to the 1-parameter group of dilations
generates the Jacobi field 80,−(p) := n(p) · p.

• The Killing vector field 4(p) = e1 that generates the group of translations
along the x1 axis is associated to a Jacobi field 81,+(p) := n(p) · e1.

• Finally, we denote by 81,−(p) := n(p) · (e2× p) the Jacobi field associated
to the Killing vector field 4(p)= e2× p that generates the group of rotations
about the x2 axis.

There are other Jacobi fields we do not take into account because they are not
invariant by reflection across the {x2 = 0} plane.

With these notations, we define the deficiency space

D := Span{χt8
j,±, χb8

j,±
: j = 0, 1}

where χt is a cutoff function that equals 1 on X t,ξ ((s0 + 1,+∞)×S1), equals 0
on Mk(ξ)− X t,ξ ((s0,+∞)×S1), is invariant under reflection across the {x2 = 0}
plane, and satisfies χb( · ) := χt(− · ). Clearly

L̃ξ,δ : C
2,α
δ (Mk(ξ))⊕D→ C0,α

δ (Mk(ξ)), w 7→ γ LMk(ξ)(w)

is a bounded linear operator for δ < 0.
A result of S. Nayatani [1992; 1993], which the second author extended in

[Morabito 2008b], states that any bounded Jacobi field invariant by reflection across
the {x2 = 0} plane is a linear combination of 80,+ and 81,+.

From that we get the following result about the operator Lξ,δ.

Proposition 2.5. We fix δ ∈ (1, 2). Then (reducing ξ0 if this is necessary) the
operator Lξ,δ is surjective and has a kernel of dimension 4. Moreover, there exists
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Gξ,δ, a right inverse for Lξ,δ that depends smoothly on ξ and in particular whose
norm is bounded uniformly as |ξ |< ξ0.

This fact together with an adaptation to our setting of the linear decomposition
lemma proved in [Kusner et al. 1996] for constant mean curvature surfaces (see
also [Jleli 2004] for minimal hypersurfaces), allows us to prove the following result.

Proposition 2.6. We fix δ ∈ (−2,−1). Then (reducing ξ0 if this is necessary) the
operator L̃ξ,δ for |ξ |< ξ0 is surjective and has a kernel of dimension 4.

3. Infinite dimensional family of minimal surfaces close to Mk(ξ)

In this section we consider a truncature of Mk(ξ). First we write portions of the
ends of Mk(ξ) as vertical graphs over the {x3 = 0} plane.

We set rε = 1/(2
√
ε).

Lemma 3.1 [Hauswirth and Pacard 2007]. There exists ε0 > 0 such that, for all
ε ∈ (0, ε0) and all |ξ | 6 ε, an annular part of the ends Et(ξ), Eb(ξ) and Em of
Mk(ξ) can be written, respectively, as vertical graphs over the annulus B2rε−Brε/2

for the functions

Ut(r, θ)= σt,ξ + ln(2r)− ξr cos θ +OC∞b (ε),

Ub(r, θ)=−σb,ξ − ln(2r)− ξr cos θ +OC∞b (ε),

Um(r, θ)= OC∞b (r
−(k+1)).

Here (r, θ) are the polar coordinates in the {x3 = 0} plane. The functions OC∞b (ε)

are defined in the annulus B2rε − Brε/2 and are bounded in the C∞b topology by
a constant (independent on ε) multiplied by ε, where the partial derivatives are
computed with respect to the vector fields r∂r and ∂θ .

In particular, a portion of the two catenoidal ends Et(ε/2) and Eb(ε/2) of Mk(ε/2)
are graphs over the annulus B2 rε − Brε/2 ⊂ {x3 = 0} for functions Ut and Ub. We
set sε =− 1

2 ln ε, ρε = 2ε1/2 and

MT
k (ε/2)=

Mk(ε/2)−
(
X t,ε/2((sε,+∞)×S1)∪ Xb,ε/2((−∞,−sε)×S1)∪ Xm(Bρε(0))

)
.

We prove, following [Hauswirth and Pacard 2007, Section 6], the existence of
a family of surfaces close to MT

k (ξ). In a first step, we modify the parameteriza-
tion of the ends Et(ε/2), Eb(ε/2), Em , for appropriates values of s, so that, when
r ∈ [3rε/4, 3rε/2], the curves given by

θ→ (r cos θ, r sin θ,Ut(r, θ)),

θ→ (r cos θ, r sin θ,Ub(r, θ)),

θ→ (r cos θ, r sin θ,Um(r, θ))
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correspond respectively to the curves {s = ln(2r)}, {s =− ln(2r)}, {ρ = 1/r}.
The second step is the modification of the unit normal vector field on Mk(ε/2)

to produce a transverse unit vector field ñε/2 that coincides with the normal vector
field nε/2 on Mk(ε/2), is equal to e3 on the graph over B3rε/2 − B3rε/4 of the
functions Ut and Ub, and interpolates smoothly between the different definitions
of ñε/2 in different subsets of MT

k (ε/2).
Finally we observe that close to Et(ε/2), we can give the estimate

(9)
∣∣cosh2 s

(
LMk(ε/2)v− cosh−2 s(∂2

ssv+ ∂
2
θθv)

)∣∣6 c|cosh−2 s v|.

This follows easily from (4) together with the fact that wt,ξ (see (6)) decays at
least like cosh−2 s on Et(ε/2). Similar considerations hold close to the bottom
end Eb(ε/2). Near the middle planar end Em , we have the estimate

(10)
∣∣|x |−4 (LMk(ε/2)v− |x |

410v
)∣∣6 c

∣∣|x |2k+3
∇v
∣∣ .

This follows easily from (2) and the fact that um decays at least like |x |k+1 on Em .
The graph of a function u, using the vector field ñε/2, will be a minimal surface

if and only if u is a solution of a second order nonlinear elliptic equation of the
form

LMT
k (ε/2)

u = L̃ε/2 u+ Qε (u),

where LMT
k (ε/2) is the Jacobi operator about MT

k (ε/2), Qε is a nonlinear second
order differential operator, and L̃ε/2 is a linear operator that takes into account
the change of the normal vector field (only for the top and bottom ends) and the
change of the parameterization. This operator is supported in neighborhoods of
{±sε} ×S1, where its coefficients are uniformly bounded by a constant times ε2,
and a neighborhood of {ρε}×S1, where its coefficients are uniformly bounded by
a constant times ε3.

Now, we consider three even functions ϕt , ϕb, ϕm ∈C2,α(S1) such that ϕt and ϕb

are L2-orthogonal to 1 and θ 7→ cos θ , while ϕm is L2-orthogonal to 1. Assume
that they satisfy

(11) ‖ϕt‖C2,α +‖ϕb‖C2,α +‖ϕm‖C2,α 6 κε.

We set 8 := (ϕt , ϕb, ϕm) and we define w8 to be the function equal to

(1) χ+(s)Hϕt (sε− s, · ) on the image of X t,ε/2, where χ+ is a cutoff function that
equals 0 for s 6 s0+ 1 and equals 1 for s ∈ [s0+ 2, sε];

(2) χ−(s)Hϕb(s+sε, · ) on the image of Xb,ε/2, where χ− is a cutoff function that
equals 0 for s >−s0− 1 and equals 1 for s ∈ [−sε,−s0− 2];

(3) χm(ρ)H̃ρε,ϕm ( · , · ) on the image of Xm , where χm is a cutoff function that
equals 0 for ρ > ρ0 and equals 1 for ρ ∈ [ρε, ρ0/2];
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(4) 0 on the remaining part of the surface MT
k (ε/2),

where H̃ and H are, respectively, harmonic extensions of the operators introduced
in Propositions A.2 and A.4.

We would like to prove that, under appropriate hypotheses, the graph over
MT

k (ε/2) of the function u = w8 + v is a minimal surface. This is equivalent
to solving the equation

LMT
k (ε/2)

(w8+ v)= L̃ε/2(w8+ v)+ Qε(w8+ v).

The solution of this equation is obtained thanks to the fixed point problem

(12) v= T (8, v) :=Gε/2,δ ◦Eε
(
γ
(
L̃ε/2(w8+v)−LMT

k (ε/2)
w8+Qε(w8+v)

))
,

where δ∈ (1, 2), the operator Gε/2,δ is the right inverse provided in Proposition 2.5,
and Eε is a linear extension operator

Eε : C
0,α
δ (MT

k (ε/2))→ C0,α
δ (Mk(ε/2)).

Here C0,α
δ (MT

k (ε/2)) denotes the space of functions of C0,α
δ (Mk(ε/2)) restricted

to MT
k (ε/2), and Eε is defined so that Eεv equals v in MT

k (ε/2), vanishes in the
image of [sε + 1,+∞)× S1 by X t,ε/2, in the image of (−∞,−sε − 1)× S1 by
Xb,ε/2 and in the image of Bρε/2 by Xm , and is an interpolation of these values in
the remaining part of Mk(ε/2):

(Eεv) ◦ X t,ε/2(s, θ)= (1+ sε − s)(v ◦ X t,ε/2(sε, θ))
for (s, θ) ∈ [sε, sε + 1]×S1,

(Eεv) ◦ Xb,ε/2(s, θ)= (1+ sε + s)(v ◦ Xb,ε/2(sε, θ))
for (s, θ) ∈ [−sε−1,−sε]×S1,

(Eεv) ◦ Xm(ρ, θ)=
(2ρ
ρε
− 1

)
(v ◦ Xm(ρε, θ)) for (ρ, θ) ∈ [ρε/2, ρε]×S1.

Remark 3.2. As consequence of the properties of Eε, if supp v∩
(
Bρε − Bρε/2

)
6=∅

then
‖(Eεv) ◦ Xm‖C0,α(Bρ0 )

6 cρ−αε ‖v ◦ Xm‖C0,α(Bρ0−Bρε ).

This explosion of the norm does not occur near the catenoidal type ends:

‖(Eεv) ◦ X t,ε/2‖C0,α([s0,+∞)×S1) 6 c‖v ◦ X t,ε/2‖C0,α([s0,sε]×S1).

A similar inequality holds for the bottom end.
In the sequel we will assume α > 0 and close to zero.

The existence of a solution v ∈C2,α
δ (MT

k (ε/2)) for Equation (12) is a consequence
of the following result, which proves that T (8, · ) is a contracting mapping.
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Proposition 3.3. Choose δ ∈ (1, 2), α ∈ (0, 1/2), 8= (ϕt , ϕb, ϕm) ∈ [C
2,α(S1)]3

satisfying (11) and enjoying the properties described above. There exist constants
cκ > 0 and εκ > 0 such that

‖T (8, 0)‖C2,α
δ (MT

k (ε/2))
6 cκε3/2

and, for all ε ∈ (0, εκ),

(13)

‖T (8, v2)− T (8, v1)‖C2,α
δ (Mk(ε/2))

6 1
2‖v2− v1‖C2,α

δ (Mk(ε/2))
,

‖T (82, v)− T (81, v)‖C2,α
δ (Mk(ε/2))

6 cε‖82−81‖C2,α(S1),

where

‖82−81‖C2,α(S1) =

‖ϕt,2−ϕt,1‖C2,α(S1)+‖ϕb,2−ϕb,1‖C2,α(S1)+‖ϕm,2−ϕm,1‖C2,α(S1),

for all v, v1, v2 ∈C2,α
δ (MT

k (ε/2)) such that ‖v‖C2,α
δ
6 2cκε3/2 and for all boundary

data 81,82 ∈ [C
2,α(S1)]3 enjoying the same properties as 8.

Proof. We recall that the Jacobi operator associated to Mk(ε/2) is asymptotic to
the operator of the catenoid near the catenoidal ends, and it is asymptotic to the
Laplacian near of the planar end. The function w8 is identically zero far from the
ends where the explicit expression of LMk(ε/2) is not known: This is the reason
of our particular choice in the definition of w8. Then from the definition of w8,
thanks to Proposition 2.5 and to (9) and (10), we obtain the estimate

‖Eε(γLMT
k (ε/2)

w8)‖C0,α
δ (Mk(ε/2))

6 c‖cosh−2 s(w8 ◦ X t,ε/2)‖C0,α
δ ([s0+1,sε]×S1)

+ c‖cosh−2 s(w8 ◦ Xb,ε/2)‖C0,α
δ ([−sε,−s0−1]×S1)

+ cε−α/2‖ρ2k+3
∇(w8 ◦ Xm)‖C0,α([ρε,ρ0]×S1) 6 cκε3/2.

Using the properties of L̃ε/2, we obtain

‖Eε(γ L̃ε/2w8)‖C0,α
δ (Mk(ε/2))

6 cε‖w8 ◦ X t,ε/2‖C0,α
δ ([s0+1,sε]×S1)

+ cε‖w8 ◦ Xb,ε/2‖C0,α
δ ([−sε,−s0−1]×S1)

+ cε1−α/2
‖w8 ◦ Xm‖C0,α([ρε,ρ0]×S1) 6 cκε3/2.

As for the last term, we recall that the operator Qε has two different expressions if
we consider the catenoidal type end and the planar end (see (4) and (3)). We leave
it to the reader to check that

‖Eε(γQε(w8))‖C0,α
δ (Mk(ε/2))

6 cκε3/2. �
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Theorem 3.4. Let

B := {w ∈ C2,α
δ (Mk(ε/2)) | ‖w‖C2,α

δ (Mk(ε/2))
6 2cκε3/2

} and 8 ∈ [C2,α(S1)]3

be as above. Then the nonlinear mapping T (8, · ) defined above has a unique fixed
point v in B.

Proof. The previous proposition shows that, if ε is chosen small enough, the non-
linear mapping T (8, · ) is a contraction mapping from the ball B of radius 2cκε3/2

in C2,α
δ (Mk(ε/2)) into itself. This value follows from the estimate of the norm of

T (8, 0). Consequently by the Schauder fixed point theorem, T (8, · ) has a unique
fixed point w in this ball. �

This argument provides a minimal surface MT
k (ε/2,8) that is close to MT

k (ε/2)
and has three boundaries. This surface is, close to its upper and lower boundary, a
vertical graph over the annulus Brε−Brε/2 whose parameterizations are respectively
given by

Ut(r, θ)= σt,ε/2+ ln(2r)− 1
2εr cos θ + Hϕt (sε − ln(2r), θ)+ Vt(r, θ),(14)

Ub(r, θ)= − σb,ε/2− ln(2r)− 1
2εr cos θ + Hϕb(sε − ln(2r), θ)+ Vb(r, θ),(15)

where sε=− 1
2 ln ε. The boundaries of the surface correspond to rε= 1

2ε
−1/2. Near

the middle boundary the surface is a vertical graph over the annulus Brε − Brε/2,
Its parameterization is

(16) Um(r, θ)= H̃ρε,ϕm (1/r, θ)+ Vm(r, θ),

where ρε = 2ε1/2. All the functions Vi for i = t, b,m depend nonlinearly on ε, ϕ.

Lemma 3.5. The functions Vi (ε, ϕi ) for i = t, b satisfy

(17)

‖Vi (ε, ϕi )(rε · , · )‖C2,α(B2−B1/2)
6 cε,

‖Vi (ε, ϕi,2)(rε · , · )− Vi (ε, ϕi,1)(rε · , · )‖C2,α(B2−B1/2)

6 cε1−δ/2
‖ϕi,2−ϕi,1‖C2,α(S1).

The function Vm(ε, ϕ) satisfies

(18)

‖Vm(ε, ϕ)(ρε · , · )‖C2,α(B2−B1/2)
6 cε,

‖Vm(ε, ϕm,2)(ρε · , · )− Vm(ε, ϕm,1)(ρε · , · )‖C2,α(B2−B1/2)

6 cε‖ϕm,2−ϕm,1‖C2,α(S1).

Proof. The first estimate follows from

‖Vi (ε, ϕ2)( · , · )− Vi (ε, ϕ1)( · , · )‖C2,α(B2rε−Brε/2)

6 ceδsε‖(T (82, Vi )− T (81, Vi )) ◦ X i,ε/2‖C2,α
δ (�i×S1),
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for i = t, b, with �t = [s0, sε] and �b = [−sε,−s0]. The second one follows from

‖Vm(ε, ϕ2)( · , · )− Vm(ε, ϕ1)( · , · )‖C2,α(B2ρε−Bρε/2)

6 c‖(T (82, Vm)− T (81, Vm)) ◦ Xm‖C2,α([ρε,ρ0]×S1)

and the estimate (13) of Proposition 3.3. �

4. An infinite family of Scherk-type minimal surfaces close to a horizontal
periodic flat annulus

This section has two purposes. The first is to find an infinite family of minimal
surfaces close to a horizontal periodic flat annulus 6 with a disk Ds removed. The
surfaces of this family have two horizontal Scherk-type ends E1 and E2 and will
be glued on the middle planar end of a Costa–Hoffman–Meeks surface Mk . We
will prescribe the boundary data ϕ on ∂Ds . Assume the period T of 6 points in
the x2 direction. Then the asymptotic direction of E1 and E2 is along x1 axis.

The second and more general purpose of this section is to show the existence
of an infinite family of minimal graphs over 6 − Ds , whose ends have slightly
modified asymptotic directions. When the asymptotic directions are not horizontal,
these surfaces are close to half of a Scherk surface, seen as a graph over6−Ds (see
Figure 2). A piece of such a surface will be glued to the catenoidal ends of the sur-
face Mk and to an end of a KMR example Mσ,0,0 introduced in Section 5. We will
prescribe the boundary data on ∂Ds . Since we need to prescribe the flux along ∂Ds ,
we will modify the asymptotic direction of the ends, and we will choose |T | large.

4.1. Scherk-type ends. Conformally parameterize the annulus 6 ⊂ R3/T on C∗,
with the notation (x1, x2, x3)= (x1+ i x2, x3), by the mapping

A(w)=
(
−
|T |
2π

ln(w), 0
)

for w ∈ C∗.

The horizontal Scherk-type end E1 described above can be written as the graph of a
function h1 ∈C2,α(B∗r (0)), where B∗r (0) is the punctured disk Br (0)−{0} of radius
r ∈ (0, 1) centered at the origin. The function h1(w) is bounded and extends to the
puncture; see [Hauswirth and Traizet 2002]. The end E1 can be parameterized by

X1(w)= A(w)+ h1(w)e3 =

(
−
|T |
2π

ln(w), h1(w)
)
∈ R3/T for w ∈ B∗r (0)

in the orthonormal frame F= (e1, e2, e3). The end has asymptotic direction e1.
The horizontal Scherk-type end E2 can be parameterized in C− Br−1(0) simi-

larly. Via an inversion, we can parameterize E2 by

X2(w)=
(
−
|T |
2π

ln(w), h2(w)
)
∈ R3/T for w ∈ B∗r (0)
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in the frame F− = (−e1,−e2, e3), where h2 ∈ C2,α(B∗r (0)) is a bounded function
that can be extended to the puncture. Now the end has asymptotic direction −e1.

Let us now parameterize a general Scherk-type end, not necessarily horizontal.
Let Rθ denote a rotation in R3/T by θ about the x2 axis (oriented by e2). We
can parameterize a not necessarily horizontal Scherk-type end Ẽ1 with asymptotic
direction cos θ1 e1 + sin θ1 e3 and limit normal vector Rθ1(e3), with θ1 ∈ [0, π/2),
by

X̃1(z)=
(
−
|T |
2π

ln(z), h̃1(z)
)

for z ∈ B∗r (0)

in the frame F(θ1)= Rθ1F, where h̃1 ∈C2,α(B∗r (0)) is a bounded function that can
be extended to the origin.

Finally, a Scherk-type end Ẽ2 with asymptotic direction − cos θ2 e1 + sin θ2 e3

and limit normal vector R−θ2(e3), with θ2 ∈ [0, π/2), can be parameterized by

X̃2(z)=
(
−
|T |
2π

ln(z), h̃2(z)
)

for z ∈ B∗r (0)

in the frame F−(θ2) = R−θ2F−, where h̃2 ∈ C2,α(B∗r (0)) is a bounded function
that can be extended to the origin.

4.2. Construction of the infinite families. Given an r ∈ (0, 1) and a 2= (θ1, θ2)

in [0, θ0]
2, with θ0 > 0 small, we denote by A2 : C∗ → R3/T the immersion

obtained as the smooth interpolation of

(Rθ1 ◦ A)(z) if |z|< r/2,
A(z) if r < |z|< r−1,

(R−θ2 ◦ A)(z) if |z|> 2r−1.

Let N2 be the vector field obtained as the smooth interpolation of Rθ1(e3) on
{|z|< r/2}, of e3 on {r < |z| < r−1

} and of R−θ2(e3) on {|z| > 2r−1
}. For any

h ∈ C2,α(C), we define the immersion

X2,h(z)= A2(z)+ h(z)N2(z) for z ∈ C∗.

The immersion X2,h has two Scherk-type ends E1 and E2 with asymptotic direc-
tions cos θ1 e1+ sin θ1 e3 and − cos θ2 e1+ sin θ2 e3, respectively.

At the end E1 (respectively E2), X2,h(z) = A(z)+ h1(z)e3 in the orthogonal
frame F(θ1) ( respectively X2,h(z)= A(z−1)+h2(z)e3 in the frame F−(θ2)), with
z ∈ B∗r (0), where h1(z) = h(z) and h2(z) = h(z−1). L. Hauswirth and M. Traizet
[2002] proved that, in terms of the z coordinate, the mean curvature of X2,h at Ei

is

H = 2π2
|z|2

|T |2
div0(P−1/2

∇0hi ),
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where P = 1+ (4π2
|z|2/|T |2)‖∇0hi‖

2
0 and the subscript 0 means that the corre-

sponding object is computed with respect to the flat metric of the z plane. We
denote by λ the smooth function without zeros defined by λ(z) = |T |2/(4π2

|z|2)
for z ∈ B∗r (0). Then at Ei we have

2λH = P−1/210hi −
1
2 P−3/2

〈∇0 P,∇0hi 〉0.

So the mean curvature at the end Ei vanishes if hi satisfies the equation

(19) 10h− 1
2P
〈∇0 P,∇0h〉0 = 0.

Definition 4.1. Given k ∈ N and α ∈ (0, 1) we define Ck,α(C) as the space of
functions u ∈ Ck,α

loc (C) such that

‖u‖Ck,α(C) := [u]k,α,C <+∞,

where [u]k,α,C denotes the usual Ck,α Hölder norm on C.

Let Bs be a disk in C∗ such that

Ds = A(Bs)⊂6 = {z ∈ C | −|T |< 2y 6 |T |}

is a geodesic disk centered at the origin of R3/T . Denote by Ck,α(C− Bs) the
space of functions in Ck,α(C) restricted to C − Bs . We denote by H(2, h) the
mean curvature of X2,h , and H(2, h)=λH(2, h), where λ is the smooth function
defined in a neighborhood of each puncture by λ(z)= |T |2/(4π2

|z|2). [Hauswirth
and Traizet 2002, Lemma 4.1] shows that

H : R2
×C2,α(C− Bs)→ C0,α(C− Bs)

is an analytical operator. Denote by L2 the Jacobi operator about A2. We set
L2 = λL2.

Remark 4.2. The operators H and L2 are the mean curvature operator and the
Jacobi operator with respect to the metric |dz|2 of C. Defining operators H = λH
and L2 = λL2 means considering a different metric on C. Actually, H and L2

are the mean curvature operator and Jacobi operator with respect to the metric
gλ= |dz|2/λ. From the definition of λ, it follows that the volume of C with respect
this metric is finite.

The Jacobi operator L2 is a second order linear elliptic operator satisfying
|L2u−1u|6 c(|θ1|+|θ2|)|u|, and the coefficients of F2=1−L2 have compact
support.

Now we fix s0>0. Given ε>0 and |T | ∈ [4/
√
ε,+∞) large enough, we choose

s ∈ (0, s0) so that Ds = A(Bs) is the geodesic disk of radius 1/2
√
ε centered at the

origin.
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Proposition 4.3. There exists ε0 > 0 and η0 > 0 such that for every ε ∈ (0, ε0) and
every |T | ∈ (η0,+∞), there exists an operator

Gε,|T | : C
0,α(C− Bs)→ C2,α(C− Bs)

such that, given f ∈ C0,α(C− Bs), w = Gε,|T |( f ) satisfies{
1w = f on C− Bs,

w ∈ Span{1} on ∂Bs,

and ‖w‖C2,α ≤ c‖ f ‖C0,α for some constant c > 0 that does not depend on ε or |T |.

Proof. Let be u a solution of 1u = f on C− Bs with u = 0 on ∂Bs . We recall that
the metric in use on C is given by gλ = |dz|2/λ. With respect to this metric

R := vol(C− Bs) <+∞ and
∫

C−Bs

u dvolgλ <∞.

We set w = u− (1/R)
∫

C−Bs
u dvolgλ . The function w is well defined and satisfies∫

C−Bs
w dvolgλ = 0; also w ∈ Span{1} on ∂Bs . If the theorem is false, there is a

sequence of functions fn , of solutions wn , and of real numbers sn such that

sup
C−Bsn

| fn| = 1 and An := sup
C−Bsn

|wn| → +∞ as n→+∞,

where sn ∈ [0, s0]. Now we set w̃n := wn/An . Elliptic estimates imply that sn

and w̃n converge up to a subsequence, respectively, to s∞ ∈ [0, s0] and to w̃∞ on
C− Bs∞ . This function satisfies 1w̃∞ = 0. Then w̃∞ is constant on C− Bs∞ and∫

C−Bs∞
w̃∞ dvolgλ = 0, which contradicts that sup|w̃∞| = 1. �

Now we fix |T | > 4/
√
ε, 2 ∈ (0, ε)2, sε = 1/(2

√
ε), and let ϕ ∈ C2,α(S1)

be even (or odd) L2-orthogonal to 1, with ‖ϕ‖C2,α(S1) 6 κε for some κ > 0. Let
wϕ be the unique bounded harmonic extension of ϕ. We would like to solve the
minimal surface equation H(2, v+wϕ)=0 with fixed boundary data ϕ, prescribed
asymptotic direction 2 and period |T |. Then we have to solve the equation

1v = F2(v+wϕ)+ Q2(v+wϕ),

with Q2 a quadratic term such that |Q2(v1)−Q2(v2)|6c|v1−v2|
2. The resolution

of the previous equation is obtained by showing the existence of a fixed point

v = S(2, ϕ, v) := Gε,|T |(F2(v+wϕ)+ Q2(v+wϕ)).

Proposition 4.4. Let ϕ ∈ S1 satisfy ‖ϕ‖C2,α(S1) 6 κε and enjoy the properties
described above. There exist cκ > 0 and εκ > 0 such that

‖S(2, ϕ, 0)‖C2,α 6 cκε2 for all |T |> 4/
√
ε
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and, for all ε ∈ (0, εκ),

‖S(2, ϕ, v1)− S(2, ϕ, v2)‖C2,α 6 1
2‖v2− v1‖C2,α ,

‖S(2, ϕ1, v)− S(2, ϕ2, v)‖C2,α 6 cε‖ϕ2−ϕ1‖C2,α

for all v, v1, v2 ∈ C2,α(C − Bsε ) whose C2,α norm is bounded by 2cκε2, for all
boundary data ϕ1, ϕ2 ∈ S1 with the same properties as ϕ and for all 2= (θ1, θ2)

such that |θ1| + |θ2|6 ε.

Proof. Using Proposition 4.3, the inequality |Lu−1u|6 c(|θ1|+ |θ2|)|u|, and the
quadratic behavior of Q2, we derive the stated estimate. The details of the proof
are left to the reader. �

Theorem 4.5. Let B := {w ∈ C2,α(C− Bsε ) | ‖w‖C2,α 6 2cκε2
}. Let ϕ ∈ C2,α(S1)

as above, and let 2 = (θ1, θ2) with |θ1| + |θ2| 6 ε. Then the nonlinear mapping
S(2, ϕ, · ) defined above has a unique fixed point v in B.

Proof. The previous proposition shows that, if ε is chosen small enough, the
nonlinear mapping S is a contraction mapping from the ball B of radius 2cκε2

in C2,α(C − Bsε ) into itself. This value follows from the estimate of the norm
of S(2, ϕ, 0). Consequently by the Schauder fixed point theorem, S(2, ϕ, · ) has
a unique fixed point v in this ball. �

On the set B2sε − Bsε , the function U = v+wϕ is the solution of Equation (19).
Using the vertical translation c0e3, we can fix the value c0 + ϕ at the boundary,
obtaining U = c0+wϕ + v.

The function v depends nonlinearly on ϕ. Using the Schauder estimate for the
equation on a fixed bounded domain, we find

‖v(ϕ1)− v(ϕ2)‖C2,α(C−Bsε )
6 cκε‖ϕ1−ϕ2‖C2,α(S1).

This can be done uniformly in (θ1, θ2). Now we want to obtain the parametriza-
tion of the surface close to the annulus with linear growth ends (from which we
have removed Dsε ) in a neighbourhood of ∂Dsε . We recall that Dsε corresponds to
Bsε by a conformal mapping. From now on, ϕ will be considered as the boundary
data for ∂Dsε . We will denote its harmonic extension by wϕ = H̃sε ,ϕ . We observe
that near ∂Dsε the function U grows logarithmically. The hypothesis that ϕ is
orthogonal to 1 implies that the function wϕ is also and is bounded. This is not the
case for v, which can be seen as the sum of a bounded function that is orthogonal
to 1 and of a function of the form c ln(r/sε), where c= c(|T |, θ1, θ2), defined in a
neighborhood of ∂Dsε . We can determine c using a flux formula.

Let γ1 and γ2 be two closed curves in 6/T chosen to correspond by conformal
mapping to the boundaries of two circular neighborhoods N1 and N2 of the punc-
tures corresponding to the ends with linear growth. Let S= C− (Bsε ∪ N1 ∪ N2).
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Now
∫

S1X = 0 since X is the parameterization of a minimal surface. By the
divergence theorem, if 0 = ∂S, then

0=
∫

S
1X =

∫
0

∂X
∂η

ds =
∫
γ1

∂X
∂η

ds+
∫
γ2

∂X
∂η

ds+
∫
∂Dsε

∂X
∂η

ds,

where η denotes the conormal along 0. This equality implies∫
∂Dsε

∂U
∂η

ds = sin θ1|T | + sin θ2|T |.

By integration we can conclude that

U = |T |
2π
(sin θ1+ sin θ2) ln(r/sε)+ c0+wϕ + v

⊥ on D2sε − Dsε , with v⊥ ⊥ 1.

We observe that if θ2= θ1=0, there exists an infinite family of minimal surfaces
that are close to the surface 6 − Dsε . Let Sm(ϕ) be one such surface. It can be
seen as the graph about D2sε − Dsε of the function

U m(r, θ)= c0+ H̃sε,ϕ(r, θ)+ V m(r, θ),

where Vm = OC2,α
b (ε), and it satisfies

(20) ‖V m(ϕ1)− V m(ϕ2)‖C2,α(D2sε−Dsε )
6 cκε‖ϕ1−ϕ2‖C2,α(S1)

for ϕ2, ϕ1 ∈ C2,α(S1).
If (θ2, θ1) 6= 0, we choose |T | so that (|T |/2π)(sin θ1+sin θ2)= 1. There exists

an infinite family of minimal surfaces that are close to the periodic Scherk-type
example. After a vertical translation, any such surface can be seen as the graph
about D2sε − Dsε of the function

(21) U t(r, θ)= ln(2r)+ c0+ H̃sε,ϕ(r, θ)+ V t(r, θ)

where V t = OC2,α
b (ε), and it satisfies

(22) ‖V t(ϕ1)− V t(ϕ2)‖C2,α(D2sε−Dsε )
6 cκε‖ϕ1−ϕ2‖C2,α(S1),

for ϕ2, ϕ1 ∈ C2,α(S1).

Remark 4.6. If the boundary data ϕ is an even function, it is clear the surfaces
we have just described are symmetric across the vertical plane {x2 = 0}. However,
if the boundary data ϕ is an odd function and θ1 = θ2, the surfaces are symmetric
across the plane {x1 = 0}.
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5. KMR examples

Here we briefly present the KMR examples Mσ,α,β studied in [Karcher 1988; 1989;
Meeks and Rosenberg 1989; Rodrı́guez 2007] — these are also called toroidal half-
plane layers — which are the only properly embedded, doubly periodic minimal
surfaces with genus one and finitely many parallel (Scherk-type) ends in the quo-
tient; see [Pérez et al. 2005].

For each σ ∈ (0, π/2), α ∈ [0, π/2] and β ∈ [0, π/2] with (α, β) 6= (0, σ ),
consider the rectangular torus 6σ = {(z, w) ∈ C2

| w2
= (z2

+ λ2)(z2
+ λ−2)},

where λ = λ(σ) = cot(σ/2) > 1. By means of the Weierstrass representation, the
KMR example Mσ,α,β is determined by its Gauss map g and the differential of its
height function h, which are defined on 6σ and given by

g(z, w)= az+b
i(a−bz)

and dh = µdz
w
,

with

a = a(α, β)= cos 1
2(α+β)+ i cos 1

2(α−β),

b = b(α, β)= sin 1
2(α−β)+ i sin 1

2(α+β), µ= µ(σ)=
π csc σ

K(sin2 σ)
,

where K(m) =
∫ π/2

0 1/(1−m sin2 u)1/2du for 0 < m < 1 is the complete elliptic
integral of first kind. Such µ has been chosen so that the vertical part of the flux
of Mσ,α,β along any horizontal level section equals 2π .

Remark 5.1. These statements give us a better understanding of the geometrical
meaning of a and b:

(i) b→ 0 if and only if α→ 0 and β→ 0, in which case a→ 1+ i .

(ii) |b|2+ |a|2 = 2.

(iii) If β = 0, then a = (1+ i) cos(α/2) and b = (1+ i) sin(α/2), and b = O(α).

(iv) If α = 0, then a = (1+ i) cos(β/2) and b= (−1+ i) sin(β/2), and b= O(β).

(v) In general, |b/a| = tan(ϕ/2), where ϕ is the angle between the north pole
(0, 0, 1)∈S2 and the pole of g seen in S2 via the inverse of the stereographic
projection.

The ends of Mσ,α,β correspond to the punctures {A, A′, A′′, A′′′}= g−1({0,∞}),
and the branch values of g are those with w = 0, that is,

(23) D = (−iλ, 0), D′ = (iλ, 0), D′′ = (i/λ, 0), D′′′ = (−i/λ, 0).

Seen in S2, these points form two pairs D′′ = −D and D′′′ = −D′ of antipodal
points, and each KMR example can be given in terms of the branch values of its
Gauss map; see [Rodrı́guez 2007].
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Figure 3. Left: Mσ,0,0, with σ = π/4. Right: Mσ,α,0, with σ = α = π/4.

Denote by T the period of Mσ,α,β at its ends. We focus on two more symmetric
subfamilies of KMR examples:

{Mσ,α,0 | 0< σ < 1
2π, 06 α 6 1

2π} and {Mσ,0,β | 0< σ < 1
2π, 06 β < σ }.

(1) When α=β=0, Mσ,0,0 contains four straight lines parallel to the x1 axis. The
isometry group of Mσ,0,0 is generated by the π -rotation RD around one of the
four straight lines contained in the surface, and by three reflection symmetries
S1, S2, S3, where each Si is across the {xi = 0} plane; see Figure 3 left. In this
case, T = (0, πµ, 0).

(2) When 0 < α < π/2, the isometry group of Mσ,α,0 is generated by D (cor-
responding to the deck transformation (z, w) 7→ (z,−w)), which represents
in R3 a central symmetry about any of the four branch points of the Gauss map
of Mσ,α,0; the reflection S2 across the {x2 = 0} plane; and the π -rotation R2

around a line parallel to the x2 axis that cuts Mσ,α,0 orthogonally; see Figure 3
right. Now T = (0, πµtα, 0), with tα = sin σ/(sin2 σ cos2 α+ sin2 α)1/2.

(3) Suppose that 0 < β < σ . Then Mσ,0,β contains four straight lines parallel to
the x1 axis, and the isometry group of Mσ,0,β is generated by the reflection S1

across the {x1 = 0} plane; the π -rotation R1 around a line parallel to the x1

axis that cuts the surface orthogonally; and the π -rotation RD around any
one of the straight lines contained in the surface; see Figure 4. Moreover,
T = (0, πµtβ, 0), where tβ = sin σ/(sin2 σ − sin2 β)1/2.

Finally, it will be useful to see 6σ as a branched 2-covering of C through the map
(z, w) 7→ z. Thus 6σ can be seen as two copies C1 and C2 of C glued along two
common cuts γ1 and γ2, which can be taken along the imaginary axis: γ1 from D
to D′, and γ2 from D′′ to D′′′.

5.1. Mσ,α,β as a graph over {x3 = 0}/T. The KMR examples Mσ,α,β converge
as (σ, α, β)→ (0, 0, 0) to a vertical catenoid, since 6σ converges to two pinched
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Figure 4. Mσ,0,β , where σ = π/4 and β = π/8.

spheres, g(z)→ z and dh→±dz/z as (σ, α, β)→ (0, 0, 0). In fact, we can obtain
two catenoids in the limit, depending on the choice of branch for w (for each copy
of C in 6σ , we obtain one catenoid in the limit). One of our aims for this paper is
to take KMR examples Mσ,α,0 or Mσ,0,β near this catenoidal limit and glue them to
a convenient compact piece of the surface Mk(ε/2). In this subsection, we express
part of Mσ,α,β as a vertical graph over the {x3 = 0} plane when σ, α, β are small.

Consider Mσ,α,β near the catenoidal limit, that is, σ, α, β close to zero. Without
lost of generality, we can assume dh ∼−dz/z in C1. We are studying the surface
in an annulus about one of its ends, say a zero of its Gauss map.

Lemma 5.2. Consider α+β+σ 6 ε small. Up to translations, Mσ,α,β can be pa-
rameterized in the annulus {(z, w)∈6σ | z∈C1, |b/a|< |z|<ν}, for ν ∈ (|b/a|, 1)
small, by

X1+ i X2 =
1
2 (z+ 1/z)+ (1+i)b

4z2 +O(εz−1
+ ε2z−3),

X3 =− ln|z| +O(ε2z−2),

Proof. Recall we have assumed dh ∼ −dz/z in the annulus we are working on.
More precisely, we have

dh = − µ dz√
(z2+λ2)(z2+λ−2)

= −
µ

λ
√

1+λ−2z2+λ−2z−2+λ−4
dz
z
.

Since µ/λ= π/((1+cos(σ ))K(sin2 σ))= 1+O(σ 4), and λ−1
= tan(σ/2)= O(ε),

we get

dh = − dz
z
(1+O(ε4))(1+O(ε2z2

+ ε2z−2
+ ε4)).

Since |z|< ν < 1, we have dh = − (dz/z)(1+O(ε2z−2)). Fix any point z0 ∈ C1,
with z0 6∈ {−b/a, a/b} (which correspond to two ends of the KMR example),
and recall that g = −i(az + b)/(a − bz). Straightforward computations give, for
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|b/a|< |z|< 1, ∫ z

z0

dh
g
=

i b
a

ln z+ 2i
a2z
−

2ib
a3z2 −C1+O(ε2z−3),∫ z

z0

g dh = i b
a

ln z+ 2i
a2 z−C2+O(ε2z−1),

where C1,C2 ∈ C satisfy 1
2(C1−C2)=

1
2(z0+ 1/z0)+O(ε). Taking into account

that a = (1+ i)+O(ε), we obtain

X1+ i X2 =
1
2

( ∫ z

z0

dh
g
−

∫ z

z0

g dh
)

= −
i

a2

(
z+ 1

z

)
−

ib
a

ln|z| + ib
a3z2 −

1
2

(
z0+

1
z0

)
+O(ε2z−3)

=
1
2

(
z+ 1

z

)
+
(1+i)b

4z2 −
1
2

(
z0+

1
z0

)
+O(εz−1

+ ε2z−3).

Similarly,
∫ z

z0
dh =− ln z+ ln z0+O(ε2z−2); hence

X3 = Re
∫ z

z0

dh =− ln|z| + ln|z0| +O(ε2z−2). �

By suitably translating Mσ,α,β , we can assume its coordinate functions are as in
Lemma 5.2.

Lemma 5.3. Let (r, θ) denote the polar coordinates in the {x3 = 0} plane, and let
rε = 1/(2

√
ε). If α + β + σ 6 ε small, then an annular piece of Mσ,α,β can be

written as a vertical graph of the function

Ũ (r, θ)= ln(2r)+ r(−κ1 cos θ + κ2 sin θ)+O(ε),

for (r, θ)∈ (rε/2, 2rε)×[0, 2π), where κ1=Re(b)+Im(b) and κ2=Re(b)−Im(b).
We denote by Mσ,α,β(γ, ξ) the KMR example Mσ,α,β dilated by 1+ γ for some

small γ 6 0, and translated by a vector ξ = (ξ1, ξ2, ξ3). Then an annular piece of
Mσ,α,β(γ, ξ) can be written as a vertical graph of

Ũγ,ξ (r, θ)=

(1+ γ) ln(2r)+ r (−κ1 cos θ + κ2 sin θ)− 1+γ
r
(ξ1 cos θ + ξ2 sin θ)+ d +O(ε),

for (r, θ) ∈ (rε/2, 2rε)×[0, 2π), where d = ξ3− (1+ γ) ln(1+ γ).

Remark 5.4. Recall that b= sin 1
2(α−β)+ i sin 1

2(α+β). Here are some special
cases:
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• When β = 0, we have κ1 = 2 sin 1
2α and κ2 = 0, so

Ũγ,ξ (r, θ)= (1+γ) ln(2r)−2r sin 1
2(α) cos θ− 1+γ

r
(ξ1 cos θ+ξ2 sin θ)+d+O(ε).

• When α = 0, we have κ1 = 0 and κ2 = 2 sin 1
2(β), so

Ũγ,ξ (r, θ)= (1+γ) ln(2r)+2r sin 1
2β sin θ− 1+γ

r
(ξ1 cos θ+ξ2 sin θ)+d+O(ε).

In Section 7, we will consider ξ1 = 0 when α = 0, and ξ2 = 0 when β = 0.

Proof. Suppose |b/a|< |z|< ν, with ν > |b/a| small. From Lemma 5.2, we know
the coordinate functions (X1, X2, X3) of the perturbed KMR example Mσ,α,β(γ, ξ)

are given by

(24)
X1+ i X2 =

1
2(1+ γ)(z+ 1/z)+ A(z),

X3 =−(1+ γ) ln|z| + ξ3+O(ε2z−2),

where

A(z)= (1+γ)(1+i)b
4z2 + (ξ1+ iξ2)+O(εz−1

+ ε2z−3)

=
(1+γ)(κ1+iκ2)

4z2 + (ξ1+ iξ2)+O(εz−1
+ ε2z−3).

If we set z = |z|eiψ and X1+ i X2 = reiθ , then z+ 1/z = (|z| + 1/|z|) eiψ and

r cos θ = 1
2(1+ γ) (|z| + 1/|z|) cosψ + A1,

r sin θ = 1
2(1+ γ) (|z| + 1/|z|) sinψ + A2,

where A1 = Re(A) and A2 = Im(A). Therefore,

(25) r2
=

1
4(1+ γ)

2
(
|z| + 1

|z|

)2
(

1+ 4|z|
(1+γ)(|z|2+1)

(A1 cosψ + A2 sinψ)

+
4|z|2

(1+γ)2(|z|2+1)2
(A2

1+ A2
2)

)
.

When
√
ε/R 6 |z|6 R

√
ε for some R > 0, the functions Ai are bounded, and we

get

(26) r = 1
2(1+ γ)

(
|z| + 1

|z|

)
(1+O(

√
ε))=

1+ γ
2|z|
+O(
√
ε).

In particular, r = O(1/
√
ε). We consider R > 0 large enough so that

{rε/26 r 6 2rε} ⊂ {
√
ε/R 6 |z|6 R

√
ε}.

From (26), we get r
/( 1

2(1+ γ) (|z| + 1/|z|)
)
= 1+O(

√
ε), which gives

X1+i X2
1
2(1+γ) (|z|+1/|z|)

= eiθ (1+O(
√
ε)).
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On the other hand,

X1+ i X2
1
2(1+ γ) (|z| + 1/|z|)

= eiψ
+

2|z|A
(1+ γ)(1+ |z|2)

= eiψ
+O(
√
ε).

Thus eiψ
= eiθ (1+O(

√
ε)).

From (25) and (26) we can deduce

(1+γ)2(1+|z|2)2

4|z|2
= r2(1− (2/r) (A1 cosψ + A2 sinψ)+O(ε)

)
,

from which we obtain

1
|z|2
=

( 2r
1+γ

)2(
1− (2/r) (A1 cosψ + A2 sinψ)+O(ε)

)
(1+O(ε))

=

( 2r
1+γ

)2(
1− (2/r) (A1 cosψ + A2 sinψ)+O(ε)

)
,

and then

(27) − ln|z| = ln 2r
1+γ

−
1
r
(A1 cosψ + A2 sinψ)+O(ε).

Finally, it is not difficult to prove that

A1 =
1+γ
4|z|2

(κ1 cos(2ψ)− κ2 sin(2ψ))+ ξ1+O(
√
ε),

A2 =
1+γ
4|z|2

(κ1 sin(2ψ)+ κ2 cos(2ψ))+ ξ2+O(
√
ε).

Therefore,

A1 cosψ + A2 sinψ = 1+γ
4|z|2

(κ1 cosψ − κ2 sinψ)+ ξ1 cosψ + ξ2 sinψ +O(
√
ε)

=
r2

1+γ
(κ1 cos θ − κ2 sin θ)+ ξ1 cos θ + ξ2 sin θ +O(

√
ε).

From here, (27) and (24), Lemma 5.3 follows. �

5.2. Parameterization of the KMR example on the cylinder. In this subsection we
want to parameterize the KMR example Mσ,α,β on a cylinder. Recall its conformal
compactification 6σ only depends on σ . The parameter σ ∈ (0, π/2) will remain
fixed along this subsection, and we will omit the dependence on σ of the functions
we are introducing. Also recall that 6σ can be seen as a branched 2-covering
of C by gluing C1,C2 along two common cuts γ1 and γ2 along the imaginary axis
joining the branch points D, D′ and D′′, D′′′, respectively; see (23).

We introduce the spheroconal coordinates (x, y) on the annulus S2
− (γ1 ∪ γ2)

as in [Jansen 1977]: For any (x, y) ∈ S1
× (0, π)≡ [0, 2π)× (0, π), we define

F(x, y)= (cos x sin y, sin x m(y), l(x) cos y) ∈ S2
− (γ1 ∪ γ2),
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where

m(y)= (1− cos2 σ cos2 y)1/2 and l(x)= (1− sin2 σ sin2 x)1/2.

Geometrically, {x = const} and {y = const} correspond to two closed curves on S2

that are the intersection of the sphere with two elliptic cones (one with horizontal
axis, the other one with vertical axis) having as vertex the center of the sphere.

If we compose F(x, y)with the stereographic projection and enlarge the domain
of definition of the function, we obtain a differentiable map z defined on the torus
S1
×S1

≡ [0, 2π)×[0, 2π)→ C and given by

(28) z(x, y)= cos x sin y+i sin x m(y)
1−l(x) cos y

,

which is a branch 2-covering of C with branch values in the four points whose
spheroconal coordinates are (x, y) ∈ {±π/2}× {0, π}; these correspond to D, D′,
D′′ and D′′′. Moreover, z maps S1

× (0, π) onto C− (γ1 ∪ γ2). Hence we can
parameterize the KMR example by z, via its Weierstrass data

g(z)= az+b
i(a−bz)

, dh = µ dz√
(z2+λ2)(z2+λ−2)

,

We denote by M̃σ,α,β the lifting of Mσ,α,β to R3/T by forgetting its nonhorizontal
period (that is, its period in homology, T̃ ). We can then parameterize M̃σ,α,β on
S1
×R by extending z to [0, 2π)×R periodically. But such a parameterization is

not conformal, since the spheroconal coordinates (x, y) 7→ F(x, y) of the sphere
are not conformal. As the stereographic projection is a conformal map, it suffices
to find new conformal coordinates (u, v) of the sphere defined on the cylinder. In
particular, we look for a change of variables (x, y) 7→ (u, v) for which |F̃u| = |F̃v|
and 〈F̃u, F̃v〉 = 0, where F̃(u, v)= F(x(u, v), y(u, v)).

We observe that

|Fx | =
√

k(x, y)/l(x) and |Fy| =
√

k(x, y)/m(y),

with k(x, y) = sin2 σ cos2 x + cos2 σ sin2 y. Then it is natural to consider the
change of variables (x, y) ∈ [0, 2π)×R 7→ (u, v) ∈ [0,Uσ )×R defined by

(29) u(x)=
∫ x

0

dt
l(t)

and v(y)=
∫ y

π/2

dt
m(t)

,

where

Uσ = u(2π)=
∫ 2π

0

dt√
1−sin2 σ sin2 t

.

Note that Uσ is a function on σ that goes to 2π as σ approaches to zero, and that
the change of variables above is well defined because σ ∈ (0, π/2).
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In these variables (u, v), z is v-periodic with period

Vσ = v(2π)− v(0)=
∫ 2π

0

dt
√

1−cos2 σ cos2 t
.

The period Vσ goes to +∞ as σ goes to zero (see the proof of Lemma 5.5), which
is made clear by taking into account the limits of Mσ,α,β as σ tends to zero.

From all this, we can deduce that M̃σ,α,β (respectively Mσ,α,β) is conformally
parameterized on (u, v)∈ Iσ×R (respectively (u, v)∈ Iσ× Jσ ), where Iσ =[0,Uσ ]

and Jσ = [v(0), v(2π)]. In Section 6, which is devoted to the study of the mapping
properties of the Jacobi operator of M̃σ,α,β , we will use the (u, v) variables.

In Lemma 5.3, an appropriate piece of M̃σ,α,β has been written as a vertical
graph over the annulus {rε/2 6 r 6 2rε} ⊂ {x3 = 0}. The boundary curve of
M̃σ,α,β along which we will glue a piece of the Costa–Hoffman–Meeks surface
corresponds to {r = rε}. Equation (26) says that if r is near rε, then z is in a
neighborhood of {|z| =

√
ε}. Next lemma gives us the values of v corresponding

to such a neighborhood.

Lemma 5.5. Consider σ 6 ε. If
√
ε/R 6 |z|6 R

√
ε, for R > 0, then

−
1
2 ln ε+ c1 6 v 6−

1
2 ln ε+ c2,

where c1 and c2 are constant. Under the same assumptions, Vσ =−4 ln ε+O(1).

Proof. Using Equation (28), we can show that, if
√
ε/R 6 |z(x, y)| 6 R

√
ε, then

π−d1
√
ε6 y6 π−d2

√
ε, where d1 > d2 > 0 are constant. This means, since v is

increasing function of y, that v(π−d1
√
ε)6 v(y)6 v(π−d2

√
ε). Let us compute

v(π − di
√
ε) for i = 1, 2. We have

v(y)− v(0)=
∫ y

0

ds
√

1−cos2 σ cos2 s
=

∫ y

0

ds√
1−cos2 σ+cos2 σ sin2 s

=
1

sin σ

∫ y

0

ds√
1+cot2 σ sin2 s

=
1

sin σ
F(y,− cot2 σ),

where F(y,m)=
∫ y

0 (1−m sin2 s)−1/2ds is the incomplete elliptic integral of first
kind. F(y,m) is an odd function in y and, if k ∈ Z,

F(y+ kπ,m)= F(y,m)+ 2k K(m),

where K(m) = F(π/2,m) is the complete elliptic integral of first kind. Since
σ = O(ε), we have

1
sin σ

F(d
√
ε,− cot2 σ)=− 1

2 ln ε+O(1).
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On the other hand, if |m| is sufficiently big, then

K(m)= 1
√
−m

(
ln 4+ 1

2 ln(−m)
)
(1+O(1/m)) .

It follows that

1
sin σ

K(− cot2 σ)=− ln σ + ln 4+O(σ 2)=− ln ε+O(1).

Then, for i = 1, 2,

v(π − di
√
ε)=

1
sin σ

(
F(π − di

√
ε,− cot2 σ)−K(− cot2 σ)

)
=

1
sin σ

(
F(−di

√
ε,− cot2 σ)+ 2K(− cot2 σ)−K(− cot2 σ)

)
=

1
sin σ

(
−F(di

√
ε,− cot2 σ)+K(− cot2 σ)

)
=−

1
2 ln ε+O(1).

Hence there exist constants c1 and c2 such that v(π − d1
√
ε) > −1

2 ln ε+ c1 and
v(π − d2

√
ε)6− 1

2 ln ε+ c2.
The result concerning Vσ = v(2π) − v(0) follows once it is observed that

v(2π)= (3/sin σ)K(− cot2 σ) and v(0)=−(1/sin σ)K(− cot2 σ). �

From Lemma 5.5 it follows that the value of the v corresponding to |z| =
√
ε is

vε =−
1
2 ln ε+O(1).

6. The Jacobi operator about KMR examples

The Jacobi operator for Mσ,α,β is given by J = 1ds2 + |A|2, where |A|2 is the
squared norm of the second fundamental form on Mσ,α,β and 1ds2 is the Laplace–
Beltrami operator with respect to the metric ds2

=
1
4(|g| + |g|

−1)2|dh|2 on the
surface. We consider the metric on the torus 6σ obtained as pull-back of the
standard metric ds2

0 on the sphere S2 by the Gauss map N : Mσ,α,β→ S2; that is,
d N ∗(ds2

0) =−K ds2, where K =− 1
2 |A|

2 denotes the Gauss curvature of Mσ,α,β .
Hence1ds2 =−K1ds2

0
, and so J=−K (1ds2

0
+2). From [Jansen 1977] and taking

into account the parameterization of Mσ,α,β on the cylinder given in Section 5.2,
we can deduce that, in the (x, y) variables,

1ds2
0
:=

l(x)m(y)
k(x, y)

(
∂x

( l(x)
m(y)

∂x

)
+ ∂y

(m(y)
l(x)

∂y

))
.

Recall k(x, y)=sin2 σ cos2 x+cos2 σ sin2 y. In the (u, v) variables defined by (29),
we have J=−(K/k(u, v))Lσ , where k(u, v)= k(x(u), y(v)) and

(30) Lσ := ∂
2
uu + ∂

2
vv + 2k(u, v)

is the Lamé operator [Jansen 1977].
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Remark 6.1. In Proposition 6.5, we will take σ→0. For such a limit, the torus6σ
degenerates into a Riemann surface with nodes consisting of two spheres joined at
two common points p0 and p1, and the corresponding Jacobi operator equals the
Legendre operator on S2

−{p0, p1} given by L0= ∂
2
xx+sin y ∂y(sin y ∂y)+2 sin2 y

in the (x, y) variables. When σ = 0, the change of variables (x, y) 7→ (u, v) given
in (29) is not well defined.

The mapping properties of the Jacobi operator. From now on, we consider the
conformal parameterization of M̃σ,α,β on the cylinder S1

×R≡ Iσ×R described in
Section 5.2. In this subsection, we study the mapping properties of the operator J.
It is clear that it suffices to study the simpler operator Lσ defined by (30), so we
will study the problem {

Lσw = f in Iσ ×[v0,+∞[,

w = ϕ on Iσ ×{v0}

with v0 ∈ R and consider convenient normed functional spaces for w, f, ϕ so that
the norm of w is bounded by that of f .

We will work in two different functional spaces to solve the Dirichlet problem
above. To explain the reason, we recall that the isometry group of M̃σ,α,β depends
on the values of the three parameters σ, α, β. When β = 0, M̃σ,α,β is invari-
ant by reflection about the {x2 = 0} plane; when α = 0, it is invariant about the
{x1 = 0} plane. We want show there exist families of minimal surfaces close to
M̃σ,α,0 and M̃σ,0,β and having the same symmetry properties. Thus the surfaces in
the family about M̃σ,α,0 (respectively M̃σ,0,β) will be defined as normal graphs of
functions defined in Iσ×R that are even (respectively odd) in the first variable. We
will solve the Dirichlet problem above in the first case. The second one follows
similarly.

Definition 6.2. Given σ ∈ (0, π/2), ` ∈ N, α ∈ (0, 1), µ ∈ R, and an interval I ,
we define C`,αµ (Iσ × I ) as the space of functions w =w(u, v) in C`,αloc (Iσ × I ) that
are even and Uσ -periodic in the variable u and for which the following norm is
finite:

‖w‖C`,αµ (Iσ×I ) := sup
v∈I

(
e−µv‖w‖C`,α(Iσ×[v,v+1])

)
.

We observe that the Jacobi operator Lσ becomes a Fredholm operator when
restricted to C2,α

µ (Iσ× I ). Moreover, Lσ has separated variables. Then we consider
the operator Lσ = ∂2

uu + 2 sin2 σ cos2(x(u)) defined on the space of Uσ -periodic
and even functions in Iσ . This operator Lσ is uniformly elliptic and selfadjoint. In
particular, Lσ has discrete spectrum (λσ,i )i>0, which we assume is arranged so that
λσ,i < λσ,i+1 for every i . Each eigenvalue λσ,i is simple because we only consider
even functions. We denote by eσ,i the even eigenfunction associated to λσ,i and
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normalized so that ∫ Uσ

0
(eσ,i (u))2 du = 1.

Lemma 6.3. For every i > 0, the eigenvalue λσ,i of the operator Lσ and its asso-
ciated eigenfunctions eσ,i satisfy

−2 sin2 σ 6 λσ,i − i2 6 0 and ‖eσ,i − e0,i‖C2(Iσ ) 6 ci sin2 σ,

where e0,i (u) := cos(i x(u)) for every u ∈ Iσ , and the constant ci > 0 depends only
on i (it does not depend on σ ).

Proof. The bound for λσ,i − i2 comes from the variational characterization of the
eigenvalue λσ,i as

λσ,i = sup
codim E=i

(
inf

e∈E, ‖e‖L2=1

∫ Uσ

0

(
(∂ue)2− 2 sin2 σ cos2(x(u))e2) du

)
,

where E is a subset of the space of Uσ -periodic and even functions in L2(Iσ ), since
it always holds 062 sin2 σ cos2(x(u))62 sin2 σ . The bound for the eigenfunctions
follows from standard perturbation theory [Kato 1980]. �

The Hilbert basis {eσ,i }i∈N of the space of Uσ -periodic and even functions in
L2(Iσ ) introduced above induces the Fourier decomposition

g(u, v)=
∑
i>0

gi (v)eσ,i (u)

of functions g = g(u, v) in L2(Iσ × R) that are Uσ -periodic and even in the
variable u. From this, we deduce that the operator Lσ can be decomposed as
Lσ =

∑
i>0 Lσ,i , where

Lσ,i = ∂2
vv + 2 cos2 σ sin2(y(v))− λσ,i for every i > 0.

Since 06 2 cos2 σ sin2(y(v))6 2 cos2 σ = 2− 2 sin2 σ , Lemma 6.3 gives us

(31) Pσ,i := 2 cos2 σ sin2(y(v))− λσ,i 6 2− i2.

This fact allows us to prove the following lemma, which ensures that Lσ is in-
jective when restricted to the set of functions that in the variable u are even and
L2-orthogonal to eσ,0 and eσ,1.

Lemma 6.4. Given v0 < v1, let w be a solution of Lσw = 0 on Iσ × [v0, v1] that
is Uσ -periodic and even in the variable u and satisfies

(i) w( · , v0)= w( · , v1)= 0;

(ii)
∫ Uσ

0 w(u, v)eσ,i (u) du = 0 for every v ∈ [v0, v1] and every i ∈ {0, 1}.

Then w = 0.
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Proof. By (ii), w=
∑

i>2wi (v)eσ,i (u). Since the potential Pσ,i of the operator Lσ,i
is negative for every i > 2 (see (31)) and the operator Lσ,i is elliptic, the maximum
principle holds. We can then conclude that w = 0 from (i). �

To study the mapping properties of the Jacobi operator Lσ , we need to give
a description of the Jacobi fields associated to Mσ,α,0, which are defined as the
solutions of Lσv = 0. Since Mσ,α,0 is invariant by reflection across the {x2 = 0}
plane, there are only four independent Jacobi fields:

• Two Jacobi fields induced by vertical translations and by horizontal transla-
tions in the x1 direction. These Jacobi fields are clearly periodic and hence
bounded.

• A third Jacobi field generated by the 1-parameter group of dilations, which is
not bounded (it grows linearly).

• A last Jacobi field obtained by considering the 1-parameter family of minimal
surfaces induced by changing the parameter σ . This Jacobi field is not periodic
and grows linearly.

The Jacobi fields induced by translation along the x3 axis and by dilatation are
solutions of Lσu = 0 that are collinear to the eigenfunction eσ,0. The Jacobi fields
induced by the horizontal translation and by the variation of the parameter σ are
collinear to eσ,1.

The Jacobi fields of Mσ,0,β , which is invariant by reflection across the plane
{x1 = 0}, are the same as those of Mσ,α,0, with the exception that the one induced
by horizontal translations in the x1 direction is to be replaced by the field induced
by horizontal translations in the x2 direction.

The next proposition states that for an appropriately chosen parameter µ and
interval I , there exists a right inverse for Lσ :C

0,α
µ (Iσ × I )→C2,α

µ (Iσ × I ) whose
norm is uniformly bounded.

Proposition 6.5. Given µ ∈ (−2,−1), there exists a σ0 ∈ (0, π/2) such that, for
every σ ∈ (0, σ0) and v0 ∈ R, there exists an operator

Gσ,v0 : C
0,α
µ (Iσ ×[v0,+∞))→ C2,α

µ (Iσ ×[v0,+∞))

such that for every f ∈ C0,α
µ (Iσ ×[v0,+∞)), the function w := Gσ,v0( f ) solves{

Lσw = f in Iσ ×[v0,+∞),

w ∈ Span{eσ,0, eσ,1} on Iσ ×{v0}.

Moreover ‖w‖C2,α
µ
6 c‖ f ‖C0,α

µ
for some constant c > 0 that depends neither on

σ ∈ (0, σ0) nor on v0 ∈ R.
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Proof. Every f ∈ C0,α
µ (Iσ ×[v0,+∞)) can be decomposed as

f = f0 eσ,0+ f1 eσ,1+ f ,

where f ( · , v) is L2-orthogonal to eσ,0 and to eσ,1 for each v ∈ [v0,+∞).

Step 1. First, let’s prove Proposition 6.5 for functions f ∈ C0,α
µ (Iσ × [v0,+∞))

that are L2-orthogonal to {eσ,0, eσ,1}. By Lemma 6.4, Lσ acts injectively on such a
function space. Hence, the Fredholm alternative ensures that there exists for each
v1 > v0+1 a unique w ∈C2,α

µ (Iσ ×[v0, v1]) in which w( · , v) is L2-orthogonal to
eσ,0, eσ,1 and satisfies

(32)
{

Lσw = f on Iσ ×[v0, v1],

w( · , v0)= w( · , v1)= 0.

Claim 6.6. There exist c ∈ R and σ0 ∈ (0, π/2) such that, for every σ ∈ (0, σ0),
v0 ∈R, v1>v0+1 and f ∈C0,α

µ (Iσ×[v0, v1]), there exists w ∈C2,α
µ (Iσ×[v0, v1])

that is L2-orthogonal to {eσ,0, eσ,1} and satisfies (32) and

(33) sup
Iσ×[v0,v1]

(e−µv|w|)6 c sup
Iσ×[v0,v1]

(e−µv| f |).

Proof. Suppose by contradiction that Claim 6.6 is false. Then, for every n ∈ N

there exists σn ∈ (0, 1/n), v1,n > v0,n + 1 and f n, wn satisfying (32) (but with
σn, v0,n, v1,n instead of σ, v0, v1) such that

sup
Iσn×[v0,n,v1,n]

(e−µv| f n|)= 1 and

An := sup
Iσn×[v0,n,v1,n]

(e−µv|wn|)→+∞ as n→∞.

Since Iσn ×[v0,n, v1,n] is a compact set, An is achieved at a point (un, vn) in it.
After passing to a subsequence, the intervals In = [v0,n−vn, v1,n−vn] converge

to a set I∞. Elliptic estimates imply that

sup
Iσn×[v0,n,v0,n+1/2]

(e−µv|∇wn|)

6 c
(

sup
Iσn×[v0,n,v0,n+1]

(e−µv| f n|)+ sup
Iσn×[v0,n,v0,n+1]

(e−µv|wn|)

)
.

Hence the supremum of (e−µv|∇wn|) over Iσn ×[v0,n, v0,n+1/2] is 6 c(1+ An).
From this estimate for the gradient of wn near v= v0,n , it follows that vn cannot be
too close to v0,n , where wn vanishes. More precisely, v0,n − vn remains bounded
away from 0, and then it converges to some v0 ∈ [−∞, 0). By similar arguments,
it is possible to show that ∇wn is bounded near v1,n , and consequently v1,n − vn

converges to some v1 ∈ (0,+∞]. Then we can conclude that I∞ = [v0, v1].
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We define

w̃n(u, v) :=
e−µvn

An
wn(u, v+ vn) for (u, v) ∈ Iσn × In.

We observe that

|w̃n(u, v)|6 eµv e−µ(v+vn)|wn(u, v+vn)|
An

6 eµv,

sup
Iσn×In

(e−µv|w̃n|)= 1.

Using the above estimate for e−µv|∇wn|, we obtain

|∇w̃n|6 c 1+An
An

eµv < 2c eµv.

Since the sequences {w̃n}n and {∇w̃n}n are uniformly bounded, the Ascoli–Arzelà
theorem ensures that, if n→+∞, a subsequence of {w̃n}n converges on compact
sets of I0× I∞ to a function w̃∞ that vanishes on I0× ∂ I∞ when ∂ I∞ 6= ∅, and
such that w̃∞( · , v) is L2-orthogonal to {e0,0, e0,1} for each v ∈ I∞. Moreover,

(34) sup
I0×I∞

(e−µv|w̃∞|)= 1.

Since σn→ 0 as n→∞, we can conclude that w̃∞ satisfies{
L0w̃∞ = 0 in I0× I∞,
w̃∞ = 0 on I0× ∂ I∞ (if ∂ I∞ 6=∅).

If I∞ is bounded, the maximum principle allows us to conclude that w̃∞ = 0 on
I0× I∞, which contradicts (34). Hence I∞ is an unbounded interval.

Recall L0 is given in terms of the (x, y) variables. The equation L0w̃∞ = 0
becomes

∂2
xx w̃∞+ sin y ∂y(sin y ∂yw̃∞)+ 2 sin2 y w̃∞ = 0.

Now we consider w̃∞ decomposed into eigenfunctions as

w̃∞(x, y)=
∑
j>2

a j (y) cos( j x).

Each coefficient a j with j > 2 must satisfy the associated Legendre differential
equation (see Appendix C)

sin y ∂y(sin y ∂ya j )− j2a j + 2 sin2 y a j = 0.

We obtain that a j (y) is the associated Legendre functions of second kind, that is,
a j (y)= Q j

1(cos y) for j > 2.
We obtain from (29) that

u(x)→ x and v(y)→ 1
2 ln |tan(y/2)| as σ → 0.
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In particular, define y(v)= 2 arctan(e2v) for σ = 0. Then

cos(y(v))= 1−e4v

1+e4v ,

w̃∞(u, v)=
∑
j>2

Q j
1

(1−e4v

1+e4v

)
cos( ju).

One can show that |a j | tends to +∞ as the function e2 j |v| does. Since the inter-
val I∞ is unbounded, we reach a contradiction with (34), proving Claim 6.6. �

Let c ∈ R and σ0 satisfy Claim 6.6. Choose σ ∈ (0, σ0), v0 ∈ R and then an
f ∈ C0,α

µ (Iσ × [v0,+∞)). Then, for every v1 > v0 + 1, there exists a function w
that is L2-orthogonal to {eσ,0, eσ,1} and satisfies (32) and (33). Let’s take the limit
as v1→∞. Clearly

e−µv|w|6 ‖w‖C0,α
µ (Iσ×[v0,v1])

6 c‖ f ‖C0,α
µ (Iσ×[v0,v1])

.

And using Schauder estimates, we get

e−µv|∇w|6 ‖w‖C2,α
µ (Iσ×[v0,v1])

6 c1
(
‖ f ‖C0,α

µ (Iσ×[v0,v1])
+‖w‖C0,α

µ (Iσ×[v0,v1])

)
6 c2‖ f ‖C0,α

µ (Iσ×[v0,v1])
.

Hence the Ascoli–Arzelà theorem ensures that a subsequence of {wv1}v1>v0+1

converges to a function w defined on Iσ ×[v0,+∞), which satisfies

sup
Iσ×[v0,+∞)

e−µv|w|6 c sup
Iσ×[v0,+∞)

e−µv| f |.

Using again elliptic estimates we can conclude that w satisfies the statement of
Proposition 6.5. The uniqueness of the solution follows from Lemma 6.4.

Step 2. Let’s now consider f ∈ C0,α
µ (Iσ ×[v0,+∞)) in Span{eσ,0, eσ,1}, that is,

f (u, v)= f0(v)eσ,0(u)+ f1(v)eσ,1(u).

We extend the functions f0(v) and f1(v) for v 6 v0 by f0(v0) and f1(v0), respec-
tively. Given v1 > v0+ 1, consider the problem

(35)
{

Lσ, jw j = f j in (−∞, v1],

w j (v1)= ∂vw j (v1)= 0.

The Cauchy–Lipschitz theorem and the linearity of the equation ensure the exis-
tence and the uniqueness of the solution w j . We aim to prove the following result.

Claim 6.7. For some constant c that does not depend on v1,

sup
(−∞,v1]

(e−µv|w j |)6 c sup
(−∞,v1]

(e−µv| f j |).
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Proof. Suppose to the contrary that for every n ∈ N there exists σn ∈ (0, 1/n),
v1,n > v0,n + 1 and f j,n, w j,n satisfying (35) such that

sup
(−∞,v1,n]

(e−µv| f j,n|)= 1,

An := sup
(−∞,v1,n]

(e−µv|w j,n|)→+∞ as n→∞.

The solution w j,n of the previous equation is a linear combination of the two
solutions of the homogeneous problem Lσn, jw = 0. They grow at most linearly
at∞ (recall that the Jacobi fields have this rate of growth). Hence the supremum
An is achieved at a point vn ∈ (−∞, v1,n]. We define on In := (−∞, v1,n−vn] the
function

w̃ j,n(v) :=
e−µvn

An
w j,n(vn + v).

As in Step 1, one shows that the sequence {v1,n − vn}n remains bounded away
from 0 and, after passing to a subsequence, it converges to v1 ∈ (0,+∞], and
{w̃ j,n}n converges on compact subsets of I∞ = (−∞, v1] to a nontrivial function
w̃ j such that

(36) sup
I∞
(e−µv|w̃ j |)= 1

and w̃ j (v1) = ∂vw j (v1) = 0 if v1 < +∞. The function w̃ j solves a second order
ordinary differential equation given, in terms of the (x, y) variables, by

(37) sin y ∂y(sin y ∂yw̃ j )− j2 w̃ j + 2 sin2 y w̃ j = 0.

If v1 <+∞, then w̃ j = 0, and this contradicts (36). In the case v1 =+∞ we will
try to reach a contradiction by determining the solution of (37). This is again the
associated Legendre differential equation; see Appendix C. The solutions of (37)
are linear combinations of the associated Legendre functions of first and second
kind: P j

1 (cos y) and Q j
1(cos y) for j = 0, 1. Specifically, P0

1 (cos y) = cos y and
P1

1 (cos y) = − sin y. We change coordinates to express w̃ j in terms of the (u, v)
variables. As v→±∞, one can show that |Q1

1(cos y(v))| and |Q0
1(cos y(v))| tend

to∞ as e2|v| and |v|, respectively. We conclude that the functions w̃1 and w̃0 do
not satisfy (36) with µ ∈ (−2,−1), a contradiction. �

Therefore, sup(−∞,v1]
(e−µv|w j |) 6 c sup(−∞,v1]

(e−µv| f j |). Taking v1→+∞,
we get a solution of Lσ, j w j = f j defined in [v0,+∞) that satisfies

sup
[v0,+∞)

(e−µv|w j |)6 c sup
[v0,+∞)

(e−µv| f j |).

Elliptic estimates allow us to obtain the desired estimates for the derivatives. To
prove the uniqueness of solution, it suffices to observe that no solution of Lσv= 0
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that is collinear with eσ,0 and eσ,1 decays exponentially at ∞. This fact follows
from the behavior of the Jacobi fields. �

Remark 6.8. The results proved in this section also follow from considering not
M̃σ,α,0 but M̃σ,0,β : It is invariant by reflection about the {x1 = 0} plane. To
keep such a symmetry, we work with functions that are odd (and not even) in
the variable u. Hence C`,αµ (Iσ × I ) will be, in this case, the space of functions
w = w(u, v) in C`,αloc (Iσ × I ) that are odd and Uσ -periodic in the variable u, and
for which the norm ‖w‖C`,αµ (Iσ×I ) is finite. Also, we replace in the above results
e0,i (u)= cos(i x(u)) by ẽ0,i (u)= sin(i x(u)), and eσ,i by the normalized odd eigen-
function ẽσ,i associated to the eigenvector λσ,i of the operator Lσ .

7. A family of minimal surfaces close to M̃σ,0,β and M̃σ,α,0

The aim of this section is to find a family of minimal surfaces near conveniently
translated and dilated pieces of M̃σ,0,β and M̃σ,α,0, with given Dirichlet data on the
boundary.

We denote by Z the immersion of the surface M̃σ,α,β . The following proposition,
proved in Appendix B, states that the linearization of the mean curvature operator
about M̃σ,α,β is the Lamé operator Lσ introduced in Section 5.2; see (30).

Proposition 7.1. The surface parameterized by Z f := Z + f N is minimal if and
only if the function f is a solution of

Lσ f = Qσ ( f )

where Qσ is a nonlinear operator that satisfies

(38) ‖Qσ ( f2)− Qσ ( f1)‖C0,α(Iσ×[v,v+1])

6 c
(

sup
i=1,2
‖ fi‖C2,α(Iσ×[v,v+1])

)
‖ f2− f1‖C2,α(Iσ×[v,v+1])

for all functions f1, f2 such that ‖ fi‖C2,α(Iσ×[v,v+1]) 6 1. Here the constant c > 0
depends neither on v ∈ R nor on σ ∈ (0, π/2).

In Section 5.1 (see Lemma 5.3) we have written annular pieces of Mσ,α,0(γ, ξ)

and Mσ,0,β(γ, ξ) as vertical graphs over an annular neighborhood of {r = rε} in
{x3 = 0} of the functions

Ũα
γ,ξ1
(r, θ)= (1+ γ) ln(2r)− 2r sin 1

2α cos θ − 1+γ
r
ξ1 cos θ + d +O(ε),(39)

Ũβ
γ,ξ2
(r, θ)= (1+ γ) ln(2r)+ 2r sin 1

2β sin θ − 1+γ
r
ξ2 sin θ + d +O(ε),(40)

respectively, where ξ = (ξ1, ξ2, ξ3) and γ, ξ1, ξ2, ξ3 are small. We now truncate
the surfaces M̃σ,α,0(γ, ξ) and M̃σ,0,β(γ, ξ) at their respective graph curves over
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{r = rε}. We only consider the upper half of these surfaces, which we call M1

and M2, respectively. We are interested those minimal normal graphs over M1

and M2 that are asymptotic to them, and whose boundary is prescribed.
As a consequence of the dilation of the surfaces by the factor 1+γ, the minimal

surface equation becomes

(41) Lσw =
1

1+γ
Qσ ((1+ γ)w) .

That is, the normal graph of a function w over the dilated M̃σ,α,β is minimal if and
only if w is a solution of (41).

Two more modifications are required: In Lemma 5.5 we showed that the value
of the variable v corresponding to r = rε is vε = −1

2 ln ε + O(1). Since we are
working in the (u, v) variables, we would like to parameterize Mi in Iσ×[vε,+∞]
for i = 1, 2. But the boundary of Mi does not correspond to the curve {v= vε}. We
therefore modify the parameterization so that it remains fixed for v>vε+ln 4, while
requiring, in a small annular neighborhood of {v= vε}, that the curves {v = const}
correspond to the vertical graphs of curves {r = const} by the corresponding func-
tion (39) or (40). We also want the normal vector field relative to Mi to be vertical
near its boundary. This can be achieved by modifying the normal vector field into
a transverse vector field Ñ that agrees with N when v > vε + ln 4, and with e3

when v ∈ [vε, vε + ln 2].
We consider a graph of some function w over Mi , using the modified vector

field Ñ . This graph will be minimal if and only if the function w is a solution of
a nonlinear elliptic equation related to (41). To get the new equation, we take into
account the effects of the change of parameterization and the change of the vector
field N into Ñ . The new minimal surface equation is

(42) Lσw = L̃εw+ Q̃σ (w) .

Here Q̃σ enjoys the same properties as Qσ , since it is obtained by a slight perturba-
tion from it. The operator L̃ε is a linear second order operator whose coefficients
are supported in Iσ × [vε, vε + ln 4] and are bounded in the C∞ topology by a
constant multiplied by

√
ε , where partial derivatives are computed with respect to

the vector fields ∂u and ∂v. In fact, if we take into account the effect of the change
of the normal vector field, we would obtain by applying the result of [Hauswirth
and Pacard 2007, Appendix B] a similar formula in which the coefficients of the
corresponding operator L̃ε are bounded by a constant multiplied by ε, since

Ñε · Nε = 1+OC2,α
b (ε) when v ∈ [vε, vε + ln 2].

If we take into account the effect of the change in the parameterization, we would
obtain a similar formula in which the coefficients of the corresponding operator L̃ε
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are bounded by a constant multiplied by
√
ε. The estimate of the coefficients of L̃ε

follows from these considerations.
Now we will give a detailed proof of the existence of a family of minimal graphs

about M1 and asymptotic to it. Recall that M1 is invariant by reflection across the
{x2= 0} plane. The normal graph of the function w=w(u, v) over M1 inherits the
same symmetry property if w is even in the u variable. The corresponding results
for M2 are obtained similarly, considering odd functions instead of even ones.

We consider a function ϕ ∈C2,α(S1) that is even and L2-orthogonal to e0,0, e0,1

and that satisfies

(43) ‖ϕ‖C2,α(S1) 6 κε,

where κ > 0 is a constant. We define wϕ(u′, v) := Hvε,ϕ , where Hvε,ϕ is the har-
monic extension introduced in Proposition A.5. If u = (2π/Uσ )u′, then wϕ(u, v)
belongs to C2,α

µ (Iσ × [vε,+∞)), and wϕ( · , vε) ∈ C2,α(Iσ ) is even and L2-ortho-
gonal to eσ,0, eσ,1. To solve Equation (42), we choose µ ∈ (−2,−1) and look for
w∈C2,α

µ (Iσ×[vε,+∞)) of the formw=wϕ+g for some g∈C2,α
µ (Iσ×[vε,+∞)).

Using Proposition 6.5, we can rephrase this problem as a fixed point problem

(44) g = S(ϕ, g) := Gε,vε

(
L̃ε(wϕ + g)−Lσwϕ + Q̃σ (wϕ + g)

)
.

where the nonlinear mapping S depends on σ, ε, γ, and operator Gε,vε is as defined
in Proposition 6.5. To prove the existence of a fixed point for (44), we need the
next lemma. We will abbreviate by writing ‖ · ‖C2,α

µ
instead of ‖ · ‖C2,α

µ (Iσ×[vε,+∞))
.

Proposition 7.2. Let 0 < σ 6 ε, µ ∈ (−2,−1). Suppose ϕ ∈ C2,α(S1) satisfies
(43) and enjoys the properties given above. Then there exist some constants cκ > 0
and εκ > 0 such that

(45) ‖S(ϕ, 0)‖C2,α
µ (Iσ×[vε,+∞))

6 cκε(3+µ)/2

and, for all ε ∈ (0, εκ),

(46)

‖S(ϕ, g2)− S(ϕ, g1)‖C2,α
µ (Iσ×[vε,+∞))

6 1
2‖g2− g1‖C2,α

µ (Iσ×[vε,+∞))
,

‖S(ϕ2, g)− S(ϕ1, g)‖C2,α
µ (Iσ×[vε,+∞))

6 cε
1
2+µ/2‖ϕ2−ϕ1‖C2,α(S1)

for all g, g1, g2 ∈ C2,α
µ (Iσ × [vε,+∞)) such that ‖gi‖C2,α

µ
6 2cκ ε(3+µ)/2, and all

ϕ1, ϕ2 ∈ C2,α(S1) enjoying the same properties as ϕ.

Proof. We know from Proposition 6.5 that ‖Gε,vε( f )‖C2,α
µ
6 c‖ f ‖C0,α

µ
for some

c > 0 (throughout the proof, c will denote an arbitrary positive constant). Then

‖S(ϕ, 0)‖C2,α
µ
6 c‖L̃εwϕ −Lσ wϕ + Q̃σwϕ‖C0,α

µ

6 c
(
‖L̃εwϕ‖C0,α

µ
+‖Lσwϕ‖C0,α

µ
+‖Q̃σwϕ‖C0,α

µ

)
.
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So we need to estimate the three terms above.
In the proof of Proposition A.5 we obtain that, for every v ∈ [vε,+∞),

‖wϕ‖C2,α(Iσ×[v,v+1]) 6 ce−2(v−vε)‖ϕ‖C2,α(S1).

Therefore,

‖wϕ‖C2,α
µ
= sup
v∈[vε,+∞)

(
e−µv‖wϕ‖C2,α(Iσ×[v,v+1])

)
6 c sup

v∈[vε,+∞)

(e−µv−2(v−vε))‖ϕ‖C2,α(S1) 6 ce−µvε‖ϕ‖C2,α(S1) 6 κcε1+µ/2.

From this inequality and the estimates of the coefficients of L̃ε, it follows that

‖L̃ε(wϕ)‖C0,α
µ
6 cε1/2

‖wϕ‖C2,α
µ
6 κcε(3+µ)/2.

Since wϕ is an harmonic function, the definition of Lσ in (30) gives the equality

Lσwϕ = 2k(u, v)wϕ.

Recall (see Lemma 5.5) that if v > vε, then y(v) > π − aε, where aε = O(
√
ε).

From the facts that if |y(v)−π |6 aε, then

k(u, v)= sin2 σ cos2(x(u))+ cos2 σ sin2(y(v))6 sin2 σ + sin2(aε)6 cε

and that wϕ is an exponentially decaying function, we conclude that

‖Lσwϕ‖C0,α
µ
6 cε‖wϕ‖C0,α

µ
6 κcε2+µ/2.

Finally, ‖Q̃σwϕ‖C0,α(Iσ×[v,v+1]) 6 c‖wϕ‖2C2,α(Iσ×[v,v+1]), so

‖Q̃σwϕ‖C0,α
µ
6 c sup

v∈[vε,+∞)

(
e−µv‖wϕ‖2C2,α(Iσ×[v,v+1])

)
6 c ‖wϕ‖2C2,α

µ/2
6 κ2c ε2+µ/2.

Putting together these estimates, we get (45). The details of other the estimates are
left to the reader. �

Theorem 7.3. Consider 0 < σ 6 ε, µ ∈ (−2,−1) and ϕ ∈ C2,α(S1) as above.
We define B := {g ∈ C2,α

µ (Iσ ×[vε,+∞)) : ‖g‖C2,α
µ
6 2ckε

(3+µ)/2
}. Then the non-

linear mapping S(ϕ, · ) has a unique fixed point g in B.

Proof. The previous proposition shows that if ε is chosen small enough, the
nonlinear mapping S(ϕ, · ) is a contraction mapping from B into itself. Hence
Schauder’s theorem ensures that S(ϕ, · ) has a fixed point g in B. �

Theorem 7.3 provides, for each even function ϕ ∈ C2,α(S1) L2-orthogonal to
e0,0, e0,1 with ‖ϕ‖C2,α(S1) 6 κε, a minimal surface St,α,γ,ξ,d(ϕ) close to M1 (the
subindex t reflects the fact we are considering the upper half of M̃σ,α,0(γ, ξ)). In a
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neighborhood of its boundary, this surface can be written as a vertical graph over
the annulus B2rε − Brε ⊂ {x3 = 0} of the function

(47) U t,1(r, θ)= (1+ γ) ln(2r)− 2r sin 1
2(α) cos θ − 1+γ

r
ξ cos θ

+ d +Hvε,ϕ(ln 2r, θ)+ V t,1(r, θ).

The function V t,1 = V t,1(γ, ϕ) depends nonlinearly on γ and ϕ, and there exists
a c > 0 such that

(48)

‖V t,1(γ, ϕ)(rε · , · )‖C2,α(B2−B1)
6 cε,

‖V t,1(γ, ϕ1)(rε · , · )− V t,1(γ, ϕ2)(rε · , · )‖C2,α(B2−B1)

6 cε1/2
‖ϕ1−ϕ2‖C2,α(S1),

for all even functions ϕ, ϕ1, ϕ2 ∈ C2,α(S1) that are L2-orthogonal to e0,0, e0,1 and
whose C2,α-norms are bounded above by κε. The latter estimate follows from
estimate (46) and

‖V t,1(γ, ϕ1)(rε · , · )− V t,1(γ, ϕ2)(rε · , · )‖C2,α(B2−B1)

6 eµvε‖S(ϕ1, V t,1)− S(ϕ2, V t,1)‖C2,α
µ (Iσ×[vε,+∞))

.

The boundary of St,α,γ,ξ,d(ϕ) corresponds to the image by U t,1 of {r = rε}.
Similar arguments can be followed for the lower half of M̃σ,α,0(γ, ξ), and we

obtain a minimal surface Sb,α,γ,ξ,d(ϕ) close to such a half of M̃σ,α,0(γ, ξ), which
can be written in a neighborhood of its boundary as a vertical graph over the annulus
B2rε − Brε of the function

(49) U b,1(r, θ)=−(1+ γ) ln(2r)− 2r sin 1
2α cos θ − 1+γ

r
ξ cos θ

+ d +Hvε,ϕ(ln 2r, θ)+ V b,1(r, θ),

where the function V b,1 = V b,1(γ, ϕ) enjoys the same properties as V t,1. The
boundary of Sb,α,γ,ξ,d(ϕ) corresponds to the image by U b,1 of {r = rε}.

Analogously, for an odd function ϕ ∈C2,α(S1) that is L2-orthogonal to ẽ0,0, ẽ0,1

(see Remark 6.8) and that satisfies ‖ϕ‖C2,α(S1) 6 κε, we obtain minimal surfaces
S̃t,β,γ,ξ,d(ϕ) and S̃b,β,γ,ξ,d(ϕ) near the upper and lower half of M̃σ,0,β(γ, ξ) that can
be written in a neighborhood of their boundary as vertical graphs over the annulus
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B2rε − Brε respectively of the functions

U t,2(r, θ)= (1+ γ) ln(2r)+ 2r sin 1
2β sin θ − 1+γ

r
ξ sin θ

+ d +Hvε,ϕ(ln 2r, θ)+ V t,2(r, θ),

U b,2(r, θ)=−(1+ γ) ln(2r)+ 2r sin 1
2β sin θ − 1+γ

r
ξ sin θ

+ d +Hvε,ϕ(ln 2r, θ)+ V b,2(r, θ),

where the functions V t,2=V t,2(γ, ϕ) and V b,2=V b,2(γ, ϕ) enjoy the same proper-
ties as V t,1. Their respective boundaries correspond to the image by U t,2 and U b,2

of {r = rε}.

8. The matching of Cauchy data

In this section we shall complete the proof of Theorems 1.1, 1.2 and 1.3.

8.1. Proof of Theorem 1.2. The proof is articulated in two distinct parts: the proof
of the existence of the family K1 and of the existence of the family K2.

We start with the second. Its proof is based on an analytical gluing procedure.
The surfaces in the family K2 are symmetric about the plane {x2=0}, so all the sur-
faces involved in the proof must have the same property. We will show how to glue
a compact piece of a Costa–Hoffman–Meeks-type surface with bent catenoidal end
to two halves of the KMR example M̃σ,α,0 along the upper and lower boundaries
and to a horizontal periodic flat annulus with a disk removed along the middle
boundary. All the surfaces just mentioned have the desired symmetry, as do the
surfaces obtained from them by slight perturbation. We recall below the necessary
results proved in previous sections.

As we have seen in Section 3, we can construct a minimal surface MT
k,ε(ε/2, 9),

with9= (ψt , ψb, ψm), that is close to a truncated genus k Costa–Hoffman–Meeks
surface Mk and has three boundaries. The functions ψt , ψb, ψm ∈ C2,α(S1) are
even. Also, ψm is L2-orthogonal to 1, and ψt and ψb are L2-orthogonal to 1 and to
cos θ . Close to its upper, lower and middle boundaries, the surface MT

k,ε(ε/2, 9)
is a vertical graph over the annulus Brε − Brε/2, respectively, of the functions

Ut(r, θ)= σt + ln(2r)− 1
2εr cos θ + Hψt (sε − ln(2r), θ)+OC2,α

b (ε),

Ub(r, θ)=−σb− ln(2r)− 1
2εr cos θ + Hψb(sε − ln(2r), θ)+OC2,α

b (ε),

Um(r, θ)= H̃ρε,ψm (1/r, θ)+OC2,α
b (ε),

where sε =− ln
√
ε and ρε = 2

√
ε; see Equations (14), (15) and (16).

Using the results of Section 7 we can show the existence of a minimal surface
St,αt ,γt ,ξt ,dt (ϕt) near the upper half of the KMR example M̃σt ,αt ,0, and asymptotic
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to it. Near its boundary, this surface can be parameterized over B2rε − Brε as the
vertical graph of (see (47))

U t(r, θ)= (1+ γt) ln(2r)− 2r sin 1
2αt cos θ − 1+γt

r
ξt cos θ

+ dt +Hvε,ϕt (ln 2r, θ)+OC2,α
b (ε).

We recall that ϕt ∈ C2,α(S1) is an even function L2-orthogonal to 1 and to cos θ .
The surface St,αt ,γt ,ξt ,dt (ϕt) will be glued to the upper boundary of MT

k,ε(ε/2, 9).
Near its boundary, the surface Sb,αb,γb,ξb,db(ϕb) that will be glued along the lower

boundary of MT
k,ε(ε/2, 9) can be parameterized in the annulus B2rε − Brε as the

vertical graph of

U b(r, θ)=−(1+ γb) ln(2r)− 2r sin 1
2αb cos θ − 1+γb

r
ξb cos θ

+ db+Hvε,ϕb(ln 2r, θ)+OC2,α
b (ε);

see (49). Recall that we assumed ϕb ∈ C2,α(S1) to be an even function that is
L2-orthogonal to 1 and to cos θ .

Using the results of Section 4, we can construct a minimal graph Sm(ϕm) close
to a horizontal periodic flat annulus with a disk removed. Here ϕm ∈ C2,α(S1) is
an even function L2-orthogonal to 1. In a neighborhood of its boundary, it can
be parameterized (see (21)) as the vertical graph over B2rε − Brε of U m(r, θ) =
H̃rε,ϕm (r, θ)+OC2,α

b (ε).
The functions OC2,α

b (ε) in the formulas above replace the functions Vt , Vb, Vm ,
V t , V b and V m that appear in Equations (14), (15), (16), (47), (49) and (21). They
depend nonlinearly on the different parameters and boundary data, but they are
bounded by a constant times ε in the C2,α

b topology, where partial derivatives are
taken with respect to the vector fields r∂r and ∂θ .

We assume that the parameters and the boundary functions are chosen so that

(50) |γt | + |γb| + |−γt ln
√
ε+ ηt | + |γb ln

√
ε+ ηb|

+ (4
√
ε)−1∣∣−4 sin(αt/2)+ ε

∣∣+ (4√ε)−1∣∣−4 sin(αb/2)+ ε
∣∣

+ 2
√
ε(|(1+ γt)ξt | + |(1+ γb)ξb|)

+‖ϕt‖C2,α(S1)+‖ϕb‖C2,α(S1)+‖ϕm‖C2,α(S1)

+‖ψt‖C2,α(S1)+‖ψb‖C2,α(S1)+‖ψm‖C2,α(S1) 6 κε,

where ηt = dt − σt and ηb = db+ σb for some fixed constant κ > 0 large enough.
It remains to show that, for all ε small enough, it is possible to choose the

parameters and boundary functions so that the surface

MT
k (ε/2, 9)∪ St,αt ,γt ,ξt ,dt (ϕt)∪ Sb,αb,γb,ξb,db(ϕb)∪ Sm(ϕm)
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is a C1 surface across the boundaries of the different summands. Regularity theory
will then ensure that this surface is in fact smooth, and then by construction it has
the desired properties. This will therefore complete the proof of the existence of
the family of examples K2.

It is necessary to fulfill the following system of equations on S1:
Ut(rε, · )=U t(rε, · ), ∂rUt(rε, · )= ∂rU t(rε, · ),

Ub(rε, · )=U b(rε, · ), ∂rUb(rε, · )= ∂rU b(rε, · ),

Um(rε, · )=U m(rε, · ), ∂rUm(rε, · )= ∂rU m(rε, · ).

The left three equations lead to the system

(51)



γt ln(2rε)+ ηt − (1+ γt)(ξt/rε) cos θ
+ rε(−2 sin 1

2αt +
1
2ε) cos θ +ϕt −ψt = OC2,α

b (ε),

− γb ln(2rε)+ ηb− (1+ γb)(ξb/rε) cos θ
+ rε(−2 sin 1

2αb+
1
2ε) cos θ +ϕb−ψb = OC2,α

b (ε)

ϕm −ψm = OC2,α
b (ε).

The right three equations give the system

(52)



γt + (1+ γt)(ξt/rε) cos θ
+ rε(−2 sin 1

2αt +
1
2ε) cos θ + ∂∗θ (ϕt +ψt)= OC1,α

b (ε),

−γb+ (1+ γb)(ξb/rε) cos θ
+ rε(−2 sin 1

2αb+
1
2ε) cos θ + ∂∗θ (ϕb+ψb)= OC1,α

b (ε)

∂∗θ (ϕm +ψm)= OC1,α
b (ε).

Here ∂∗θ denotes the operator that associates to φ =
∑

i>1 φi cos(iθ) the func-
tion ∂∗θ φ =

∑
i>1 iφi cos(iθ). To obtain this system, we applied the results of

Lemmas A.6 and A.7. The functions OC l,α(ε) in the above expansions depend
nonlinearly on the different parameters and boundary data functions, but they are
bounded in the C l,α topology by a constant times ε. The projection of the first two
equations of each system over the L2-orthogonal complement of Span{1, cos θ},
together with the remaining two equations, gives the system

(53)


ϕt −ψt = OC2,α

b (ε), ∂∗θ ϕt + ∂
∗

θψt = OC1,α
b (ε),

ϕb−ψb = OC2,α
b (ε), ∂∗θ ϕb+ ∂

∗

θψb = OC1,α
b (ε),

ϕm −ψm = OC2,α
b (ε), ∂∗θ ϕm + ∂

∗

θψm = OC1,α
b (ε).

Lemma 8.1 [Fakhi and Pacard 2000]. The operator

h : C2,α(S1)→ C1,α(S1), ϕ 7→ ∂∗θ ϕ
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is invertible when acting on functions that are even and L2-orthogonal to 1.

Proof. If we decompose ϕ =
∑

j>1 ϕ j cos( jθ), then

h(ϕ)=
∑
j>1

jϕ j cos( jθ),

is clearly invertible from H 1(S1) into L2(S1). Elliptic regularity theory implies
that this is still true when this operator is defined between Hölder spaces. �

Using this result, the system (53) can be rewritten as

(54) (ϕt , ϕb, ϕm, ψt , ψb, ψm)= OC2,α(ε).

Recall that the right hand side depends nonlinearly on ϕt , ϕb, ϕm, ψt , ψb, ψm and
also on the parameters γt , γb, ηt , ηb, ξt , ξb, αt , αb. We look at this equation as a
fixed point problem and fix κ large enough. Thanks to estimates (48), (20),(22),
(17) and (18), we can use a fixed point theorem for contracting mappings in the
ball of radius κε in (C2,α(S1))6 to obtain, for all ε small enough, a solution
(ϕt , ϕb, ϕm, ψt , ψb, ψm) of (54). Since this solution is a fixed point for a con-
traction mapping and since the right hand side of (54) is continuous with respect to
all data, we see that this fixed point (ϕt , ϕb, ϕm, ψt , ψb, ψm) depends continuously
(and in fact smoothly) on the parameters γt , γb, ηt , ηb, ξt , ξb, αt , αb. Inserting this
solution into (51) and (52), we see that it only remains to solve a system of the
form

γt ln(2rε)+ ηt +

(
−(1+ γt)

ξt
rε
+ rε(−2 sin 1

2αt +
1
2ε)
)

cos θ = O(ε),

−γb ln(2rε)+ ηb+

(
−(1+ γb)

ξb
rε
+ rε(−2 sin 1

2αb+
1
2ε)
)

cos θ = O(ε),

γt +

(
(1+ γt)

ξt
rε
+ rε(−2 sin 1

2αt +
1
2ε)
)

cos θ = O(ε),

−γb+

(
(1+ γb)

ξb
rε
+ rε(−2 sin 1

2αb+
1
2ε)
)

cos θ = O(ε),

where this time the right hand sides only depend nonlinearly on γt , γb, ηt , ηb, ξt ,
ξb, αt , αb. There are eight equations that are obtained by projecting this system
over 1 and cos θ . If we set

(ηt , ηb)= (γt ln(2rε)+ ηt ,−γb ln(2rε)+ ηb),

(ξ t , ξ b)= r−1
ε ((1+ γt)ξt , (1+ γb)ξb), (αt , αb)= rε(2 sin 1

2αt , 2 sin 1
2αt),

the previous system can be rewritten as

(55) (γt , γb, ξ t , ξ b, ηt , ηb, αt , αb)= O(ε).
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This time, provided κ has been fixed large enough, we can use the Leray–Schauder
fixed point theorem in the ball of radius κε in R8 to solve (55), for all ε small
enough. This provides a set of parameters and a set of boundary data such that (51)
and (52) hold. Equivalently, we have proved the existence of a solution of systems
(51) and (52). So the proof of the first part of Theorem 1.2 is complete.

The proof of the second part uses the same arguments as above, so we will omit
most of the details. We wish to show the existence of the family of surfaces K1,
which are symmetric about the plane {x1 = 0}. It is important to observe in this
proof that the KMR example is obtained by slight perturbation of M̃σ,0,β . The
symmetry properties of this surface differ from those of the surface close to M̃σ,α,0

involved in the previous gluing procedure. In particular M̃σ,0,β is symmetric about
the plane {x1=0}, whereas the Costa–Hoffman–Meeks-type surface from before is
symmetric about the plane {x2= 0}. Thus M̃σ,0,β is not appropriate for gluing with
a KMR example of the type described above. To obtain a surface with the desired
symmetry about {x1 = 0}, we rotate the Costa–Hoffman–Meeks surface with bent
catenoidal ends described in Section 3 counterclockwise by π/2 about the x3 axis.
In the parameterizations of the top and bottom ends, the cosine function is replaced
by the sine function, that is,

Ut(r, θ)= σt + ln(2r)− 1
2εr sin θ + Hψt (sε − ln(2r), θ)+OC2,α

b (ε),

Ub(r, θ)=−σb− ln(2r)− 1
2εr sin θ + Hψb(sε − ln(2r), θ)+OC2,α

b (ε),

where sε =−1
2 ln ε and (r, θ)∈ Brε−Brε/2. As for the planar middle end, the form

of its parameterization remains unchanged; see the first part of the proof. Another
important remark concerns the Dirichlet boundary data ψt , ψb, ψm . Before, to
preserve the symmetry about the plane {x2 = 0}, it was required that these were
even functions and that ψt and ψb were orthogonal to 1 and to cos θ . Now these
must be odd functions and ψt and ψb must be orthogonal to 1 and to sin θ . Then
all results shown in Section 3 continue to hold (see Remark 6.8).

Now we parameterize the surface S̃t,βt ,γt ,ξt ,dt (ϕt), the minimal surface obtained
by perturbation from the KMR example M̃σ,0,β and asymptotic to it. This surface
can be parameterized in the neighborhood B2rε − Brε as the vertical graph of

U t(r, θ)= (1+ γt) ln(2r)+ 2r sin 1
2βt sin θ − (1+ γt)/rξt sin θ

+ dt +Hvε,ϕt (ln 2r, θ)+OC2,α
b (ε).

The parameterization of S̃b,βb,γb,ξb,db(ϕb), the surface that we will glue to the
Costa–Hoffman–Meeks-type surface along its lower boundary, is given by

U b(r, θ)=−(1+ γb) ln(2r)+ 2r sin 1
2βt sin θ − (1+ γb)/rξb sin θ

+ db+Hvε,ϕb(ln 2r, θ)+OC2,α
b (ε),
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where (r, θ) ∈ B2rε − Brε .
To prove the theorem it is necessary to show there is solution to the system

Ut(rε, · )=U t(rε, · ), ∂rUb(rε, · )= ∂rU b(rε, · ),

Ub(rε, · )=U b(rε, · ), ∂rUt(rε, · )= ∂rU t(rε, · ),

Um(rε, · )=U m(rε, · ), ∂rUm(rε, · )= ∂rU m(rε, · )

on S1, under the assumption (50) for the parameters and the boundary functions. It
is clear that the existence proof for this system is based on the same arguments seen
before. Note that the role played before by the functions cos(iθ) is now played by
the functions sin(iθ). This completes the proof of Theorem 1.2. �

8.2. The proof of Theorem 1.1. We will glue a compact piece of the surface
MT

k (ξ) with ξ = 0 described in Section 3 to two halves of a Scherk-type surface
along the upper and lower boundary and to a horizontal periodic flat annulus along
the middle boundary. The construction of these surfaces was shown in Section 4.
In particular, we showed the existence of a minimal graph close to half of a Scherk-
type example whose ends have asymptotic directions given by cos θ1 e1+ sin θ1 e3

and − cos θ2 e1 + sin θ2 e3. These surfaces, in the neighborhood B2rε − Brε of the
boundary, admit the parameterization

U t = dt + ln(2r)+ H̃rε,ϕt (r, θ)+OC2,α
b (ε),

U b = db− ln(2r)+ H̃rε,ϕb(r, θ)+OC2,α
b (ε),

where the Dirichlet boundary data H̃rε,ϕi ∈ C2,α(S1) for i = t, b is required to be
even and orthogonal to 1, and H̃rε,ϕi denotes their harmonic extensions. The other
surfaces in the gluing procedure have been described in Section 8.1.

The proof is similar to the one given for Theorem 1.2, so we will give only the
essentials. We must show there is a solution to the system

Ut(rε, · )=U t(rε, · ), ∂rUb(rε, · )= ∂rU b(rε, · ),

Ub(rε, · )=U b(rε, · ), ∂rUt(rε, · )= ∂rU t(rε, · ),

Um(rε, · )=U m(rε, · ), ∂rUm(rε, · )= ∂rU m(rε, · )

on S1, under an assumption similar to (50). See Section 8.1 for the expressions of
Ut ,Ub,Um,U m . We point out that here we consider the more symmetric example
(with ξ =0) in the family (MT

k (ξ))ξ , so we must replace ε/2 by 0 in the expressions
of the functions Ut and Ub of the top and bottom ends.

The boundary data for the surfaces we will glue together do not all share the same
orthogonality properties. All are orthogonal to the constant function, but only ψt

and ψb are orthogonal to cos θ . The functions denoted by OC2,α
b (ε), appearing in
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the expressions of U i and Ui with i = t, b,m, have a Fourier series decomposi-
tion containing a term collinear to cos θ only if the corresponding boundary data
is assumed to be orthogonal only to the constant function. Furthermore the fact
that ξ = 0 (which reflects that the catenoidal ends are not bent) implies that the
functions parameterizing the top and bottom end of MT

k (0) are orthogonal to cos θ .
In other words, in contrast to the Scherk-type surfaces, we are not able this time
to prescribe the coefficients of the eigenfunction cos θ for the catenoidal ends of
MT

k (0), because they are required to vanish in this more symmetric setting.
The left three equations lead to the system

ηt +ϕt −ψt = OC2,α
b (ε),

ηb+ϕb−ψb = OC2,α
b (ε),

ϕm −ψm = OC2,α
b (ε),

where ηt = dt − σt , ηb = db+ σb. The right three equations give the system
∂∗θ (ϕt +ψt)= OC1,α

b (ε),

∂∗θ (ϕb+ψb)= OC1,α
b (ε),

∂∗θ (ϕm +ψm)= OC1,α
b (ε).

The proof is completed by the arguments of Section 8.1. �

8.3. The proof of Theorem 1.3. To prove this theorem, we treat separately the
cases k = 0 and k > 1.

The case k=0. We will glue half of a Scherk example with half of a KMR example
with α = β = 0. We observe that this surface is symmetric about the {x1 = 0} and
{x2 = 0} planes. The Scherk example is symmetric about the {x2 = 0} plane. To
preserve this property of symmetry in the surface obtained by the gluing procedure,
we will consider the perturbation of M̃σ,0,0 that has the same mirror symmetry. This
is the surface denoted by St,0,γt ,ξt ,dt (ϕt) with γt = ξt = 0 and dt = d . It can be
parameterized in the annulus B2rε − Brε as the vertical graph of

U (r, θ)= ln(2r)+ d +Hvε,ϕ(ln 2r, θ)+OC2,α
b (ε).

The Scherk example is parameterized as the vertical graph of

Ut(r, θ)= ln(2r)+ d + H̃rε,ψ(r, θ)+OC2,α
b (ε).

As for the Dirichlet boundary data, we assume ϕ to be an even function orthogonal
to the constant function and to cos θ , and we assume ψ to be even and orthogonal
to 1.
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To prove the theorem in the case k = 0, we must show there is a solution to the
system {

U (rε, · )=U t(rε, · ),

∂rU (rε, · )= ∂rU t(rε, · )

on S1, under appropriate assumptions on the norms of the Dirichlet boundary data
and the parameters ξ , d , d .

These equations lead to the system{
η+ϕ−ψ = OC2,α

b (ε),

∂∗θ (ϕ+ψ)= OC1,α
b (ε).

where η = d − d . The proof is completed by the arguments of Section 8.1.

The case k > 1. The proof in this case is similar the proof of Theorem 1.1. In fact
three of the surfaces we are going to glue are ones we used there: a compact piece
of the Costa–Hoffman–Meeks example Mk , half of a Scherk-type example, and
a horizontal periodic flat annulus. The fourth surface is half of a KMR example,
of the type we used in the k = 0 case. The surfaces are parameterized as vertical
graphs over B2rε − Brε of the following functions:

U b(r, θ)=− ln(2r)+ db+ H̃rε,ϕb(r, θ)+OC2,α
b (ε)

for the Scherk-type example;

U m(r, θ)= H̃rε,ϕm (r, θ)+OC2,α
b (ε)

for the horizontal periodic flat annulus;

U t(r, θ)= ln(2r)+ dt +Hvε,ϕt (ln 2r, θ)+OC2,α
b (ε)

for the KMR example; and

Ut(r, θ)= σt + ln(2r)+ Hψt (sε − ln(2r), θ)+OC2,α
b (ε),

Ub(r, θ)=−σb− ln(2r)+ Hψb(sε − ln(2r), θ)+OC2,α
b (ε),

Um(r, θ)= H̃ρε,ϕm (1/r, θ)+OC2,α
b (ε)

for the compact piece of the Costa–Hoffman–Meeks example. We require the
Dirichlet boundary data to consist of even functions. The functions ψt and ψb are
orthogonal to 1 and to cos θ , but ψm , ϕt , ϕb and ϕm are orthogonal only to 1. In
this case the system of equations to solve is

ηt +ϕt −ψt = OC2,α
b (ε), ∂∗θ (ϕt +ψt)= OC1,α

b (ε),

ηb+ϕb−ψb = OC2,α
b (ε), ∂∗θ (ϕb+ψb)= OC1,α

b (ε),

ϕm −ψm = OC2,α
b (ε), ∂∗θ (ϕm +ψm)= OC1,α

b (ε),
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where ηt = dt − σt and ηb = db+ σb. The details are left to the reader.

Appendix A

Definition A.1. For `∈N, α ∈ (0, 1) and ν ∈R, the space C`,αν (Bρ0(0)) is defined
to be the space of functions in C`,αloc (Bρ0(0)) for which the norm ‖ρ−ν w‖C`,α(Bρ0 (0))
is finite.

Proposition A.2. There exists an operator H̃ : C2,α(S1)→ C2,α
−1 ([ρ,+∞)×S1),

such that for each even function ϕ(θ) ∈ C2,α(S1) that is L2-orthogonal to 1, the
function wϕ = H̃ρ,ϕ solves{

1wϕ = 0 on [ρ,+∞)×S1,

wϕ = ϕ on {ρ}×S1.

Moreover, ‖H̃ρ,ϕ‖C2,α
−1 ([ρ,+∞)×S1) 6 c‖ϕ‖C2,α(S1) for some constant c > 0.

Remark A.3. Following the arguments of the proof below, it is possible to state a
similar proposition but with the hypothesis that ϕ is odd.

Proof. We decompose the function ϕ in the basis {cos(iθ)} as ϕ=
∑
∞

i=1 ϕi cos(iθ).
Then the solution wϕ is given by

wϕ(ρ, θ)=

∞∑
i=1

(
ρ
ρ

)i
ϕi cos(iθ).

Because ρ/ρ 6 1, we have (ρ/ρ)i 6 (ρ/ρ). Thus |w(r, θ)|6 cρ−1
|ϕ(θ)| and then

‖wϕ‖C2,α
−1
6 c‖ϕ‖C2,α . �

Now we state a useful result; for a proof see [Fakhi and Pacard 2000].

Proposition A.4. There exists an operator H : C2,α(S1)→ C2,α
−2 ([0,+∞)×S1),

such that, for all ϕ ∈ C2,α(S1) that are even and L2-orthogonal to 1 and cos θ , the
function w = Hϕ solves{

(∂2
s + ∂

2
θ )w = 0 in [0,+∞)×S1,

w = ϕ on {0}×S1.

Moreover ‖Hϕ‖C2,α
−2
6 c‖ϕ‖C2,α for some constant c > 0.

Proposition A.5. There exists an operator

Hv0 : C
2,α(S1)→ C2,α

µ ([v0,+∞)×S1)
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for µ ∈ (−2,−1) such that, for every function ϕ(u) ∈ C2,α(S1) that is even and
L2-orthogonal to e0,i (u) with i = 0, 1, the function wϕ =Hv0,ϕ solves{

∂2
uuwϕ + ∂

2
vvwϕ = 0 on [v0,+∞)×S1,

wϕ = ϕ on {v0}×S1.

Moreover, ‖Hv0,ϕ‖C2,α
µ ([v0,+∞)×S1) 6 c‖ϕ‖C2,α(S1) for some constant c > 0.

Proof. We decompose of the function ϕ in the basis {e0,i (u)} as ϕ=
∑
∞

i=2 ϕi e0,i (u).
Then the solution wϕ is given by

wϕ(u, v)=
∞∑

i=2

e−i(v−v0)ϕi e0,i (u).

We recall that µ ∈ (−2,−1), so we have −i 6 µ, from which it follows that

‖wϕ‖C2,α([v,v+1]×S1) 6 eµ(v−v0)‖ϕ‖C2,α ,

‖wϕ‖C2,α
µ
= sup
v∈[v0,∞]

e−µv‖wϕ‖C2,α([v,v+1]×S1)

6 sup
v∈[v0,∞]

e−µveµ(v−v0)‖ϕ‖C2,α 6 e−µv0‖ϕ‖C2,α . �

Lemma A.6. Let u(r, θ) be the harmonic extension defined on [r0,+∞)×S1 of
the even function ϕ =

∑
i>0 ϕi cos(iθ) ∈ C2,α(S1), and suppose u(r0, θ) = ϕ(θ).

Then ∂∗θ ϕ(θ)= r0∂r u(r, θ)|r=r0 .

Proof. If ϕ(θ)=
∑

i>0 ϕi cos(iθ), then the function u is given by

u(r, θ)=
∑
i>0

ϕi

( r
r0

)i
cos(iθ).

Then ∂r u(r, θ)=
∑

i>1 ϕi (r/r0)
i i cos(iθ)/r , and ∂∗θ ϕ(θ)= r0∂r u(r, θ)|r=r0 . �

Lemma A.7. Let u(r, θ) be the harmonic extension defined on [0, r0] ×S1 of the
even function ϕ∈C2,α(S1), with u(r0, θ)=ϕ(θ). Then ∂∗θ ϕ(θ)=−r0∂r u(r, θ)|r=r0 .

Proof. If ϕ(θ)=
∑

i>0 ϕi cos(iθ), then

u(r, θ)=
∑
i>0

ϕi (r0/r)i cos(iθ).

Then ∂r u(r, θ)=−
∑

i>1 ϕi (r0/r)i i cos(iθ)/r , and the result follows. �
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Appendix B

Proof of Proposition 7.1. Let Z be the immersion of the surface M̃σ,α,β and N its
normal vector. We want to find the differential equation a function f must satisfy
so that the surface parameterized by Z f = Z + f N is minimal. In Section 5.2 we
parameterized the surface M̃σ,α,β on the cylinder S1

×R. We introduced the map
z(x, y) : S1

×[0, π[→ C where x, y denote the spheroconal coordinates. We start
with the conformal variables p and q, defined to be as the real and the imaginary
part of z. We have

|Z p|
2
= |Zq |

2
=3, |Np|

2
= |Nq |

2
=−K3,

〈Np, N 〉 = 〈Nq , N 〉 = 0, 〈Z p, Zq〉 = 0, 〈Np, Nq〉 = 0,

〈Nq , Zq〉 = −〈Np, Z p〉, 〈Nq , Z p〉 = 〈Np, Zq〉,

so
〈Np, Z p〉 = |Np||Z p| cos γ1 =

√
−K3 cos γ1,

〈Np, Zq〉 = |Np||Zq | cos γ2 =
√
−K3 cos γ2.

Here K denotes the Gauss curvature, Z p, Zq and Np, Nq denote the partial deriva-
tives of the vectors Z and N , γ1 is the angle between the vectors Np and Z p,
and γ2 is the angle between the vectors Np and Zq .

The proof of Proposition 7.1 is articulated through some lemmas. We denote
by E f , F f , G f the coefficients of the second fundamental form for the surface
parameterized by Z f . The first lemma expresses the area energy functional.

Lemma B.1. A( f ) :=
∫
(E f G f − F2

f )
1/2 dpdq, with

E f G f − F2
f =3

2
+3( f 2

p + f 2
q )+ 2K32 f 2

+ 2 f ( f 2
q − f 2

p )
√
−K3 cos γ1

− 4 f f p fq
√
−K3 cos γ2− K3 f 2( f 2

p + f 2
q )+ f 4K 232.

Proof. The coefficients of the second fundamental form are

E f = |∂p Z f |
2
= |Z p|

2
+ f 2

p + f 2
|Np|

2
+ 2 f 〈Np, Z p〉,

G f = |∂q Z f |
2
= |Zq |

2
+ f 2

q + f 2
|Nq |

2
+ 2 f 〈Nq , Zq〉,

F f = |∂p Z f · ∂q Z f | = f p fq + f (〈Z p, Nq〉+ 〈Zq , Np〉).

Then

E f G f = |Z p|
2
|Zq |

2
+ f 2

p |Zq |
2
+ f 2

q |Z p|
2
+ f 2(|Nq |

2
|Z p|

2
+ |Np|

2
|Zq |

2)

+ f 2( f 2
p |Nq |

2
+ f 2

q |Np|
2)+ f 4

|Np|
2
|Nq |

2
+ 4 f 2(〈Np Z p〉)(〈Nq Zq〉)

+ 2 f ( f 2
p 〈Nq , Zq〉+ f 2

q 〈Np, Z p〉)+ f 2
p f 2

q

+ 2 f (〈Nq , Zq〉|Z p|
2
+〈Np, Z p〉|Zq |

2)+ 2 f 3(〈Nq , Zq〉|Z p|
2
+〈Np, Z p〉|Zq |

2).
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Since 〈Nq , Zq〉 + 〈Np, Z p〉 = 0 and |Z p|
2
= |Zq |

2, we can conclude that the last
two terms of the previous expression are zero. Since 〈Nq , Z p〉 = 〈Np, Zq〉, we
have F f = f p fq + 2 f 〈Np, Zq〉. Then

F2
f = f 2

p f 2
q + 4 f 2(〈Np, Zq〉)

2
+ 4 f f p fq〈Np, Zq〉.

So the expression for E f G f − F2
f is

|Z p|
2
|Zq |

2
+ f 2

p |Zq |
2
+ f 2

q |Z p|
2
+ f 2(|Nq |

2
|Z p|

2
+ |Np|

2
|Zq |

2)

+ f 2( f 2
p |Nq |

2
+ f 2

q |Np|
2)+ f 4

|Np|
2
|Nq |

2
+ 4 f 2

〈Np, Z p〉〈Nq , Zq〉

+ 2 f ( f 2
p 〈Nq , Zq〉+ f 2

q 〈Np, Z p〉)− 4 f 2(〈Np, Zq〉)
2
− 4 f f p fq〈Np, Zq〉.

Ordering the terms, we get

|Z p|
2
|Zq |

2
+ f 2

p |Zq |
2
+ f 2

q |Z p|
2
+ f 2(|Nq |

2
|Z p|

2
+ |Np|

2
|Zq |

2)

− 4 f 2
〈Np, Zq〉

2
+ 4 f 2

〈Np, Z p〉〈Nq , Zq〉+ 2 f ( f 2
p 〈Nq , Zq〉+ f 2

q 〈Np, Z p〉)

− 4 f f p fq〈Np, Zq〉+ f 2( f 2
p |Nq |

2
+ f 2

q |Np|
2)+ f 4

|Np|
2
|Nq |

2.

The expression for E f G f − F2
f becomes

32
+3( f 2

p + f 2
q )− 2K32 f 2

+ 4 f 2K32(cos2 γ1+ cos2 γ2)

+ 2 f ( f 2
q − f 2

p )
√
−K3 cos γ1− 4 f f p fq

√
−K3 cos γ2

− K3 f 2( f 2
p + f 2

q )+ f 4K 232.

Using the relations 〈Nq , Z p〉 = 〈Np, Zq〉 and 〈Nq , Zq〉 = −〈Np, Z p〉, one can see
that vectors are pointed so that γ2=π/2±γ1. So cos2 γ2=cos2(π/2±γ1)= sin2 γ1

and cos2 γ1+ cos2 γ2 = 1. Then we can write

32
+3( f 2

p + f 2
q )+ 2K32 f 2

+ 2 f ( f 2
q − f 2

p )
√
−K3 cos γ1

− 4 f f p fq
√
−K3 cos γ2− K3 f 2( f 2

p + f 2
q )+ f 4K 232. �

The next lemma completes the proof of Proposition 7.1.

Lemma B.2. The surface whose immersion is given by Z + f N , is minimal if and
only if f satisfies

Lσ f + Qσ ( f )= 0,

where Lσ is the Lamé operator and Qσ is a second order differential operator that
satisfies

‖Qσ ( f2)− Qσ ( f1)‖C0,α(Iσ×[v,v+1])

6 c sup
i=1,2
‖ fi‖C2,α(Iσ×[v,v+1])‖ f2− f1‖C2,α(Iσ×[v,v+1]).
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Proof. The surface parameterized by Z f = Z+ f N is minimal if and only the first
variation of A( f ) is 0. That is,

2D A(g)=
∫

1
(E f G f −F2

f )
1/2

∣∣∣
f=0

D f (E f G f − F2
f )(g) dpdq = 0.

By the previous lemma, the integrand above is equal to

1
3

(
23( f pgp + fq gq)+ 4K32 f g

+ 2
√
−K3 cos γ1

(
2 f fq gq + g f 2

q − 2 f f pgp − g f 2
p
)

− 4
√
−K3 cos γ2

(
f fq gp + f gq f p + g f p fq

)
− 2K3

(
f g f 2

p + f pgp f 2
+ f g f 2

q + fq gq f 2)
+ 4K 232 f 3g

)
,

which, by reordering the summands, becomes

2
(

f pgp + fq gq + 2K3 f g

+
√
−K cos γ1

(
2 f ( fq gq − f pgp)+ g( f 2

q − f 2
p )
)

− 2
√
−K cos γ2

(
f ( fq gp + gq f p)+ g f p fq

)
− K

(
f g( f 2

p + f 2
q )+ f 2( f pgp + fq gq)

)
+ 2K 23 f 3g

)
.

In the next computation we skip the overall factor of 2 in this expression. We find

f pgp+ fq gq+2K3 f g+Q1( f, f p, fq)g−Q2( f, f p, fq)gp−Q3( f, f p, fq)gq =0,

where

Q1( f, f p, fq)=−( f 2
p − f 2

q )
√
−K cos γ1− 2 f p fq

√
−K cos γ2

− K f ( f 2
p + f 2

q )+ 2K 23 f 3,

Q2( f, f p, fq)= 2 f f p
√
−K cos γ1+ 2 f fq

√
−K cos γ2+ K f 2 f p,

Q3( f, f p, fq)=−2 f fq
√
−K cos γ1+ 2 f f p

√
−K cos γ2+ K f 2 fq .

An integration by parts and a change of sign give us the equation(
f pp + fqq − 2K3 f − Q1( f, f p, fq)

+ P2( f, f p, fq , f pp, f pq , fqq)+ P3( f, f p, fq , f pp, f pq , fqq)
)
g = 0,

where
P2( f, f p, fq , f pp, f pq , fqq)= ∂p Q2( f, f p, fq),

P3( f, f p, fq , f pp, f pq , fqq)= ∂q Q3( f, f p, fq).



AN END-TO-END CONSTRUCTION FOR SINGLY PERIODIC MINIMAL SURFACES 57

That is,

P2( f, f p, fq , f pp, f pq , fqq)=

2( f 2
p + f f pp)

√
−K cos γ1+ 2( f p fq + f f pq)

√
−K cos γ2+ K (2 f f 2

p + f 2 f pp)

+ 2 f ( f p(
√
−K cos γ1)p + fq(

√
−K cos γ2)p)+ f 2 f p K p,

P3( f, f p, fq , f pp, f pq , fqq)=

− 2( f 2
q + f fqq)

√
−K cos γ1+ 2( f p fq + f f pq)

√
−K cos γ2+ K (2 f f 2

q + f 2 fqq)

+ 2 f (− fq(
√
−K cos γ1)q + f p(

√
−K cos γ2)q)+ f 2 fq Kq .

Now we want to understand how differential equation above changes when pass-
ing from the (p, q) to the (u, v) variables. We recall that p and q are the real
and imaginary part of the variable z that is expressed in terms of the spheroconal
coordinates x, y in (28). The metric g induced on a surface whose immersion
Z is given by the Weierstrass representation on a domain of the complex z-plane
can be expressed in terms of the metric ds2

= dp2
+ dq2 by g = 3(dp2

+ dq2),
where 3= |Z p|

2
= |Zq |

2. The Laplace–Beltrami operators written with respect to
the metrics ds2 and g are related by 1ds2 = (1/3)1g, that is, they differ by the
conformal factor 1/3. In Proposition 7.1, we observed that the conformal factor
related to the change of coordinates (x, y)→ (u, v) is −K/k. So the conformal
factor induced by the change (p, q)→ (u, v) is the product of the conformal factors
described above. Summarizing, we have

f pp + fqq =
−K3

k
( fuu + fvv).

So we can write

−K3
k

( fuu + fvv)+ 2 (−K3) f + R1+ R2+ R3 = 0,

where

R1( f, fu, fv)=

−
−K3

k

(
−( f 2

u − f 2
v )
√
−K cos γ1− 2 fu fv

√
−K cos γ2− K f ( f 2

u + f 2
v )
)
− 2K 23 f 3

=
−K3

k

(
( f 2

u − f 2
v )
√
−K cos γ1+ 2 fu fv

√
−K cos γ2+ K f ( f 2

u + f 2
v )− 2K k f 3)

=
−K3

k
P1( f, fu, fv),

and
R2( f, fu, fv, fuu, fuv, fvv)=

−K3
k

P2( f, fu, fv, fuu, fuv, fvv),

R3( f, fu, fv, fuu, fuv, fvv)=
−K3

k
P3( f, fu, fv, fuu, fuv, fvv).
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Simplifying the notation, we can write

−K3
k

(
fuu + fvv + 2k(u, v) f + P1( f )+ P2( f )+ P3( f )

)
= 0.

We can recognize the Lamé operator in

Lσ f = fuu + fvv + 2(sin2 σ cos2 x(u)+ cos2 σ sin2 y(v)) f ;

then, if we set Qσ = P1( f )+ P2( f )+ P3( f ), the equation can be written

Lσ f + Qσ ( f )= 0.

To show the estimate of Qσ , it suffices to show that all its coefficients are bounded.
In particular we will show that the Gauss curvature K and its derivatives Ku

and Kv are bounded. We start observing that −K/k(x(u), y(v)) is bounded. It is
well known that the Gauss curvature can be expressed in terms of the Weierstrass
data g, dh as

K =−16
(
|g| + 1

|g|

)−4∣∣∣dg
g

∣∣∣2|dh|−2

We recall that dh = µdz/
√
(z2+ λ2)(z2+ λ−2). Now |z2

+ λ2
||z2
+ λ−2

| and
k(x, y)= sin2 σ cos2 x(u)+cos2 σ sin2 y(v) have the same zeros, that is, the points
D, D′, D′′, D′′′ are given by (23), so −K/k is bounded, as are its derivatives.

We estimate the derivatives of K and
√
−K . We can write

√
−K =

√
k
√
−K/k.

From the observations made above, it follows that to show that the derivatives of
√
−K are bounded, it suffices to study the derivatives of

√
k.

We recall that

l(x)=
√

1− sin2 σ sin2 x and m(y)=
√

1− cos2 σ cos2 y.

From the expression of k, it is easy to get from (29) that

∂
∂u

√
k = − sin2 σ sin 2x(u)

2
√

k
l(x(u)) and ∂

∂v

√
k = cos2 σ sin 2y(v)

2
√

k
m(y(v)).

Then∣∣∣ ∂
∂u

√
k
∣∣∣= sin2 σ |sin 2x(u)|l(x(u))

2
√

sin2 σ cos2 x(u)+ cos2 σ sin2 y(v)
6

sin2 σ |sin 2x(u)|
2 sin σ |cos x(u)|

6 sin σ,

∣∣∣ ∂
∂v

√
k
∣∣∣= cos2 σ |sin 2y(v)|m(y(v))

2
√

sin2 σ cos2 x(u)+ cos2 σ sin2 y(v)
6

cos2 σ |sin 2y(v)|
2 cos σ |sin y(v)|

6 cos σ.

Thus the derivatives of
√

k (and consequently those of
√
−K ) are bounded. �
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Appendix C

The differential equation

(56) sin y ∂y(sin y ∂y f )− j2 f + 2 sin2 y f = 0

is the l = 1 case of the associated Legendre differential equation

sin y ∂y(sin y ∂y f )− j2 f + l(l + 1) sin2 y f = 0,

where l, j ∈ N. The family of the solutions of (56) (see [Abramowitz and Stegun
1964]) is c1 P j

l (cos y)+c2 Q j
l (cos y) for l = 1, where P j

l (t) and Q j
l (t) are respec-

tively the associated Legendre functions of first and second kind. If l = 1, these
functions are defined as follows:

P j
1 (t)=


t if j = 0,
−
√

1− t2 if j = 1,
0 if j > 2,

Q j
1(t)= (−1) j

√
(1− t2) j

d j Q0
1(t)

dt j

Q0
1(t)=

1
2 t ln

(1+t
1−t

)
− 1.
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UNIVERSITÉ PARIS-EST

LABORATOIRE D’ANALYSE ET MATHÉMATIQUES APPLIQUÉES
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